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Abstract 11 

Understanding visual processing requires a detailed description of computations performed by 12 

neurons across stages of the visual system. However, the diverse tunings of neurons beyond 13 

the primary visual cortex (V1) have yet to be fully characterized. Using two-photon calcium 14 

imaging and stochastic visual stimuli, we catalogued the response properties of a dense sample 15 

of 40,000 neurons in V1 and six secondary visual areas of awake mice. All areas encode unique 16 

sets of features with distinct spatiotemporal preferences, motion speed selectivity, and 17 

differential responses to oriented and non-oriented stimuli. Central areas V1 and LM have the 18 

most diverse tunings, with distributed spatiotemporal preferences and a moderate bias for non-19 

oriented stimuli. Preferences of V1 and LM neurons differ strikingly showing tuning to low and 20 

midrange spatiotemporal frequencies, respectively. Lateral areas PM and LI are highly biased 21 

towards high spatial and low temporal frequencies, showing weak selectivity for motion speed. 22 

Anterior areas AL, RL and AM are highly biased towards high temporal frequencies and have 23 

the largest proportion of motion tuned cells. Accordingly, activity patterns in these areas carry 24 

more information about motion speed than any other visual areas. With regards to spatial 25 

preferences, LI differs strikingly from PM and anterior areas in that it is heavily biased towards 26 

non-oriented stimuli. The data provides a detailed description of the segregation of encoding of 27 

spatiotemporal feature in the rodent visual cortex and provides a stark demonstration of the high 28 

functional specialization of visual areas. 29 

Introduction  30 

Recent studies on mice harvested important insights of the neural basis underpinning sensory 31 

computations. On the one hand, the genetic and experimental access to the mouse visual 32 

system revealed fundamental organizations at multiple stages of visual processing (Maruoka et 33 
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al., 2017; Wanner et al., 2017; Han et al., 2018; Liang et al., 2018) and specific circuitries 34 

underlying a range of computations (Ko et al., 2011, 2013, Lien and Scanziani, 2013, 2018; 35 

Reinhold et al., 2015). In parallel, studies of mouse visual behaviors have revealed a greater 36 

richness than previously recognized. Mouse are able to identify arbitrary shapes and pictures 37 

(Brigman et al., 2005; Nithianantharajah et al., 2013), differentiate coherent motion direction 38 

(Stirman et al., 2016; Marques et al., 2018), using visual cues to navigate (Prusky et al., 2000; 39 

Harvey et al., 2009; Chen et al., 2013) or guide accurate approach to the prey (Hoy et al., 2016), 40 

and associate stimulus identity with stimulus value (Poort et al., 2015; Burgess et al., 2016). 41 

Many of these complex visual behaviors rely on an elaborate neural network of higher-order 42 

visual cortical areas. Therefore, a necessary step to understand the neural basis for those visual 43 

behaviors is to understand how specific visual stimuli are encoded in the higher visual cortex. 44 

The mouse visual cortex encompasses over ten retinotopic higher visual areas surrounding V1 45 

(Wang and Burkhalter, 2011; Garrett et al., 2014; Zhuang et al., 2017). These areas are 46 

suggested to be specialized for specific visual features. Surveys in anesthetized mice found 47 

neurons in higher visual areas respond to drifting gratings with distinct spatiotemporal 48 

frequencies and speeds, and pattern versus component motion (Marshel et al., 2011; Roth et 49 

al., 2012; Tohmi et al., 2014; Juavinett and Callaway, 2015; Smith et al., 2017). However these 50 

stimulus preferences might be very different in the awake brain since anesthesia profoundly 51 

affects visual responses (Haider et al., 2013; Lien and Scanziani, 2013; Aasebø et al., 2017). 52 

Nevertheless, there have been far fewer studies of the response properties of neurons in higher 53 

visual areas in awake mice, and these have only focused on a small set of areas (Andermann et 54 

al., 2011; Glickfeld et al., 2013). 55 

To understand how specific visual features are encoded in the visual cortex, we undertook a 56 

comprehensive functional characterization of layer 2/3 neurons in V1 and six higher visual areas 57 

in awake mice using two-photon calcium imaging. Using a library of stochastic visual stimuli 58 

(spectral noise stimuli), we found neurons in distinct higher visual areas present distinct 59 

selectivities for the spatiotemporal frequency, visual motion speed and spatial stimulus 60 

anisotropy (oriented versus non-oriented stimuli). Population coding analysis further revealed 61 

greater speed discriminability in higher visual areas than V1. Overall, higher visual areas 62 

present segregated encoding of spatiotemporal features that might underpin distinct 63 

computations, such as processing of visual motion and shape. 64 
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Results 65 

Cortical neurons are highly selective for spectral noise stimuli 66 

Using two-photon calcium imaging, we recorded cellular responses to spectral noise stimuli in 67 

layer 2/3 of V1 and six higher visual areas (LM: lateromedial; AL: anterolateral; RL: rostrolateral; 68 

AM: anteromedial; PM: posteromedial; LI: laterointermediate; Figure 1A – figure supplement 1) 69 

in awake Thy1-GCaMP6s mice (Figure 1B; Dana et al., 2014).  70 

The spectral noise stimuli consisted of 4s-epochs of spatiotemporally filtered bandpass noise 71 

stimuli interleaved by 4s-epochs of equiluminent gray screen (Figure supplement 2; Materials 72 

and Methods). The stimuli spanned a broad range of spatial (0.02 to 0.32 cycle per degree) and 73 

temporal frequencies (0.5 to 16 Hz) as well as various degrees of orientation bandwidth (5, 10, 74 

40 degree, and no filter for non-oriented stimuli). These stimuli were designed to drive diverse 75 

orientation-tuned neurons. At one extreme, ISO stimuli had isotropic spatial frequency spectra 76 

with uniform power in all orientations, resembling a cloud of moving dots (Figure 1C -- figure 77 

supplement 2A). At the other, ANISO stimuli (Figure 1C – figure supplement 2A) had energy 78 

within a narrow orientation band (5 degree), resembling sinusoidal gratings. A global rotation 79 

was implemented in ANISO stimuli to sweep the entire orientation space within each stimulus 80 

epoch.  81 

In V1, around 80% of fluorescent neurons were responsive to at least one stimulus condition; 82 

this number is lower in higher visual areas (40~65%, Figure supplement 3B). In addition, V1 83 

neurons responded more reliably than those in higher visual areas (trial-to-trial correlation: V1 84 

vs others, KS tests with Bonferroni correction, all p values < 0.01; Figure supplement 3C). 85 

These data demonstrate V1 neurons robustly respond to spectral noise stimuli and encode 86 

reliable visual representations, whereas neurons in higher visual areas are selective for 87 

appropriate stimulus dimensions. Neurons that didn’t respond might require stimulus 88 

dimensions that were not explored in this study (visual or non-visual). 89 

We further investigated whether ISO and ANISO stimuli activated distinct populations of 90 

neurons. We found distinct stimulus preferences across neurons. A subset of neurons (Figure 91 

1C, example cell 1) selectively responded to ISO stimuli (Figure 1D, ISO), showing a strong 92 

preference for non-oriented stimuli; whereas another (Figure 1C, cell 2) solely responded to 93 

ANISO stimuli (Figure 1D, ANISO), preferring oriented stimuli. Each subset comprised a 94 

substantial fraction of the responsive neurons in all areas (Figure 1E, ~20 to 40% per area). The 95 

remaining responsive cells (Figure 1C, cell 3) responded to both ISO and ANISO stimuli with 96 
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comparable response profiles, albeit the difference in the response strengths (Figure 1D, group 97 

‘Both’). This demonstrates distinct subsets of cortical neurons encode oriented or non-oriented 98 

features of the visual scene.  99 

By characterizing the responses to spectral noise stimuli of populations of thousands of neurons 100 

in V1 and higher visual areas, we could quantitatively determine the degree to which areas in 101 

the mouse visual cortex are specialized for distinct spatiotemporal features.  102 

Distinct population response profiles across areas  103 

To determine whether cortical areas contain distinct functional populations, we categorized the 104 

reliably responsive neurons using a non-supervised clustering approach (spectral clustering, 105 

see Method and Materials). For each area, we obtained a subsample of 2000 neurons with 106 

random selection, each neuron yielded a vector of peak-normalized responses to ISO and 107 

ANISO stimuli (Figure 2B). We firstly tested whether there are discrete functional types or not. 108 

Response profiles of cortical neurons were highly diverse and covered the response space in a 109 

continues manner. Therefore, we didn’t observe discrete functional types based on the 110 

response profiles to spectral noise stimuli (Figure supplement 4A). Nevertheless, we used the 111 

clustering approach to investigate population response profiles across areas. Neurons were 112 

categorized into 12 broad groups, showing similar response profiles within each group and 113 

remarkable differences across groups (Figure 2A -- Figure supplement 4B). These groups 114 

presented distinct response properties for spatiotemporal frequencies and stimulus anisotropy 115 

(Figure supplement 5). Each area contained a unique composition of functional groups (Figure 116 

2B, C). The interareal difference was estimated as the Euclidian distance of population 117 

compositions between pairs of areas, shown in a hierarchical tree (Figure 2D). V1 was distinct 118 

from higher visual areas, nevertheless more similar to LM. LM showed a uniform distribution of 119 

functional groups. Anterior areas, AL, RL and AM, showed similar abundance of a set of 120 

clusters and thus form a separate branch from other areas. On the other side of the tree, PM 121 

and LI contained functional clusters nearly non-overlapping with the anterior areas. These 122 

results reveal distinct population response profiles across cortical areas, suggesting the 123 

functional segregation for the processing of distinct spatiotemporal features. 124 

To investigate how spatiotemporal information are encoded in the visual cortex, we undertook 125 

quantitative analysis on individual spatiotemporal features within and across areas.  126 
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Distinct preferences for the stimulus anisotropy across cortical areas  127 

Cortical neurons showed diverse preferences for ISO and ANISO stimuli (Figure 1, 2B), which 128 

differed in the orientation characteristics. We then asked whether neurons were tuned for the 129 

degree of orientedness, which we refer as stimulus anisotropy. The tuning curve was measured 130 

as the responses to four degrees of anisotropy at the preferred spatial frequencies (Figure 3A, 131 

B). The stimulus anisotropy index (SAI) is the difference/sum ratio of the responses to the most 132 

anisotropic and isotropic stimuli. From -1 to 1, neurons shift the preferences from isotropic to 133 

anisotropic stimuli. The tuning of individual cells matched their response preferences for ISO or 134 

ANISO stimuli (Figure 3B; same cells in Figure 1C). Neurons selectively responding to ISO 135 

stimuli strongly responded to the non-oriented stimuli, the responses declined quickly as the 136 

stimuli became anisotropic (Cell 1; SAI = -0.91). ANISO neurons selectively responded to 137 

oriented stimuli, preferring higher degrees of anisotropy (Cell 2; SAI = 0.95). The remaining 138 

populations were broadly tuned, responding invariantly to different degrees of anisotropy (Cell 3, 139 

SAI = -0.1).  140 

To investigate whether neurons in different areas have distinct preferences for stimulus 141 

anisotropy, we compared average tuning curves (Figure 3C) and distributions of stimulus 142 

anisotropy index across areas (Figure 3D). The average responses of V1 and LM neurons 143 

peaked at non-oriented stimuli, and decreased to increasingly oriented stimuli (Figure 3C). 144 

Likewise, the distributions of tuning index also deviated towards isotropic stimuli (Figure 3D). 145 

Areas AL, RL, AM and PM, showed heterogeneous preferences, encoding a uniform 146 

representation of the stimulus anisotropy space. Contrastingly, area LI showed a pronounced 147 

bias for non-oriented stimuli (Figure 3C, D), distinct from other areas. These results 148 

demonstrate mouse cortical areas encode distinct information of non-oriented and oriented 149 

components of the visual scene. 150 

LM neurons encode a uniform representation of spatiotemporal frequency space  151 

Besides the selectivity for stimulus anisotropy, cortical neurons also showed diverse responses 152 

to spatiotemporal frequencies (Figure 2B). Individual neurons’ tuning curve for the 153 

spatiotemporal frequency was estimated by fitting a two-dimensional Gaussian model to the 154 

trial-averaged responses to the preferred stimuli (ISO or ANISO stimuli; Figure 4A, B; Priebe et 155 

al., 2003; Andermann et al., 2011).  156 

We firstly compared the spatiotemporal selectivities of LM neurons with those in V1, as LM 157 

neurons were shown to have similar functional properties as V1 neurons (Van Den Bergh et al., 158 

2010; Marshel et al., 2011). Both areas contained neurons showing highly diverse preferences 159 
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for spatial and temporal frequencies, spanning the entire frequency spectra (Figure 4E, F). V1 160 

population, however, showed the preference for lower frequencies; whereas LM population 161 

formed a uniform representation of the frequency space with a slight bias for intermediate 162 

frequencies (Figure 4C: 20 random response fits; 4E: fraction of responsive cells to certain 163 

frequencies). These differences were also evident in the distribution of preferred frequencies 164 

and the proportion of neuron of different passband properties (Figure 4D, F-- figure 165 

supplement 6).  166 

In the spatial frequency domain, V1 preferred lower frequencies than LM (Figure 5A; median 167 

values, V1 vs LM: 0.055 vs 0.074 cpd; KS test with Bonferroni correction, p < 0.01), and had 168 

more lowpass cells (Figure supplement 6C; V1 vs LM: 33% vs 27%), indicating a tendency to 169 

respond to even lower spatial frequencies. Cutoff frequencies (Figure 5B) were measured to 170 

estimate the range of frequency represented by each neuronal population. V1 neurons 171 

preferentially represented low spatial frequencies (median low and high cutoffs: 0.03 and 0.137 172 

cpd), contrasting LM neurons that preferred intermediate frequencies (median cutoffs: 0.046 173 

and 0.163 cpd; V1 vs LM, KS-test: p< 0.01 for each pair). In addition, the spatial frequency 174 

tuning width of V1 bandpass cells were wider than those in LM, suggesting that LM neurons 175 

were more selective for spatial frequencies (Figure supplement 6D; KS test, p<0.01). 176 

In the temporal frequency domain (Figure 5C, D -- figure supplement 6E, F), LM neurons 177 

preferred higher frequencies than V1 (higher preferred and cutoff frequencies, and less lowpass 178 

cells in LM). The bandwidths were comparable for V1 and LM neurons (V1 vs LM: 2.09 vs 2.02 179 

octave; KS test, p>0.05). Altogether, these results demonstrate the spatiotemporal selectivity is 180 

different between LM and V1: LM neurons encode a uniform representation of the 181 

spatiotemporal frequency space, whereas V1 shows an overrepresented lower frequency 182 

domain.  183 

Anterior areas prefer low spatial and high temporal frequencies 184 

Anterior areas, including AL, RL and AM, preferentially responded to low spatial and high 185 

temporal frequencies (Figure 4,5 – figure supplement 6). Among all areas, RL showed the 186 

utmost preference for low spatial and high temporal frequencies (median preferred frequencies: 187 

0.062 cpd and 4.59 Hz; KS test: p < 0.01 for all area pairs). It contained the largest fraction of 188 

spatially lowpass / temporally highpass cells among all areas (25% vs 1~15%). In comparison, 189 

AM neurons were biased to intermediate frequencies (median preferred frequencies: 0.085 cpd 190 

and 3.34 Hz) and contained a substantial group of spatially bandpass neurons (64%). AL 191 

showed median preferred frequencies comparable to AM, but higher diversities in the population 192 
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(Figure 4F), resulting in a more uniform representation of low to intermediate spatial frequencies 193 

(Figure 4E). These results demonstrate overall similar preferences for low spatial, high temporal 194 

frequencies in anterior areas, suggesting the specialization for encoding fast-changing, large-195 

scale stimuli. 196 

Lateral areas prefer high spatial and low temporal frequencies 197 

In contrast to anterior areas, areas LI and PM (Figure4,5—figure supplement 6), who are 198 

situated at lateral sides of the visual cortex, preferred high spatial and low temporal frequencies 199 

(median preferred, PM vs LI: 0.158 vs 0.142 cpd; 1.29 vs 1.36 Hz; KS test, for each pair, 200 

p<0.05). PM and LI contained different subpopulations of neurons (Figure 5A). PM population 201 

presented a bimodal distribution in the spatial frequency domain with a small and a large 202 

fraction of neurons responding to low and high frequencies, respectively; whereas LI contained 203 

more diverse population that responded to a broader range of spectrum deviated to higher 204 

spatial frequencies. Nevertheless, PM and LI presented overall similar preferences for slow-205 

moving, refined stimuli, opposing to anterior areas.  206 

Preferences shifted to higher frequencies in awake mice 207 

We compared our results to Marshel et al., 2011, where the same set of areas were 208 

investigated in anesthetized mice. Individual areas’ preferred frequencies in the current study 209 

are remarkably higher (up to 2-fold) than in Marshel’s study (Figure 5E, F). By contrast, our 210 

results are largely comparable to the observation in awake mice (in comparison to Andermann 211 

et al., 2011; except TF tuning for V1). These comparisons might reflect the influence of different 212 

brain states on the neural representation of visual information in the visual cortex, and suggest 213 

awake animals have greater capacities to respond to fast changing and/or refined visual stimuli. 214 

Higher visual areas encode complementary representation of visual motion speed 215 

The complete mapping of the spatiotemporal frequency space allowed us to determine 216 

individual neurons’ tuning for visual motion speed. The speed is given as the ratio of temporal 217 

and spatial frequencies. A speed-tuned neuron has similar tuning curves for speed across 218 

spatial frequencies, and thus the temporal frequency tuning varies as a function of the spatial 219 

frequency tuning. By contrast, a non-speed-tuned cell has separable, independent tuning for the 220 

spatial and temporal frequency (Figure 6A – figure supplement 7A). The speed tuning index ξ is 221 

the correlation between spatial and temporal frequency, extracted from the Gaussian fits. If ξ >= 222 

0.5, neurons are speed tuned; otherwise, untuned. The speed tuning analysis was focused on 223 

the responses to isotropic noise stimuli, which contained local motion components rather than 224 
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global, coherent motion (such as drifting gratings). The responses to anisotropic noise stimuli 225 

were not used given the potential confound induced by the embedded rotatory motion.  226 

The speed tuning index ξ of V1 population was centered around 0, indicating most V1 cells 227 

were not tuned for speed (Figure 6B, C). Neurons in higher visual areas were significantly more 228 

tuned than V1 neurons (Figure 6B, C; KS tests with Bon, p<0.01). Among higher visual areas, 229 

AM contained the largest fraction of speed-tuned cells, followed by RL and AL. In comparison, 230 

LM, PM and LI contained relatively smaller fractions of speed-tuned cell. Moreover, speed-tuned 231 

neurons encoded distinct ranges of speed across areas (Figure 6B, D). V1 and LM were broadly 232 

tuned for the intermediate range of speed (peak at 12.5 and 25 deg/s respectively). AL and AM 233 

primarily responded to fast-moving stimuli (peak at 100 deg/s); RL neurons selectively 234 

responded to extremely fast stimuli (peak at 400 deg/s). By contrast, PM and LI mainly 235 

responded to slow motion (peak at 6.25 deg/s). These results suggest mouse visual cortical 236 

areas encode distinct ranges of visual motion speed: V1 is largely untuned for speed; LM is 237 

broadly tuned; anterior areas and lateral areas selectively encode fast and slow motion 238 

respectively. 239 

Increased speed discriminability in higher visual areas 240 

As higher visual areas show distinct selectivities for spatiotemporal features, an interesting 241 

question arises: do these areas computationally benefit from such a functional specialization? 242 

To investigate the difference of spatiotemporal information processing between areas, we 243 

compared how well could information about the stimulus category (spatiotemporal frequencies) 244 

could be decoded from the neural population activities. The decoding accuracy increased as a 245 

function of population size, showing distinct frequency-specific performances across areas 246 

(Figure supplement 8A, B). In V1, decoding accuracies for all frequencies increased rapidly as 247 

the population size increased (Figure supplement 8B), reaching 90% average accuracy with 248 

~50 cells (Figure supplement 8C). This high decoding capacity might attribute to the 249 

heterogeneous nature of V1 population. With similarly high heterogeneity, LM population also 250 

showed great decoding capacity, especially for intermediate spatial frequencies (Figure 251 

supplement 8C). By contrast, highly specialized areas showed decreased decoding 252 

performance. In these areas, decoding accuracies rose slowly with increasing population sizes; 253 

some frequencies could not be successfully discriminated with even very large populations (e.g. 254 

RL, accuracy <80% with 1000 neurons; figure supplement 8B). RL showed deteriorated 255 

performance across frequencies, with a slight recovery at the intermediate frequencies. AM was 256 

better at intermediate frequencies and bad at high spatial frequencies. AL populations, showing 257 
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relatively high diversity (Figure 2F), presented elevated performances, especially intermediate 258 

spatial frequencies. PM and LI were better at discriminating high spatial frequencies. LI 259 

outperformed PM in the decoding performance for intermediate temporal frequencies. The 260 

decreased decoding performance for non-preferred frequencies might be just a consequence of 261 

absence of responses: no response, no information. Whereas the decrease for preferred 262 

frequencies might be due to the absence of diversity, as the stimulus information is low if all 263 

neurons respond to it. These results suggested V1 and LM encode holistic information about 264 

visual stimuli, whereas distinct spatiotemporal information is distributed across higher visual 265 

cortical areas.  266 

Higher visual areas showed higher fractions of speed-tuned neurons than V1, are they better at 267 

encoding for speed? We measured decoding performances between stimulus pairs 268 

corresponding to distinct local motion speeds (e.g., stimulus S1T2 has half spatial frequency and 269 

twice temporal frequency as stimulus S2T1, thus S1T2 is four times faster than S2T1; Figure 7B, 270 

speed pairs are orthogonal to the iso-speed lines). V1 showed relative homogeneous decoding 271 

capacities across speed pairs, showing a slight increase at lower spatial frequencies. LM 272 

showed greater decoding capacities for slow to intermediated speed (6.25 – 200 deg/s). AL 273 

population clearly separated slow stimuli (12.5-25 deg/s) from intermediate ones (50-100 deg/s). 274 

AM and RL were specialized for speed discrimination at intermediate frequencies, albeit RL 275 

exhibited a global decrease in decoding performance. LI showed elevated discrimination 276 

capacity for the lower range of speed (3.1-100 deg/s). PM showed a similar tendency for better 277 

discrimination for slow stimuli, albeit less pronounced as LI. Moreover, the frequency-specific 278 

enhancement of speed decoding performances in higher visual areas did not merely reflect 279 

individual areas’ frequency preferences, since the speed decoding remarkably outperformed the 280 

decoding for iso-speed stimulus pairs in the same frequency space (Figure 7B; speed pairs: 281 

S1T2 vs S2T1; compare to Figure 8E; iso-speed pairs: S1T1 vs S2T2). Altogether, these results 282 

demonstrated greater speed discrimination capacities in higher visual areas, with the loss of 283 

spatiotemporal discriminability. This finding suggests information lost due to functional 284 

specialization is a trade-off for better encoding capacities of novel features, which might arise 285 

from integrating non-correlated features by pooling large populations of neurons with specific 286 

tuning properties. 287 

Discussion 288 

Mouse higher visual areas are suggested engaged in a wide range of behaviorally relevant 289 

visual computations (Harvey et al., 2012; Olcese et al., 2013; Burgess et al., 2016; Morcos and 290 
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Harvey, 2017). However, the neural basis of these computations remains poorly understood, 291 

largely due to the lack of knowledge of the functional properties of neurons in higher visual 292 

areas. Using rich spectral noise stimuli and two-photon calcium imaging, we provide a detailed 293 

characterization of the stimulus preference of layer 2/3 neurons in V1 and 6 higher visual areas 294 

in awake mice. We found cortical areas showed distinct preference for stimulus anisotropy; area 295 

LI showed the most pronounced preference for non-oriented stimuli amongst areas. Moreover, 296 

higher visual areas, contrasting V1, contained a substantial fraction of neurons sensitive to the 297 

visual motion speed. Area LM, encompassing diverse spatiotemporally tuned neurons, respond 298 

to a broad range of speed. Anterior areas (AL, RL and AM) preferentially responded to low 299 

spatial, high temporal frequencies, thus fast motion; whereas lateral areas (PM and LI) preferred 300 

high spatial, low temporal frequencies, thus slow motion. Population coding analysis further 301 

revealed greater speed discriminability in higher visual areas. These findings provide novel 302 

insights of a highly specialized network of cortical areas that might underpin distinct visual 303 

computations, such as motion and shape processing. 304 

Comparison of spatiotemporal selectivity with previous studies 305 

The preferred spatiotemporal frequencies observed in the current study are remarkably higher 306 

(up to 2-fold) than in earlier study on anesthetized mice (Marshel et al., 2011), but comparable 307 

to the report on awake mice (Andermann et al., 2011). These results hint to the impact of 308 

anesthesia on neuronal responses. The lower ranges of preferred temporal frequencies 309 

observed in anesthetized mice (Van Den Bergh et al., 2010; Marshel et al., 2011; Roth et al., 310 

2012; Tohmi et al., 2014) might result from suppressed thalamocortical synaptic transmission 311 

(Reinhold et al., 2015). The difference in the spatial frequency tuning is, however, unlikely 312 

caused by different anesthetic levels (Zhuang et al., 2014; Durand et al., 2016). One 313 

explanation could be differential neuronal populations sampled in these two studies. In 314 

Marshel’s study (Marshel et al., 2011), excitatory and inhibitory neurons were ubiquitously 315 

labeled with the synthetic calcium indicator (Oregon Green Bapta-1 AM); whereas in this study 316 

we sampled from a subset of excitatory neurons in Thy1-GCaMP6s transgenic mice (Dana et 317 

al., 2014). As V1 interneurons prefer lower spatial frequencies than layer2/3 excitatory neurons 318 

(Niell and Stryker, 2008), the population preference would shift towards lower frequencies with 319 

the inclusion of interneurons. Nevertheless, it is unclear whether such a difference between 320 

excitatory and inhibitory neurons also exist in higher visual areas, and consequently lead to the 321 

lower preferred spatial frequencies as a population. Further comparisons of neuronal response 322 

properties in wakefulness and anesthesia (Greenberg et al., 2008; Haider et al., 2013; Durand 323 
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et al., 2016; Adesnik, 2017) will shed light to the influence of different brain states on the neural 324 

representation and transformation among visual cortical areas. Nevertheless, studying neuronal 325 

physiology in the awake brain will be of great value for understanding neural computations for 326 

perception and behavior. 327 

Selectivity for stimulus anisotropy 328 

We found cortical neurons are highly selective for stimulus anisotropy (Figure 3). As increasing 329 

stimulus anisotropy increases the length of oriented bars, this selectivity might reflect a form of 330 

length tuning. Many neurons prefer oriented stimuli, with increased responses to longer lengths, 331 

resembling a phenomenon known as ‘length summation’ (Schumer and Movshon, 1984). 332 

Meanwhile, many neurons prefer short stimuli, reminiscent of ‘end-stopping’ cells, who 333 

preferentially respond to stimuli of limited lengths (Hubel and Wiesel, 1965; Gilbert, 1977). This 334 

length tuning property may be attributed to ‘surround suppression’, where one receptive field is 335 

inhibited by the stimulation at the surround. Diverse length tuning curves may emerge from 336 

differential ratios of the excitation on classical receptive fields and the inhibitory effect of the 337 

receptive field surround (Adesnik et al., 2012; Vaiceliunaite et al., 2013; Adesnik, 2017).  338 

We found diverse length tuning in all test areas. V1 and LM presented relatively strong biases 339 

for non-oriented stimuli, suggesting strong surround suppression that was also found in the 340 

primate (Hubel and Livingstone, 1987; Shushruth et al., 2009; El-Shamayleh et al., 2013), cat 341 

(DeAngelis et al., 1994) and mouse (Van Den Bergh et al., 2010; Adesnik et al., 2012; Nienborg 342 

et al., 2013; Vaiceliunaite et al., 2013; Adesnik, 2017). Surround suppression was also reported 343 

in the primate middle temporal visual area (MT/V5) (Born and Bradley, 2005) and suggested to 344 

be used to solve the aperture problem (Tsui et al., 2010). Mouse RL was proposed to be the 345 

mouse analogue of MT (Juavinett and Callaway, 2015); hence the surround suppression in RL 346 

and other dorsal areas (AL, AM and PM) might facilitate unambiguous encoding of motion 347 

directions. In the primate, ‘end-stopping’ behavior increases along the ventral processing stream 348 

and is suggested to benefit the coding for curvatures (Ponce et al., 2017). Area LI, showing a 349 

pronounced preference for non-oriented stimuli, shares an interesting similarity to the primate 350 

ventral areas, suggesting its potential role in the processing of visual shapes.  351 

Functional organization of mouse higher visual areas 352 

Our data demonstrated a complementary representation of visual motion speed in the mouse 353 

higher visual areas (Figure 6). Anterior areas (AL, RL and AM) contain abundant speed-tuned 354 

cells and encode fast local motion speed (Tohmi et al., 2009, 2014; this study). As anterior 355 

areas mainly represent the lower visual field (Zhuang et al., 2017), high-speed tuning properties 356 
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of these areas might benefit the encoding for fast optic flows near the ground during animal’s 357 

navigation. Indeed, area RL, who covers the lower nasal field, where has the fastest optic flows, 358 

showed the highest preferred speed. In consistency, anterior area A was reported to 359 

preferentially respond to high temporal and low spatial frequencies (Murakami et al., 2017), 360 

suggesting the preference for fast speed. In contrast, area PM mainly represents visual 361 

peripheries, where objects are usually distant and optic flows are slow. Ethologically, PM 362 

neurons show the preference for slow speeds (this study; Andermann et al., 2011; Roth et al., 363 

2012). Interestingly, PM neurons were reported to show strong speed-tuned responses to 364 

drifting gratings (Andermann et al., 2011), but showed less prevalence in this study. One 365 

explanation is speed-tuned cells in PM are selective for global, coherent motion than local, non-366 

coherent motion (e.g. isotropic noise stimuli). In fact, using noise stimuli embedded in a global 367 

directional motion flow, we found PM neurons responded more robustly to coherent motion 368 

(data not shown), suggesting the specialization of area PM for encoding slow optic flows in the 369 

visual periphery during navigation. PM might provide information about optic flows via the strong 370 

direct inputs to retrosplenial cortex (Wang et al., 2012), which preferentially responses to slow 371 

motion (Murakami et al., 2015) and is involved in the spatial navigation (Mao et al., 2017). 372 

Besides PM, anterior and medial areas mainly target parietal, motor and limbic cortices (Wang 373 

et al., 2012), coinciding with the representation of visuospatial functions in the dorsal stream in 374 

rats (Kolb and Walkey, 1987). Altogether, the distinct preference for visual motion speed in 375 

dorsal areas (AL, RL, AM and PM) suggest an ethological coding of optic flows during 376 

navigation, reminiscent of the dorsal streams in the primate visual system (Van Essen and 377 

Maunsell, 1983). 378 

Lateral area LI presents preferences for spatial details and non-oriented stimuli (Figure 3-5). 379 

These properties are suitable for encoding spatial details and curvatures, and are critical for 380 

object recognition in the primate ventral stream (Ponce et al., 2017; Lu et al., 2018). In addition, 381 

anatomical studies suggested area LI  is a node in the ventral stream: most of the projections 382 

terminate in temporal and parahippocampal regions (Wang et al., 2012). These pieces of 383 

evidence suggest area LI belongs to the ventral stream for shape processing (analogous area in 384 

the rat: Vermaercke et al., 2014; Tafazoli et al., 2017; in the primate: Van Essen and Maunsell, 385 

1983). Rat lateral areas, including LI, presenting increased transformation-tolerant 386 

representation of visual objects(Vermaercke et al., 2014; Tafazoli et al., 2017). It poses interests 387 

for future studies to determine if a similar representation exists in the mouse lateral areas, and 388 

how does it make use of the specialized tuning properties of simple features for more complex 389 

representations, such as visual objects. 390 
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Area LM was proposed to be the gateway for the ventral stream (AL as the gateway for the 391 

dorsal stream), given its relatively denser projections to the ventral areas (Wang et al., 2011, 392 

2012) and population responses relatively similar to the ventral areas (wide field imaging in 393 

Murakami et al., 2017; Smith et al., 2017). Our data showed, however, LM contains highly 394 

diverse neurons that present dorsal and ventral properties, resembling the primate V2 (Van Den 395 

Bergh et al., 2010). In addition, LM neurons send strong projections to all other higher visual 396 

areas (Wang et al., 2011, 2012), conveying target-specific information (Glickfeld et al., 2013). 397 

The functional properties of LM neurons suggest its role as the divided gateway of dorsal and 398 

ventral streams.  399 

Conclusion 400 

The current study provides a comprehensive characterization of stimulus presences of layer 2/3 401 

neurons in V1 and higher visual areas in awake mice. The results reveal the segregation of 402 

spatiotemporal features in the visual cortex that might underpinning the processing of visual 403 

motion and shape. Facing the accumulating evidence of higher order computations in the 404 

mouse higher visual cortex (Olcese et al., 2013; Burgess et al., 2016; Morcos and Harvey, 405 

2017), it is essential to understand how area-specific representations of visual features arise 406 

along the visual hierarchy, and how basic features of visual and other sensory information are 407 

integrated in the higher order cortex for complex computations. The results and implication of 408 

this study, provide a necessary basis for future studies investigating circuitry mechanisms for 409 

visual perception and behaviors. 410 

 411 

Materials and Methods 412 

Animals and Surgery 413 

All experiments were conducted with the approval of the Animal Ethics Committee of KU 414 

Leuven. Standard craniotomy surgeries were performed to gain optical access to the visual 415 

cortex through a set of cover glasses (Goldey et al., 2014). Thy1- GCaMP6s-WPRE (Dana et al. 416 

2014) mice (n = 10, 5 male and 5 female) between 2 and 3-month-old were anesthetized with 417 

isoflurane (2.5%–3% induction, 1%–1.25% surgery). A custom-made titanium frame was 418 

mounted to the skull, and a craniotomy over the visual cortex was made for calcium imaging. 419 

The cranial window was covered by a 5mm cover glass. Buprenex and Cefazolin were 420 
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administered postoperatively (2 mg/kg and 5 mg/kg respectively) when the animal recovered 421 

from anesthesia after surgery.  422 

Widefield Calcium Imaging  423 

Widefield fluorescent images were acquired through a 2x objective (NA = 0.055, Edmund 424 

Optics). Illumination was from a blue LED (479nm, ThorLabs), the green fluorescence was 425 

collected with an EMCCD camera (EM-C2, QImaging) via a bandpass filter (510/84 nm filter, 426 

Semrock). The image acquisition was controlled with a customize software. 427 

Two-photon Calcium Imaging 428 

A customized two-photon microscopy (Neurolabware) was used. GCaMP6s were excited at 429 

920nm wavelength with a Ti:Sapphire excitation laser (MaiTai DeepSee, Spectra-Physics). The 430 

green fluorescence of GCaMP6s was collected with a photomultiplier tube (PMT, Hamamatsu) 431 

through a bandpass filter (510/84 nm, Semrock). Images (720x512 pixel per frame) were collect 432 

at 31 Hz with a 16x objective (Nikon). Volume imaging was performed using a focus tunable 433 

lens (EL-10-30-TC, Optotune; staircase mode). We simultaneously recorded neuronal activities 434 

in large volumes (0.8 x 0.8 x 0.15 mm3) of layer 2/3 of the targeted visual cortical areas. During 435 

imaging, mice were head-clamped on a platform while consciously viewing the visual stimuli on 436 

the display. Eye movements were monitors using a camera and infrared illumination (720–900 437 

nm bandpass filters, Edmund).  438 

Visual Stimulation  439 

Visual stimuli were displayed on a gamma-corrected LCD display (22’’, Samsung 2233RZ). The 440 

screen was oriented parallel to the eye and placed 18 cm from the animal (covering 80 degree 441 

in elevation by 105 degree in azimuth). Spherical correction was applied to the stimuli to define 442 

eccentricity in spherical coordinates.  443 

Spectral noise stimuli (Figure supplement 2) were created by applying a set of parametrized 444 

filters on random pink-noise movies. Bandpass filters (bandwidth: 1 octave) with different center 445 

spatial frequencies (0.02, 0.04, 0.08, 0.16 and 0.32 cpd) and temporal frequencies (0.5, 1, 2, 4, 446 

8, 16 Hz) gave 30 combinations of spatiotemporal noises. Cutoff frequencies were set at 0.5 447 

octave lower or higher than the center frequencies. A Von Mise filter was used to control the 448 

orientation bandwidth (no filter, 40, 10, 5 degree) in the spatial frequency domain, and thus the 449 

stimulus anisotropy in the space domain. Isotropic (ISO) and anisotropic (ANISO) noise stimuli 450 

were used for the spatiotemporal frequency assay. ISO stimuli contained non-oriented patterns, 451 

resembling clouds of dots with alternating contrast. In contrast, ANISO stimuli, with a narrow 452 
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orientation bandwidth (5 degree), presented oriented patterns that resembles sinusoidal 453 

gratings. Each stimulus set comprises an array of 30 combinations of spatial frequencies (0.02, 454 

0.04, 0.08, 0.16, 0.32 cycle per degree) and temporal frequencies (0.5, 1, 2, 4,8,16 Hz), 455 

spanning a broad frequency spectrum. In addition, ANISO stimuli smoothly rotated 180 degree 456 

to sweep the orientation space within each stimulus epoch. For the stimulus anisotropy assay, 457 

the stimulus set comprised pairs of four degrees of orientation bandwidth (infinite, 40, 10, 5 458 

degree) and four center spatial frequencies (0.04, 0.08, 0.16, 0.32 cpd), with a fixed center 459 

temporal frequency (2Hz). A global rotation was also applied to sweep the orientation space. 460 

Each stimulus condition was presented for 4 second, intertwined with 4-second equiluminent 461 

gray screen. In each of the four pseudorandomized trials, a different seed was used to 462 

generated unique random noise, resulting different phases yet constant frequency spectra 463 

across trials. 464 

For retinotopic mapping, we presented two sets of stimuli. Circling patch stimuli had a small 465 

patch (20-degree in diameter) circling along an elliptic trajectory (azimuth: -40 to 40 deg; 466 

elevation: -30 to 30 deg) on the display. Traveling bar stimuli comprised a narrow bar (13 deg 467 

wide) sweeping across the screen in 4 cardinal direction. An isotropic noise background (0.08 468 

cpd, 2Hz) was embedded in the patch or bar. Each stimulus condition lasted for 10 seconds and 469 

repeated for 20 times. 470 

Data Analysis 471 

All subsequent data analysis was performed in MATLAB (The Mathworks, Natick, MA).  472 

Retinotopy analysis 473 

The phase maps were measured form the fluorescent responses to the phase/position of the 474 

circling patch stimuli (Figure supplement 1). Each area has a representation of the elliptic 475 

trajectory of the patch, resulting pinwheel-like retinotopic maps. Sign maps were obtained with 476 

the methods described in the previous study (Garrett et al., 2014). Azimuth and elevation 477 

position maps were measured as the temporal phase of the peak florescent responses to a 478 

traveling bar for each pixel. They were used to generate a visual field sign map, where each 479 

patch represented one cortical area.  480 

Selection for visual cells 481 

For the cellular imaging, raw images were reconstructed and corrected for brain motion 482 

artefacts using custom MATLAB routines (Bonin et al. 2011). Regions of interest (ROI) were 483 
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selected with custom semi-automated segmentation algorithms. Cellular fluorescence time484 

courses were generated by averaging all pixels in a cell mask, followed by subtracting the485 

neuropil signals in the surround shell. Responses were defined as the averaged dF/F during the486 

stimulus epoch, where dF is the change in the fluorescent signal and F is the baseline487 

fluorescence.  488 

Neurons were considered responsive to a given stimuli if responding to at least one stimulus489 

condition (median response surpass 3x standard deviation of the baseline fluctuation for over 1490 

second). Response reliability was measured in two ways, (1) coefficient variation of the491 

responses to the peak frequencies across trials, and (2) the average trial-to-trial correlation of492 

the fluorescent time courses. Neurons above threshold (trial-to-trial correlation ≥ 0.4) were493 

deemed reliable.  494 

Clustering  495 

The population response matrices for each area were generated with random selection of 2000496 

neurons, each of which was represented as a vector of responses to ISO and ANISO stimuli497 

(normalized to range from 0 to 1). The response matrix of the populations across all areas were498 

used in a spectral clustering algorithm (Matlab Central). To determine whether there are499 

discrete functional types, we plotted the overall variances (within-cluster sum-of-square) as a500 

function of number of clusters. We didn’t observe abrupt decrease of variance with increased501 

cluster size (Figure supplement 4A), suggesting there are no discrete functional response types502 

but rather a continuum. Anyways we used the clustering approach to study the population503 

response profiles across areas. We decided on the selection of 12 clusters for low heterogeneity504 

within clusters without excessive splitting (Figure supplement 4B).  505 

Tuning curves 506 

For the spatial and temporal frequency analysis, responses were fit to two-dimensional elliptical507 

Gaussian models (Priebe et al. 2003; Andermann et al. 2011):  508 

,  509 

where , and A is the peak response amplitude, sf0 and tf0 are the510 

preferred spatial and temporal frequencies, and σsf and σtf are the spatial and temporal511 

frequency tuning widths. The dependence of temporal frequency preference on spatial512 

frequency is captured by a power-law exponent x. Estimates of cutoff values for spatial and513 
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temporal frequency were obtained from the half maxima of cross- sections at R(sf, tf0) and R(sf0, 514 

tf), respectively. Neurons responding to the lowest tested frequencies with over 50% peak 515 

responses were categorized as lowpass, and thus the low cutoff values were set to the lowest 516 

frequencies. In the same manner, the high cutoff values of highpass cells were set to the 517 

highest tested frequencies. Half-width bandwidths were estimated from bandpass cells.  518 

Tuning curves for stimulus anisotropy were measured as the average responses to different 519 

degrees of stimulus anisotropy at the preferred spatial frequencies. The stimulus anisotropy 520 

index (SAI) was the difference/sum ratio of response amplitudes to the most anisotropic stimuli 521 

and the isotropic stimuli.  522 
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 523 

Population coding analysis 524 

We used linear classifiers to decode stimulus categories from neuronal population activities 525 

(Vermaercke et al., 2014). SVM (support vector machine) was trained and tested in pair-wise 526 

classification for each possible pair (30 stimulus conditions in 435 unique pairs). Population 527 

used for frequency classification were composed of neurons responding to isotropic noise 528 

stimuli. Data were split into training and testing groups (half-half) and performance was 529 

measured as the proportion of correct classification decisions to the testing groups (standard 530 

cross validation). To test the scaling of decoding performance as a function of population size, 531 

we measured the decoding performances with subsamples of different numbers of neurons 532 

(logistic increase, 1 to 1000; without replacement) across areas. For each iteration, we 533 

resampled neuronal populations with specific population size. We averaged over 100 iterations 534 

to obtain confidence intervals for the performance. To compare the decoding capacity between 535 

stimulus pairs and across areas, we measured the number of neurons required for classification 536 

accuracy over 90% by interpolate the growth curves of performances as a function of population 537 

size.  538 
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Figures and figure captions 697 

698 

Figure 1. Spectral noise stimuli activate distinct populations in multiple visual cortical699 

areas. (A) Scheme showing V1 and six higher visual areas tested in this study. (B)700 

Experimental setup for two-photon calcium imaging on awake mice. Left panel: Mice were701 

placed on a platform while cellular responses to spectral noise stimuli were recorded using two702 

photon calcium imaging. Right panel: example field of view of the layer2/3 population in V1 of703 

Thy-GCaMP6s (GP4.12) mice. Scale bar: 100um. (C) Example cells showing distinct responses704 

to ISO and ANISO stimuli. ISO stimuli are non-oriented stimuli with isotropic spatial frequencies705 

(left upper row). ANISO stimuli are oriented stimuli with a clockwisely rotatory sweep within each706 

stimulus epoch (right upper row). Both ISO and ANISO stimuli contain the combination of five707 

spatial frequencies (0.02, 0.04, 0.08, 0.16, 0.32 cpd) and six temporal frequencies (0.5, 1, 2, 4,708 

8, 16 Hz). See figure supplement 2 for detailed description of the spectral noise stimuli. The709 

gray lines show the median values of the responses to different spatiotemporal frequencies710 

across trials. The median absolute deviations across trials are shown as light gray shadow. Cell711 
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1 and 2 selectively respond to ISO and ANISO stimuli respectively, while cell 3 shows similar 712 

responses to both stimuli. Blue bars indicate the 4-sec stimulus epochs. dF/F: ratio of 713 

fluorescent changes. (D) Scatter plot showing z-scored responses (mean/standard deviation 714 

across trials) to ISO and ANISO stimuli of all neurons. Neurons are classed into three groups: 715 

responding solely to ISO or ANISO stimuli, or to both. (E) Bar plot showing the fractions of 716 

neurons responding to either ISO or ANISO stimuli or both within and across areas. Non-717 

responsive cells were shown in gray.  See figure supplement 3 for the selection criteria for 718 

responsive and reliable cells.  719 

The following figure supplements is available for figure 1: 720 

Figure supplement 1: Identification of mouse visual cortical areas. 721 

Figure supplement 2: Spectral noise stimuli. 722 

Figure supplement 3: Higher visual area neurons have lower responsiveness and response 723 

reliability. 724 

  725 
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 726 

Figure 2: Segregation of population response profiles across cortical areas. (A) Heat map727 

showing the cosine distances between the response profiles of 2000 randomly selected neurons728 

per area (14000 neurons in total). Black boxes delineate the 12 clusters. (B) Matrices showing729 

population response profiles across areas.  Each matrix comprises the response profiles of730 

2000 randomly selected neurons. Each row is the peak-normalized response profile of a single731 

neuron. Cells are clustered into 12 broad functional groups based on the similarity of response732 

profiles using spectral clustering approach (Materials and methods). The black lines delineate733 

neighboring groups and connect the same groups across matrices. The stimulus parameters734 

are annotated below the V1 matrix. (C) Dot plot presenting the proportion of functional groups735 

across areas. The groups are sorted to demonstrate the similarities and differences between736 

areas. (D) Hierarchical tree showing the dissimilarity between areas in the Euclidean distances737 

estimated from the population composition across areas.  738 

The following figure supplements is available for figure 2: 739 

Figure supplement 4: Clustering. 740 

Figure supplement 5: Response properties of functional groups. 741 

  742 
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 743 

Figure 3: Distinct preferences for the stimulus anisotropy across cortical areas. (A) 744 

Example noise stimuli showing increasing stimulus anisotropies corresponding to increasingly 745 

narrow orientation bandwidths. Bandpass noises without orientation filters are non-oriented 746 

stimuli (ISO stimuli). The narrowest orientation bandwidth (5 degree) corresponds to the ANISO 747 

stimuli. (B) Example cells showing distinct responses to combinations of spatial frequencies and 748 

stimulus anisotropies (upper panels). These cells correspond to the example cells in Figure 1C, 749 

showing matched response preferences for ISO and ANISO stimuli. Tuning curves for stimulus 750 

anisotropy were measured at the preferred spatial frequencies (red curves), and are shown in 751 

the lower panels. The stimulus anisotropy index (SAI) is the difference/sum ratio of the 752 

responses to isotropic and most anisotropic conditions. SAI close to -1 means the preference for753 

isotropy; 1 for anisotropy. (C) Population tuning curves for stimulus anisotropy across areas. 754 

Each line is the average of peak-normalized tuning curves within each area. Areas are arranged 755 

to present the relative anatomical organization. Top row: anterior areas; bottom row: posterior 756 

areas. Left to right: lateral to medial. Inset: scheme of cortical areas. (D) Comparison of the 757 

distribution of stimulus anisotropy index across areas. The right panel shows statistical 758 

comparisons between areas (KS tests with Bonferroni correction).759 

18 

38

O 

d 

for 

d 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 12, 2018. ; https://doi.org/10.1101/441014doi: bioRxiv preprint 

https://doi.org/10.1101/441014


Han et al 2018  Spatiotemporal coding in mouse visual cortex 12 Oct. 2018
 

 28/38

760 

 761 

Figure 4. Segregated preferences for the spatiotemporal frequency across areas. (A)762 

Example RL neuron selectively responding to low spatial frequencies and broadly tuned for763 

temporal frequencies. Left panel: median responses across trials to different spatiotemporal764 

frequencies. The average changes in fluorescence during the stimulus epoch are used to765 

generate the response maps (right panel: raw), which are fitted to oriented two-dimensional766 

Gaussian models (right panel: fit). Size of the dots and strength of red indicate the strength of767 

response (normalize to range from 0 to 1). A high-resolution fit is generated by oversampling768 

(right panel: fit-oversampled). Red line indicates the 50% peak response. (B) Same as A, an769 

example LI neuron showing the selective response to low temporal and high spatial frequencies.770 
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(C) Superimposed surfaces showing diverse spatiotemporal tunings of 20 randomly selected 771 

cells. Inset: scheme of cortical areas. (D) Proportions of cell types based on the passband 772 

properties for spatial and temporal frequencies. H: highpass. B: bandpass. L: lowpass. (E) 773 

Proportion of neurons responsive to certain spatiotemporal frequencies across areas. (F) 774 

Scatter plots showing the distribution of preferred frequencies of the populations across areas. 775 

The inner box delineates the range of frequency explored in this study, dots at the boarders are 776 

scattered outward to visualize the distribution.  777 

 778 

  779 
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 780 

Figure 5: Spatiotemporal frequency selectivities: comparison to previous studies. (A)781 

Distributions of the preferred spatial frequencies across areas. The width of each column is782 

normalized to the maxima of the distribution. The median values are shown on top of each783 

distribution as colored bars. (B) Distributions of low and high cutoff frequencies showing the784 

range of frequencies represented by the populations in each area. (C-D) Temporal frequency785 

analysis, same as (A-B). For all metrics (A-D), all distributions are significantly different from786 

each other (KS tests with Bonferroni correction, p<0.01), except temporal frequency lower787 

cutoffs in V1 versus PM (p = 0.06), temporal frequency high cutoffs in AL and AM (p=0.04).  (E)788 

Bar plots showing the comparison of mean preferred spatial frequencies across areas between789 

this study and previous studies. Colored bars: the current study. Gray bars: awake mice790 

(Andermann et al., 2011). Empty bars: anesthetized mice (Marshel et al., 2011). Error bars:791 

standard error of the mean. (F) Comparison of mean preferred temporal frequencies across792 

studies. Same as (E). 793 
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The following figure supplements is available for figure 5: 794 

Figure supplement 6: Spatiotemporal frequency analysis. 795 

  796 
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 797 

Figure 6: Complementary representation of visual motion speed in higher visual areas.798 

(A) Schemes showing fits of different speed tuning indices ξ (left) and speeds (right). ξ ≈1, the799 

neuron is speed tuned; ξ ≈0, untuned; ξ ≈-1, anti-speed tuned. The diagonals indicate iso-speed800 

lines. (B) Heat maps showing different distributions of neurons across areas in the space of801 

tuning index and peak speed. Inset: scheme of cortical areas. Higher area populations have802 

higher tuning indices than V1, and encode distinct ranges of speed. (C) Distribution of speed803 

tuning index ξ across areas. Colored bars show median values. Neurons above the threshold (ξ804 

≥ 0.5) are classified speed-tuned. The right panel shows the summary of the statistical805 
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comparisons across areas (KS tests with Bonferroni correction). (D) Population tuning curves 806 

for speed across areas. Each line is the average of peak-normalized speed tuning curves of 807 

speed-tuned cells within each area. Error bars: standard error of the mean. The numbers show 808 

the amount of speed-tuned cells in each population meet the criteria of speed-tuning analysis. 809 

The following figure supplements is available for figure 6: 810 

Figure supplement 7: Speed tuning analysis. 811 

  812 
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 813 

Figure 7: Enhanced speed discriminability in higher visual areas. (A) Stimulus classification814 

accuracy at different spatial (left panel) and temporal frequencies (right panel) for individual815 

randomly sampled populations (1000 neurons) per area. V1 and LM show nearly perfect816 

performances across frequencies. Other higher visual areas show decreased performance.817 

Error bars of each curve are ignored for visual clarity. Same plot with error bars can be found in818 

Figure supplement 8D. (B) Speed discriminability at different spatiotemporal frequencies across819 

areas. Higher visual areas show regional increases in performances comparing to V1. The red820 

lines orthogonal to iso-speed lines show the decoding capacity for pairs of stimuli of 4-fold821 

difference in speed. The redness and thickness indicate the magnitude of decoding capacity,822 

which is the number of neurons needed for the accuracy > 90%. 823 

The following figure supplements is available for figure 7: 824 

Figure supplement 8: Population coding analysis. 825 

  826 

18 

38

on 

al 

ct 

e. 

 in 

ss 

ed 

ld 

ty, 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 12, 2018. ; https://doi.org/10.1101/441014doi: bioRxiv preprint 

https://doi.org/10.1101/441014


Han et al 2018  Spatiotemporal coding in mouse visual cortex 12 Oct. 2018 
 

 35/38

Supplementary figure captions 827 

Figure supplement 1: Identification of visual areas. (A) Scheme of visual stimulation. A 828 

patch stimuli with a spectral noise background (0.08 cpd, 2Hz) continuously circles on the 829 

display along an elliptic trajectory. The phase of the trajectory is shown in color. (B) Phase map 830 

showing cortical regions responding to different phases of the trajectory. Each area has a 831 

representation of the full trajectory, resulting in a ‘pinwheel’ retinotopic map. (C) Sign map 832 

showing visual cortical areas (blue and red patches). 833 

 834 

Figure supplement 2: Spectral noise stimuli. Spectral noise stimuli vary in three dimensions: 835 

spatial frequency (A), temporal frequency (C) and stimulus anisotropy (B). Isotropic noise stimuli 836 

(ISO) are generated by applying a bandpass filter with certain center spatiotemporal frequencies 837 

to random pink noises. Anisotropic noise stimuli (ANISO) have an additional narrow angular 838 

filter (bandwidth 5°), resulting in oriented stimuli. The stimuli rotated from 0 to 180 degree within 839 

each stimulus epoch to sweep the orientation space. Each stimulus set contains a combination 840 

of five spatial frequencies (0.02, 0.04, 0.08, 0.16, 0.32 cycle/degree) and six temporal 841 

frequencies (0.5, 1, 2, 4, 8, 16 Hz). In the stimulus anisotropy tuning experiment, orientation 842 

bandwidths are adjusted to generate stimuli with various stimulus patterns, from non-oriented to 843 

extremely oriented (360, 40, 10, 5°). (D) Description of the stimulus sets. (E) Scheme of the 844 

visual stimulation. Stimulus sets are presented as randomized sequences of 4s stimulus 845 

epochs, interleaved by 4s gray screen. Each of the 4 trials comprises a unique set of noise 846 

stimuli generated from a different seed. Hence the phase of stimulus contrast varies across 847 

trials, but the power remained constant.  848 

 849 

Figure supplement 3: Higher visual area neurons have lower responsiveness and 850 

response reliability. (A) Example cells showing responses across trials with different 851 

responsiveness and variabilities. The top row for each cell shows the median responses across 852 

trials. The median absolute deviations across trials are shown as light gray shadow. Blue bars 853 

indicate 4s stimulus epochs. Gray scale bars indicate 1 dF/F and 10 second. The z-scored peak 854 

responses (z-score) and trial-to-trial correlation (corr.coef.) are noted above the time courses. 855 

(B) Cumulative distributions of z-scored peak responses of individual populations across areas. 856 

Cells with z-score values above 3 (peak response > 3x stand deviation of the baseline activity) 857 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 12, 2018. ; https://doi.org/10.1101/441014doi: bioRxiv preprint 

https://doi.org/10.1101/441014


Han et al 2018  Spatiotemporal coding in mouse visual cortex 12 Oct. 2018 
 

 36/38

are considered responsive. V1 shows higher responsiveness than higher visual areas. All pairs 858 

of areas are significantly different (KS tests with Bonferroni correction, all p values < 0.001). (C) 859 

Cumulative distributions of the trial-to-trial correlation of the populations across areas. Cells with 860 

correlation coefficient above 0.4 are considered reliable. V1 shows higher reliability than higher 861 

visual areas. All pairs are significantly distinct (KS tests with Bonferroni correction, all p values < 862 

0.01). (D) Scatter plot showing the selection of responsive and reliable cells across areas. 863 

Reliably responsive cells are marked in red, the remaining population is shown in gray. Black 864 

lines indicate the thresholds.  865 

Figure supplement 4: Clustering. (A) Scree plot showing the within-cluster sum-of-square as 866 

a function of number of clusters. There is no clear ‘elbow’ on the curve, suggesting a continuum 867 

of response types rather than discrete groups. Nevertheless, categorizing neurons into broad 868 

functional groups is useful for studying population response profiles across areas. The red cross 869 

marks the selection of 12 clusters, from where the increase in the cluster number lead to slower 870 

reduction of variance. (B) Bar graph showing average cosine distances between pairs of cells 871 

within clusters (blue) and between clusters (red). (C) Response matrix of 12 clusters across 872 

areas. Each row is the peak-normalized response profile of a single neuron. Black lines 873 

delineate the clusters. The stimulus conditions are annotated below the matrix.  874 

 875 

Figure supplement 5: Summary of functional groups. (A) Distribution of individual clusters 876 

across areas. The dash line shows the fraction of one cluster if all 12 clusters are equally 877 

represented (1/12). (B) Heat maps showing the average of peak-normalized fits of the 878 

responses to ISO and ANISO stimuli. Clusters c1-8 prefer ISO stimuli, while c9-12 prefer ANISO 879 

stimuli. These clusters also present distinct spatiotemporal tuning properties. (C) Scatter plots 880 

showing the joint distribution of preferred frequencies. (D) Passband properties for the 881 

spatiotemporal frequency. (E) Average tuning curves for stimulus anisotropy, showing 882 

consistency with the preferences for ISO or ANISO stimuli in panel B.  883 

 884 

Figure supplement 6: Spatiotemporal frequency analysis. (A) Spatial/temporal frequency 885 

analysis for the cell in Figure 4A. Left lower panel shows a high-resolution fit of the 886 

spatiotemporal response. The red contour shows 50% of the peak response. The tuning for 887 

spatial and temporal frequencies is measured as the cross sections at the preferred temporal 888 

and spatial frequencies respectively (gray dash lines). The spatial tuning profile is shown in the 889 
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top panel. Low and high cutoff frequencies are placed at the half maxima, unless the cell 890 

responds to the upper or lower limits of the frequency spectra with over 50% of the peak 891 

amplitude. In this case, low cutoff frequencies are set at the lower limit, high cutoff frequencies 892 

at the higher limit.  The bandwidth is measured at the half maxima in bandpass neurons. The 893 

right panel shows the temporal tuning profile, showing the highpass property of this neuron. (B) 894 

Same as A, for the cell in Figure 4B. (C) Proportions of highpass, bandpass, lowpass neurons 895 

(HP, BP, LP) for spatial frequencies across areas. (D) Distribution of spatial frequency 896 

bandwidth of bandpass cells. V1 population has higher median bandwidth than higher visual 897 

areas. RL has the narrowest bandwidth across areas. The width of the distributions is 898 

normalized to the maxima per area. Colored bars indicate median values. KS-test. (E-F) Same 899 

as (C-D), for temporal frequency.  900 

Figure supplement 7: Speed tuning analysis. (A) Example neurons that are speed tuned 901 

(example AM cell) or untuned (example V1 cell). The speed tuning index ξ describes the 902 

interdependency between temporal frequency and spatial frequencies (also see Experimental 903 

procedures). If ξ close to 1, the cell is tuned for speed (upper left); if ξ close to 0, the cell has 904 

separable tuning for spatial and temporal frequencies (left panels; red and blue contours at 80 905 

and 50% peak amplitude; white iso-speed lines with fixed ratios of temporal / spatial 906 

frequencies). (B) Speed-tune cells have similar tuning curves for speed at different spatial 907 

frequencies (upper middle), while the temporal frequency tuning curves change across spatial 908 

frequencies (upper right). Neurons with separable spatiotemporal tuning have similar tuning 909 

curves for temporal frequencies but not speed at different spatial frequencies (lower middle and 910 

right panels). 911 

Figure supplement 8: Population coding analysis. (A) Classification accuracy for individual 912 

frequencies as a function of population size by visual areas. Each area presents different 913 

performances across spatial frequencies. The line colors correspond to the spatial frequencies. 914 

(B) Stimulus classification accuracy as a function of population size by visual area for all 915 

frequencies. V1 and LM outperform all other areas with all population size. RL shows the worst 916 

decoding performance among areas. Shaded areas represent standard errors. (C) Decoding 917 

capacity by area for individual frequencies. V1 and LM show outstanding decoding capacities 918 

for all frequencies. Other areas presented global decreases in performance with regional 919 

increase, which largely correspond to their preferred frequencies. The decoding capacity is 920 

defined as the number of neurons for accuracy above 90%. The dot size corresponds to the 921 

decoding accuracy. The intensity of the matrix shows the min-max scaled decoding capacity per 922 
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area. (D) Stimulus classification accuracy at different spatial (left panel) and temporal 923 

frequencies (right panel) for individual randomly sampled populations (1000 neurons) per area. 924 

V1 and LM show nearly perfect performance across frequencies. Other higher visual areas 925 

show decreased performance. Same as Figure 7A, but with error bars (shaded areas, standard 926 

error of the mean). (E) Decoding for iso-speed pairs at different spatiotemporal frequencies 927 

across areas. Each areas showed regional enhancements of the decoding performance. The 928 

red lines connect iso-speed pairs. The redness and thickness indicate the magnitude of 929 

decoding capacity, which is the number of neurons needed for the accuracy > 90%. 930 
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