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Evolutionary characteristics of intergenic transcribed regions indicate1
widespread noisy transcription in the Poaceae2
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ABSTRACT1

Extensive transcriptional activity occurring in unannotated, intergenic regions of genomes has2
raised the question whether intergenic transcription represents the activity of novel genes or3
noisy expression. To address this, we evaluated cross-species and post-duplication sequence4
and expression conservation of intergenic transcribed regions (ITRs) in four Poaceae species.5
Most ITR sequences are species-specific. Those found across species tend to be more6
divergent in expression and have more recent duplicates compared to annotated genes. To7
assess if ITRs are functional (under selection), machine learning models were established in8
Oryza sativa (rice) that could distinguish between benchmark functional (phenotype genes) and9
nonfunctional (pseudogenes) sequences with high accuracy based on 44 evolutionary and10
biochemical features. Based on the prediction models, 584 rice ITRs (8%) are classified as11
likely functional that tend to have conserved expression and ancient retained duplicates.12
However, most ITRs do not exhibit sequence or expression conservation across species or13
following duplication, consistent with computational predictions that suggest 61% ITRs are not14
under selection. We outline key evolutionary characteristics that are tightly associated with15
likely-functional ITRs and provide a framework to identify novel genes to improve genome16
annotation and move toward connecting genotype to phenotype in crop and model systems.17
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INTRODUCTION1

Transcriptome sequencing has led to the discovery of pervasive transcription in unannotated,2
intergenic space in eukaryotes, including metazoan (Bertone et al. 2004; ENCODE Project3
Consortium 2012; Brown et al. 2014; Boeck et al. 2016), fungal (Nagalakshmi et al. 2008), and4
plant species (Yamada et al. 2003; Nobuta et al. 2007; Moghe et al. 2013; Krishnakumar et al.5
2015; Liu et al. 2017). While intergenic transcription may be associated with nearby genes (van6
Bakel et al. 2010), intergenic transcripts may also represent the activity of novel genes. These7
intergenic transcripts may play roles as competitive endogenous RNAs (Tan et al. 2015), cis-8
acting regulatory transcripts (Guil and Esteller 2012), and/or small protein-coding regions that9
can be missed by gene finding programs (Hanada et al. 2013). In addition to these possible10
functions, intergenic transcribed regions (ITRs) may represent the products of noisy11
transcription, resulting from imperfect regulation of the gene expression machinery (Struhl 2007;12
Moghe et al. 2013) Although some of these ITRs may ultimately provide the raw materials from13
which novel genes may evolve de novo (Carvunis et al. 2012), they are not expected to be14
under selection. Thus, identifying the sequence features that distinguish between functional15
intergenic transcripts and those that are the products of noisy transcription represents a critical16
task in genome biology.17

Here, we adopt the “selected effect” definition of function, which stipulates that a18
measurable activity, e.g. transcription, is considered functional if such activity is under natural19
selection (Amundson and Lauder 1994; Graur et al. 2013; Doolittle et al. 2014). This definition20
stands in contrast to the “causal role” definition that considers any reproducible biochemical21
activity, such as intergenic transcription, to be functional (Amundson and Lauder 1994;22
ENCODE Project Consortium 2012). However, pseudogenes that are remnants of once23
functional genes can be expressed (Zou et al. 2009; Pei et al. 2012), indicating that sequences24
that are not under selection could be considered functional based on the causal role definition25
due to biochemical activities. Given these considerations, the causal role definition of function is26
inadequate for distinguishing functional ITRs from noisy ones. To establish selected effect27
functionality in a sequence, significant conservation in sequences or activities provides strong28
evidence. However, lack of significant conservation does not necessarily indicate a lack of29
selective pressure, which may be due to selection that is significant but too weak to be detected30
based on sequence conservation or because only a small stretch of a sequence is under31
selection (Pang et al. 2006; Ponting 2017). Instead of relying on a single line of evidence such32
as sequence conservation, an approach that integrates genetic, evolutionary, and biochemical33
evidence has been suggested (Kellis et al. 2014). Based on this framework, predictive models34
were established that were highly effective at identifying sequences with significant fitness cost35
when mutated (Gulko et al. 2014) and distinguishing human and Arabidopsis thaliana protein36
coding and RNA genes from pseudogenes (Tsai et al. 2017; Lloyd et al., 2018). Thus,37
integration of evolutionary and biochemical signatures could provide valuable insight in38
distinguishing functional and noisy ITRs.39

In this study, we investigate the extent of sequence and expression conservation as well40
as potential functionality of ITRs using data from four Poaceae (grass) species: Oryza sativa41
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(rice), Brachypodium distachyon, Sorghum bicolor (sorghum), and Zea mays (maize).1
Phylogenetically, these four species fall into two clades where one clade consists of maize and2
sorghum diverged ~15 million years ago (MYA) (Skendzic et al. 2007; Liu et al. 2014), and the3
other contains rice and B. distachyon diverged ~47 MYA (Massa et al. 2011). All four species4
share ancient whole genome duplications (WGDs) (Paterson et al. 2004; Tang et al. 2010) while5
the maize lineage experienced a more recent WGD ~12 MYA (Swigoňová et al. 2004). Thus,6
studies of ITRs in these species are well-suited to assess not only sequence and expression7
conservation of ITRs but also ITR duplicate retention post duplication. In addition, using rice as8
an example, we generated function prediction models by integrating rice mutant phenotype,9
sequence conservation, transcriptome, histone modification, DNA methylation, and nucleosome10
occupancy data to predict functional ITRs genome-wide.11

12
RESULTS13

Identification and classification of Poaceae transcribed regions14
To investigate the properties and potential functionality of polyadenylated intergenic15

transcripts, we focused on four Poaceae species (Fig. 1A). In each of the four species, we16
identified transcribed regions and classified them as parts of exons, introns, or pseudogenes17
(see Methods). Transcriptome datasets were from developmentally-matched leaf, seed, and18
reproductive tissues (Davidson et al. 2011; Davidson et al. 2012; Table S1). Transcribed19
regions that did not overlap with gene or pseudogene annotation were considered as intergenic.20
Intergenic transcribed regions (ITRs, Table S2) accounted for only 4-7% of mapped reads and21
6-12% of transcribed regions (defined by continuous read mapping) in each species (Fig. 1B).22
In contrast, 92-96% of mapped reads overlapped with annotated exons and/or introns (Fig. 1B).23

Relationships between and transcriptome content
in the four Poaceae species. (A) Phylogenetic
relationships between rice (Os), B. distachyon (Bd),
sorghum (Sb), and maize (Zm). Whole genome
duplication (WGD) events are marked with yellow
circles. MYA: millions of years ago. (B) Number of
reads mapping to (left panel) and transcribed regions
overlapping (right panel) exons (Ex; dark blue), introns
(In; cyan), pseudogenes (Ps; red), and intergenic
regions (Ig; orange). (C) Percent of nucleotides
overlapped with transcribed regions that are annotated
as exons, introns, pseudogenes, and intergenic
regions. Abbreviations are the same as in (A). Ig’
represents the proportion of intergenic space covered
by transcribed regions that also overlap genic or
pseudogenic regions. (D) Percent of transcribed
regions that were classified as highly repetitive (lime),
likely protein-coding (green), or neither of these two
(Other; white).
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We also found that only 0.4-2.6% of intergenic space was covered by transcribed regions in1
each species (Fig. 1C). Thus, intergenic transcription in Poaceae is rare relative to genic2
expression, consistent with previous findings in A. thaliana (Lloyd et al. 2018). Only a small3
fraction of plant intergenic space is expressed compared to the ~60% intergenic expression4
uncovered in the human genome (ENCODE Project Consortium 2012).5

Despite the relative scarcity of intergenic transcripts, we identified 7,000 to 16,000 ITRs6
in these four species (Fig. 1B, right panel, orange). We asked whether ITRs resemble known7
annotated sequences and found that 16-23% of ITRs in the four species have significant8
translated sequence similarity to plant proteins and/or contain a known protein domain (Fig.9
1D). In addition, only 56-94 ITRs (<1% in each species) contain known RNA gene domains.10
ITRs resembling annotated genes may be unannotated exons, novel genes, or pseudogenes11
that are still expressed. Only 7-23% of ITRs are highly repetitive (Fig. 1D), indicating that12
expression of abundant transposable element families does not account for the majority of13
intergenic expression in these species. Overall, 54-77% of ITRs among the four species do not14
resemble annotated features and are not highly repetitive.15

Expression properties of ITRs and their associations with neighboring genes16
We next contrasted four expression properties – transcript fragment length, expression17

level and breadth, and reproducibility across experiments – between ITRs and transcribed18
exons. Compared to transcribed exons, ITRs in all four species are significantly shorter (Mann19
Whitney U tests, all p<7x10-105), expressed at lower levels (all p<8x10-311), and expressed in20
fewer tissues, (all p<2x10-306) (Fig. S1A-C). We found that 76-88% of ITRs were reproducible21
across leaf transcriptome biological replicates (Fig. S1D). Although these proportions were22
significantly lower than those of transcribed exons (93-95%; Fisher's Exact Tests (FETs), all23
p<3x10-10), they far exceeded randomly expected percentages (2-21%; FETs, all p<7x10-10).24
This is indicative of the presence of hotspots in intergenic space where reproducible25
transcription originates, either due to the presence of truly functional sequences or noisy26
transcription resulting from spurious regulatory signals.27

In mammalian systems, intergenic transcripts have been suggested to be associated28
with nearby genes (van Bakel et al. 2010), either as unannotated exon extensions or products of29
run-on transcription. Interestingly, the expression correlations between ITRs and proximal30
annotated gene neighbors (<500 bp) were significantly higher than expression correlation31
between ITRs and distal gene neighbors (>500bp) or between proximal gene-gene neighbors32
(Fig. 2A). There are two potential explanations for this pattern: 1) ITRs proximal to genes may33
be unannotated gene extensions or 2) gene regulation may influence expression patterns of34
nearby unrelated transcripts. Consistent with the second explanation, we found that35
pseudogenes, which are not gene extensions, proximal to gene neighbors exhibited similar36
degrees of expression correlation as proximal gene-ITR pairs (Fig. 2). Taken together, the37
expression characteristics of ITRs are consistent with noisy transcripts that are expected to be38
short in length, and weakly and narrowly expressed (Struhl 2007). We also find no evidence to39
support the notion that the majority of Poaceae ITRs represent unannotated exons of known40
genes. In fact, among the four Poaceae species, ITRs were significantly more distant from41
genes than randomly expected (U tests, all p<2x10-36; Fig. 2B).42
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Expression correlation and distance between intergenic transcribed regions (ITRs) and neighboring
genes.  (A) Heatmaps of expression correlation between neighboring pairs of transcribed regions at various
distance (kbp: kilobase pairs) in four species. Colors represent the median Pearson’s correlation coefficient (PCC)
of expression levels (FPKM) across tissues between all transcribed regions pairs within a distance bin.
Neighboring transcribed region pairs were classified according to whether they were in the same gene (Within
gene), neighboring genes (Gene/Gene), genes and neighboring ITRs (Gene/ITR), gene and pseudogene
neighbors (Gene/Pseudo), or neighboring ITRs (ITR/ITR). Random: based on 10,000 randomly-selected pairs of
the same type.  Neighboring gene pairs were sub-classified according to whether genes were oriented in the
same direction (Tandem), or different directions with proximal 5’ (Head-to-head) or 3’ (Tail-to-tail) regions.
Gene/Pseudo and Gene/ITR pairs were sub-classified according to whether the pseudogene or intergenic
transcribed region was upstream or downstream of a gene neighbor. (B) Distance distributions between ITRs and
their nearest genes (ITR) and randomly-selected intergenic regions of the same number and length distribution as
ITRs in each corresponding species (five replicates, Random). Note the five randomly sampled distributions are
highly overlapping.

1

Cross-species sequence and expression conservation of ITRs2
Sequence conservation due to selective pressure is a hallmark of functional genome3

regions. We considered a sequence as conserved if it exhibited cross-species sequence4
similarity significantly greater than that observed for random, unexpressed intergenic sequences5
(see Methods). Under this framework, we found that only 15-19% of ITRs among the four6
species were conserved across species (Fig. 3A). Significantly fewer ITRs were conserved7
across species compared to transcribed exons (79-83% conserved), introns (21-35%), or8
pseudogenes (32-54%; FET, all p<2x10-9). Thus, ITRs primarily represent species-specific9
sequences.10

We next evaluated the expression conservation of ITRs by two measures. First, we11
identified syntenic orthologs (see Methods) and determined whether regions in other species12
orthologous to ITRs were also expressed. We found that 18-44% of conserved ITRs and their13
orthologs were both expressed, significantly lower than the percentages for transcribed exons14
and their orthologs (91-97%, FET, all p<2x10-10; Fig 3B). Thus, species-specific gain of15
expression may explain ITR expression. Alternatively, if the ancestral ITR sequence was16
expressed, maintenance of ITR expression across species is rare. However, significantly fewer17
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unexpressed intergenic sequences had an ortholog that was expressed (0-7%) compared to1
ITRs (FET, all p<0.003), indicating that, when both an ITR and its ortholog are expressed, this2
expression conservation likely represents non-random events that are under selection. ITRs3
with significant similarities to protein coding genes (Fig. 1D) are more likely to have conserved4
expression across species, as 32% of ITRs with similarity to protein-coding sequences were5
associated with an expressed ortholog compared to 11% of ITRs without protein similarity (FET,6
p<3x10-6). We also identified sequence blocks conserved across all four species (see Methods).7
Among 639 blocks that were intergenic in all species, we found that 15% were expressed in at8
least one species (Fig. S2A), compared to >99% of blocks composed of exons in all four9
species (FET, p<6x10-11; Fig. S2B). When an intergenic conserved sequence block was10
expressed, the expression was limited to one species in 74% of cases. While expression in two,11
three, or four species was documented in only 18%, 6%, and 1.3% (n=1) cases, respectively12
(Fig. S2A), compared to 74% of exon blocks that were expressed in all four species (Fig. S2B).13
Overall, we find that the two analyses lead to the same conclusion: the few ITRs with sequence14
conservation rarely exhibit conserved expression.15

For the second measure of expression conservation, we evaluated whether ITRs and16
their expressed orthologs were expressed in similar tissues. For a pair of orthologs, we17
calculated percentage of tissue commonly expressed (% commonality, see Methods).18
Orthologous pairs of ITRs had an average of 48% commonality, which was lower than the19
average for orthologous transcribed exons (53%; U test, p=0.04), but significantly higher than20
the average for random sequence pairs (36%, p<6x10-6; Fig. 3C). By comparison, expressed21
tissue % commonality between transcribed introns and their orthologs (mean %22

Sequence and expression conservation of
transcribed regions. (A) Heatmaps of cross-
species sequence conservation. Blue: conserved
(cross-species sequence similarity significantly
greater than that observed for random, unexpressed,
non-repetitive intergenic sequences). Gray: not
conserved. Species abbreviations follow Fig. 1. Ex:
exon, In: intron, Ps: pseudogene. (B) Percentages of
syntenic orthologs with expression evidence.
Syntenic orthologs were identified by conservation
across pairs of cross-species syntenic blocks (see
Methods). Ex: exon, In: intron (C,D) Percent
commonality in tissue expression between pairs of
cross-species homologous exons (based on
similarity but not synteny), ITR (panel C), introns
(panel D), and randomly-generated expression
vectors (Rn). Given the influence that expression
breadth exerts on expected % commonality,
comparisons among orthologous transcribed exons
and random expression vectors where matched in
expression breadth to that observed in orthologous
ITR and transcribed intron pairs (see Methods). Note
that this results in distinct distributions for transcribed
exons and random expression vectors for ITRs and
transcribed introns.
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Fig. 4. Duplication characteristics of transcribed regions. (A) Distributions of nucleotide substitution rates (K)
between a sequence and its top within-species nucleotide sequence match. (B) Schematic of syntenic duplicate
identification method. Syntenic regions from two chromosomes (Chr A and A’) are shown, with duplicate genes
indicated by boxes with matching colors and transcripts by wavy, dashed lines. Cyan: intergenic region pair
defined by neighboring duplicate pairs. Syntenic duplicates are defined by their expression state and sequence
types, including transcribed exon pair (a and a’), transcribed intron pair (c and c’), and ITR pair (e and e’). Also
shown are examples of transcribed regions that lack a syntenic duplicate: b, d’, and f’. Note that syntenic paralogs
were also identified among non-transcribed sequences in the same manner. For example, if e’ was not
expressed, a query with the sequence underlying e would identify similarity to the sequence underlying e’. (C)
Proportions of syntenic duplicates from the maize lineage-specific whole genome duplication (Maize WGD; left
panel) and ρ/σ WGDs (right panel). Singleton: sequences that have no syntenic duplicate identified. Ps:
pseudogene. Other sequence types are abbreviated as in Fig. 3C,D. (D) Percent of expressed duplicates among
sequence types in three nucleotide substitution rate (K) bins. Species abbreviations follow Fig. 1. Sequence type
abbreviations follow Fig. 3.

commonality=27%) was no different than random (mean=26%; U test, p=0.33; Fig. 3D). These1
findings suggest that ITRs with cross-species expression conservation, particularly those with2
higher % tissue commonality, may be enriched for sequences under selection.3

Sequence and expression conservation of ITR paralogs4
In the previous section, we examined cross-species sequence and expression5

conservation. Considering that plant genomes harbor a rich history of large- and small-scale6
duplication events, we next asked whether ITR duplicates tend to be retained over time, and if7
so, whether the paralogous ITRs have similar expression patterns. We excluded highly-8
repetitive sequences (Fig. 1D) from the analyses because they were duplicated by definition.9
We found that 47-50% of rice, B. distachyon, and sorghum ITRs were duplicated, compared to10
45-48% of transcribed exons and 31-66% of random, unexpressed intergenic sequences (Fig.11
S3). In maize, 82% of ITRs, 74% of transcribed exons, and 95% of random, unexpressed12
intergenic sequences were duplicated (Fig. S3). The high percentage of duplicated sequences13
from random, unexpressed intergenic regions in maize is due to an overall greater number of14
paralogs identified among maize exons and repetitive sequences, which were used to define15
thresholds to call a sequence as repetitive (see Methods).  Based on the estimated base16
substitution rates (K) as a proxy for time (Fig. 4A), ITR duplicates in all species were generated17
from more recent duplication events compared to transcribed exons (U tests, all p<6x10-127),18
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instead more closely resembling introns and pseudogenes that experience weaker or no1
selection. Together with the rarity of ITR duplicates at larger K (>0.06, Fig. 4A) compared to2
exons in annotated genes, most ITR duplicates are likely not maintained.3

To more definitively determine the relationship between the timing of duplication events4
and ITR duplicate retention, we identified ITRs present in duplicated genome blocks derived5
from whole genome duplication (WGD) events (referred as syntenic blocks, Fig. 4B; Fig. S4).6
We first looked at duplicate sequences derived from a WGD event 12 MYA in maize7
(Swigoňová et al. 2004; see Methods). Among the 4,906 non-repetitive maize ITRs in these8
syntenic blocks, 463 (9%) had syntenic duplicates (Fig. 4C), significantly more than that of9
random, unexpressed intergenic regions (2%; FET, p<4x10-10) but significantly fewer than10
protein-coding genes (36%, FET, p < 3x10-16). Thus, as many as 91% of ITR duplicates were11
deleted, mutated beyond recognition, or translocated within a span of 12 million years. When12
considering syntenic blocks from the much older ρ and σ WGD events >70 MYA in all four13
species, only 1.0% (49 of 4,859) of ITRs had syntenic duplicates, compared to 28-31% of14
protein-coding genes, indicating an overall lack of ancient duplicates. Nonetheless, a greater15
proportion of ITRs have ρ or σ WGD-derived duplicates compared to random, unexpressed16
intergenic regions (0.2%; FET, p<0.002; right panel, Fig. 4C), suggesting that a subset of these17
ITR duplicates have been retained for over 70 MY.18

We next assessed whether expression was conserved among duplicate ITRs and found19
that 18-34% ITR duplicates (most similar paralogs) were also expressed depending on the20
species, compared to 79-84% of paralogs of transcribed exons (FET, all p<6x10-10). In addition,21
ITR paralogs generated from recent duplication events are more likely to be expressed than22
those from older events (U tests, all p<3x10-5; Fig. 4D). This suggests that the expression of23
ITRs may be initially maintained following duplication, but frequently lost over time. By contrast,24
older duplicates of transcribed exons are more frequently expressed than recent duplicates (U25
tests, all p<8x10-109; Fig. 4D). Compared to ITR duplicates, fewer duplicates of random26
unexpressed intergenic sequences were expressed (2-7%; FET, all p<4x10-10). Overall, ITRs27
were duplicated nearly as often as annotated genes but significantly fewer ITR paralogs were28
maintained over time or expressed compared to paralogs of annotated genes. In addition, the29
negative relationship between timing of duplication and percent expressed ITR paralogs30
suggest transcription of ITR duplicates tend to be lost over time, characteristics that could be31
indicative of sequences that are not under selection.32

Predicting the functionality of rice transcribed regions33
To further evaluate the selected effect functionality of ITRs, we first examined which34

evolutionary and biochemical characteristics can distinguish whether a transcribed region35
resembled a phenotype gene or pseudogene. Due to data availability, we focused solely on rice.36
For benchmark functional sequences, we identified 513 transcribed regions that overlap exons37
of genes with documented loss-of-function phenotypes (referred to as phenotype exons, Table38
S3). Benchmark nonfunctional sequences consisted of 262 transcribed regions that overlapped39
pseudogenes but not annotated genes (transcribed pseudogenes, Table S3). To distinguish40
between the benchmark functional and nonfunctional sequences, 44 evolutionary and41
biochemical features in five categories were examined including transcription activity, sequence42
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Fig. 5. Machine learning-based functional prediction. (A) Receiver operating characteristic (ROC) curve for
predictions of phenotype exons and transcribed pseudogenes. AUC-ROC: area under curve-ROC. (B) Precision-
recall curve for the predictions from (A). Gray dashed lines (A) and (B): random expectation. (C-H) Histograms of
functional likelihood scores for phenotype exons (C), pseudogenes (D), transcribed miRNAs (E), transcribed
exons without phenotype evidence (F), transcribed introns that are not alternatively spliced (G), and ITRs (H).
Dotted black line: threshold T1 based on a 5% false positive rate. Solid black line: threshold T2 based on a 5%
false negative rate. Blue, purple, and red: phenotype exon-like, ambiguous, and transcribed pseudogene-like,
respectively.

conservation, DNA methylation, histone modifications, and nucleosome occupancy (Table S3,1
4; see Methods). Among them, 38 features had significantly different value distributions2
between phenotype exons and transcribed pseudogenes (all p<0.03) but the effect sizes3
(differences in values) tend to be small. That is, if we used any single feature to build a naïve4
classifier, the median Area Under Curve-Receiver Operating Characteristic (AUC-ROC) = 0.625
(Table S4).6

Although these naïve classifiers perform better than random guessing (AUC-ROC=0.5),7
they were far from perfect (AUC-ROC=1). Therefore, we considered all 44 features in8
combination using a machine learning approach to generate a function prediction model (see9
Methods). The resulting model could distinguish between phenotype exons and transcribed10
pseudogenes with high AUC-ROC (0.94; Fig. 5A) and precision/recall (Fig. 5B). The model11
provides a score between 0 and 1 (referred to as functional likelihood) where higher and lower12
scores indicate similarity to phenotype exons and transcribed pseudogenes, respectively (Fig.13
5C-H, Table S5). Using a stringent functional likelihood threshold (T1=0.60) where only 5% of14
pseudogenes are misclassified as functional, 75% of phenotype genes are correctly predicted15
as functional (Fig. 5C). We also defined a second threshold (T2=0.29) where 5% of phenotype16
exons are misclassified as pseudogenes and the majority of pseudogenes (70%) remain17
correctly predicted (Fig. 5D). These findings indicate that the functional prediction model can18
distinguish between functional and nonfunctional sequences. Given most of the benchmark19
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phenotype exons were protein-coding, we applied the functional prediction model to 221
transcribed miRNAs. Most transcribed miRNAs (64%) had functional likelihood values between2
T1 and T2 and cannot be confidently classified as either phenotype exon-like or pseudogene-like3
(Fig. 5E), indicating that the idiosyncrasies of miRNA sequences are not completely captured by4
the model. However, we cannot rule out the possibility of false-positive annotations present in5
the set of transcribed miRNAs. Nevertheless, most miRNA sequences (73%) are not predicted6
as pseudogene-like (i.e. functional likelihood < T2).7

We applied the function prediction model to all rice transcribed regions that were not8
used to establish the models, including transcribed exons, transcribed introns, and ITRs. Among9
transcribed exons, 67% were predicted as functional based on T1 and 11% were pseudogene-10
like based on T2 (Fig. 5F). Among transcribed introns that are not annotated as alternatively11
spliced exons, only 3% were predicted as functional based on T1 and the majority (57%) were12
predicted as pseudogene-like based on T2 (Fig. 5G), indicating that the functional prediction13
model can effectively distinguish between exon and intron sequences. Next, we applied the14
prediction models to ITRs and found that 8% were predicted as functional based on T1 and 61%15
were pseudogene-like based on T2 (Fig. 5H). We found that there was a significant negative16
correlation between ITR functional likelihoods and their distance to neighboring genes17
(Spearman's rank correlation, ρ = -0.17, p<3x10-47), with notably higher likelihoods among ITRs18
<500 bp from a gene (Fig. S5). It remains unclear whether functional predictions among ITRs19
are influenced by the chromatin state of neighboring genes or these ITRs represent truly20
functional sequences. Ultimately, the majority of rice ITRs (61%) are predicted as non-functional21
based on T2, which is consistent with the proportion of potentially-functional ITRs in A. thaliana22
(Lloyd et al. 2018). By and large, the functional likelihood distribution of ITRs are similar to those23
of pseudogenes and introns, but distinct from miRNA (peaking at middle functional likelihood)24
and phenotype exons. These findings suggest that ITRs may primarily result from transcriptional25
noise, although a small percentage are likely novel genes.26

27

Identification of evolutionary characteristics that closely associate with functional28
sequences29

With subsets of ITRs predicted as functional and nonfunctional, we next sought out how30
well sequence and expression conservation characteristics correlated with functional31
predictions. Among rice ITRs with cross-species homologs in B. distachyon, sorghum, or maize32
(defined based on sequence similarity, not synteny). Among rice ITRs with cross-species33
homologs, 36% were predicted as functional based on T1, significantly higher than 3% for ITRs34
without putative homologs (Fisher's Exact Test, p<2.2x10-16, Fig. 6A, left column), although35
lower than that for exons (80%; FET, p<2.2x10-16, Fig.6A, right column). We next tested36
whether rice ITRs with expressed orthologs (defined based on synteny) in B. distachyon37
(diverged ~47 MYA) would primarily represent functional sequences and found that 50% of ITRs38
with expressed orthologs were predicted as functional based on T1, significantly higher than39
ITRs with non-expressed orthologs (12%; FET, p<0.05; Fig. 6B, left column). Similarly, 81% of40
transcribed exons with an expressed ortholog were predicted as functional based on T1 (Fig.41
6B, right column). Since cross-species homology was used as a feature for model building, the42
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Fig. 6. Relationships between functional likelihood scores and sequence/expression conservation characteristics.
(A) Functional likelihood distributions for ITRs (left) and transcribed exons (right) with (black) or without (gray)
cross-species homologs. (B) Functional likelihood distribution of ITRs (left) and transcribed exons (right) with
syntenic orthologs that are expressed (blue) or not (cyan). (C) Functional likelihood distributions of ITR (left) and
transcribed exons (right) that are single copy (red) or duplicated (dark gray). (D) Functional likelihood distribution
of ITRs (left) and transcribed exons (right) with duplicates that are expressed (blue) or not (cyan). (E) Boxplots of
the relationship between functional likelihood and nucleotide substitution rate for ITRs (top left), transcribed
pseudogenes (top right), transcribed exons (bottom left) and transcribed introns (bottom right).

correlation is not surprising. But expression of an ortholog was not used as a feature, indicating1
that our findings provide strong support for ITR functionality as defined by the machine learning2
model. We next investigated the relationship between functional likelihood of ITRs/exons and3
duplication status. We found that single-copy ITRs exhibited significantly higher functional4
likelihood (median = 0.26) compared to ITR duplicates (median = 0.21; U test, p<3x10-16; Fig.5
6C, left column), but lower than those of singleton transcribed exons (median = 0.78, U test,6
p<3x10-16, Fig. 6C, right column). We also found that ITRs with expressed paralogs tend to7
have higher functional likelihood (median= 0.25) compared to those with unexpressed paralogs8
(median = 0.18; U test, p<3x10-16; Fig. 6D). Despite significant correlation with functional9
likelihood, only 9% and 10% of single-copy ITRs and ITRs with an expressed paralog,10
respectively, were predicted as functional based on T1.11

Among duplicated ITRs, younger duplicates tend to have lower functional likelihood12
scores (p<0.02; Fig. 6E), but the correlation is exceedingly weak (ρ=0.05), similar to those of13
pseudogenes (ρ=0.11, p=0.15; Fig. 6E). By comparison, transcribed exons and introns show14
stronger positive correlations between timing of duplication and functional prediction scores15
(ρ=0.36 and 0.21, respectively; both p<9x10-21; Fig. 6E). To address the question if the time16
scale examined may be too short (K≤0.08), we assessed functional predictions of the 11 rice17
ITRs with retained duplicates from the >70 MYA ρ or σ WGD events. Five of these sequences18
(46%) were predicted as functional based on the stringent T1, while the other six of the 11 ρ/σ19
ITR duplicates failed to be predicted as non-functional based on T2. Together with cross-species20
sequence and expression conservation patterns, ancient duplicate retention provides strong21
support for the utility of our computational models for assessing sequence functionality and22
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reaffirm our assertion that the majority of ITRs have pseudogene-like properties and likely1
represent noisy transcription. Meanwhile, a relatively small subset of ITRs with high functional2
likelihood may represent novel genes that warrant further study.3

4
DISCUSSION5

In this study, we investigated the cross-species and post-duplication evolutionary characteristics6
of intergenic transcribed regions (ITRs) in four grass species. ITR sequences are primarily7
species-specific and, when ITR orthologs can be identified, the majority are not expressed.8
Similarly, ITR paralogs, which tend to be from recent duplication events, are usually not9
expressed. Thus, expression of an orthologous or duplicated ITR either evolved post-10
speciation/duplication or ITR orthologs/paralogs tend to quickly lose ancestral expression11
states. Either case suggests that expression among ITRs and related sequences may evolve12
more rapidly compared to the significantly higher degrees of cross-species and duplicate13
expression conservation seen among exons. We also found only rare examples of ITRs with14
paralogs retained from whole genome duplication events occurring ~12-70 MYA, suggesting15
there may be little selective pressure on most ITRs exerted through, for example,16
neofunctionalization. In addition to evolutionary characteristics, we evaluated the transcriptional17
features and found that ITRs tend to exhibit weak and narrow expression compared to18
annotated protein-coding exons. Overall, the evolutionary and expression characteristics19
explored here are consistent with the notion that intergenic expression is not subjected to strong20
selection and primarily represents transcriptional noise.21

We also established robust functional prediction models for rice transcribed sequences22
using 44 evolutionary and biochemical characteristics of benchmark phenotype genes and23
expressed pseudogenes. These models distinguished between phenotype genes and24
pseudogene sequences with high accuracy. Based on model predictions, 583 ITRs in rice (8%)25
were classified as likely functional based on a conservative estimate of functionality (FPR of26
5%). A previous study in Arabidopsis thaliana that employed selection within and between27
species as a criterion for defining likely functionality also found ~5% of the sequences functional28
(Moghe et al, 2013).  In addition, in A. thaliana, a similar data integration framework and29
conservative functional estimate found that 7% of A. thaliana ITRs in were predicted as30
functional (Lloyd et al., 2018), suggesting that this proportion may represent a reasonable31
expectation for the proportion of potentially functional ITR sequences in plants.32

Results from function prediction models indicated that ITRs with two characteristics: (1)33
cross-species expression conservation and (2) ancient retained duplicates primarily resemble34
phenotype genes. More importantly, prediction models also classified 203 (3%) of rice ITRs that35
lack sequence conservation as functional. This finding indicates that the data integration36
framework applied here can identify ITRs that may function in species-specific roles or when37
sequence conservation is not readily detectable (Ponting 2017). These two possibilities are not38
mutually exclusive. Ultimately, the majority of ITRs lack similarity to benchmark functional39
sequences. Considering that non-functionality cannot be tested but functionality can, we40
reiterate our argument that non-functionality should be treated as null hypothesis that is rejected41
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when evidence suggests otherwise (Moghe et al 2013; Lloyd et al, 2018). Based on this logic,1
for most ITRs we cannot reject the null hypothesis that intergenic transcription primarily2
represents non-functional, transcriptional noise.3

4
METHODS5

Gene, pseudogene, and random intergenic annotation6
The MAKER-P (r1065) genome annotation pipeline was used to reannotate the Oryza7

sativa (rice) Nipponbare (IGRSP-1.0 v7), Brachypodium distachyon (v1.2) and Sorghum bicolor8
(sorghum; v2.1) genome assemblies as previously described (Cantarel et al. 2008; Campbell et9
al. 2014). Repeats were masked using default parameters in RepeatMasker (v 4.0.3) for the10
sorghum and B. distachyon genomes, and a custom repeat library was created for rice using a11
method described previously (Campbell et al. 2014). RepeatMasker was run within the MAKER12
pipeline to mask repetitive elements. To aid in gene prediction, EST evidence was provided by13
transcriptome assemblies generated from selected publicly available data from the National14
Center for Biotechnology Information Sequence Read Archive (NCBI-SRA) (Table S6) using15
Trinity (version 2014) with a minimum contig length of 150 bp and the Jaccard clip option (Haas16
et al. 2013). Protein evidence was provided by the SwissProt plant protein dataset17
(ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/taxonomic_divisions18
/uniprot_sprot_plants.dat.gz), with the rice, sorghum, or B. distachyon protein sequences19
removed. For Zea mays (maize; v. 3.21), we utilized the MAKER-P gene annotation described20
by Law et al. (2015). Pseudogenes were identified in each species using a pipeline similar to21
that described by Zou et al. (Zou et al. 2009). We considered genome regions with at least 4022
contiguous ambiguous nucleotides (Ns) as likely-unmappable, a length that represented the23
size of reads in RNA-sequencing (RNA-seq) datasets used in our analyses (see below). Likely-24
unmappable regions were excluded when calculating the size of total exon, intron, pseudogene,25
and intergenic space in Fig. 1B. Random sets of intergenic coordinates with equal length26
distributions as intergenic transcribed regions (ITRs, see below) were identified in each species.27
Random intergenic coordinates were sampled so that they did not overlap one another,28
transcribed regions, or likely-unmappable genome regions (as described above). We further29
filtered random intergenic coordinates to remove those that contained an ambiguous nucleotide,30
a step that removed 4-9% of random coordinates in each species.31

Identification and classification of transcribed regions32
Multiple developmentally-matched RNA-seq datasets from rice, B. distachyon, sorghum,33

and maize (n = 11, 11, 10, and 14 respectively) were retrieved from the Sequence Read Archive34
at the National Center for Biotechnology Information (Table S1) (Davidson et al. 2011; Davidson35
et al. 2012). Reads were trimmed of low-scoring ends and Illumina adapter sequences using36
Trimmomatic v.0.33 (LEADING:3 TRAILING:3 SLIDINGWINDOW:4:20). Reads ≥20 nucleotides37
in length and with an average Phred score ≥20 were mapped to associated genomes using38
TopHat v.2.1.0 (-i 5000; -I 50000; all other parameters default) (Kim et al. 2013). Transcribed39
region coordinates were identified by assembling unique-mapped reads with Cufflinks v.2.2.1 (-40
min-intron-length 5000; -max-intron-length 50000; -m 150; --no-effective-length-correction)41
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(Trapnell et al. 2010) while providing an associated genome sequence via the -b flag to correct1
for sequence-specific biases. Transcribed regions from across datasets that overlapped with2
one another by at least 1 nucleotide were merged. Merged transcribed regions were classified3
based on overlap with annotated exon, intron, and pseudogene sequences through a priority4
system: exon > intron > pseudogene (e.g. a transcribed region that overlapped both an exon5
and an intron was classified as exon). Transcribed regions that did not overlap with any gene or6
pseudogene annotation were classified as intergenic.7

Transcribed regions were further categorized as likely protein coding or repetitive. Likely8
protein-coding transcribed regions were defined as those that contained a protein domain from9
Pfam v. 31.0 (Finn et al. 2016) in any translated frame or had significant translated sequence10
similarity to a plant protein annotated in Phytozome v.10 (BLAST v. 2.2.26; BLASTX E-value <11
1x10-5) (Goodstein et al. 2012). Additionally, canonical RNA gene domains were identified within12
ITRs by searching for significant matches (E<1x10-5) with Rfam domain covariance models13
(v.12) (Nawrocki et al. 2015) using Infernal v.1.1 (Nawrocki and Eddy 2013)14

 A set of likely repetitive transcribed regions were defined based on the presence of15
repeat-associated Pfam protein domains or high numbers of duplicate sequences. To identify16
repeat-associated protein domains and set duplicate thresholds to call sequences as highly17
repetitive, a set of benchmark repetitive elements were identified in each unmasked genome18
using RepeatMasker v.4.0.5 (-nolow -norna -qq) with the default RepeatMasker repeat library19
and a custom library of rice repeats generated using previously described methods (Campbell et20
al. 2014). Transcribed regions that contained a Pfam v.31.0 protein domain that was21
significantly enriched among interspersed repeats relative to exon transcribed regions (Fisher’s22
exact test; adjusted p<0.05; Benjamini-Hochberg procedure) (Benjamini and Hochberg 1995)23
were considered likely-repetitive. We also identified a threshold based on the number of24
duplicate sequences required to call a sequence as highly-repetitive based on the duplicate25
counts of long terminal repeats (a subset of the interspersed repetitive elements identified by26
RepeatMasker) and transcribed regions that overlapped exons, through F-measure27
maximization. Resulting duplicate count thresholds to consider a transcribed region as repetitive28
were 10, 15, 33, and 202 for rice, B. distachyon, sorghum, and maize, respectively. For all29
duplication-related analysis, we excluded sequences that were classified as repetitive, as they30
were considered duplicated by definition.31

Sequence and expression conservation32
Cross-species sequence matches were identified using BLAST searches (BLAST v.33

2.2.26; BLASTN E-value < 1x10-5) by searching nucleotide sequences of transcribed regions34
against repeat-masked whole genome sequences. The 95th percentile E-values for random35
unexpressed sequences that lacked similarity to protein-coding or repetitive sequences were36
determined for all species: 1x10-5, 1x10-6, 1x10-23, and 1x10-14 for rice, B. distachyon, sorghum,37
and maize, respectively. A sequence was considered conserved if it had a cross-species match38
that was more significant than a 95th percentile E-value. BLAST searches were performed39
within-species to identify duplicates and cross-species to identify putative homologs. Per base40
substitution rates (K) between within-species query and match sequences were calculated with41
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PHAST (Hubisz et al. 2011) using a generalized time reversible model after aligning matched1
regions with EMBOSS-Needle v.6.5.7.0.2

Expression conservation across species and following duplication was assessed by3
determining whether a cross-species or within-species match was overlapped by a transcribed4
region (as described above). Reciprocal matches between exon, intron, and intergenic5
transcribed regions for cross-species syntenic gene blocks (see below) were included in percent6
commonality calculations (Fig. 3B,C), which was calculated as the number of expressed tissues7
in common between a pair of transcribed regions divided by the total number of expressed8
tissues. The five tissues that were in common among all four species were considered: embryo,9
endosperm, seed, leaf, and anther. When replicate datasets were available, transcription10
evidence in a single dataset was required to consider a sequence expressed in the tissue.11
Similarly, expression in either seed datasets – 5 days after pollination (DAP) or 10 DAP – was12
required.13

Expected percent commonality is affected by the expression breadth of two transcripts.14
For example, two orthologous transcribed regions that are both expressed in four out of five15
tissues have a minimum % commonality of 60%, while two orthologous transcribed regions both16
expressed in a single tissue have 20 possibilities for 0% commonality. As transcribed exons are17
expressed in more tissues than ITRs or transcribed introns (Fig. S1C), their % commonality18
cannot be directly compared. Instead, a subset of orthologous transcribed exons with19
expression breadth that matched ITR and transcribed intron pairs was selected to provide a20
direct comparison. For each orthologous ITR pair, pairs of orthologous transcribed exons that21
showed the same expression breadth as the ITR pair were identified. For example, in an22
orthologous ITR pair, if one sequence was expressed in one tissue and the second sequence in23
was expressed in two tissues, all orthologous transcribed exon pairs where one sequence was24
expressed in one tissue and the second was expressed in two tissues were identified. From this25
expression breadth-matched set of orthologous transcribed exon pairs, two pairs were randomly26
selected and used for % commonality calculations (Fig. 3C). The same framework was used to27
generate direct transcribed exon comparisons for orthologous transcribed intron pairs (Fig. 3D).28
Note that because the exon comparison was tailored specifically to the expression breadth29
distributions observed in pairs of orthologous ITRs or transcribed introns, the distribution of %30
commonality among transcribed exons is distinct in Fig. 3C and Fig. 3D. Random expectations31
of percent commonality (Fig. 3C,D, Rn) were calculated by randomly selecting tissues to match32
the expression breadth of intergenic and intron transcribed region pairs. For each orthologous33
ITR and transcribed intron pairs, 25 random pairs of tissues were selected that matched the34
observed expression breadth. Similar to the comparisons generated among orthologous35
transcribed exon pairs, the random pairs were generated specific for the expression observed in36
ITR or intron pairs, and so the distribution of random % commonality is distinct for the two37
sequence types. The probability that a tissue would be selected for a random set was38
proportional to how often it appeared among transcribed regions with expression conservation.39

Identification of syntenic gene blocks40
We identified cross-species and within-species syntenic blocks by identifying of sets of41

collinear genes using MCScanX v.2 (Wang et al. 2012). Multiple minimum gene pair and42
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maximum gap parameters were tested when generating collinear blocks (Table S7) and we1
utilized values of 10 and 10, respectively, for within-species collinear blocks and 10 and 2,2
respectively, for cross-species blocks. Cross-species blocks were identified between the more-3
closely-related species pairs: rice/B. distachyon and maize/sorghum. The rates of synonymous4
substitutions (Ks) between homologous protein-coding genes anchoring within-species syntenic5
blocks were calculated using the yn00 package in the Phylogenetic Analysis by Maximum6
Likelihood software (Yang 2007). Syntenic blocks with a median Ks ≥ 0.7 across all anchor7
genes in the syntenic block in all four species were considered associated with the ρ / σ whole8
genome duplication (WGD) events (Paterson et al. 2004; Tang et al. 2010), while syntenic9
blocks in maize with a median Ks < 0.7 were associated with the more recent 12 MYO maize10
WGD (Fig. S4) (Swigoňová et al. 2004). An additional 254 gene-pair syntenic block in rice was11
identified with a median Ks of 0.13, suggesting recent duplication. However, due to the12
uncertain nature of the origin and timing of the duplication event (Wang et al. 2011), this block13
was excluded from further analysis. For exon and intron transcribed regions, syntenic duplicates14
and orthologs were identified as BLASTN matches (E-value<1x10-5) that overlapped a15
homologous anchor gene. For ITRs, and random intergenic sequences, syntenic duplicates and16
orthologs were BLASTN matches that were present within corresponding block regions17
circumscribed by homologous anchor genes (see Fig. 4B).18

Rice functional prediction features19
Transcription activity features20

Twelve transcription-related features were generated for use in rice function prediction21
models (Table S4). The first 9 features were FPKM values (referred to as expression level;22
Level in Table S4) from each of the 9 tissues represented in the RNA-seq datasets described23
above. For replicate datasets (leaf and endosperm), expression level was taken as the average24
FPKM value if a region was expressed in both replicate datasets, and the single FPKM value25
otherwise. If a transcribed region was not expressed in an RNA-seq dataset, expression level26
was set to 0. Two additional features were represented by the maximum expression level27
among all RNA-seq datasets and the median FPKM among datasets where a transcribed region28
was expressed. The final feature was the expression breadth of a sequence, represented by the29
total number of tissues in which a sequence was expressed. For the breadth calculations, both30
seed datasets (5 and 10 DAP) and inflorescence datasets (early and emerging) were31
considered as a single tissue.32
Sequence conservation features33

Three sequence conservation-related features were generated. The first feature was the34
minimum BLASTN E-value to a sequence in B. distachyon, sorghum, or maize. A threshold of35
1x10-5 was required to consider a match significant. Sequences without a significant cross-36
species match where given a score of 0. The second sequence-conservation feature was based37
on blocks of conserved nucleotides present across all four species were identified using the38
LASTZ/MULTIZ paradigm with rice as the target genome (Blanchette et al. 2004; Harris 2007;39
Hupalo and Kern 2013)40
(http://genomewiki.ucsc.edu/index.php/Whole_genome_alignment_howto). Among all41
conserved nucleotide blocks (CNBs; n=60,801), we identified those that were exonic42

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/440933doi: bioRxiv preprint 

https://doi.org/10.1101/440933


18 | P a g e

(n=13,616), intronic (n=125), or intergenic (n=525) in all four species and were overlapped only1
by transcribed regions of the associated type (e.g. a conserved nucleotide block that was2
intergenic in all four species and was only overlapped by ITRs). The second conservation3
feature was the proportion of a sequence that overlapped a CNB. phastCons scores were4
calculated for each rice nucleotide within a conserved nucleotide block (Siepel et al. 2005), with5
conserved and non-conserved states estimated using the --estimate-trees option. The third6
sequence-conservation feature was the median per-base phastCons score across the7
proportion of a sequence that overlapped a conserved nucleotide block. If a sequence did not8
overlap a conserved block the phastCons score was set to 0.9
Histone mark and nucleosome occupancy features10

Twelve histone mark-related features among 10 histone marks were calculated based11
on 18 chromatin immunoprecipitation sequencing (ChIP-seq) datasets from NCBI-SRA (Table12
S8). Reads were trimmed as described above and mapped to the rice Michigan State University13
(MSU) v.7 genome with Bowtie v2.2.5 (default parameters). Spatial Clustering for Identification14
of ChIP-Enriched Regions v.1.1 (Xu et al. 2014) was used to identify significant ChIP-seq peaks15
with a non-overlapping window size of 200, a gap parameter of 600, and an effective genome16
size of 0.68 (Koehler et al. 2011). For datasets with control total histone or protein datasets, a17
false discovery rate (FDR) ≤0.05 was utilized (see Table S8). Peaks for histone marks with18
multiple datasets were merged. The first 10 histone mark-related features were represented by19
the percent overlap of a sequence with histone mark peaks for each histone marks (‘coverage’20
in Table S4). The other two features were the number of activation-associated histone marks21
and repression-associated histone marks with a peak that overlapped a sequence. Eight marks22
were considered activation-associated and two were considered repression-associated (Table23
S8). A single nucleosome occupancy feature was also generated from micrococcal nuclease24
sequencing (MNase-seq) data. MNase-seq data was generated by Wu et al. (2014) and25
processed by Liu et al. (2015). The nucleosome occupancy feature was calculated as MNase-26
seq average read depth across the length of a sequence.27
DNA methylation features28

Sixteen DNA methylation features were calculated from bisulfite-sequencing (BS-seq)29
datasets from four tissues: embryo (SRR059000), endosperm (SRR059005), leaf (SRR618545),30
and panicle (SRR1520042). BS-seq reads were trimmed as described above and processed31
with Bismark v.3 (default parameters) to identify the number of reads that call cytosines as32
methylated and unmethylated in CG, CHG, and CHH (H = A, C, or T) contexts. The first 1233
features were represented by the methylation level of a sequence in CG, CHG, and CHH34
contexts for each of the four tissues. Methylation level of a sequence was calculated as the35
number of reads that mapped to CG, CHG, or CHH sites that called a cytosine site as36
methylated divided by the total number of reads mapping to CG, CHG, or CHH sites within the37
sequence. A minimum of 5 reads across 5 cytosine sites were required to calculate methylation38
level. Multiple minimum read (range: 1-20) and site (range: 1-10) requirements were tested and39
found to have little effect on the ability of resulting methylation level features to distinguish40
between phenotype exons and transcribed pseudogene sequences (Table S9). The final four41
DNA methylation features were represented by whether a sequence exhibited a methylation42
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pattern consistent with gene body methylation (GBM) in each of the four tissues. The GBM1
pattern is presence of CG methylation and absence of CHG and CHH methylation. Presence or2
absence of CG, CHG, and CHH states within a sequence were determined by binomial tests of3
the methylation level of a sequence (as described above) compared to the background4
methylation level across the whole genome for a given cytosine context. Binomial test P-values5
were corrected for multiple testing using the Benjamini and Hochberg method (FDR ≤ 0.05)6
(Benjamini and Hochberg 1995). Sequences that were significantly enriched in CG methylation7
relative to the genome background and not significantly enriched in CHG and CHH methylation8
were considered to be gene body methylated.9

Machine learning approach10
The machine learning approach consisted of four steps: establishing a set of benchmark11

functional and nonfunctional sequences, identifying characteristics associated with benchmark12
sequences, integrating these characteristics via statistical learning methods to generate a13
functional prediction model, and applying function prediction models to all transcribed regions,14
including ITRs. We utilized the random forest algorithm implemented in the Scikit-learn software15
(Pedregosa et al. 2011) to perform machine learning runs aimed at distinguishing between16
functional and nonfunctional transcribed regions in rice. Benchmark functional transcribed17
regions were those that overlapped exons of genes with documented loss-of-function18
phenotypes (referred to as phenotype exons) (Lloyd et al. 2015; Oellrich et al. 2015).19
Benchmark nonfunctional sequences were represented by transcribed regions that overlapped20
pseudogene annotation (referred to as transcribed pseudogenes). We further filtered out21
pseudogenes that overlapped an exon from the MSU v.7 gene annotation. Benchmark non-22
coding sequences were transcribed regions that overlapped a set of high-confidence miRNA23
gene annotations from miRBase (referred to as transcribed miRNAs) (Kozomara and Griffiths-24
Jones 2014). Prior to model building, missing data points among features were imputed by25
sequential regression imputation implemented in the mice package in R (m = 1, seed = 500)26
(van Buuren and Groothuis-Oudshoorn 2011).27

A machine learning-based prediction to distinguish between phenotype exons and28
transcribed pseudogenes was generated. We generated 100 balanced datasets that included29
equal proportions of phenotype exon and transcribed pseudogene sequences that were used30
for training and 10-fold cross-validation was implemented (i.e. 90% of a dataset was used for31
training and the held-out 10% used for testing). Parameter sweeps of maximum tree depth (3, 5,32
10, and 50) and proportion of random features (10%, 25%, 50%, 75%, square root, and log2)33
values were performed, with 10 and 25% providing the highest performance, respectively. For34
each of the 100 balanced datasets, a prediction score for each transcribed region was35
generated that was equal to the proportion of 500 random forest trees that predicted the region36
as a phenotype exon; a final prediction score was calculated as the median of the 100 scores37
from the balanced datasets. Two thresholds to predict transcribed regions as likely-functional38
were generated based on a false positive rate of 5% (T1; score threshold = 0.60) and a false39
negative rate of 5% (T2; score threshold = 0.29). The Python script utilized to generate these40
predictions (ML_classification.py) is available on GitHub: https://github.com/ShiuLab/ML-41
Pipeline. Prediction models were also generated using the support vector machine and logistic42
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regression algorithms implemented in Scikit-learn, but random forest provided the highest1
performance by AUC-ROC.2
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15
FIGURE LEGENDS16

Fig. 1. Relationships between and transcriptome content in the four Poaceae species. (A)17
Phylogenetic relationships between rice (Os), B. distachyon (Bd), sorghum (Sb), and maize18
(Zm). Whole genome duplication (WGD) events are marked with yellow circles. MYA: millions of19
years ago. (B) Number of reads mapping to (left panel) and transcribed regions overlapping20
(right panel) exons (Ex; dark blue), introns (In; cyan), pseudogenes (Ps; red), and intergenic21
regions (Ig; orange). (C) Percent of nucleotides overlapped with transcribed regions that are22
annotated as exons, introns, pseudogenes, and intergenic regions. Abbreviations are the same23
as in (A). Ig’ represents the proportion of intergenic space covered by transcribed regions that24
also overlap genic or pseudogenic regions. (D) Percent of transcribed regions that were25
classified as highly repetitive (lime), likely protein-coding (green), or neither of these two (Other;26
white).27

28
Fig. 2.  Expression correlation and distance between intergenic transcribed regions (ITRs) and29
neighboring genes.  (A) Heatmaps of expression correlation between neighboring pairs of30
transcribed regions at various distance (kbp: kilobase pairs) in four species. Colors represent31
the median Pearson’s correlation coefficient (PCC) of expression levels (FPKM) across tissues32
between all transcribed regions pairs within a distance bin. Neighboring transcribed region pairs33
were classified according to whether they were in the same gene (Within gene), neighboring34
genes (Gene/Gene), genes and neighboring ITRs (Gene/ITR), gene and pseudogene neighbors35
(Gene/Pseudo), or neighboring ITRs (ITR/ITR). Random: based on 10,000 randomly-selected36
pairs of the same type.  Neighboring gene pairs were sub-classified according to whether genes37
were oriented in the same direction (Tandem), or different directions with proximal 5’ (Head-to-38
head) or 3’ (Tail-to-tail) regions. Gene/Pseudo and Gene/ITR pairs were sub-classified39
according to whether the pseudogene or intergenic transcribed region was upstream or40
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downstream of a gene neighbor. (B) Distance distributions between ITRs and their nearest1
genes (ITR) and randomly-selected intergenic regions of the same number and length2
distribution as ITRs in each corresponding species (five replicates, Random). Note the five3
randomly sampled distributions are highly overlapping.4

5
Fig. 3. Sequence and expression conservation of transcribed regions. (A) Heatmaps of cross-6
species sequence conservation. Blue: conserved (cross-species sequence similarity7
significantly greater than that observed for random, unexpressed, non-repetitive intergenic8
sequences). Gray: not conserved. Species abbreviations follow Fig. 1. Ex: exon, In: intron, Ps:9
pseudogene. (B) Percentages of syntenic orthologs with expression evidence. Syntenic10
orthologs were identified by conservation across pairs of cross-species syntenic blocks (see11
Methods). Ex: exon, In: intron (C,D) Percent commonality in tissue expression between pairs of12
cross-species homologous exons (based on similarity but not synteny), ITR (panel C), introns13
(panel D), and randomly-generated expression vectors (Rn). Given the influence that14
expression breadth exerts on expected % commonality, comparisons among orthologous15
transcribed exons and random expression vectors where matched in expression breadth to that16
observed in orthologous ITR and transcribed intron pairs (see Methods). Note that this results in17
distinct distributions for transcribed exons and random expression vectors for ITRs and18
transcribed introns.19

20
Fig. 4. Duplication characteristics of transcribed regions. (A) Distributions of nucleotide21
substitution rates (K) between a sequence and its top within-species nucleotide sequence22
match. (B) Schematic of syntenic duplicate identification method. Syntenic regions from two23
chromosomes (Chr A and A’) are shown, with duplicate genes indicated by boxes with matching24
colors and transcripts by wavy, dashed lines. Cyan: intergenic region pair defined by25
neighboring duplicate pairs. Syntenic duplicates are defined by their expression state and26
sequence types, including transcribed exon pair (a and a’), transcribed intron pair (c and c’), and27
ITR pair (e and e’). Also shown are examples of transcribed regions that lack a syntenic28
duplicate: b, d’, and f’. Note that syntenic paralogs were also identified among non-transcribed29
sequences in the same manner. For example, if e’ was not expressed, a query with the30
sequence underlying e would identify similarity to the sequence underlying e’. (C) Proportions of31
syntenic duplicates from the maize lineage-specific whole genome duplication (Maize WGD; left32
panel) and ρ/σ WGDs (right panel). Singleton: sequences that have no syntenic duplicate33
identified. Ps: pseudogene. Other sequence types are abbreviated as in Fig. 3C,D. (D) Percent34
of expressed duplicates among sequence types in three nucleotide substitution rate (K) bins.35
Species abbreviations follow Fig. 1. Sequence type abbreviations follow Fig. 3.36

37
Fig. 5. Machine learning-based functional prediction. (A) Receiver operating characteristic38
(ROC) curve for predictions of phenotype exons and transcribed pseudogenes. AUC-ROC: area39
under curve-ROC. (B) Precision-recall curve for the predictions from (A). Gray dashed lines (A)40
and (B): random expectation. (C-H) Histograms of functional likelihood scores for phenotype41
exons (C), pseudogenes (D), transcribed miRNAs (E), transcribed exons without phenotype42
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evidence (F), transcribed introns that are not alternatively spliced (G), and ITRs (H). Dotted1
black line: threshold T1 based on a 5% false positive rate. Solid black line: threshold T2 based2
on a 5% false negative rate. Blue, purple, and red: phenotype exon-like, ambiguous, and3
transcribed pseudogene-like, respectively.4

5
Fig. 6. Relationships between functional likelihood scores and sequence/expression6
conservation characteristics. (A) Functional likelihood distributions for ITRs (left) and transcribed7
exons (right) with (black) or without (gray) cross-species homologs. (B) Functional likelihood8
distribution of ITRs (left) and transcribed exons (right) with syntenic orthologs that are9
expressed (blue) or not (cyan). (C) Functional likelihood distributions of ITR (left) and10
transcribed exons (right) that are single copy (red) or duplicated (dark gray). (D) Functional11
likelihood distribution of ITRs (left) and transcribed exons (right) with duplicates that are12
expressed (blue) or not (cyan). (E) Boxplots of the relationship between functional likelihood and13
nucleotide substitution rate for ITRs (top left), transcribed pseudogenes (top right), transcribed14
exons (bottom left) and transcribed introns (bottom right).15

16

SUPPLEMENTAL FIGURE LEGENDS17

Fig. S1. Expression characteristics of transcribed regions in four Poaceae species. (A) Boxplots18
of length distributions among transcribed regions that overlap exon (Ex), intron (In), pseudogene19
(Ps), or intergenic (ITR) regions. Nt: nucleotides. Species abbreviation follows that of Fig. 1. (B)20
Boxplots of maximum FPKM distributions among all tissues. (C) Histograms of expression21
breadth (# of tissues with expression evidence) for transcribed regions. Ex (low): a subset of22
exons with expression levels ±5% of intergenic transcribed regions. (D) Percentage of23
transcribed regions that are reproducible across biological replicate leaf transcriptome datasets.24
Intergenic sequences were randomly-sampled to determine the background expected25
reproducibility (Rn).26

27
Fig. S2. Ring plots displaying the number of species with evidence of expression for sequence28
blocks conserved across all four species. Sequence blocks shown were composed of only29
intergenic (A) or only exon (B) sequences from all species.30

31
Fig. S3. Distributions of duplication types among transcribed exons (Ex, x-axis), ITRs, and32
random intergenic (Rn) sequences. Fisher’s exact tests were used to test significance between33
the proportion of sequences that were duplicated (sum of Ex, In, Ps, and ITR duplicate34
proportions) versus proportion of singletons. Although duplication rates between transcribed35
exons and ITRs could be significantly different, almost all differences were less than 5%,36
indicating that the presence of a duplicate is not informative to whether a sequence is likely part37
of an annotated gene. *: p<0.05, ***: p<0.001, n.s.: not significant, p≥0.05, In: intron, Ps:38
pseudogene.39

40
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Fig. S4. Distributions of synonymous substitution rates (Ks) between anchor genes of within-1
species collinear gene blocks. Circled numbers indicate Ks peaks associated with (1) a low-Ks2
large-scale duplication in rice, (2) a recent whole genome duplication (WGD) in maize, and (3)3
the ρ and σ WGD events. Average Ks values among ρ and σ duplicates have been estimated at4
0.9 and 1.7, respectively (Paterson et al. 2004; Tang et al. 2010). Ks distributions for these two5
events are highly overlapping and cannot be effectively distinguished. Due to uncertain origin6
and timing of the low-Ks rice duplication (1) (Wang et al. 2011), duplicates from this event were7
not included in further analysis. Os: rice, Bd: B. distachyon, Sb: sorghum; Zm: maize.8

9
Fig. S5. Boxplots of the relationship between distance to nearest gene and predicted functional10
likelihood for ITRs11

12
SUPPLEMENTAL TABLES13

Table S1. NCBI-SRA datasets used in transcribed region identification.14
Table S2. Coordinates of intergenic transcribed regions in four Poaceae species.15
Table S3. Machine learning instance coordinates and feature values.16
Table S4. Machine learning feature list and single-feature AUC-ROC performance.17
Table S5. Functional likelihood scores from machine learning predictions.18
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