1	
2	TITLE
3	A simple microbiome in esophagus and gills of the European common cuttlefish, Sepia
4	officinalis
5	
6	RUNNING TITLE
7	A simple microbiome in cuttlefish esophagus and gills
8	
9	Holly L. Lutz ^{a,b,c,†,*} , S. Tabita Ramírez-Puebla ^{d,†} , Lisa Abbo ^d , Cathleen Schlundt ^d ,
10	Alexandra K. Sjaarda ^a , Amber Durand ^d , Roger T. Hanlon ^d , Jack A. Gilbert ^{a,b,c,*} , Jessica
11	L. Mark Welch ^{d,*}
12	
13	^a Microbiome Center, University of Chicago, Chicago, IL 60637
14	^b Department of Surgery, University of Chicago, Chicago, IL 60637
15	^c Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605
16	^d Marine Biological Laboratory, Woods Hole, MA 02543
17	
18	[†] co-first authors, contributed equally to this work
19	*to whom correspondence should be addressed. Email address: hlutz@fieldmuseum.org
20	or jmarkwelch@mbl.edu
21	
22	
23	

24 ABSTRACT

25

26	The European common cuttlefish, Sepia officinalis, is used extensively in biological and
27	biomedical research yet its microbiome remains poorly characterized. We analyzed the
28	microbiota of the digestive tract, gills, and skin in mariculture-raised S. officinalis using a
29	combination of 16s rRNA amplicon sequencing and fluorescence spectral
30	imaging. Sequencing revealed a highly simplified microbiota consisting largely of two
31	single bacterial amplicon sequence variants (ASVs) of Vibrionaceae and
32	Piscirickettsiaceae. The esophagus was dominated by a single ASV of the
33	genus Vibrio. Imaging revealed a striking organization of bacteria distributed in a discrete
34	layer that lines the esophagus. Imaging with specific probes confirmed the identity of
35	these bacteria as Vibrionaceae. This Vibrio was also abundant in the microbiota of the
36	stomach, cecum, and intestine, but occurred at lower density and in the lumen rather than
37	in a discrete layer; it was present in only trace proportions in tank water and in the
38	microbiome of shrimp that were used as feed for the
39	cuttlefish. These Vibrio were resilient to treatment of animals with the commonly-used
40	antibiotic, enrofloxacin. The gills were colonized by a single ASV in the family
41	Piscirickettsiaceae, which imaging visualized as small clusters of cells. We conclude that
42	bacteria belonging to the Gammaproteobacteria, especially Vibrionaceae, are the major
43	symbionts of the cuttlefish Sepia officinalis cultured from eggs in captivity, and that the
44	esophagus and gills are major colonization sites.
45	

47 IMPORTANCE

49	Microbes can play critical roles in the physiology of their animal hosts, as evidenced in
50	cephalopods by the role of Vibrio (Aliivibrio) fischeri in the light organ of the bobtail
51	squid and the role of Alpha- and Gammaproteobacteria in the reproductive system and
52	egg defense in a variety of cephalopods. We sampled the cuttlefish microbiome
53	throughout the digestive tract, gills, and skin and found dense colonization of an
54	unexpected site, the esophagus, by a microbe of the genus Vibrio, as well as colonization
55	of gills by Piscirickettsiaceae. We found these associations to be resilient to the treatment
56	of animals with a common antibiotic, enrofloxacin. This finding expands the range of
57	organisms and body sites known to be associated with Vibrio and is of potential
58	significance for understanding host-symbiont associations as well as for understanding
59	and maintaining the health of cephalopods in mariculture.
60	
61	KEYWORDS:
62	microbiome, fluorescence in situ hybridization, Photobacterium, Vibrionaceae,
63	Piscirickettsiaceae
64	
65	1. INTRODUCTION
66	
67	Symbiotic associations between invertebrates and bacteria are common. Among
68	cephalopods, the most intensely studied association is the colonization of the light organ
69	of the bobtail squid Euprymna scolopes by the bioluminescent bacterium Vibrio

70 (Aliivibrio) fischeri in a highly specific symbiosis (1). A more diverse but still 71 characteristic set of bacteria colonize the accessory nidamental gland from which they are 72 secreted into the egg jelly coat and likely protect the eggs from fungal and bacterial 73 attack (2). The accessory nidamental gland and egg cases of the squid Doryteuthis 74 (Loligo) pealeii and the Chilean octopus (Octopus mimus) have also been reported to 75 contain Alphaproteobacteria and Gammaproteobacteria (3, 4). These associations indicate 76 that bacteria can play a critical role in the physiology of cephalopods. 77 Sepia officinalis, the European common cuttlefish (hereafter cuttlefish), is used 78 extensively in biological and biomedical research (5-7) and is a model organism for the 79 study of rapid adaptive camouflage (8-11). Cuttlefish are also widely represented among 80 zoos and aquaria, and play an important role in educating the public about cephalopod 81 biology and life history (12). Little is known about the association of bacterial symbionts 82 with cuttlefish, and whether such associations may play a role in the health or behavior of 83 these animals. Because cuttlefish behavior is well-studied and there exist standardized 84 methods for documenting multiple behaviors (8), we hypothesized that these animals may 85 provide a unique opportunity to study microbes and the gut-brain axis – the effect of gut 86 microbiota on behavior (13) – in an invertebrate system. Understanding the importance, 87 or lack thereof, of the cuttlefish microbiome will not only shed light on the basic biology 88 of this model organism, but will also have practical implications for future husbandry 89 practices and research design.

Using a combination of 16s rRNA amplicon sequencing and fluorescence *in situ*hybridization (FISH), we characterized the gastrointestinal, gill, and skin microbiota of
the common cuttlefish in wild-bred, captive-raised animals (5) housed at the Marine

93	Biological Laboratory (Woods Hole, MA). In addition to baseline microbiome
94	characterization, we examined the extent to which cuttlefish microbiota were responsive
95	to antibiotic treatment, and conducted behavioral experiments to assess possible effects of
96	the microbiota on two well-studied behaviors: camouflage and feeding.
97	
98	2. RESULTS
99	
100	2. 1 Two taxa dominate the S. officinalis microbiome.
101	
102	This study comprised two time points – the first (20-21 June 2017) in which three
103	healthy adult S. officinalis from the mariculture laboratory at Marine Biological
104	Laboratory (Woods Hole, MA) were sampled, and the second (25 September -10 October
105	2017) in which antibiotic trials were conducted on 24 healthy adult S. officinalis (16
106	treatment individuals, 8 control individuals). 16s rRNA amplicon sequencing of the
107	gastrointestinal tract, gills, and skin of S. officinalis revealed a highly simplified
108	microbiota dominated by bacterial amplicon sequence variants (ASVs) in the
109	Vibrionaceae and Piscirickettsiaceae. These results were consistent across both the pilot
110	study and in the experimental study.
111	In particular, results showed a consistent and highly simplified microbiota in the
112	esophagus (Fig. 1; Table 1). A single ASV in the genus Vibrio made up the majority of
113	the sequence data from the esophagus of the three pilot investigation animals (mean
114	92.4% \pm 9.8). This ASV was also detected in high abundance among experimental
115	animals four months later, in control animals (mean $99.5\% \pm 1.2$) and treatment animals

116	(mean 94.4% \pm 10.8). Thus, this ASV represents a dominant constituent of the esophagus
117	microbiota stably over the two time points of this study. We note that another ASV of the
118	related genus Photobacterium (Vibrionaceae) was present in the esophagus community in
119	the pilot investigation animals (mean $6.8\% \pm 10$). Combined, the two Vibrionaceae ASVs
120	in these pilot animals constituted 99.2% of the esophagus community.
121	The major Vibrio ASV was also a major constituent of downstream sites in the
122	digestive tract, and differed significantly between control and treatment groups for the
123	most distal digestive organs (cecum and intestine) (Fig. 1; Table 1). The remainder of the
124	sequence data from the digestive tract consisted of an assortment of taxa that varied
125	between individuals or between the two time points of the study and thus suggest
126	transient rather than stable microbial colonization. We thus consider the Vibrio ASV to
127	be the dominant microbe of the lower digestive tract in these cuttlefish, although not in
128	the same density and discrete layering as the esophagus (see 2.3).
129	Samples from gills were dominated by a single highly abundant ASV, classified
130	as family Piscirickettsiaceae and making up an average $96.9\% \pm 2.5$ in the gills of control
131	animals, and 82.4% \pm 1.9 in treated animals. In samples from other body sites this ASV
132	was detected only sporadically and at low abundance (mean 0.2%, range 0 to 5.8%) (Fig.
133	1).
134	
135	2.2 Effect of antibiotic treatment on S. officinalis microbiome composition and behavior
136	
137	Analysis of behavioral data found no differences in the expression of disruptive
138	camouflage behavior between cuttlefish before and after antibiotic treatment ($p = 0.7$,

139	paired t-test), or between treatment and control groups after antibiotic treatment (p =
140	0.62, t-test). Similarly, no differences in predation behavior (<i>i.e.</i> hunting live shrimp)
141	were observed between cuttlefish before and after antibiotic treatment ($p = 0.65$, paired t-
142	test), or between treatment and control groups after antibiotic treatment ($p = 0.58$, t-test).
143	Treatment of S. officinalis with the antibiotic enrofloxacin therefore had no discernable
144	effects on camouflage or feeding behaviors, and resulted in only modest changes to the
145	microbiome. Between organs (gills, esophagus, stomach, cecum, and intestine) of
146	treatment and control groups, we observed a small but significant difference in Shannon
147	diversity ($p = 1.55e-7$, t-test) but saw no difference in observed ASV richness ($p = 0.46$,
148	t-test). We also found experimental group (treatment vs control) to be a significant
149	predictor of weighted UniFrac dissimilarity ($p < 0.01$, R2 = 0.042, ADONIS),
150	unweighted UniFrac dissimilarity ($p < 0.01$, R2 = 0.021, ADONIS), and Bray-Curtis
151	dissimilarity ($p < 0.01$, R2 = 0.040, ADONIS).
152	The single Vibrio ASV maintained dominance in the digestive tract and did not
153	differ significantly in relative abundance within the esophagus or stomach of treatment
154	and control groups ($p > 0.09$, t-test). In the more distal organs of the digestive tract,
155	however, the relative abundance of the major Vibrio ASV showed a dramatic and
156	significant drop in mean relative abundance. In the cecum, this sequence made up an
157	average 43.7% \pm 23.4 of the community in control individuals and only 6.4% \pm 8.7 in
158	antibiotic-treated individuals ($p = 0.002$, t-test); in intestine the average from control
159	animals was 56.8% \pm 15.8, and only 5.5% \pm 5.9 in antibiotic-treated animals (p = 1.99e-
160	05, t-test) (Table 1). A single Piscirickettsiaceae ASV maintained dominance in the gills

161	of treated cuttlefish (Fig. 1; Table 1), although its relative abundance did differ
162	significantly between treatment and control groups ($p = 0.01$, t-test) (Table 1).
163	
164	2.3 Imaging shows high microbial abundance and spatial structure in cuttlefish esophagus
165	and lower abundance and scattered distribution elsewhere in the digestive tract.
166	
167	Fluorescence in situ hybridization (FISH) revealed a striking organization of
168	bacteria distributed in a layer lining the interior of the convoluted esophagus of cuttlefish
169	(Fig. 3). Hybridization with the near-universal Eub338 probe showed bacteria in high
170	density in a layer \sim 20-40 μ m thick at the border between host tissue and lumen. Staining
171	with fluorophore-conjugated wheat germ agglutinin revealed a mucus layer that covered
172	the epithelium and generally enclosed the bacteria. To verify the identity of these bacteria
173	we employed a nested probe set including Eub338 as well as probes for
174	Alphaproteobacteria, Gammaproteobacteria, and one of two probes we designed
175	specifically for Vibrionaceae (Vib1749 and Vib2300, Table 2). Bacterial cells imaged in
176	the esophagus showed signal from all probes expected to hybridize with Vibrionaceae,
177	suggesting that the bacteria observed in this organ are a near-monoculture of this taxon
178	(Fig. 4B-D). The probe targeted to Alphaproteobacteria was included in the FISH as a
179	negative control and, as expected, did not hybridize with the cells (Fig. 4E). As an
180	additional control to detect non-specific binding of probes, we performed an independent
181	FISH with a set of probes labeled with the same fluorophores as the experimental probe
182	set, but conjugated to oligonucleotides not expected to hybridize with the cuttlefish
183	microbiota (Table 2). No signal from this non-target probe set was detected (Fig. 4F,G)

184 supporting the interpretation that the signal observed in the esophagus results from a 185 specific interaction of the Vibrionaceae-targeted oligonucleotides with the visualized 186 bacteria.

187 In other parts of the digestive tract we observed a sparser distribution of bacteria

188 without obvious spatial organization. Bacteria in the intestine were present not in a layer

189 but scattered throughout the lumen and mixed with the luminal contents (Fig. 5).

190 Similarly, in cecum bacteria were observed in low abundance in the lumen (Fig. 6). FISH

191 was also applied to the stomach, posterior salivary gland (poison gland) and duct of the

192 salivary gland, but no bacteria were detected (not shown).

Fluorescence *in situ* hybridization to cross-sections of the gills revealed clusters
of bacteria (Figure 7). Gill samples were embedded in methacrylate resin and sectioned
to 5 μm thickness, and FISH applied to the sections with universal probes (Fig. 7) and

196 probes for Alpha- and Gammaproteobacteria (Fig. 7). Results showed hybridization of

197 probes for gamma but not alpha proteobacteria, consistent with the identification of the

198 clusters of gill bacteria as members of the gamma proteobacteria family

199 Piscirickettsiaceae.

200

201 3. DISCUSSION

202

We sampled the cuttlefish microbiome of the digestive tract, gills, and skin and found dense colonization of an unexpected site, the esophagus, by a microbe of the genus *Vibrio*. Both imaging and ribosomal RNA gene sequencing showed a near-monoculture of *Vibrionaceae* in the esophagus, with imaging showing dense colonization of the

207 interior lining of the esophagus with a single morphotype that hybridized to probes 208 targeting Vibrionaceae. In the remainder of the digestive tract, both imaging and 209 sequencing indicated a less consistent microbiota. Sequencing showed lower relative 210 abundance of the dominant Vibrio ASV. Imaging showed sparse and sporadic 211 colonization in the stomach, intestine, and cecum, with scattered cells in the lumen and 212 no clear colonization of the epithelium. In light of the imaging results, we interpret the 213 sequencing results as consistent with a higher colonization density in the esophagus and a 214 lower density in the distal gut. In the esophagus, the dominant Vibrio ASV appears to be 215 resilient to antibiotic treatment, with no significant difference in relative abundance 216 observed between groups. Moving along the digestive tract towards the distal end, 217 however, we observed striking and significant differences in the Vibrio relative 218 abundance between control and treatment groups. This may be due, in part, to the fact 219 that antibiotics were administered via injection into the cuttlefish food source, grass 220 shrimp, which would contain the antibiotic until broken down in the cecum and intestine 221 of the cuttlefish, thereby shielding the esophagus and stomach from coming into contact 222 with the full antibiotic dose. Alternatively, the esophagus microbiota may have formed a 223 biofilm in which the microbes were shielded from the effects of the antibiotic. 224 Diverse associations with Vibrio and the Vibrionaceae are known from 225 cephalopods. Among the most extensively investigated is the mutualistic association of 226 the bioluminescent Vibrio (Aliivibrio) fischeri with the light organ of the bobtail squid 227 *Eupryma scolopes* (1, 14). Other well-known symbioses include the colonization of the 228 cephalopod accessory nidamental gland with Alpha- and Gammaproteobacteria, which 229 enables the host to secrete a layer of bacteria into the protective coating of the egg

230 capsule (3, 15-19). Thus, colonization by Gammaproteobacteria and specifically by

- 231 Vibrionaceae is common in cephalopods, yet dense colonization of the digestive tract,
- and particularly the esophagus, was unexpected.
- 233 Bacteria from genus Vibrio and the related Vibrionaceae genus Photobacterium
- are frequent colonizers of the digestive tracts of marine fishes (20, 21) and are prominent
- 235 in the microbiota of Octopus vulgaris paralarvae (22). Vibrionaceae have been reported
- to produce chitinases. proteases, amylase, and lipase (21), suggesting the possibility that
- colonization of the digestive tract by the Vibrionaceae serves to aid in host digestion (21).
- 238 If the Vibrio and Photobacterium ASVs serve this function, their localization in high
- 239 density in the esophagus, near the beginning of the digestive tract, may serve to seed the
- 240 distal gut; colonization of the lining of the esophagus may provide a reservoir that
- 241 permits the microbes to avoid washout from the gut by continually re-populating the
- 242 lumen of downstream gut chambers.
- An alternative hypothesis is that the colonization of the esophagus, and the rest of
- the gut, is pathogenic or opportunistic. Various *Vibrio* species are known pathogens of
- 245 cephalopods, causing skin lesions and sometimes mortality in squids and octopuses (23-
- 246 25). The genus *Vibrio* includes representatives that are pathogenic to corals (V.
- 247 corallilyticus), fish (V. salmonicida), diverse marine organisms (V. harveyi) and humans
- 248 (V. alginolyticus, V. cholerae, V. parahaemolyticus, and V. vulnificus (26, 27). Likewise,
- 249 the genus *Photobacterium* contains pathogenic as well as commensal representatives
- 250 (28). A previous study of the microbiota of Octopus vulgaris paralarvae found that
- 251 recently hatched paralarvae had a high-diversity microbiome that changed, in captivity, to
- a lower-diversity microbiome with abundant Vibrionaceae (22). Whether the

Vibrionaceae are an integral part of cuttlefish physiology or whether they represent
opportunistic colonists of these laboratory-reared organisms is an interesting question for
future research.

256	Our sequence data from gills was dominated by a single ASV classified as
257	Piscirickettsiaceae that was in low abundance at other body sites. The Piscirickettsiaceae
258	are a family within the Gammaproteobacteria (29) that includes the salmon pathogen P .
259	salmonis. Rickettsia-like organisms have been described from the gills of clams and
260	oysters (30, 31) as well as associated with the copepod Calanus finmarchicus (32). In
261	recent years Piscirickettsiaceae have been identified in high-throughput sequencing
262	datasets from seawater and sediment as a taxon that may be involved in biodegradation of
263	oil and other compounds (33-39). Whether taxa in this family colonize the gills of
264	cuttlefish and other organisms as symbionts or as opportunistic pathogens is, again, a
265	subject for future investigation. Finally, studies of wild S. officinalis micobiota will be
266	informative for understanding natural host-symbiont associations under natural
267	conditions, as compared to the mariculture-reared animals in the present study. S.
268	officinalis in the eastern Atlantic and Mediterranean are known to prey on small marine
269	fishes and crabs, as compared to the grass shrimp (Palaemonetes) prey used in our study.
270	It remains to be seen whether such differences in diet and natural variation in
271	environmental conditions influence the association of microbial symbionts with S.
272	officinalis in the wild.
273	
274	4. MATERIALS AND METHODS

276 4. 1 Behavioral experiment

278	We included 24 cuttlefish (16 test, 8 control) in an experiment designed to test the
279	effect of the antibiotic enrofloxacin on cuttlefish behavior and the composition of the
280	cuttlefish microbiome. Experimental animals were held in three separate water tables, all
281	connected to the same open-filtration system fed by filtered seawater. Within each water
282	table, animals were isolated into individual holding pens via plastic panels. Control and
283	test animals were kept in separate water tables. The experimental period lasted for 21
284	days (25 Sep – 15 Oct 2017). The treatment consisted of administering antibiotic to
285	treatment animals via injection into the food source (grass shrimp, Palaemonetes spp.),
286	which were then fed to the animals The shrimp were injected with enrofloxacin (Baytril [®] ;
287	22.7 mg/mL, Bayer HealthCare LLC, Shawnee Mission, KS, USA) using a 0.5 cc, U-100
288	insulin syringe with an attached 28 g x 1/2" needle (Covidien LLC, Mansfield, MA,
289	USA). The antibiotic dosage was 10 mg/kg rounded up to the nearest hundredth mL. The
290	antibiotic was injected into the coelomic cavity of the shrimp which were then
291	immediately fed to the cuttlefish once daily for 14 days. Behavioral assays were run for 7
292	days prior to antibiotic treatment, followed by a 7-day antibiotic treatment period, after
293	which behavioral assays were repeated as antibiotics continued to be administered for 7
294	additional days.
295	We conducted two behavioral assays. The first assay was designed to elicit high
296	contrast disruptive camouflage patterns in the cuttlefish, as described in Hanlon 1988 (8,
297	9, 11). Animals were placed in a holding pen (connected to the same filtered seawater
298	system as the animals' home water tables) comprising a base and a circular wall

299 exhibiting high contrast black and white checkered squares (8, 9, 11, 40). The holding 300 pen was covered in black fabric and contained a camera stationed directly above the 301 animals, so that behavior could be documented without disturbing the animal. Each trial 302 began once the animal had ceased swimming and had settled in a stationary position. 303 Each animal was subjected to two trials per day for four days, for a total of 6 trials per 304 animal, with at least 4 hours in between any individual's trial period. This protocol was 305 followed before antibiotic treatment (25-28 September 2017) and ten days later following 306 antibiotic treatment (9-12 October). For disruptive camouflage experiments, animals 307 were assigned discrete scores based on 11 chromatic elements (8, 41). Scores for 308 individual elements were combined for one cumulative score per trial. These scores were 309 then averaged for each individual across trials conducted before and after antibiotic 310 treatment. Scores were compared between treatment and control groups after antibiotic 311 administration, and within treatment and control groups before and after antibiotic 312 administration (e.g. treatment before vs. treatment after antibiotic administration) using 313 the Student's t-test. 314 In the second experiment, referred to as the feeding experiment, the same holding

In the second experiment, referred to as the feeding experiment, the same holding pen and recording setup were used, but with the high-contrast background exchanged for a neutral background (as shown in Fig. 1). The trial began once the animal settled (stopped swimming), at which point a clear glass jar containing 5 healthy and active grass shrimp was placed directly across from the cuttlefish within the holding pen. Animals were scored based on three metrics: 1) time to attack, 2) number of attacks, and 3) duration of attack. These three metrics were combined into a single score. As with the camouflage experiment, scores were compared between treatment and control groups

322	after antibiotic administration, and within treatment and control groups before and after
323	antibiotic administration (e.g. treatment before vs. treatment after antibiotic
324	administration) using the Student's t-test.
325	
326	4.2 Sampling
327	
328	After the completion of all behavioral assays (pre- and post-antibiotic treatment),
329	each animal was euthanized via immersion into a 10% dilution of ethanol in saltwater.
330	The animals were then dissected under sterile conditions to obtain samples for microbial
331	analyses. The gastrointestinal tract was dissected into four components: esophagus,
332	stomach, cecum, and intestine. A portion of gill tissue was sampled as well. All tissues
333	were stored in separate tubes and flash-frozen in liquid nitrogen. At the end of the
334	experimental period, a 1L water sample was taken from each water table and filtered
335	using a 0.22 micron Sterivex filter for DNA extraction. Lastly, grass shrimp used as the
336	food source throughout the duration of the experiment were collected into 1.8ml sterile
337	cryotubes and frozen for DNA extraction.
338	
339	4.3 DNA extraction, sequencing, and 16S rRNA gene statistical analyses
340	
341	DNA extractions were performed on gut, tongue, and skin samples using the
342	MoBio PowerSoil 96 Well Soil DNA Isolation Kit (Catalog No. 12955-4, MoBio,
343	Carlsbad, CA, USA). We used the standard 515f and 806r primers (49-51) to amplify
344	the V4 region of the 16S rRNA gene, using mitochondrial blockers to reduce

345 amplification of host mitochondrial DNA. Sequencing was performed using paired-end 346 150 base reads on an Illumina HiSeq sequencing platform. Following standard 347 demultiplexing and quality filtering using the Quantative Insights Into Microbial Ecology 348 pipeline (QIIME2) (52) and vsearch8.1 (53), ASVs were identified using the Deblur 349 method (19) and taxonomy was assigned using the Greengenes Database (May 2013 350 release; http://greengenes.lbl.gov). Libraries containing fewer than 1000 reads were 351 removed from further analyses. 352 Alpha diversity for each organ was measured using the Shannon index, as well as 353 by measuring species richness based on actual observed diversity. Significance of 354 differing mean values for each diversity calculation was determined using the Kruskal-355 Wallis rank sum test, followed by a post-hoc Dunn test with bonferroni corrected p-356 values. Three measures of beta diversity (unweighted UniFrac, weighted UniFrac, and 357 Bray-Curtis) were calculated using relative abundances of each ASV (calculated as ASV 358 read depth over total read depth per library). Significant drivers of community similarity 359 were identified using the ADONIS test with Bonferroni correction for multiple 360 comparisons using the R package Phyloseq (55). Code for microbiome analyses can be 361 found at http://github.com/hollylutz/CuttlefishMP. (Authors' note: Sequences and 362 metadata for replication of analyses presented in this study will be uploaded to the Qiita 363 platform and to the European Nucleotide Database upon acceptance for publication.) 364 365 4.4 Sample collection, fixation and sectioning for imaging

366

367	Samples from esophagus, stomach, intestine and cecum of 9 cuttlefish (5 from
368	antibiotic treatment and 4 controls) were dissected and divided in order to include the
369	same individuals in both microscopy and sequencing analyses. Immediately after
370	dividing, samples were fixed with 2% paraformaldehyde in 10 mM Tris pH 7.5 for 12 h
371	at 4 °C, washed in PBS, dehydrated through an ethanol series from 30 to 100%, and
372	stored at -20 °C. Samples were dehydrated with acetone for 1 h, infiltrated with
373	Technovit 8100 glycol methacrylate (EMSdiasium.com) infiltration solution 3 x 1 hour or
374	longer followed by a final infiltration overnight under vacuum, transferred to Technovit
375	8100 embedding solution and solidified for 12 h at 4 °C. Blocks were sectioned to 5 um
376	thickness and applied to Ultrastick slides (Thermo Scientific). Sections were stored at
377	room temperature until FISH was performed.
378	
378 379	4.5 Fluorescence in situ hybridization (FISH)
	4.5 Fluorescence in situ hybridization (FISH)
379	4.5 Fluorescence <i>in situ</i> hybridization (FISH) Hybridization solution [900 mM NaCl, 20 mM Tris, pH 7.5, 0.01% SDS, 20%
379 380	
379 380 381	Hybridization solution [900 mM NaCl, 20 mM Tris, pH 7.5, 0.01% SDS, 20%
379 380 381 382	Hybridization solution [900 mM NaCl, 20 mM Tris, pH 7.5, 0.01% SDS, 20% (vol/vol) formamide, each probe at a final concentration of 2 μ M] was applied to sections
 379 380 381 382 383 	Hybridization solution [900 mM NaCl, 20 mM Tris, pH 7.5, 0.01% SDS, 20% (vol/vol) formamide, each probe at a final concentration of 2 μ M] was applied to sections and incubated at 46 °C for 2 h in a chamber humidified with 20% (vol/vol) formamide.
 379 380 381 382 383 384 	Hybridization solution [900 mM NaCl, 20 mM Tris, pH 7.5, 0.01% SDS, 20% (vol/vol) formamide, each probe at a final concentration of 2 μ M] was applied to sections and incubated at 46 °C for 2 h in a chamber humidified with 20% (vol/vol) formamide. Slides were washed in wash buffer (215 mM NaCl, 20 mM Tris, pH 7.5, 5mM EDTA) at
 379 380 381 382 383 384 385 	Hybridization solution [900 mM NaCl, 20 mM Tris, pH 7.5, 0.01% SDS, 20% (vol/vol) formamide, each probe at a final concentration of 2 μ M] was applied to sections and incubated at 46 °C for 2 h in a chamber humidified with 20% (vol/vol) formamide. Slides were washed in wash buffer (215 mM NaCl, 20 mM Tris, pH 7.5, 5mM EDTA) at 48 °C for 15 min. Samples were incubated with wheat germ agglutinin (20 ug ml ⁻¹)

389 (Invitrogen) with a 1.5 coverslip, and cured overnight in the dark at room temperat	389	(Invitrogen)	with a 1.5	coverslip.	and cured	overnight in	the dark	at room	temperatu
---	-----	--------------	------------	------------	-----------	--------------	----------	---------	-----------

- 390 before imaging. Probes used in this study are listed in table 2.
- 391

392 4.6 Image acquisition and linear unmixing

393

394 Spectral images v	vere acquired using	a Carl Zeiss LSM	780 confocal microscope
-----------------------	---------------------	------------------	-------------------------

395 with a Plan-Apochromat 40X, 1.4 N.A. objective. Images were captured using

396 simultaneous excitation with 405, 488, 561, and 633 nm laser lines. Linear unmixing was

397 performed using the Zeiss ZEN Black software (Carl Zeiss) using reference spectra

398 acquired from cultured cells hybridized and imaged as above with Eub338 probe labeled

399 with the appropriate fluorophore. Unmixed images were assembled and false-colored

400 using FIJI software (Schindelin *et al.*, 2012).

401

402 FIGURE LEGENDS

403

404 Figure 1. A single *Vibrio* taxon dominates the esophagus, and a single

405 Piscirickettsiaceae taxon dominates the gills of the European common cuttlefish in

406 captivity

407 Relative abundance of dominant ASVs (ASVs with >20% maximum relative abundance

408 among samples), colored by ASV, arranged by experimental group (control or treatment),

- 409 and faceted by organ. Penaid shrimp and sea water from experimental holding tanks are
- 410 also shown. ASVs are labeled according to the finest level of taxonomic resolution
- 411 provided by the GreenGenes database. Bars correspond to individual libraries, showing

only libraries with >1000 reads. Pictured in the lower right-hand corner is a S. officinalis
exhibiting camouflage on neutral background.

Figure 2. Cuttlefish microbiota show negligible response to antibiotic treatment

414

415

416 (A) Shannon Index and (B) Observed ASV richness of organ microbiota, with and 417 without enrofloxacin treatment. PCoA of (C) weighted UniFrac dissimilarity, (D) 418 unweighted UniFrac dissimilarity, and (E) Bray-Curtis dissimilarity of organ microbiota, 419 with and without enrofloxacin treatment. Points represent individual 16s sequence 420 libraries, with colors corresponding to experimental group (control, treatment), and 421 shapes corresponding to organ (esophagus, stomach, cecum, intestine, and gills). 422 423 Figure 3. Spatial organization of bacteria in the esophagus of S. officinalis. The 424 image shown is a cross-section of esophagus that was embedded in methacrylate, 425 sectioned, and subjected to fluorescence *in situ* hybridization. (A) Bacteria (magenta) 426 lining the interior of the esophagus in association with the mucus layer (wheat germ 427 agglutinin staining, green). (B) and (C) are enlarged images of the regions marked with 428 arrowheads in (A) where bacteria extend past the edge of the mucus layer. Blue: Host 429 nuclei. Scale bar =100 μ m in (A) and 20 μ m in (B) and (C). 430 431 Figure 4. Fluorescence in situ hybridization identifies bacteria in the esophagus of

432 S. officinalis as Vibrionaceae. A methacrylate-embedded section was hybridized with a
433 nested probe set containing probes for most bacteria, Gammaproteobacteria,
434 Alphaproteobacteria, and Vibrionaceae. (A) near-universal probe showing a similar

bacterial distribution as in figure 3. (B, C, D) Enlarged images of the region marked by the dashed square in (A) showing hybridization with near-universal, Vibrionaceae, and Gammaproteobacteria probes, respectively. (E) Merged image of B, C, and D showing an exact match of the signal from those three probes. (F) Alphaproteobacteria probe showing no hybridization. (G) An independent hybridization with the non-target probe set as a control; no signal is observed. (H) enlarged image of the dashed square in (G). Scale bar=20 μ m (A, G); 5 μ m (B-F, H).

442

Figure 5. Fluorescence *in situ* hybridization in intestine of *S. officinalis*. A methacrylate-embedded section was hybridized with the near-universal probe and stained with fluorophore-labeled wheat germ agglutinin to visualize mucus. (A) Bacteria (magenta) are sparsely distributed through the lumen. (B) enlarged image of the dashed square in (A). (C) An independent FISH control with a non-target probe (Hhaem1007); no signal was detected. Scale bar= 20 μ m (A, C); 5 μ m (B).

449

450 Figure 6. Fluorescence in situ hybridization in spiral cecum of S. officinalis. (A)
451 Bacteria are observed in low abundance in the lumen of spiral cecum. (B) Enlarged
452 image of dashed square in (A). Scale bar=20 μm (A); 5 μm (B).

453

Figure 7. Fluorescence *in situ* hybridization in gills of *S. officinalis*. Bacteria are observed in small clusters. (A) Overview image. (B, C): enlarged images of the dashed square in (A) showing hybridization with near-universal, and Gammaproteobacteria probes, respectively. (D) Merged image of (B), and (C) showing an exact match of the

458	signal	from those two probes. Display in (B, C, and D) was adjusted for clarity. Scale
459	bar=20	0 μm (A); 5 μm (B-D).
460		
461		
462		
463	ACKN	OWLEDGEMENTS
464	We that	nk Alan Kuzirian, Louie Kerr, Neil Gottel, Wyatt Arnold, Madeline Kim, Elle
465	Hill, T	yler He, and Eric Edsinger. TR and JMW were supported by NSF 1650141. RH
466	thanks	the Sholley Foundation for partial support. Amber Durand was supported by the
467	Woods	Hole Partnership Education Program. The funders had no role in study design,
468	data co	ollection and interpretation, or the decision to submit the work for publication.
469		
470	REFEI	RENCES
471		
472	1.	McFall-Ngai M. 2014. Divining the essence of symbiosis: insights from the
473		squid-vibrio model. PLoS Biol 12:e1001783.
474	2.	Kerwin AH, Nyholm SV. 2017. Symbiotic bacteria associated with a bobtail
475		squid reproductive system are detectable in the environment, and stable in the
476		host and developing eggs. Environ Microbiol 19:1463-1475.
477	3.	Barbieri E, Bruce J. Paster, Deborah Hughes, Ludek Zurek, Duane P.
478		Moser, Andreas Teske, and Mitchell L. Sogin 2001. Phylogenetic
479		characterization of epibiotic bacteria in the accessory nidamental gland and egg

480	capsules of the squid Loligo pealei (Cephalopoda: Loliginidae). Environmental
481	Microbiology 3: 151-167.

- 482 4. Iehata S, Valenzuela F, Riquelme C. 2016. Evaluation of relationship between
- 483 Chilean octopus (Octopus mimusGould, 1852) egg health condition and the egg
- 484 bacterial community. Aquaculture Research **47:**649-659.
- 485 5. Panetta D, Solomon M, Buresch K, Hanlon RT. Small-scale rearing of
- 486 cuttlefish (Sepia officinalis) for research purposes. Marine and Freshwater
- 487 Behaviour and Physiology **50**:115-124.
- 488 6. Messenger JB. 2001. Cehpalopod chromatophores: neurobiology and natural
 489 history. Biological Review 76:473-528.
- 490 7. Darmaillacq AS, Dickel L, Mather J. 2014. Cephalopod cognition. Cambridge
 491 University Press, Cambridge, UK.
- 492 8. Hanlon RT, Messenger JB. 1988. Adaptive coloration in young cuttlefish (*Sepia*493 *officinalis L*): the morhpology and development of body patterns and their relation
 494 to behaviour. Phil Trans R Soc B 320:437-487.
- 495 9. Buresch KC, Ulmer KM, Akkaynak D, Allen JJ, Mäthger LM, Nakamura
- 496 M, Hanlon RT. 2015. Cuttlefish adjust body pattern intensity with respect to
- substrate intensity to aid camouflage, but do not camouflage in extremely low
- 498 light. Journal of Experimental Marine Biology and Ecology **462**:121-126.
- 499 10. Yu C, Li Y, Zhang X, Huang X, Malyarchuk V, Wang S, Shi Y, Gao L, Su Y,
- 500 Zhang Y, Xu H, Hanlon RT, Huang Y, Rogers JA. 2014. Adaptive
- 501 optoelectronic camouflage systems with designs inspired by cephalopod skins.
- 502 Proc Natl Acad Sci U S A **111**:12998-13003.

503	11.	Chiao CC, Chubb C, Hanlon RT. 2015. A review of visual perception
504		mechanisms that regulate rapid adaptive camouflage in cuttlefish. Journal of
505		Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral
506		Physiology 201: 933-945.
507	12.	Tonkins BM, Tyers AM, Cooke GM. 2015. Cuttlefish in captivity: An
508		investigation into housing and husbandry for improving welfare. Applied Animal
509		Behaviour Science 168:77-83.
510	13.	Carabotti M, Scirocco A, Maselli MA, Severi C. 2015. The gut-brain axis:
511		interactions between enteric microbiota, central and enteric nervous systems.
512		Annals of Gastroenterology 28:203-209.
513	14.	Koch EJ, Miyashiro T, McFall-Ngai MJ, Ruby EG. 2014. Features governing
514		symbiont persistence in the squid-vibrio association. Molecular Ecology 23:1624-
515		1634.
516	15.	Bloodgood RA. 1977. The squid accessory nidamental gland: ultrastructure and
517		association with bacteria Tissue & Cell 9:197-208.
518	16.	Pichon D, Isabelle Domart-Coulon, and Renata Boucher-Rodoni 2017.
519		Cephalopod bacterial associations: characterization and isolation of the symbiotic
520		complex in the Accessory Nidamental Glands Boll Malacol 43:96-102.
521	17.	Collins AJ, LaBarre BA, Won BS, Shah MV, Heng S, Choudhury MH,
522		Haydar SA, Santiago J, Nyholm SV. 2012. Diversity and partitioning of
523		bacterial populations within the accessory nidamental gland of the squid
524		Euprymna scolopes. Appl Environ Microbiol 78:4200-4208.

525	18.	Gromek SM, Andrea M. Suria, Matthew S. Fullmer, Jillian L. Garcia,
526		Johann Peter Gogarten, Spencer V. Nyholm, and Marcy J. Balunas. 2016.
527		Leisingera sp. JC12, a Bacterial Isolate from Hawaiian Bobtail Squid Eggs,
528		Produces Indigoidine and Differentially Inhibits Vibrios. Frontiers in
529		Microbiology 7:1342.
530	19.	Lum-Kong A, Hastings TS. 1992. The accessory nidamental glands of Loligo
531		forbesi (Cephalopoda: Loliginidae): characterization of symbiotic bacteria and
532		preliminary experiments to investigate factors controlling sexual maturation J
533		Zool, Lond 228: 395-403.
534	20.	Tarnecki AM, Burgos FA, Ray CL, Arias CR. 2017. Fish intestinal
535		microbiome: diversity and symbiosis unravelled by metagenomics. J Appl
536		Microbiol doi:10.1111/jam.13415.
537	21.	Egerton S, Sarah Culloty, Jason Whooley, Catherine Stanton, and R. Paul
538		Ross 2018. The Gut Microbiota of marine fish. Microbiology 9:837.
539	22.	Roura A, Doyle SR, Nande M, Strugnell JM. 2017. You Are What You Eat: A
540		Genomic Analysis of the Gut Microbiome of Captive and Wild Octopus vulgaris
541		Paralarvae and Their Zooplankton Prey. Front Physiol 8:362.
542	23.	Hanlon RT, Forsythe JW. 1990. 1. Diseases of Mollusca: Cephalopoda. 1.1.
543		Diseases caused by microorganisms and 1.3 Structural abnormalities and
544		neoplasia., p 23-46 and 203-204. In Kinne O (ed), Diseases of Marine Animals,
545		vol III. Biologische Anstalt Helgoland, Hamburg.
546	24.	Forsythe JW, Hanlon RT, Lee PG. 1990. A formulary for treating cephalopod
547		mollusc diseases. San Diego: Academic Press.

548	25.	Ford LA, Alexander SK, Cooper KM, Hanlon RT. 1986. Bacterial populations
549		of normal and ulcerated mantle tissue of the squid, Lolliguncula brevis. Journal of
550		Invertebrate Pathology 48: 13-26.
551	26.	Takemura AF, Chien DM, Polz MF. 2014. Associations and dynamics of
552		Vibrionaceae in the environment, from the genus to the population level. Front
553		Microbiol 5:38.
554	27.	Pruzzo C, Huq A, Colwell RR, Donelli G. 2005. Pathogenic Vibrio Species in
555		the Marine and Estuarine Environment, p 217-252. In Belkin S, Colwell RR (ed),
556		Oceans and Health: Pathogens in the Marine Environment doi:10.1007/0-387-
557		23709-7_9. Springer US, Boston, MA.
558	28.	Labella AM, Arahal DR, Castro D, Lemos ML, Borrego JJ. 2017. Revisiting
559		the genus Photobacterium: taxonomy, ecology and pathogenesis. Int Microbiol
560		20: 1-10.
561	29.	Mauel MJ, S.J. Giovannoni, and J.L. Fryer 1999. Phylogenetic analysis of
562		Piscirickettsia salmonis by 16S, internal transcribed spacer (ITS) and 23S
563		ribosomal DNA sequencing Diseases of Aquatic Organisms 35:115-123.
564	30.	Azevedo C, Villalba A. Extracellular Giant Rickettsiae Associated with Bacteria
565		in the Gill of Crassostrea gigas (Mollusca, Bivalvia). Journal of Invertebrate
566		Pathology 58: 75-81.
567	31.	Wen C-M, Guang-Hsiung Kou, and Shiu-Nan Chen 1994. Rickettsiaceae-like
568		Microorganisms in the Gill and Digestive Gland of the Hard Clam, Meretrix
569		lusoria Röding. Journal of Invertebrate Pathology 64:138-142.

Moisander P, Andrew D. Sexton, and Meaghan C. Daley. 2014. Stable

570

32.

571		Associations Masked by Temporal Variability in the Marine Copepod
572		Microbiome PLoS ONE 10:e0138967.
573	33.	Lu X, Sun S, Hollibaugh JT, Mou X. 2015. Identification of polyamine-
574		responsive bacterioplankton taxa in South Atlantic Bight. Environ Microbiol Rep
575		7:831-838.
576	34.	Wang K, Zhang D, Xiong J, Chen X, Zheng J, Hu C, Yang Y, Zhu J. 2015.
577		Response of bacterioplankton communities to cadmium exposure in coastal water
578		microcosms with high temporal variability. Appl Environ Microbiol 81:231-240.
579	35.	Hamdan LJ, Salerno JL, Reed A, Joye SB, Damour M. 2018. The impact of
580		the Deepwater Horizon blowout on historic shipwreck-associated sediment
581		microbiomes in the northern Gulf of Mexico. Sci Rep 8:9057.
582	36.	Kamalanathan M, Xu C, Schwehr K, Bretherton L, Beaver M, Doyle SM,
583		Genzer J, Hillhouse J, Sylvan JB, Santschi P, Quigg A. 2018. Extracellular
584		Enzyme Activity Profile in a Chemically Enhanced Water Accommodated
585		Fraction of Surrogate Oil: Toward Understanding Microbial Activities After the
586		Deepwater Horizon Oil Spill. Front Microbiol 9:798.
587	37.	Lofthus S, Netzer R, Lewin AS, Heggeset TMB, Haugen T, Brakstad OG.
588		2018. Biodegradation of n-alkanes on oil-seawater interfaces at different
589		temperatures and microbial communities associated with the degradation.
590		Biodegradation 29: 141-157.
591	38.	Ribicic D, McFarlin KM, Netzer R, Brakstad OG, Winkler A, Throne-Holst
592		M, Storseth TR. 2018. Oil type and temperature dependent biodegradation

593 d	lvnamics - Co	ombining o	chemical and	l microbial	community d	ata through
0,0				* 111101001001		and the object

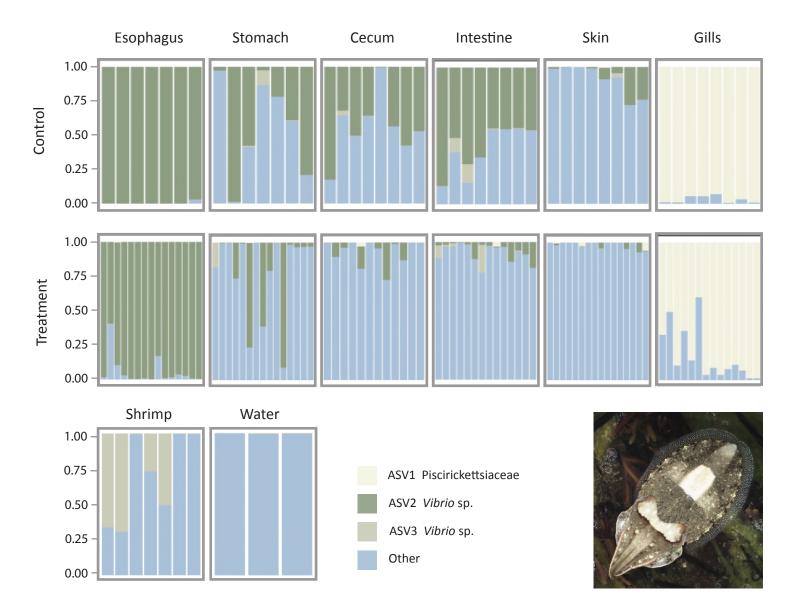
- 594 multivariate analysis. BMC Microbiol **18**:83.
- Wang B, Liu H, Tang H, Hu X. 2018. Microbial ecological associations in the
 surface sediments of Bohai Strait. Journal of Oceanology and Limnology 36:795-
- 597 804.
- 598 40. Allen JJ, Mathger LM, Barbosa A, Buresch KC, Sogin E, Schwartz J, Chubb
- 599 C, Hanlon RT. 2010. Cuttlefish dynamic camouflage: responses to substrate
- 600 choice and integration of multiple visual cues. Proc Biol Sci 277:1031-1039.
- 41. Mathger LM, Barbosa A, Miner S, Hanlon RT. 2006. Color blindness and
- 602 contrast perception in cuttlefish (Sepia officinalis) determined by a visual
- sensorimotor assay. Vision Res **46**:1746-1753.
- 604 42. Amann RI, Ludwig, W., Schleiffer, K. 1995. Phylogenetic identification and in
- situ detection of individual microbial cells without cultivation. Microbiological
 Reviews 59:143-169.
- 607 43. Neef A. 1997. Anwendung der in situ-Einzelzell- Identifizierung von Bakterien
 608 zur Populations analyse in komplexen mikrobiellen BiozönosenUniversity of
 609 Munich.
- Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH. 1992. Phylogenetic
 oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems
 and solutions. Systematic and Applied Microbiology 15:593-600.
- 613 45. Chalmers NI, Palmer RJ, Jr., Cisar JO, Kolenbrander PE. 2008.
- 614 Characterization of a Streptococcus sp.-Veillonella sp. community
- 615 micromanipulated from dental plaque. J Bacteriol **190**:8145-8154.

616 46. Valm A. M. MW, J. L., Rieken, C. W., Hasegawa, Y., Sogin, M. L.,

- 617 Oldenbourg, R., Dewhirst, F. E., Borisy, G. G. . 2011. Systems-level analysis
- 618 of microbial community organization through combinatorial labeling and spectral
- 619 imaging. . Proc Natl Acad Sci U S A **108**:4152-4157.

Table 1. Relative abundance dominant ASVs in the esophagus (ASV1, Vibrio sp.) and gills (ASV2, Piscirickettsiaceae), both in the class Gammaproteobacteria. T-test of change in relative abundance between treatment and control groups reveals varying degrees of microbial "knockdown" in the treatment groups. * indicates organs in which relative abundance differed significantly between treatment and control animals.

					Relative Abundance		p-			
Organ	ASV	Bacterial Family	Genus	Group	avg	sd	sem	value	df	t
Gills*	ASV	Piscirickettsiaceae	Unknown	Control	0.969	0.025	0.009	0.01	13.8	2.82
Ullis	2	FISCHICKELLSIACEAE	UTKIIUWII	Treatment	0.824	0.190	0.051	0.01	13.0	
Esophagus	ASV	Vibrionaceae	<i>Vibrio</i> sp.	Control	0.995	0.012	0.004	0.09	14.7	1.83
LSOphagus	1	VIDITOTIACEAE	vibrio sp.	Treatment	0.944	0.108	0.028	0.09	14.7	1.05
Stomach	ASV	Vibrionaceae	<i>Vibrio</i> sp.	Control	0.431	0.373	0.141	0.17	10	1.48
Stomach	1	VIDITOTIACEAE	vibrio sp.	Treatment	0.191	0.309	0.080		10	1.40
Cecum*	ASV	Vibrionaceae	<i>Vibrio</i> sp.	Control	0.437	0.234	0.083	0.002	8.3	4.31
Cecum	1	VIDITOTIACEAE	vibrio sp.	Treatment	0.064	0.087	0.025	0.002	0.5	4.51
Intestine*	ASV	Vibrionaceae	<i>Vibrio</i> sp.	Control	0.568	0.158	0.056	1.99E-	8.1	8.81
mestille	1	VIDRIONACEAE VIDRIC	vibrio sp.	Treatment	0.055	0.059	0.016	05	0.1	0.01


- ---

Probe Set	Probe name	Fluorophore(s)	Target organism	Sequence 5' – 3'	Target position	Reference
	Eub338-I	Alexa 555 or Rhodamine Red X	Most Bacteria	GCTGCCTCCCGT AGGAGT	16S, 338-355	Amann et al. 1990 (42)
ental	Vib1749	Texas Red X	Vibrionaceae family	AGCCACCTGGTA TCTGCGACT	23S, 1749-1769	Schlundt <i>et</i> <i>al.,</i> in prep
Experimental	Vib2300	Texas Red X	Vibrionaceae family	TAACCTCACGAT GTCCAACCGTG	23S, 2299-2321	Schlundt <i>et</i> <i>al.,</i> in prep
	Alt968 Alphanroteobacteria		GGTAAGGTTCT GCGCGTT	16S, 968-985	Neef, A., 1997 (43)	
	Gam42a	Atto 647N or Cy5	Gammaproteobacteria	GCCTTCCCACAT CGTTT	235, 1027-1043	Manz et al. 1992 (44)
rol	Vei488	Alexa 555	Veillonella	CCGTGGCTTTCT ATTCCG	16S, 488-505	Chalmers et al. 2008 (45)
Non-target control	PorTan34	Texas Red X	Porphyromonas and Tannerella	GTTAAGCCTATC GCTAGC	16S, 34-51	Mark Welch <i>et</i> <i>al.,</i> in prep.
Non-ta	Fus714	Atto 620	Fusobacterium	GGCTTCCCCATC GGCATT	16S, 714-731	Valm et al. 2011 (46)
	Lept568	Atto 647N	Leptotrichia	GCCTAGATGCCC TTTATG	16S, 568-585	Valm et al. 2011 (46)
	Hhaem1007	Rhodamine Red X	Haemophilus haemolyticus	AGGCACTCCCAT ATCTCTACAG	16S, 1007-1028	Mark Welch <i>et</i> <i>al.,</i> in prep.

Table 2. FISH probes used in this study

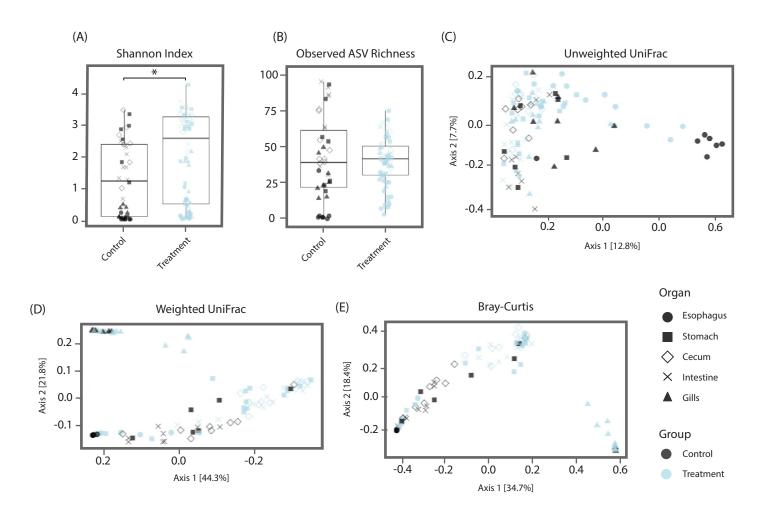
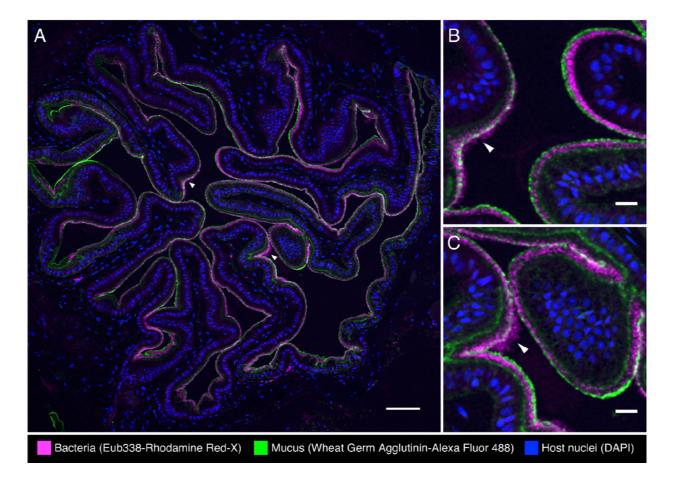
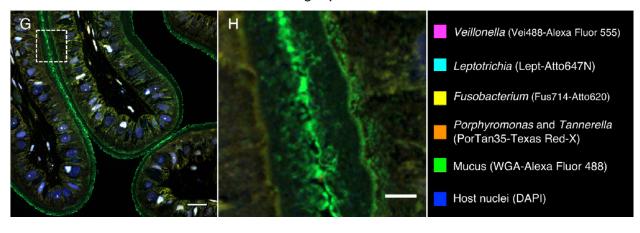

637

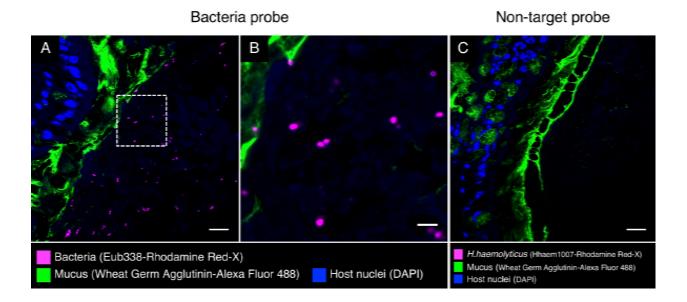
Figure 1. A single Vibrio taxon dominates the esophagus, and a single Piscirickettsiaceae taxon dominates the gills of the European common cuttlefish in captivity. Relative abundance of dominant ASVs (ASVs with >20% maximum relative abundance among samples), colored by ASV, arranged by experimental group (control or treatment), and faceted by organ. Penaid shrimp and sea water from experimental holding tanks are also shown. ASVs are labeled according to the finest level of taxonomic resolution provided by the GreenGenes database. Bars correspond to individual 16s rRNA sequence libraries, showing only libraries with >1000 read depth. *S. officinalis* pictured in the lower right-hand corner.

Figure 2. Cuttlefish microbiota show negligible response to antibiotic treatment

(A) Shannon Index and (B) Observed ASV richness of organ microbiota, with and without enrofloxacin treatment. PCoA of (C) weighted UniFrac dissimilarity, (D) unweighted UniFrac dissimilarity, and (E) Bray-Curtis dissimilarity of organ microbiota, with and without enrofloxacin treatment. Points represent individual 16s sequence libraries, with colors corresponding to experimental group (control, treatment), and shapes corresponding to organ (esophagus, stomach, cecum, intestine, and gills).

Figure 3. Spatial organization of bacteria in the esophagus of *S. officinalis.* The image shown is a cross-section of esophagus that was embedded in methacrylate, sectioned, and subjected to fluorescence *in situ* hybridization. (A) Bacteria (magenta) lining the interior of the esophagus in association with the mucus layer (wheat germ agglutinin staining, green). (B) and (C) are enlarged images of the regions marked with arrowheads in (A) where bacteria extend past the edge of the mucus layer. Blue: Host nuclei. Scale bar =100 μ m in (A) and 20 μ m in (B) and (C).


Figure 4. Fluorescence *in situ* hybridization identifies bacteria in the esophagus of *S. officinalis* as Vibrionaceae. A methacrylate-embedded section was hybridized with a nested probe set containing probes for most bacteria, Gammaproteobacteria, Alphaproteobacteria, and Vibrionaceae. (A) Near-universal probe showing a similar bacterial distribution as in figure 3. (B, C, D) Enlarged images of the region marked by the dashed square in (A) showing hybridization with near-universal, Vibrionaceae, and Gammaproteobacteria probes, respectively. (E) Merged image of (B, C, and D) showing an exact match of the signal from those three probes. (F) Alphaproteobacteria probe set as a control; no signal is observed. (H) enlarged image of the region marked by the dashed square in (A, G); 5 μ m (B-F, H).

Specific probe set

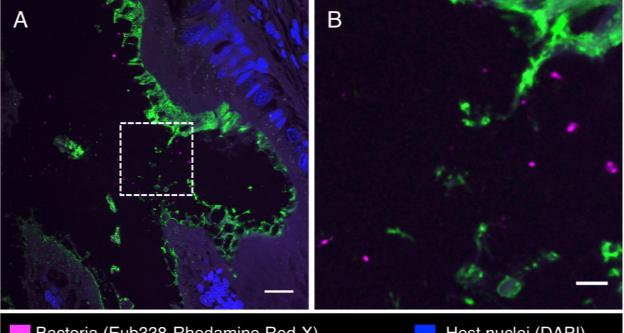

Non-target probe set

Figure 5. Fluorescence *in situ* hybridization in intestine of *S. officinalis.* A methacrylateembedded section was hybridized with the near-universal probe and stained with fluorophorelabeled wheat germ agglutinin to visualize mucus (green). (A) Bacteria (magenta) are sparsely distributed through the lumen. (B) enlarged image of the region marked by the dashed square in (A). (C) An independent FISH control with a non-target probe (Hhaem1007); no signal was detected. Scale bar= 20 μ m (A, C); 5 μ m (B).

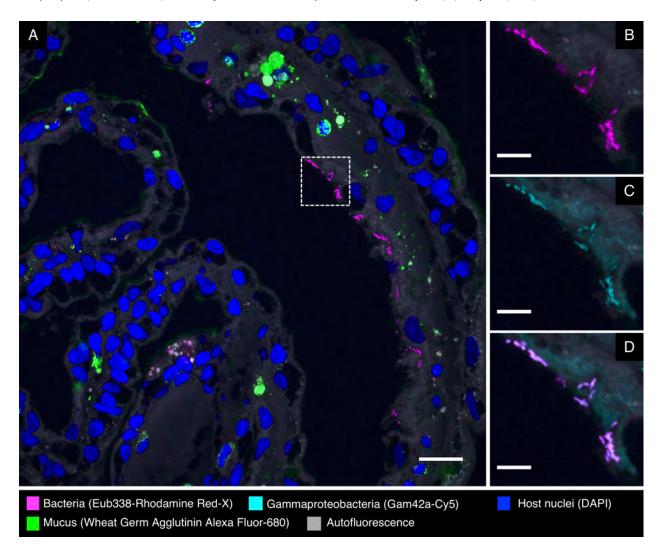


Figure 6. Fluorescence *in situ* hybridization in cecum of *S. officinalis*. A methacrylateembedded section was hybridized with the near-universal probe and stained with fluorophorelabeled wheat germ agglutinin to visualize mucus (green). (A) Bacteria are observed in low abundance in the lumen of cecum. (B) Enlarged image of region marked by the dashed square in (A). Scale bar=20 μ m (A); 5 μ m (B).

Bacteria (Eub338-Rhodamine Red-X)Host nuclei (DAPI)Mucus (Wheat Germ Agglutinin Alexa Fluor-488)Autofluorescence

Figure 7. Fluorescence *in situ* hybridization in gills of *S. officinalis*. A methacrylate-embedded section was hybridized with the near-universal probe and stained with fluorophore-labeled wheat germ agglutinin to visualize mucus (green). Bacteria are observed in small clusters. (A) Overview image. (B, C): enlarged images of the region marked by the dashed square in (A) showing hybridization with near-universal, and Gammaproteobacteria probes, respectively. (D) Merged image of (B), and (C) showing an exact match of the signal from those two probes. Display in (B, C, and D) was adjusted for clarity. Scale bar=20 μ m (A); 5 μ m (B-D).

