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Abstract

Bayesian Markov-Chain Monte Carlo (MCMC) methods for phylogenetic tree inference,
that is, inference of the evolutionary history of distinct species using their molecular se-
quence data, typically generate large sets of phylogenetic trees. The trees generated by
the MCMC procedure are samples of the posterior probability distribution that MCMC
methods approximate. Thus, they generate a stream of correlated binary trees that need
to be stored. Here, we adapt state-of-the art algorithms for binary tree compression to
phylogenetic tree data streams and extend them to also store the required meta-data.
On a phylogenetic tree stream containing 1, 000 trees with 500 leaves including branch
length values, we achieve a compression rate of 5.4 compared to the uncompressed tree
files and of 1.8 compared to bzip2-compressed tree files. For compressing the same trees,
but without branch length values, our compression method is approximately an order
of magnitude better than bzip2. A prototype implementation is available at https:
//github.com/axeltref/tree-compression.git.

Introduction

Phylogenetic trees, or phylogenies, for short, are unrooted, strictly binary, leaf labeled
trees. They represent the evolutionary history of a set of n molecular sequences
(e.g., DNA sequences) that correspond to the n distinct species under study. The
leaves represent extant species, while the inner nodes represent hypothetical common
ancestors. Henceforth, we refer to species/leaves as taxa. Phylogenies have various
important applications in biological and medical research (e.g., [1]).

At present, likelihood-based statistical models of evolution are widely used to
reconstruct such trees, either under the Maximum Likelihood (ML) criterion or us-
ing MCMC-based Bayesian Inference (BI) methods (e.g., [2]). Due to the super-
exponential increase in the number of possible trees as a function of the number of
taxa, ML-based phylogenetic inference is known to be NP-hard [3].

BI methods strive to compute the posterior probability distribution of phylogenetic
trees. Here, the computational complexity is determined by the marginal probability
term, whose exact calculation requires evaluating the likelihood of all possible tree
topologies. Thus, MCMC methods are deployed to approximate the posterior. In
general, the MCMC procedure is run for several million generations, and tree sam-
ples are typically written to file every 1, 000 generations. Therefore, MCMC runs,
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especially on datasets with a large number of taxa n, can generate tree files of sub-
stantial size. To alleviate this problem we investigate if state-of-the art algorithms
for compressing binary trees can be applied and adapted to phylogenetic trees.

In the following we outline the main challenges. First, the trees contain branch
lengths that represent the genetic distance between two nodes in the tree. Second,
the tree samples can be regarded as a data stream. Third, successive tree samples
are generally highly correlated. Thus, the tree topology and branch lengths between
sample i and sample i+1 do typically not differ substantially. We incorporate all these
characteristics in our compression algorithm to improve compression of phylogenetic
tree streams.

The remainder of this paper is organized as follows: We first review related work
on general tree compression and phylogenetic tree compression. Then, we describe
our compression algorithm and discuss some implementation details. Thereafter, we
present and discuss our results on empirical datasets. Finally, we provide a conclusion
and discuss directions of future work.

Related Work

General binary tree compression: The topology of a n-node tree can be en-
coded in only 2n bits by traversing it in depth-first order and appending an opening
parenthesis when entering a node and a closing parenthesis when leaving it. This
encoding is called balanced parentheses (BP) as a balanced number of opening and
closing parentheses encodes each subtree. While this encoding requires substantially
less space than a pointer-based tree representation (requiring O(n log n) bits), navi-
gating the tree (e.g., finding a parent or the i-th child) requires a costly sequential
decompression of parts of the tree. Jacobson [4] introduced constant time basic nav-
igation operations via an additional sub-linear index of size o(n) bits. This result
was the starting point of succinct data structures; they encode instances of objects
in space that is close to the information theoretic minimum for distinguishing among
all possible instances. For trees, this bound is 2n − Θ(logn) bits. Besides BP, there
are two other popular succinct representations [4, 5] which offer different trade-offs
for tree operations.

Compressing phylogenies: We are not aware of previous work on compressing
streams of correlated phylogenies. Ane and Sanderson [6] presented work on com-
pressing phylogenies in conjunction with the associated sequence data. Matthews et
al. [7] presented a method for compressing phylogenetic tree topologies, but without
taking into account branch lengths. However, branch lengths constitute vital infor-
mation for the majority of post-analysis tasks (e.g., for estimating divergence times
or delimiting species).

Compression Algorithm

Before describing our two compression algorithms, we outline the calculation of the
Robinson-Foulds metric (RF metric[8]) for comparing phylogenetic trees with the
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same taxon set. The RF metric is a prerequisite for our more involved compression
scheme.

The Robinson Foulds Metric: The RF metric relies on the property that each
edge/branch of a binary phylogeny splits the taxon set into two partitions: removing
the edge generates two subtrees, each corresponding to one partition of the taxa.
We call such splits bipartitions. Bipartitions at edges leading to leaves are trivial
as they are present in any tree containing the taxon set. Thus, we focus on non-
trivial bipartitions, that is, splits at inner edges of the tree. The set of all non-trivial
biparitions of a tree is mathematically equivalent to the tree representation. The sets
of non-trivial bipartitions of two trees can be used to compare them. The RF distance
between two trees is defined as the number of bipartitions that are unique to one of
the two trees.

The RF metric does not only provide a distance measure between two trees, but
also allows for transforming one tree into another using appropriate tree edit oper-
ations. A so-called strict consensus tree can be computed, that only contains edges
that are present in the bipartition sets of both trees. Such a strict consensus tree does
not need (and is typically not) binary any more. As the strict consensus tree contains
all edges that are common to both trees, our key idea to compress successive tree
samples i and i + 1 from a phylogenetic tree stream is as follows: Contract edges in
the tree i to transform it into the consensus tree, and then extend the consensus tree
again to obtain tree i+ 1. To perform this transformation, only the contraction oper-
ations for tree i and the expansion operations of the consensus tree (for constructing
tree i + 1) have to be stored.

We show an example RF distance calculation for two trees with identical taxon
sets in Figure 1. Non-RF branches, that is, branches that occur in both trees are
shown in red. RF branches, that is, branches that are unique to one of the two trees
are shown in green. We also display the resulting consensus tree.

Compression Algorithms

We implement two distinct compression methods: a simple compression (SC) and a
RF-based compression (RFC). Both methods can be applied to phylogenies whose
taxon names have been mapped to unique integer identifiers. The SC method can be
applied to a single tree and compresses its topology and branch lengths. The RFC
method compresses a tree pair by storing and compressing edit operations between
the two trees. As the RFC can only be applied to tree pairs, the SC is useful for
compressing the first tree sample of a phylogenetic tree stream. All successive trees
of that stream can then be handled via RFC. Moreover, the SC of a tree is sometimes
more efficient than the RFC. This is the case when the RF distance between two con-
secutive trees is large (i.e., substantial topological changes occurred). This is likely to
occur during the burn-in phase of MCMC analyses where most topological alteration
proposals are likely to be accepted as phylogenetic BI implementations typical start
sampling from a random tree. The SC therefore yields a guaranteed upper bound for
the space required to store a single tree. We describe the SC and RFC in more detail
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Figure 1: RF distance between two trees and consensus tree

below.

Simple Compression: The SC compression scheme can be applied to any phy-
logeny. It is thus not limited to compressing tree samples of MCMC runs. The SC
deploys three vector structures for compression:

• a bit vector storing the topology of the tree in BP encoding [4]

• an integer vector storing the permutation of the taxa at the leaves

• a double vector storing the branch lengths

Since all topologies in a MCMC tree stream comprise the same taxa, they also
have an identical number of branches. Therefore, the vectors storing the topology
and the leave permutation have constant size. However, the size of the branch length
vector can vary, as we do compress it (see paragraph on branch length compression for
details). Overall, the variance of the SC space requirements is low over a phylogenetic
tree stream (see experimental results).

To calculate the SC, we first place a root into the tree we intend to compress.
Without loss of generality, we root the unrooted phylogeny on the external branch
leading to taxon identifier 1. This rooting method ensures a consistent representation
of all trees in a stream. Then, we reorder the tree such that, when traversing it via
a depth-first search (DFS), we always visit the subtree containing the smallest taxon
number first. On this reordered tree (note that phylogenies are unordered trees),
we now calculate the BP representation and the leaf permutation induced by a DFS
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traversal starting at the root. We also store the branch lengths in DFS order. An
example showing the tree reordering and the respective data structures is provided
in Figure 2.
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Figure 2: SC operation example

The decompression is straight-forward: we build the tree using the BP encoding,
assign the respective taxon identifiers, and branch lengths during tree construction.

Robinson-Foulds Compression: As mentioned before, the RFC operates on tree
pairs, typically two consecutive tree samples from a MCMC implementation. The
compression relies on the RF distance between the two trees. As for SC, we first
transform both trees into their rooted and ordered representation. Then, we calculate
the RF distance between them. Based on the RF distance, we classify the edges as:

1. branches/edges, that contribute to the RF distance (RF branches), that is, they
do not form part of a strict consensus tree

2. branches/edges, that do not contribute to the RF distance (non-RF branches),
that is, branches, that are shared among both trees and will hence be included
in a strict consensus tree

Our main idea is to only store the edit operations that we need to apply to the
first tree to obtain the second tree. These edit operations comprise the contraction of
RF branches in the first tree (leading to the strict consensus tree) and the expansion
of the strict consensus tree by expanding the RF branches from the second tree. An
example of these operations and the associated data structures is provided in Figure 3.

We encode edge contractions by assigning a unique identifier to each branch in
DFS order. Then, we store the identifiers of the edges that are contracted in an
integer vector. These contraction edges implicitly encode the strict consensus tree.

To construct the second tree, we expand our strict consensus tree again. Since the
second tree is also a strictly binary tree, we need to expand each unresolved node in
the consensus tree. We do this by first removing all children of an unresolved node.
Then, we insert a —previously stored— strictly binary subtree at such an unresolved
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node. All former children of the unresolved node are contained in this stored binary
subtree.

As for SC, each binary subtree that needs to be inserted into the typically non-
binary strict consensus tree, is stored in BP representation with an associated taxon
identifier permutation. The BP representations of all binary subtrees that we need
to insert into the consensus can be stored in a single contiguous bit vector. The
respective taxon identifier permutations are also stored in a corresponding single
contiguous integer vector.

We provide an example for RFC in Figure 3. For the sake of simplicity, we omitted
branch lengths. Edges colored in red are non-RF branches (i.e., part of the consensus
tree). Green edges are RF branches that are only present in one of the two trees,
but not both. We enumerate the branches in the first tree via a DFS. The vector for
storing the edges we contract, contains the identifiers of the green branches (e.g. 5, 10,
and 12). The subtrees we insert into the consensus tree to construct the second tree
are stored (i) in a BP vector and (ii) a taxon identifier permutation vector. The taxon
identifiers of the first subtree have to be mapped from (2, 3, 4) to (2, 4, 3). Therefore,
the respective permutation vector is (0, 2, 1). The same applies to the second subtree.
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Figure 3: RFC operation example (without branch lengths)

We store branch lengths in two vectors. The first vector stores all RF branch
lengths in the order by which they are inserted into the consensus tree. The second
vector implicitly stores the branch lengths of the non-RF branches. Thereby, we ex-
ploit the property that non-RF branch lengths can be jointly stored for the tree pair
when the respective bipartitions are present in both trees. Using this joint storage
scheme, we do not store the absolute branch length values of the second tree sepa-
rately. Instead, we only store the respective branch length difference of the shared
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bipartitions. Only storing the branch length difference typically requires substan-
tially less space than storing the actual branch length value. This is because branch
lengths of successive trees in a MCMC run do generally not change substantially. We
can exploit this property by using an appropriate floating point number compression
scheme for branch lengths. This scheme requires less space, the smaller the differ-
ence between the branch lengths is (see paragraph on branch length compression for
details).

To decompress a tree, we are given the preceding tree and our compression data
structures. We first contract the edges in the preceding tree via the edge contraction
vector to construct the consensus tree. Then, we add the branch length differences
to all non-RF branches (i.e., the consensus branches). Subsequently, we traverse the
consensus tree via a DFS to identify non-binary nodes. At each non-binary node,
we insert the respective binary subtree, as described before. After having inserted a
binary subtree at a non-binary node of the consensus tree, our tree is strictly binary
and is topologically identical to the second tree. Finally, we set the branch lengths
of the newly inserted RF-branches.

Implementation

A proof-of-concept SC and RFC implementation in C/C++ is available at https:

//github.com/axeltref/tree-compression.git. It uses two external libraries:
SDSL and PLL modules. SDSL (Succinct Data Structure Library [9]) offers a plethora
of succinct data structures. PLL (Phylogenetic Likelihood Library [10]) modules pro-
vides methods for handling phylogenies (e.g., extracting bipartitions, computing RF
distances).

Our program takes Newick-formatted trees as input format. The Newick format
is supported by widely used phylogenetic inference programs such as RAxML or
MrBayes. We provides two tree compression functions: a simple compression and a
rf distance compression. The SC parses a single tree in Newick format, the RFC
parses two trees in Newick format. The compressed trees are written to a file that can
be decompressed using the simple uncompression and rf distance uncompression

methods, respectively. The decompressed tree is then written to file in Newick format
again.

Branch Length Compression: A core component of our implementation is branch
length compression. It transforms double precision floating point numbers, which are
typically used internally by phylogenetic inference programs to store branch lengths,
to integers and then stores and compresses them appropriately. To achieve this, we
initially define the maximum number of decimals e we intend to store. Then, we mul-
tiply each branch length by 10e and round the result to an integer. Here, we set e := 9
to store as many decimals as MrBayes does in its Newick tree files. Next, we search
for the maximum among those scaled branch lengths. The number of bits needed to
represent this maximum then also suffices to accurately represent all smaller scaled
branch lengths. Using SDSL, we construct an integer vector with elements of fixed
size (e.g., a vector where each integer element has a fixed size of 11 bits). This fixed
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size is given by the number of bits needed to represent the maximum scaled branch
length. We further compress the fixed-size integer vector via wavelet tree compres-
sion. Wavelet trees are succinct data structures for storing strings in compressed
form [11].

Results and Discussion

Test Datasets: To test our implementation, we calculated MCMC tree samples on
empirical DNA datasets containing 500 [12] (denoted as D500) and 354 [13] (denoted
as D354) sequences.

Tree Samples: We generated posterior tree samples for D500 and D354 using Mr-
Bayes v. 3.2.6 on a server equipped with an Intel i7-2600 CPU running at 3.40GHz and
16GB RAM. We executed MrBayes for 500, 000 generations and obtained a sample
of 1, 000 trees for each dataset.

Verification: We tested if our algorithm correctly compresses/decompresses trees
by applying our SC to every tree and our RFC to every consecutive sample tree pair.
We then verified that the decompressed tree was identical to the original tree with re-
spect to (i) our internal tree representation and (ii) with respect to the corresponding
Newick tree file.

Compression Results: The 1000 trees generated by MrBayes are stored in Newick
format. The uncompressed size of a single Newick tree file for D500 is 15, 850 Bytes.
We applied SC to every tree as well as RFC to consecutive tree pairs (trees (0, 1),
(1, 2), etc.). We compared our compression algorithm to state-of-the-art universal
compression methods (bzip2, xy, gzip). For Newick files, bzip2 yielded the best
compression rate.

Figure 4 shows the resulting compressed tree file sizes for bzip2 (blue), SC (green),
and RFC (red) over the 1, 000 trees for D500.

Averaged over all trees for D500, RFC requires 2, 941 Bytes to store a single tree
whereas the best universal compression scheme bzip2 requires 5, 176 Bytes. Our
RFC compression rate is thus 1.76 more efficient than bzip2 on D500. Note that,
the observed variance in the RFC compression rate, especially for the first 500 tree
samples, is directly related to the MCMC sampling. As MCMC starts from a ran-
dom tree, initially a large fraction of topological moves and branch length changes
is accepted. As the MCMC procedure moves to areas of higher posterior probability
(samples 500 − 1, 000), the changes to the tree topology and branch lengths become
smaller. Thus, the variance in RFC compression rates also decreases.

For D354, RFC requires on average 2, 404 Bytes to store a single tree whereas
bzip2 needs 3, 736 Bytes1. Our RFC compression is thus 1.55 times more efficient
than bzip2.

1Additional plots can be found under https://github.com/axeltref/tree-compression/

blob/master/plots/phylogenetic_streams_plots.pdf
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Figure 4: File size of different compression schemes for D500. Solid lines show compression
of complete trees, dashed lines show compression of the tree topology.

In Figure 4, we also show the bzip2, SC, and RFC compression rates on dataset
D500 for tree topologies without branch lengths. We applied the methods to a set of
modified Newick trees from which we removed the branch lengths via an appropriate
script. The average file size for RFC is 121 Bytes while the average size of bzip2
compressed files is 1, 170 Bytes. Thus, the RFC compression rate is approximately
an order of magnitude better than for bzip2 on this dataset.

Finally, the average compression times for D500 are 6.1 milliseconds for bzip2,
345.2 milliseconds for SC, and 729.1 milliseconds for RFC1. Our compression times
are about an order of magnitude worse than for bzip2. As our implementation has
not been optimized yet with respect to compression times, we believe that there is
a substantial potential for further improving performance using standard algorithm
engineering techniques. In addition, compression times are not performance critical
in our context as a phylogenetic tree is only written to file every 1, 000 generations
of a MCMC run and the compression can be handled via a separate asynchronous
compression thread such that MCMC computations can carry on. Thus our key
objective was to optimize the compression ratio and not time.

Conclusion & Future Work

We presented two novel methods for compressing phylogenetic tree streams as gener-
ated by MCMC methods. Our RFC achieves substantially better compression rates
than current universal compression schemes such as bzip2. When compressing tree
topologies without branch lengths, RFC is approximately an order of magnitude bet-
ter than bzip2 because the RFC only stores the topological differences between con-
secutive, relatively similar, MCMC tree samples. Our results also show, that branch

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/440644doi: bioRxiv preprint 

https://doi.org/10.1101/440644
http://creativecommons.org/licenses/by-nc-nd/4.0/


lengths clearly constitute the main compression bottleneck. Our RFC might also be
applicable to other streams of relatively similar consecutive trees (e.g., XML files have
a tree-like structure). One main direction of future work will be to explore, if typi-
cal post-analysis steps on the posterior tree distribution, such as building consensus
trees or calculating branch length summary statistics, can be directly computed on
the compressed data structures.
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