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ABSTRACT

SimpactCyan is an open-source simulator for individual-based models in HIV epidemiology. Its core algorithm is written in C++
for computational efficiency, while the R and Python interfaces aim to make the tool accessible to the fast-growing community
of R and Python users. Transmission, treatment and prevention of HIV infections in dynamic sexual networks are simulated
by discrete events, which include the formation and dissolution of sexual relationships, conception and birth, HIV-related and
non-HIV-related death, transmission and diagnosis of HIV, and the initiation and discontinuation of HIV treatment. A generic
“intervention” event allows model parameters to be changed over time, and can be used to model medical and behavioural HIV
prevention programmes. Event-times for the discrete events are sampled in continuous time from user-defined hazard functions,
using the modified Next Reaction Method (mNRM). First, we describe a more efficient variant of the mNRM that drives the
simulator. Next, we outline key built-in features and assumptions of individual-based models formulated in SimpactCyan, and
provide code snippets for how to formulate, execute and analyse models in SimpactCyan through its R and Python interfaces.
Lastly, we give two examples of applications in HIV epidemiology: the first demonstrates how the software can be used to
estimate the impact of progressive changes to the eligibility criteria for HIV treatment on HIV incidence. The second example
illustrates the use of SimpactCyan as a data-generating tool for assessing the performance of a phylodynamic inference
framework.
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Introduction
In epidemiology, mathematical models are widely used to simulate progression, transmission, prevention and treatment of
infectious diseases. The majority of these models are deterministic compartmental models, simulating population averages of
changes in infection status and disease stages over time. However, many infectious diseases, in particular sexually transmitted
diseases, are subject to high individual heterogeneity. Unlike compartmental models simulating population averages, individual-
based models (IBMs) keep track of the events that happen to each individual separately, and are therefore able to take into
account various sources of individual heterogeneity1.

The ability to let population-level features of complex systems emerge from processes and events that happen to interacting
individuals, is arguably the most important quality of IBMs. As the computational expense of IBMs has become less prohibitive
thanks to multi-core processors and increased access to high-performance computers, there is a growing use of IBMs in
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infectious disease epidemiology2. SimpactCyan is conceived as a versatile model-building tool to address research questions in
HIV epidemiology at the intersection of network and social epidemiology, computational biology, public health and policy
modelling.

A large amount of general frameworks for individual-based simulations have been developed in the last decades. These
platforms vary widely in terms of platform properties, usability, operating ability, pragmatics and security management, which
makes it difficult to choose the most suitable framework for simulation in the context of a particular research question3.

Current software for implementing IBMs to address questions in HIV epidemiology has several shortcomings. While some
modelling tools (e.g. STDSIM for simulating transmission of HIV and other Sexually Transmitted Diseases4) are not open
source, other IBMs (e.g. EMOD5) are relatively difficult to modify. Another limitation of EMOD is that it can only be used
on computers running Windows 10, Windows Server 12, Windows HPC Server 12 or CentOS 7.1. Furthermore, while it has
interfaces for Matlab and Python, it does not have an R interface. NetLogo models, on the other hand, are easily modifiable3,
and can be run from within the R environment6, but are prohibitively slow for simulating large populations over the time-scale
relevant for HIV epidemiology.

With a few exceptions (e.g. the MicSim Package7), existing simulators implement IBMs in discrete time. However, a
continuous time implementation of IBMs has the advantage that it elegantly handles competing risks to multiple events. For
instance, an individual may be concurrently at risk of HIV-related mortality and at risk of transmitting the virus to a partner.
Evaluating the model in fixed time steps may lead to the situation where both events are scheduled to have taken place between
now and the next time step. However, in reality, this is only possible if the transmission event happens first. In the continuous
time model evaluation, we know exactly which of the two events is scheduled first, and logical consequences for the likelihood
of subsequent events are processed along with the execution of the first event. Furthermore, events happening after short
and long time periods can be included in a single simulation. In contrast, in a discrete time model, simulating events that
occur on vastly different time-scales can be computationally inefficient. Frequently occurring events may require a small time
step, possibly leading to the occurrence of rare events being evaluated with a much higher frequency than necessary. Another
limitation of existing implementations of IBMs for dynamic sexual networks, is that they require ad-hoc decisions about who
and in what order people “go out” to find partners and can “be found”.

SimpactCyan is a simulator for event-driven IBMs in HIV epidemiology, evaluated in continuous time: the state of the
system is updated each time an event happens. Furthermore, all possible relationships are considered simultaneously instead of
sequentially.

Simpact (SimpactWhite) was first developed in Matlab8–10. Later, variants were developed as a MASON Multi-agent
Simulation Toolkit in Java (SimpactBlue), and in Python (SimpactyPurple)11. To improve both speed and user-friendliness of the
tool, we embarked on a major overhaul12 in 2013, leading to the current version (SimpactCyan) that combines a computationally
efficient simulation engine written in C++ with R and Python interfaces.

In this paper, we describe a more efficient variant of the modified Next Reaction Method (mNRM) that drives the simulator,
we outline key built-in features and assumptions of individual-based models formulated in SimpactCyan, and provide code
snippets for how to formulate, execute and analyse models in SimpactCyan through its R and Python interfaces. We end by
giving two examples of applications in HIV epidemiology: the first demonstrates how the software can be used to estimate
the impact that changes to the eligibility criteria for antiretroviral therapy (ART) had on HIV incidence in a hyperendemic
setting. The second example illustrates the use of SimpactCyan as a data-generating tool for assessing the performance of other
modelling frameworks.

Discrete events simulation algorithm

The modified Next Reaction Method (mNRM)
Event times, i.e. time points in the simulation at which events are scheduled to take place, are determined using the modified
Next Reaction Method (mNRM)13, a more efficient variant of the Gillespie algorithm14–16 and the Next Reaction Method17.
The mNRM was originally designed for simulating chemical systems with time-dependent propensities and delays, but in
SimpactCyan we use it to simulate how individuals are at risk of events according to time-dependent hazard functions. In the
mNRM algorithm, there is a core distinction between internal event times and (simulated) real-world event times. The internal
event times determine when an event will be triggered according to the event’s internal clock. Calling the internal time interval
until a specific event fires ∆T , such internal time intervals are randomly sampled from an exponential distribution:

prob(x)dx =
{

exp(−x)dx if x≥ 0,
0 elsewhere. (1)

The event’s hazard function h(•), referred to as the propensity function in13, maps the internal time interval ∆T until the
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event fires onto ∆t, a real-world time interval,

∆T =
∫ tprev+∆t

tprev
h(X(t ′), t ′)dt ′, (2)

where tprev is the previous time an event was triggered. It is this hazard h that can depend on the state X(t) of the simulation,
and possibly also explicitly on time t. In SimpactCyan, the state of the simulation is made up of all the individuals in the
population and their respective properties, such as their age, gender, HIV infection status, ART status, and whom they are in
relationships with. This state X(t) does not depend on time in a continuous manner, it only changes when an event is fired, i.e.
when its internal time interval expires. Note that the formula above is for a single event, and while ∆T itself is not affected by
other events, the mapping onto ∆t certainly can be: other events can change the simulation state, and the hazard of the event
depends on this state.

0 T1 T2 T3 T4

T0 T1 T2 T3

Internal time

Real-world time0 t1 t2 t3 t4

Figure 1. In the modified Next Reaction Method, intervals ∆Ti are generated independently from other events in a
straightforward manner, using an exponential probability distribution (1), and are used to advance an internal clock T . Using
the notion of a hazard function (2), these internal time intervals are mapped onto intervals ∆ti, which advance a (simulated)
real-world time t. It is through this hazard function that interdependencies between events can be introduced.

The main idea is illustrated in Figure 1: internal time intervals are chosen from an exponential distribution, and are mapped
onto real-world time intervals through hazard functions. Because hazards can depend on the simulation state and can have an
explicit time dependency, this mapping can be rather complex.

While the hazard can cause complex behaviour, this is of course not necessarily the case. If one uses a constant hazard, this
merely causes a linear scaling between internal time ∆T and real-world time ∆t:

∆T = h∆t (for a constant hazard).

This also illustrates that the larger the hazard, the earlier the event will fire, i.e. the real-world time interval will be smaller.
As an example, let’s consider the event of forming a heterosexual relationship. At a certain time in the simulation, many

formation events will be scheduled, one event for each man-woman pair that can possibly form a relationship. The internal time
interval for each of these events will be drawn from the simple exponential distribution. The mapping to a real-world time at
which the event will fire, is done using the hazard-based method, and this hazard depends on aspects of the simulation state
as defined by the hazard function for relationship formation: how many relationships the man and woman of the candidate
couple are already engaged in, what the preferred age differences with their respective partners are, etc. One can also imagine
an explicit time dependency in the hazard: e.g. the hazard of forming a relationship increases as the time since the relationship
became possible goes up.

While most of the events in SimpactCyan are scheduled using the exponential distribution to generate values for internal
∆T , some events are scheduled directly in real-world time. An example of this is the scheduling of the HIV ‘seeding’ event, i.e.
the timing of introducing HIV into the population. This alternative method could still be thought of as a special case of internal
and real-world time mapping. This is because if ∆T is set to the actual real-world time interval until the event fires, and the
hazard is set to h = 1, internal and real-world time intervals match.

More efficient mNRM algorithm
Each time an event is triggered, the state of the simulation changes. Because the hazard of any event can depend on this state, in
the most general version of the mNRM algorithm, one would recalculate the real-world event times of all remaining events
each time an event gets triggered: this ensures that the possibly changed state is taken into account. Always recalculating all
event fire times is computationally very inefficient, however. Although the state may have been changed somewhat, this change
may not be relevant for many of the event hazards in use. As a result, most updated real-world event times would be the same
as before.
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To avoid unnecessary recalculations of event times, SimpactCyan employs a variant of the mNRM algorithm, in which each
individual is linked to a list of events that involve him or her, and events that involve multiple people will appear on the lists of
all of these individuals. For example, a mortality event would be present in the list of only one individual, while a relationship
formation event concerns two people and would therefore appear on two such lists. Figure 2 illustrates this idea.

Population

Person A

Person B

Person C

Person D

relationship 
formation

monitoring 
event

non-AIDS 
related death

relationship 
formation

HIV 
transmission

relationship 
dissolution

HIV diagnosis HIV 
transmission

relationship 
dissolution

chronic HIV AIDS AIDS-related 
death

Figure 2. The Figure shows, for four different people in the population, what the next three scheduled events are. We can see
that Person A and Person B will form a relationship. Only after this event triggers, relationship-related events such as HIV
transmission, conception or relationship dissolution can be scheduled. Concurrent with their relationship to Person A, person B
is also already in a relationship with Person C. We can see that an HIV transmission from Person C to Person B is scheduled,
after Person C is diagnosed. Since person B and person C are already in a relationship, the dissolution of their relationship is
also already scheduled. Person D will enter the chronic stage of HIV, after which he or she is expected to develop AIDS, and
eventually die of AIDS-related complications.

When an event fires, only the properties of a very limited set of people are changed, hence one only needs to recalculate the
fire times of the events in those people’s lists. For example, when the event of Person A forming a relationship with Person B
takes place, the real-world fire times for the events in the lists of Person A and Person B will be automatically recalculated.
Apart from affecting the people in whose lists an event appears, some events can affect additional people. As an example, a
birth event will only appear in the list of the pregnant woman and not in the event list of the father, because the scheduled birth
should not be affected in the event of the death of the father. However, when triggered, the newborn will be listed as a child of
the father. In general, the number of additionally affected people will be very small compared to the size of the population,
causing only a fraction of the event fire times to be recalculated. This allows the modified algorithm to run much faster than the
basic algorithm that always recalculates all event times. Furthermore, fire times of events that are present in the event lists of
two individuals (e.g. relationship formation), are recalculated by only one of them.

Besides these types of events, there are also ‘global’ events. These events do not refer to a particular person and will modify
the state in a very general way. In general, when such a global event is triggered, this causes all other event fire times to be
recalculated. Introducing HIV into the population through an HIV seeding event is an example of a global event.

Population and events in SimpactCyan
Model populations consist of men and/or women. They can be introduced into the simulation in two ways: (i) during the
initialization of the simulation, in which case individuals with certain ages (drawn from a distribution) are added to the
simulation, and (ii) through the birth of new individuals during the course of the simulation run.
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Once born, an individual will become sexually active when a debut event is triggered. If the individual is introduced into the
population at the start of the simulation, and the age exceeds the debut age, this event no longer needs to be scheduled. Every
person always has a ‘normal’ mortality event scheduled, which corresponds to a cause of death other than AIDS.

To get an HIV epidemic started, an HIV seeding event must be scheduled. When this event is triggered, a number of people
in the existing population will be marked as being HIV-infected. An infected individual will go through a number of infection
stages, starting with acute HIV infection. After a default duration of 3 months18, a chronic stage event is triggered, moving the
individual to the chronic infection stage. A fixed amount of time before dying of AIDS (15 months by default)18, an AIDS
stage event is triggered, marking the transition of the chronic HIV stage to the AIDS stage. Six months before the expected
AIDS-related death, a final AIDS stage event is triggered, after which the individual is in the ‘final AIDS stage’. It is assumed
that one is too ill to be sexually active during this final stage18. When the AIDS mortality event is triggered, the individual dies
of AIDS.

Unless the population.msm parameter is set to yes (default is no), relationship formation events will be scheduled
only for heterosexual couples of men and women who are past the age of sexual debut. The population.msm parameter
enables simulation of populations in which (some) men only form sexual relationships with other men, and/or can form
relationships with with men and women. When triggered, a formation event results in the establishment of a sexual relationship,
and subsequently, the female partner is at risk of falling pregnant. In that case a conception event will be triggered and a
while later a birth event will take place, introducing a new individual into the population. In case one of the partners in the
relationship is HIV-infected, transmission of the virus may occur. If so, a transmission event will fire, and the newly infected
individual will go through the different infection stages as described earlier. Of course, it is also possible that the relationship
will cease to exist, in which case a dissolution event will be triggered. Note that in the version at the time of writing, there is no
mother-to-child-transmission (MTCT).

Starting ART and dropping out of treatment is managed by another sequence of events. When an individual becomes
HIV-infected, either by HIV seeding or by transmission, first a diagnosis event is scheduled. Upon diagnosis, an HIV monitoring
event is scheduled to monitor the progression of the HIV infection. When this event is fired, ART may be initiated, but only
if the individual is both eligible (according to a CD4 cell count threshold) and willing to start HIV treatment; if not, a new
monitoring event will be scheduled. If ART is initiated, no more monitoring events will be scheduled, but the individual will
be at risk of discontinuing his or her HIV treatment, in which case a dropout event is triggered. When a person drops out of
treatment, a new diagnosis event will be scheduled, which should be interpreted as an act of re-engagement in HIV Care19.

Formulating, running and analysing IBMs from R or Python
Instructions for installing the core SimpactCyan program and its R interface (the Python interface is automatically installed
along with the core program) can be found at http://www.simpact.org/how-to-use-simpact/. To set up a
simulation, one needs to prepare a configuration file as a text file with key/value pairs, describing all parameters of the
simulation, a snippet of which could look like this:

...
population.nummen = 200
population.numwomen = 200
population.simtime = 40
...

Preparing the configuration file manually is time-consuming work however, as all event properties needed in a simulation
must be set. To make it easier to prepare and run simulations, there is a Python module that can be used to control SimpactCyan
from Python, or alternatively an R library that can be installed in R, with a similar interface. It is also possible to use a combined
approach: first prepare a configuration file from within R or Python, and subsequently use this configuration to start simulations
from the command-line. It can be very helpful when running simulations on a high performance computing cluster for example,
where R or Python may not be available.

To use SimpactCyan from within an R session, the RSimpactCyan library must first be installed and loaded. This
provides a simpact.run function that allows a simulation to be configured much more easily than using the configuration
file mentioned above: instead of needing to set all parameters of a simulation, only the parameters that are different from
the default values need to be specified. The full documentation of all the parameters that can be configured, what they mean
and what their default values are, is found at https://simpactcyan.readthedocs.io/en/latest/simpact_
simulationdetails.html If only the key/value pairs in the code snippet above deviate from their default values, the
configuration of the simulation would simply become:

cfg <- list()
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cfg["population.nummen"] <- 200
cfg["population.numwomen"] <- 200
cfg["population.simtime"] <- 40

Similarly, the Python module pysimpactcyan defines a PySimpactCyan class with a run member function that also
needs only the settings that differ from the defaults:

cfg = { }
cfg["population.nummen"] = 200
cfg["population.numwomen"] = 200
cfg["population.simtime"] = 40

Many of the configuration values will be character strings or numbers, but for some options it is allowed to specify one of the
supported one- or two-dimensional probability distributions. For example, the birth.pregnancyduration.dist.type
is by default set to fixed with a value corresponding to 268/365 (simulation times are expressed in years), such that every
pregnant woman would give birth after precisely 268 days. To allow for some variability (e.g. a standard deviation of 16 days),
a log-normal distribution could be used instead:

mu.pr <- 268/365
var.pr <- (16/365)ˆ2
cfg["birth.pregnancyduration.dist.type"] <- "lognormal"
cfg["birth.pregnancyduration.dist.lognormal.zeta"] <- log(mu.pr/sqrt(1+var.pr/mu.prˆ2))
cfg["birth.pregnancyduration.dist.lognormal.sigma"] <- sqrt(log(1+var.pr/mu.prˆ2))

Apart from using a fixed number, supported one-dimensional distributions are the beta, exponential, gamma, log-normal,
normal and uniform distributions, as well as user-defined discrete distributions (e.g. based on the frequencies listed in a CSV
file). For two-dimensional distributions, one can specify a fixed pair of values, or choose values from binormal or uniform
distributions. Here too, user-defined discrete distributions can be specified.

Model applications
The following section discusses two example simulations that were done using SimpactCyan. The first illustrates how
SimpactCyan can be used to assess the impact of progressive changes to the ART eligibility criteria in Eswatini (formerly
known as Swaziland). The second illustrates the use of SimpactCyan as a data-generating tool for assessing the performance
of other modelling frameworks. All code and data files necessary to reproduce the examples are available at https:
//github.com/wdelva/SimpactCyanExamples.

The impact of Early Access to ART for All on HIV incidence
In the MaxART project20, SimpactCyan is used to estimate the likely impact of Eswatini’s shift towards ”Early Access to ART
for All” (EAAA) on the incidence of HIV. HIV incidence is the rate at which HIV-uninfected people acquire the infection. Such
infection events are scheduled each time a relationship is formed between an HIV-infected and an HIV-uninfected individual.
The hazard for the event is given by

hazard = exp(a+bV−c +other terms),

where the other terms are not enabled by default, but allow for a hazard-lowering effect of multiple ongoing relationships
(so-called coital dilution21, 22, as well as a hazard-increasing effect of adolescent age among women23. In this formula, a, b and
c are model parameters; the V value represents the current HIV viral load of the person that is already infected.

The viral load model is based upon the notion that an infected person has a specific set-point viral load, Vsp, which
corresponds to the viral load in the chronic stage of the infection. The three parameters person.vsp.toacute.x,
person.vsp.toaids.x and person.vsp.tofinalaids.x determine the factors by which the HIV transmission
hazard should be multiplied during the initial acute stage, as well as the early and late AIDS stages. The V value in this hazard
expression can therefore be different from the Vsp value, depending on the time since infection. The non-linear form of this
hazard function was inspired by equation (9) published by Hargrove et al.24, while the default parameter values are based on a
fit to model output generated by Fraser et al.25.

At the time of HIV acquisition, time till HIV-related death is determined, based on an early paper by Arnaout et al.26:

tsurvival =
C

V−k
sp
×10x,
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In this formula, C and k are parameters that can be configured by the user if desired; the x parameter (which defaults to
zero) is person-specific, and its distribution can be configured to control the amount of variation in post-HIV infection survival
times among people with the same set-point viral load.

The set-point viral load value allocated to a newly infected individual is partially determined by that of their infector, i.e.
some heritability of set-point viral load is assumed27. This is done by using a two-dimensional distribution

prob(Vsp.infector,Vsp.infected),

of which the parameters can be chosen using the configuration values. This is subsequently used to obtain the conditional
probability when fixing the initial Vsp value for a person that becomes infected due to the transmission event. To choose the
initial set-point viral loads for ‘seed infections’, a marginal probability distribution is used, however.

ART initiation affects both the expected time till HIV-related death and the infectiousness of the person on ART. As soon as
ART is started, the log10 viral load is assumed to drop by a user-defined fraction, and the updated current viral load is used to
re-calculate tsurvival. In the simulations of which key output is shown in Figure 3, we assume that upon ART initiation, the log10
viral load drops by 70%, effectively rendering the viral load “undetectable” for most ART clients. Via so-called intervention
events, most model parameters can be changed at arbitrary points in time during the simulation. However, person-specific
parameter values (e.g. the probability of accepting ART if ART-eligible) and some event-times (e.g. time of non-HIV-related
death) are determined at the time the individual is introduced into the population (at the start of the simulation or at birth).
Hence, changing related parameters through an intervention event would only affect individuals born into the population after
this intervention event, and not the extant population.

In this example, intervention events allowed us to assume that ART was gradually introduced around the year 2000, and
that the CD4 cell count threshold for ART eligibility progressively shifted towards ever more inclusive criteria, alongside a
decreasing lagtime between HIV infection and HIV diagnosis. These assumptions hold in both the ”Status Quo” scenario and
the ”Early Access to ART for All” (EAAA) scenario. In the EAAA scenario, however, an additional policy change is modelled:
a policy of immediate access to ART for all people infected with HIV is adopted from October 2016. In the alternative scenario,
the CD4 cell count threshold for ART eligibility stays at 500 cells/microliter from mid 2013 onwards. Extra intervention events
are added in both scenarios to model a moderate reduction in sexual risk behaviour (rate of partner turnover) that took place in
the period 2000 - 2003.
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Figure 3. Programmatic and epidemic projections under a “Status Quo” (blue) and “Early Access to ART for All” (red)
scenario for the roll-out of a nation-wide ART programme.

SimpactCyan as a data-generating benchmarking tool
The second use case illustrates how SimpactCyan can be used as a data-generating tool for benchmarking the performance
of other modelling frameworks. Phylogenetic models have been used to infer properties of epidemics from reconstructed
phylogenetic trees, including time-trends in HIV incidence rates28, 29 and the age-mixing pattern in HIV transmission clusters30.
Yet, as the truth is typically unknown, it is difficult to assess the validity of these novel modelling frameworks, or document
their sensitivity to breaches in the models’ assumptions. For instance, phylogenetic inference methods typically assume that
HIV sequence data are available for the majority of HIV-positive people, and that the individuals for whom the viral genome
was sequenced, are a random subset of all HIV infected people. However, in many settings, neither of these assumptions is met.
In Figure 4 we illustrate the basic idea of SimpactCyan as a data-generating tool for benchmarking.

First, we simulate an emerging HIV epidemic. Panel (a) shows the cumulative HIV transmission network of the epidemic,
linking all individuals who got infected with HIV by the end of the simulation. Next, assuming that HIV transmission events
correspond to branching points in the phylogeny, we convert the transmission network into its corresponding phylogenetic tree.
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Using the Seq-Gen program31, we simulate the viral evolution along this phylogeny, assuming a generalised time-reversible
substitution model32 with a gamma-invariable mixture model for rate heterogeneity among sites. In this way, we generate
synthetic HIV sequence data. Lastly, we feed these sequences into the FastTree 2 program33 and the treedater R package34 to
reconstruct the time-resolved phylogenetic tree, shown in panel (b). If all people ever infected are included in the sequence
dataset and the same molecular evolution model is used to generate the sequence data and to reconstruct the phylogenetic tree,
the timing of the internal nodes in the reconstructed tree should correspond with the timing of the simulated HIV transmission
events, as shown in panel (c). Now that we have established validity of this phylogenetic inference approach under ideal
circumstances, we can examine the performance of the inference method under alternative scenarios in which some of the viral
sequence data are missing completely at random (MCAR), missing at random (MAR) or not at random (MNAR). Through
simulation-based sensitivity analyses, we could quantify how the accuracy of epidemiological characteristics inferred by the
phylodynamic method depends on the magnitude of the missing data problem and the strength of the correlations between the
probability of sequences being missing and covariates such as age, indicators of sexual risk behaviour or calendar time.
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Figure 4. The molecular evolution of HIV viral strains is simulated across an HIV transmission network using Seq-Gen31 (a).
Next, the synthetic HIV sequence data are used to reconstruct the time-resolved phylogenetic tree with FastTree 233 and the
treedater R package34 (b). Under ideal circumstances of complete sampling of the transmission network and correct
specification of the model for viral evolution, the timing of the internal nodes in the reconstructed phylogenetic tree (red)
corresponds nearly perfectly with the timing of the simulated HIV transmission events (blue) (c).

Future directions
Ongoing developments of SimpactCyan include the addition of events for the transmission and treatment of other sexually
transmitted infections such as Herpes Simplex Virus 2 (HSV-2) and Hepatitis C Virus (HCV), as well as additional events for
parenteral and mother-to-child transmission of HIV and co-infections, to allow studies of HIV transmission in injecting drug
users (IDU) and children. We also plan to extend the software by enabling explicit modelling of correlation between sexual
risk behaviour and health seeking behaviour. This is in response to recent evidence to suggest that high sexual risk behaviour
is associated with a lower likelihood to be aware of one’s HIV infection, and a lower likelihood of being virally suppressed
among people who know they are HIV positive35.

Conceived as a flexible open-source, open access tool, rather than a proprietary asset, SimpactCyan’s extensions and
applications should not solely come from its original developers. Instead, we want to position this simulator as a vehicle for
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open science in HIV epidemiology. Therefore, others are encouraged to use it for the development of their own IBMs, as the
starting point for their own simulation engine, as a data-generating and/or benchmarking tool in methodological research, or for
educational purposes.
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