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Abstract 

A pivotal question in modern neuroscience is which genes regulate brain circuits that underlie 

cognitive functions. However, the field is still in its infancy. Here we report an integrated investigation 

of the high-level language network (i.e., sentence processing network) in the human cerebral cortex, 

combining regional gene expression profiles, task fMRI, and resting-state functional network 

approaches. We revealed reliable gene expression-functional network correlations using multiple 

datasets and network definition strategies, and identified a consensus set of genes related to 

connectivity within the sentence-processing network. The genes involved showed enrichment for 

neural development functions, as well as association signals with autism, which can involve disrupted 

language functioning. Our findings help elucidate the molecular basis of the brain’s infrastructure for 

language. The integrative approach described here will be useful to study other complex cognitive 

traits. 

 

 

Keywords: Sentence Processing Network, Language, Functional Network, Transcriptomic Network, 

Neural Development, Autism 
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A pivotal question in modern neuroscience is which genes regulate brain circuits that underlie 

cognitive functions. In the past decade, imaging genetics has provided a powerful approach for 

exploring this question in humans, by combining neuroimaging data and genotype information from 

the same subjects and searching for associations between interindividual variability in neuroimaging 

phenotypes and genotypes within a sample. While numerous imaging genetics studies have now been 

published (e.g., 1, 2, 3), there remain key issues which affect the field, including sample size limitations, 

the need to correct for multiple comparisons, and the small effect sizes that are typical of associations 

with common gene variants. Recently, researchers have begun to probe human gene-brain associations 

not only through genotypes, but also using gene expression profiles in brain tissues 4, 5, 6, 7, 8, 9. This 

approach has brought important new advances: transcriptional profiles have been linked to neural 

architecture with respect to both functional connectivity measured during the resting state (also called 

intrinsic connectivity) 4, 5 and structural connectivity 4, 10, as well as to alterations of connectivity in 

brain disorders such as schizophrenia 6, autism spectrum disorder (ASD) 7, and Huntington’s disease 8. 

For example, in one study, Richiardi and colleagues (2015) used data from resting-state functional 

magnetic resonance imaging (rs-fMRI) to show that the network modularity structure derived from 

functional connectivity patterns across the cortex was correlated with inter-regional similarity of gene 

transcription profiles. Specifically, regions within a module (i.e., subnetwork) showed more similar 

gene expression profiles than across different modules. In another study, Romme et al. (2016) 

investigated the transcriptional profiles of a set of genes known to contain inherited variants associated 

with schizophrenia, and found that they were significantly correlated with regional reductions in the 

strength of white matter connections in patients with a schizophrenia diagnosis. 

Past studies combining gene expression and brain imaging data have provided strong evidence that 

patterns of gene expression co-vary with anatomical and functional organization of the human brain. 

However, the ultimate goal is to gain a rich and detailed picture of the genetic and molecular 

mechanisms that support each core cognitive ability. Here we will focus on the quintessential and 

human-unique capacity of language. Previous studies have suggested that language-related cognitive 

performance is highly heritable (e.g., 11, 12, 13, 14), and that brain activations associated with semantic 

comprehension tasks are also heritable 14. Moreover, genetic factors also play a substantial role in 

susceptibility to language-related neurodevelopmental disorders such as childhood apraxia of speech 15, 

developmental language disorder (specific language impairment) and developmental dyslexia 16, 17. 

Crucially, although a small number of genes – such as FOXP2 (e.g., 18, 19, 20) – have now been 

unambiguously linked to language-related disorders, these genes cannot by themselves explain the 

large majority of heritable variation, nor can they conceivably create or maintain the necessary brain 

circuits underlying language without interacting with a large number of other genes 21, 22.  

In addition, linguistic deficits are often found with heritable, neurodevelopmental disorders for 

which impaired language function is not necessarily diagnostic, including intellectual disability, 
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autism spectrum disorder (ASD), and schizophrenia 23, 24, 25, 26, 27, 28, 29, 30, 31, 32). Linguistic ability also 

correlates with intelligence in the general population 33. Thus, identifying the molecular mechanisms 

and genes associated with language will not only i) yield a better understanding of the biological 

pathways that lead to the emergence of language phylo- and onto-genetically, but also ii) help identify 

susceptibility factors for language impairments in neuropsychiatric conditions, which could lead to 

improved diagnostic and treatment strategies.  

To shed further light on the genetic and molecular architecture underpinning language circuits, 

here we synergistically combined task fMRI data, resting-state functional connectivity approaches, and 

gene transcription profiles in the human brain. Specifically, we targeted sentence-level processing as 

an essential, high-level linguistic function, which has been linked to a network of regions particularly 

in the left temporal and frontal cortices 34, 35, 36, 37, 38, 39, 40, as opposed to lower level language-related 

functions which can rely, for example, on primary auditory and motor areas. First, we defined the 

cortical regions for left hemispheric sentence processing based on task fMRI data, using three different 

sets of criteria and data to ensure robustness and generalizability across approaches. Then, we 

estimated the intrinsic functional connectivity networks among these regions, using rs-fMRI data from 

two independent datasets, and examined the correlations between these functional connectivity 

patterns and the corresponding inter-regional similarity patterns of gene expression. Next, we assessed 

the contributions of each individual gene to the observed correlations, and identified a consensus set of 

genes across all six analyses (i.e., three definition strategies for the sentence processing regions by two 

rs-fMRI datasets for estimating the functional connectivity). Finally, using several bioinformatics 

databases, we explored the biological roles, and expression specificity of these genes, and tested 

whether they showed an enrichment for association signals with ASD, schizophrenia or intelligence, 

using genome-wide association study (GWAS) data. We also analyzed three other functional networks 

by way of comparison to these language-related networks, which were the spatial navigation network, 

fronto-parietal multiple demand network, and default mode network.  

 

Results 

Fig. 1 shows a schematic of our approach for measuring the correlation between functional 

connectivity and gene expression profiles within a given network of brain regions. This analysis 

pipeline consisted of a) defining sets of cortical regions using task activation data (directly or via 

meta-analysis), b) estimating the resting-state functional connectivity and transcriptomic networks 

among these regions, and c) assessing the similarity between the functional connectivity and 

transcriptomic networks, along with subsequently d) estimating each gene’s individual contribution 

(see STAR Methods). The details of each dataset and procedure are described in STAR Methods.  
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Fig. 1. Schematic of the pipeline for computing the correlation between resting state functional connectivity and  

transcriptomic similarity, within a network of regions first defined according to task fMRI data. Regional time series 

from rs-fMRI were used to estimate functional connectivity between each pair of regions (in the upper matrix, red indicates 

stronger functional connectivity; blue indicates weaker functional connectivity). Regional gene expression profiles were 

applied to estimate inter-regional transcriptional similarity (in the lower matrix, red indicates higher similarity; yellow 

indicates lower similarity; lower panel). Resting-state functional connectivity patterns (orange axis in the right-hand panel) 

are correlated with patterns of transcriptional similarity (blue axis in the right-hand panel). 

 

Functional Networks 

Given the absence of a universally agreed upon protocol for localizing brain regions that support 

high-level language processing 34, we used three different definition strategies: i) Supramodal 

Sentence Areas (SmSA) based on the concordance of activation across three language fMRI tasks and 

leftward lateralization completed by 144 healthy right-handers  35, ii) Synthesized Sentence Areas 

(SSA) based on large-scale neuroimaging meta-analysis of fMRI studies 41, and iii) One-contrast 

Sentence Areas (OcSA) based on the probabilistic activation map of a single language-task fMRI 

contrast 42 (see Methods). The three resulting maps of sentence processing network showed 

considerable overlap, and were consistent with previous studies, especially as regards core language 

regions such as the temporal and frontal regions (Fig. 2; Supplemental Table S1) 34. Regions were 

defined according to the AICHA brain atlas, which is derived from rs-fMRI connectivity data, with 

each region showing homogeneity of functional temporal activity within itself 43.  
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Fig. 2. Functional and transcriptomic networks of the present study. First (left-side) column: the sets of cortical regions 

defined based on task fMRI data: top three (SmSA, SSA, and OcSA) correspond to the three different ways of defining the 

network for sentence processing, and bottom three correspond to the three other comparison networks. Second and fourth 

columns: the functional connectivity networks based on rs-fMRI from the BIL&GIN dataset and GEB dataset respectively. 

Third column: the transcriptomic networks based on the AHBA database. Within each matrix, the colors indicate the strength 

of pairwise inter-regional correlations (from 0 in blue, to 1 in red) or transcriptomic inter-regional similarity (from 0.9 in 

yellow to 1.0 in red). Correlation values among the right three columns are the Spearman correlations (rho) of each pair of 

matrices for a given network, based on the upper triangle part of each matrix. All correlations were significant (p <0.01). 

SmSA, Supramodal Sentence Areas; SSA, Synthesized Sentence Areas; OcSA, One-contrast Sentence Areas; SNN, Spatial 

Navigation Network; MDN, Multiple Demands Network; DMN, Default Mode Network. 
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To compare to language-related networks, we also analyzed three other functional cortical 

networks: the spatial navigation network (SNN), fronto-parietal multiple demand network (MDN), and 

default mode network (DMN). The sets of cortical regions defined for these networks (see Methods) 

appeared consistent with previous literature 44, 45, 46 and showed little overlap with the sentence 

processing networks defined above (Fig. 2). More information about the spatial distribution of each 

definition and their overlaps can be seen in Supplemental Table S1. 

Connectivity within a given functionally-defined set of regions was estimated based on inter-

regional synchronization of rs-fMRI time courses. The connectivity patterns based on two independent 

rs-fMRI datasets (BIL&GIN and GEB; see Methods) were highly reproducible for all functional 

networks (rho > 0.80; Fig. 2). Corresponding transcriptomic networks for each functionally defined set 

of regions were calculated based on post-mortem cortical gene expression data, and using pairwise 

similarities of regional gene expression profiles (Methods). These analyses were restricted to the top 5% 

of all genes (i.e., 867 genes) which showed the highest differential stability of their expression levels 

across donors, in cerebral cortical data from the Allen Brain Atlas 47. Within a given network, different 

pairs of regions varied in how similar they were in overall gene expression, although all regional 

pairwise correlations were high (greater than 0.9) (Fig. 2). 

Similarity between Functional and Transcriptomic Networks 

We used correlation analysis to test whether regions with more similar gene transcription profiles 

show stronger resting-state functional connectivity, within each specific functional network. As 

expected, based on data from the BIL&GIN dataset, we found significant correlations between 

functional connectivity and the corresponding transcriptomic networks for each sentence processing 

network definition (Fig. 2; SmSA: rho = 0.19, p = 0.0048; SSA: rho = 0.26, p < 0.0001; OcSA: rho = 

0.42, p = 0.00045). In addition, we obtained similar results for each of the comparison networks (Fig. 

2; SNN: rho = 0.24, p = 0.0020; MDN: rho = 0.39, p < 0.0001; and DMN: rho = 0.40, p = 0.00081). 

Using connectivity data from the independent rs-fMRI dataset GEB, highly similar results were found 

(Fig. 2; SmSA: rho = 0.19, p = 0.0054; SSA: rho = 0.24, p = 0.00018; OcSA: rho = 0.35, p = 0.0042; 

SNN: rho = 0.33, p < 0.0001; MDN: rho = 0.50, p < 0.0001; and DMN: rho = 0.60, p < 0.0001). We 

also found similar correlations when applying a more inclusive threshold for gene expression 

differential stability across donors (stability > 0.25, i.e. the top 10% genes in stability) (Supplemental 

Table S2). As a negative control, we also tested the bottom genes in differential stability across donors 

(i.e., bottom 5% or 10% of genes), and saw little evidence of significant gene-brain correlation 

(Supplemental Table S2), as expected. In addition, as spatial proximity may influence the estimation 

of both functional connectivity and transcriptomic networks (48, see also 49), we confirmed all 

correlations after controlling for the spatial distance (i.e., Euclidean distance) between centers of 

regions (all ps < 0.01) (Supplemental Table S3).  
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Gene Contribution Index (GCI) 

With a ‘leave-one-out’ procedure, we obtained ‘gene contribution index’ (GCI) scores for all 

individual genes, and for each functional network definition, which indicated the extent to which each 

gene affected the overall connectivity-transcriptome correlation for a given network (see Methods). To 

investigate the similarity of gene contribution patterns across different networks, we calculated the 

correlation between the GCI scores of each pair of networks. As expected, for the three different 

definitions of the sentence processing network, which involved largely overlapping sets of cortical 

regions, the GCI scores showed substantial correlations, which were also reproducible across the two 

independent rs-fMRI datasets (Fig. 3A; BIL&GIN: Mean r = 0.40, from 0.22 to 0.50, N = 3; GEB: 

Mean CGI r = 0.50, from 0.32 to 0.61, N = 3). However, the GCI scores showed low correlations 

across different functional networks (i.e., between each of the comparison networks with one another, 

and with any definition of the sentence processing network), which was again consistent across the 

two independent rs-fMRI datasets for measuring functional connectivity (Fig. 3A; BIL&GIN: Mean r 

= 0.058±0.047, N = 12; GEB: Mean r = 0.017±0.12, N = 12).  

 

 

Fig. 3. Contributions of individual genes to overall gene-brain associations. (A) Correlations between GCI scores derived 

for each functional network, based on the two independent datasets BIL&GIN (left) and GEB (right). The three definitions of 

the sentence processing network showed relatively high correlations of their GCI scores, while different functional networks 

showed low correlations of their GCI scores. (B) The consensus set of genes (N = 41) for the six analyses of the sentence 

processing network (i.e., three functional definition strategies by two rs-fMRI datasets). Red color indicates genes that have 

been linked to language-related phenotypes in previous studies (e.g., reading deficits, intellectual disability, and autism), and 

genes in bold indicate significant differential expression within the sentence processing network regions compared to other 

cortical regions (FDR corrected p < 0.05). SmSA, Multimodal Sentence Areas; SSA, Synthesized Sentence Areas; OcSA, 

One-contrast Sentence Areas; SNN, Spatial Navigation Network; MDN, Multiple Demand Network; DMN, Default Mode 

network.  
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In order to derive a set of genes related to the sentence processing network with highest 

consistency, we identified 41 “consensus genes” which had positive CGI scores in all six analyses of 

this network, i.e. the three definition strategies (SmSA, SSA, and OcSA), by the two independent rs-

fMRI datasets (BIL&GIN and GEB) (Fig. 3B). Several of these genes, including ROBO1, MET, 

PRRX1, CNTN6, and CTXN3, have been reported to affect language- or reading-related phenotypes 

such as dyslexia, and/or disorders that are often accompanied by linguistic impairments, i.e. 

intellectual disability, ASD, and schizophrenia (see Discussion). Further information on the consensus 

gene set is provided in Supplemental Table S4.  

Biological Roles of Consensus Genes Associated with the Sentence Processing Network 

Gene ontology analysis of the consensus set of 41 genes associated with the sentence processing 

network identified significant enrichment for terms mostly related to neural development, or likely to 

influence axon growth (Table 1). For example, five of the consensus gene set are members of the set 

‘axon guidance’ (p = 0.0029), i.e. ANK1, MET, ROBO1, TRPC6, and CNTN6. A set of 5 genes 

contributed to terms related to actin cytoskeleton organization (ps <0.05), which also plays a role in 

regulating the extension and direction of axon growth (Coles and Bradke, 2015). Another significant 

enrichment was for the set ‘neuron projection development’ (p = 0.012), and there were 6 genes that 

drove the enrichment results, which were SERPINF1, PRRX1, ROBO1, TRPC6, SPON2, and GPRIN1 

(Table 1). To examine expression of these genes across human brain development, we used data from 

the Allen Institute’s BrainSpan project, which includes human brain tissues from embryonic stages to 

adulthood, measured using RNA-sequencing (Miller et al., 2014). Each of these genes has detectable 

expression in the frontal and temporal regions during fetal development and in early childhood (Fig. 4). 

Some of the genes increase in expression through development all the way to adulthood, such as MET, 

SERPINF1 and PRRX1. Others decrease such as ROBO1, GPRIN1 and TRPC6, while still remaining 

expressed through to adulthood. 
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Table 1. Gene  ontology terms for which the consensus set associated with the sentence processing 

network shows enrichment. BP, biological process; REAC, biological pathways based on Reactome.  

 

 

 

Fig. 4. Gene expression in human frontal and temporal cortices, from embryo (8 week post conception) to adulthood 

(40 years), from the BrainSpan atlas. Genes are listed in the legend in order of their averaged expression across all samples. 

The y axis uses a log10 scale to visualize change over time for each gene. The samples were dissected according to the 

BrainSpan Technical White Paper (http://www.brainspan.org/).   

 

We found that 14 genes of the 41 consensus gene set showed differential expression when 

contrasting regions defined as belonging to the sentence processing network against those in the 

comparison networks  (see Methods; uncorrected p < 0.05), among which 6 genes survived correction 

for multiple comparisons (FDR corrected p < 0.05): C12orf23, FAM65B, LY6H, MGP, SERPINF1, 

and SPON2, all with higher expression in the regions assigned to the sentence processing network. 

Notably, three of the six genes that were related to “neural projection development” in gene ontology 

analysis showed significantly higher expression within the sentence-processing regions, which were 

SERPINF1, SPON2, and GPRIN1 (ps < 0.05; e.g. SERPINF1t(46) = 3.85, p = 0.00036; 95% 

Term names Corrected p # of term genes Overlap Intersecting genes 

BP: neuron projection 
development 

0.0118 902 6 SERPINF1, PRRX1, ROBO1, TRPC6, SPON2, 
GPRIN1 

BP: actin filament-
based process 

0.0455 705 5 MET, ZYX, ARHGAP25, VILL, IGSF22 

BP: actin cytoskeleton 
organization 

0.0228 609 5 MET, ZYX, ARHGAP25, VILL, IGSF22 

BP: supramolecular 
fiber organization 

0.0196 590 5 MET, ZYX, ARHGAP25, VILL, IGSF22 

BP: actin filament 
organization 

0.00183 360 5 MET, ZYX, ARHGAP25, VILL, IGSF22 

REAC: Axon guidance 0.00293 527 5 ANK1, MET, ROBO1, TRPC6, CNTN6 
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confidence interval of the difference: 0.24 to 0.76), while none showed lower expression in the 

sentence processing regions (ps >0.05). More information can be found in Supplemental Table S5.  

Of the 41 consensus genes associated with the sentence processing network, data on 33 were 

available from a single-cell RNA-sequencing study of adult mouse cerebral cortex (Zhang et al. 2014). 

Among these 33 genes, a majority (i.e., 25) showed expression in one cell type that was at least 1.5 

times higher than all other cell types, although not predominantly in neurons versus other cell types 

(Supplemental Table S6). For example, MET and CTXN3 showed 3.57- and 1.53-fold expression in 

neurons compared to the maximum expression in other cell types, respectively. Data on seven of the 

41 genes were available in another single-cell gene expression database 50, and two of these showed 

enrichment in interneurons: ANK1 and SHD. Thus, among the five genes driving the significant 

enrichment result for the term ‘axon guidance’, ANK1, MET, ROBO1, and TRPC6 had their highest 

levels in neurons. In addition, among the six genes driving the gene ontology enrichment results 

related to neural projection development, four showed their highest expressions in neurons, including 

ROBO1, TRPC6, SPON2, and GPRIN1.  

Association with ASD, schizophrenia and intelligence 

We were interested to test whether genes involved in the cortical language network also contain 

polymorphisms in the population which affect human cognitive or behavioural variation, or 

susceptibility to neuropsychiatric disorders. This analysis requires genome-wide association scan 

(GWAS) results from large-scale studies. No studies comprising more than 10,000 subjects have yet 

been published for reading/language measures in the general population, nor for disorders such as 

dyslexia or language impairment which involve language-related deficits. We analyzed ASD and 

schizophrenia, as these disorders can involve linguistic deficits, as well as intelligence in the general 

population, which correlates with linguistic abilities (see Introduction). Using GWAS summary 

statistics for ASD based on up to 7387 cases and 8567 controls 51, we found that the 41 consensus 

genes associated with the sentence processing network were significantly enriched for single 

nucleotide polymorphisms (SNPs) showing association with ASD (beta = 0.32, p = 0.0080). No such 

signal in relation to ASD was seen for the top genes (N = 41) with highest CGI scores for each of the 

comparison networks (SNN: p = 0.45; MDN: p = 0.65; DMN: p = 0.074). No significant enrichment 

was found for any functional network in relation to schizophrenia (GWAS based on up to 36,989 cases 

and 113,075 controls; 32) (ps >0.50). For intelligence (GWAS based on 78,308 individuals; 52), there 

was a significant enrichment for the top genes associated with the MDN (beta = 0.30, p = 0.035), with 

no other enrichment found (ps >0.30).  

 

Discussion 
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In this study, we combined gene transcription profiles in the human brain with task and resting-

state fMRI data, and investigated the gene expression correlates of high-level linguistic network. 

Specifically, with six analyses based on complementary strategies and independent datasets, we 

revealed a significant correlation between the pattern of functional connectivity within the sentence 

processing network and the corresponding pattern of inter-regional gene expression similarity. To our 

knowledge, this is the first evidence for a link between gene transcription profiles and language 

networks. While some previous studies have suggested that transcription profiles are linked to patterns 

of structural and functional connectivity across the brain 4, 5, 10, this relationship could be driven by 

broad differences in gene expression between sensory and higher-order association cortices. Here, we 

focus on one core human cognitive ability – language – and examine a fine-grained pattern of brain-

gene relationships within specific networks that support sentence processing. Across three definitions 

of sentence processing regions and using two independent resting-state fMRI datasets, we established 

and characterized a relationship with gene expression: pairs of language-sensitive brain regions that 

show synchronization during rest also show more similar profiles of gene expression. The underlying 

basis of this association is unknown. One possibility is that functionally linked cortical regions are 

more likely to share specific aspects of neuronal physiology and developmental trajectory, which 

support their temporally synchronized activity.  

We identified a consensus set of genes most consistently linked to the transcriptome-connectivity 

correlation within the sentence processing network, and thereby gained new insights into the 

molecular bases of our language-ready brain. This gene set was enriched for functions including axon 

guidance and actin cytoskeleton organization, and the genes driving this enrichment included MET, 

ROBO1, ANK1, and TRPC6, which showed their highest expression levels in neurons in single-cell 

gene expression data from mouse cerebral cortex. The consensus genes associated with language-

related networks were also enriched for neuron projection development. Each of the six genes driving 

this enrichment, i.e. SERPINF1, PRRX1, ROBO1, TRPC6, SPON2, and GPRIN1, has detectable 

expression in frontal and temporal regions during fetal development and early childhood, and might 

play important roles during language network development. The fact that these genes, known for their 

neurodevelopmental roles, are expressed in adult cerebral cortex in a manner linked to functional 

connectivity within language networks, also suggests that they have continuing roles in maintaining 

adult cortical circuitry for its regionally-specialized roles. Further support for the particular importance 

of these genes for the sentence processing network came from the fact that most of them showed 

higher gene expression in language-related regions than elsewhere in the cortex, and none showed 

significantly lower expression in the language-related regions. 

Several of the consensus genes associated with the sentence processing network have previously 

been reported to contain common polymorphisms or rare mutations which impact on language- and 

reading-related phenotypes, or else disorders which can be accompanied by reduced linguistic abilities 
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such as intellectual disability, ASD or schizophrenia. ROBO1 has well established roles in brain 

development 53, 54, and has been implicated in dyslexia as well as phonological short term memory 54, 55, 

while its homologue ROBO2 has been linked with expressive vocabulary during early language 

acquisition 53. Mutations in MET are a risk factor for ASD 56, 57, 58, 59, and MET is also regulated by the 

transcription factor FOXP2 56, which causes developmental verbal dyspraxia when mutated 18. PRRX1 

is associated with intellectual disability and delayed language acquisition 60. Mutations of CNTN6 

have been reported in patients with speech and language delays, intellectual disability, and atypical 

ASD 61. CTXN3 has been linked to schizophrenia 62, 63. These observations suggest that our consensus 

gene set linked to the sentence processing network might provide additional candidates for future 

studies of language-related individual differences, and neurodevelopmental disorders.  

No GWAS studies comprising more than 10,000 subjects have yet been published for 

reading/language measures in the general population, nor for disorders such as dyslexia or language 

impairment which involve language-related deficits. However, through analysis of large-scale GWAS 

summary statistics for ASD, a disorder that can also involve linguistic deficits 23, 24, we found that the 

consensus gene set associated with connectivity in the sentence processing network is enriched for 

common SNPs that contribute to the polygenic liability to ASD in the population. It is therefore 

possible that variants in these genes associate with ASD due, at least in part, to dysfunction of high-

level language networks. Note that, while language-related deficits may no longer be considered core 

to ASD in the latest edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM 5) 64, 

the earlier DSM-IV criteria were used for the large-scale GWAS whose results we used in the present 

study 51, in which language delays were considered an important aspect of the disorder 65. No such 

enrichment signal for ASD was observed for gene sets associated with the other functional networks 

that we analyzed by way of comparison, i.e., spatial navigation, multiple demand, and default mode 

networks. Interestingly, a recent large-scale brain imaging analysis of ASD found that cortical 

thinning was present in many of the regions included in our definitions of the sentence-processing 

network 66. For schizophrenia and intelligence we found no enrichment of association signals within 

the consensus gene set associated with the sentence processing network. This pattern may relate to 

severity, as language deficits in schizophrenia patients have been reported to be less severe than in 

ASD patients (again based on earlier diagnostic criteria) 67, 68. Alternatively the genetic underpinnings 

of high-level language processing may be of little relevance to schizophrenia, or intelligence in the 

general population. However, statistical power to detect these relations may also be an issue. 

There is at present no consensus in the field on what should constitute the precise high-level 

language network and how best to define it 34, 35. To circumvent this problem, we used three 

complementary approaches for defining brain regions important for sentence-level processing: one 

based on a conjunction of three task contrasts and functional laterality (SmSA; 35), one based on a 

large-scale meta-analysis of prior neuroimaging studies (SSA; 41), and one based on a single task 
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contrast (OcSA; 42). Reassuringly, the three approaches yielded similar definitions of high-level 

language networks, especially with respect to areas in the inferior frontal and middle temporal gyri. 

Likely because of the overlap between the three network definitions, their transcriptomic correlates 

were also similar, as well as the contributions of individual genes. This overall concordance supports 

the validity of the different definitions, allowing us to define a consensus set of genes that emerged 

consistently across all definitions and both of the rs-fMRI datasets, and is thus not dependent solely on 

any individual approach for defining the functional network. The set of regions for sentence 

processing defined here could be used in future studies of vast datasets, such as the UK Biobank 69 or 

ENIGMA Consortium 70, which include neuroanatomical and/or intrinsic connectivity data but limited 

task fMRI data for language functions. For instance, the functional regions defined here can be used to 

investigate structural/functional variability during maturation, aging, and/or pathological processes in 

the general population, including those associated with developmental language disorders.  

For the comparison networks included in this study, i.e. the spatial navigation, multiple demand, 

and default mode networks, we also found similar overall correlations between the functional 

connectivity networks and the corresponding transcriptomic networks, although with largely different 

individual genes contributing. For example, MET showed a relatively high contribution to the 

connectivity-transcriptomic association for the sentence processing network, but its contribution to 

other functional networks was negligible. Therefore, although the existence of connectivity-

transcriptome correlations appears to be ubiquitous across functional networks, our study yields the 

important basic insight that different functional networks can involve differently weighted genetic 

contributions at the level of cortical gene expression. This is broadly consistent with genetic 

correlations between different cognitive abilities such as verbal and non-verbal performance, as 

assessed in population genetic analysis, which often indicate shared but also independent genetic 

effects on such pairs of traits 71. Our study therefore suggests a novel approach to complement existing 

genetic epidemiological approaches, for understanding the general versus specific influences on 

diverse cognitive abilities. Note that, in the present study, in order to achieve comparable statistical 

power in the network similarity analysis across different networks, we purposely defined similar 

numbers of top regions for each comparison network, even though this meant using different 

thresholds for including regions in each comparison network. Further studies may investigate how 

using more or less inclusive definitions of these functional networks affect relationships with gene 

expression.  

The present study focused on only a subset of genes with relatively high stability across a small 

number of donors in the Allen Brain database. Post-mortem brain tissues suitable for transcriptomic 

analysis are difficult to collect from individuals who were healthy immediately prior to death, which is 

necessary since RNA degrades within hours after death. Thus the availability of high-quality gene 

expression data from the human brain is necessarily limited. Most of the Allen brain data, and all the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 11, 2018. ; https://doi.org/10.1101/439984doi: bioRxiv preprint 

https://doi.org/10.1101/439984
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

data used for the present study, are based on the older and relatively noisy transcriptomic technology 

of microarrays, rather than the more accurate, latest method of RNA sequencing. Some genes known 

to be involved in language, such as FOXP2 18, had to be excluded from our analyses because of the 

inclusion criterion of stability across donors. FOXP2 showed low inter-donor differential stability of 

0.22 across cerebral cortex samples, especially low across frontal samples (-0.07) and across temporal 

samples (0.16) in the Allen brain data 47. Thus, it is likely that data of sufficient quality were not 

available for other genes too, that might have been of relevance to language networks, such that future 

studies using RNA sequencing in larger numbers of individuals, and with more sampling per cortical 

region, would be well motivated. In addition, inter-individual variabilities have been observed in the 

precise locations of language-sensitive regions 42, 72 as well as the cytoarchitectonic features of higher 

level cognitive areas (e.g., BA 44 and 45)  73. Gene expression data from a larger number of 

individuals, ideally when both anatomical and functional data from the same individuals are available, 

would help to improve upon this aspect.   

A further limitation of our study is the use of transcriptomic data from blocks of cerebral cortical 

tissues, which comprised many cell types. Future databases based on single-cell transcriptomics would 

likely provide further insights. Although efforts to produce such data are underway for a limited 

number of human cerebral cortical regions, no database currently exists which has broad mapping over 

the cerebral cortex. It will be a major undertaking in the future for the human brain science community 

to achieve a widespread cerebral cortical gene expression map at single cell resolution. For the time 

being, we queried our consensus genes associated with the language-related network using single cell 

transcriptomic data from the adult mouse cortex, which gave information about whether specific genes 

are relatively more highly expressed in neurons versus some major classes of glial cells in the mouse. 

However, even if a gene of interest were expressed at comparable or higher levels in glia than neurons, 

it might still influence neuronal physiology and circuit properties, either directly through its expression 

in neurons, or indirectly via the interactions of surrounding glial cells with neurons. 

In sum, we provide a first description of the overall transcriptomic correlates of brain networks 

underlying high-level linguistic processing, as well as identifying a set of individual genes likely to be 

most important. These findings help elucidate the molecular basis of language networks, as distinct 

from functional networks important for other aspects of cognition. A link of this genetic infrastructure 

to ASD is also suggested by our data. Finally, we propose functional connectivity and gene expression 

analysis as a complementary approach to existing genetic epidemiological and genetic association 

approaches, for understanding complex cognitive traits. 
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Methods 

Fig. 1 shows a schematic of our approach for measuring the correlation between functional 

connectivity and gene expression profiles within a given network of brain regions. This analysis 

pipeline consisted of a) defining sets of cortical regions using task activation data (directly or via 

meta-analysis), b) estimating the resting-state functional connectivity and transcriptomic networks 

among these regions, and c) assessing the similarity between the functional connectivity and 

transcriptomic networks, along with subsequently d) estimating each gene’s individual contribution 

(see below). The details of each dataset and procedure are described below.  

 

Datasets 

fMRI dataset acquisitions were approved by the Institutional Review Board of each site. Written 

informed consent was obtained when necessary from all participants, before they took part.  

BIL&GIN. This dataset included 144 healthy right-handed adults (aged 27±6 years; 72 females) 

drawn from the larger BIL&GIN database which is roughly balanced for handedness 74. Each 

participant completed three slow-event fMRI runs (gradient echo planar imaging, TR = 2.0 s, 

acquisition voxel size = 3.75 × 3.75 × 3.75 mm3; 3T Philips Intera Achieva scanner) in which they 

were asked to complete 3 different sentence tasks including covertly producing, listening to, or reading 

sentences and familiar word lists as reference. Of these participants, 137 also completed rs-fMRI scans 

using the same imaging sequence as that used for the tasks, which lasted 8 minutes (240 volumes). 

Immediately prior to rs-fMRI scanning, the participants were instructed to “keep their eyes closed, to 

relax, to refrain from moving, to stay awake and to let their thoughts come and go”. Note that the latter 

scanning session took place around 1 year before the task fMRI scans. For more details see further 

below, and 35.   

NeuroSynth. Neurosynth (http://neurosynth.org) is a platform for large-scale synthesis of task 

fMRI data 41. It uses text-mining techniques to detect frequently used terms as proxies for concepts of 

interest in the neuroimaging literature: terms that occur at a high frequency in a given study are 

associated with all activation coordinates in that publication, allowing for automated term-based meta-

analysis. Despite the automaticity and potentially high noise resulting from the large-scale meta-

analysis, this approach has been shown to be robust and meaningful (e.g., 9, 41, 44, 75), due to the high 

number of studies included. We used database version 0.6 (current as of July 2018) which included 

413,429 activation peaks reported in 11,406 studies (see below for the search terms employed).  

EvLabN60. This dataset included statistical maps of the task fMRI contrast for passively reading 

sentences versus non-words from 60 participants (aged from 19 to 45; 41 females; all right-handed). 

This fMRI task (TR = 2.0 s, acquisition voxel size 2.1 × 2.1 × 4.0 mm3; 3 T Siemens Trio scanner) 
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was designed to localize the sentence processing network (for details, see Fedorenko et al., 2010). The 

sentences > non-words contrast has been previously shown to reliably activate language-sensitive 

regions and to be robust to the materials, task, and modality of presentation 40, 42, 76, 77. In addition, the 

EvLabN60 dataset was used to define two other networks used as comparisons to sentence processing 

networks (below). A spatial working memory task was designed to localize the fronto-parietal multiple 

demand system (i.e., contrast Hard versus Easy) 78, 79 and the default mode network (i.e., contrast Easy 

versus Hard) 80, 81, 82. Participants were instructed to keep track of four (Easy condition) or eight (Hard 

condition) sequentially presented locations in a 3×4 grid. In both conditions, participants performed a 

two-alternative forced-choice task at the end of each trial to indicate the set of locations they just saw. 

For more details, see Fedorenko et al., 2011.  

GEB. GEB (http://www.brainactivityatlas.org), which is an abbreviation for “Gene-Environment-

Brain-Behavior”, provided an independent rs-fMRI dataset for the present study. GEB is an on-going 

project that focuses on linking individual differences in human brain and behaviors, to environmental 

and genetic factors 9, 83, 84, 85. Rs-fMRI data from forty college students (20 females; aged = 20.3 ± 0.91 

years) were included in this study. The resting-state scan lasted 8 min and consisted of 240 contiguous 

echo-planar-imaging (EPI) volumes (TR = 2.0 s; acquisition voxel size = 3.125 × 3.125 × 3.6 mm3; 3 

T Siemens Trio scanner). During the scan, participants were instructed to relax and remain still, with 

their eyes closed. The dataset has high quality in terms of minimal head motion and registration errors, 

and has been used in several previous studies (e.g., 44, 84).  

AHBA. AHBA (Allen Human Brain Atlas; http://www.brain-map.org) is a publicly available 

online resource for gene expression data. The atlas characterizes gene expression in postmortem 

human brain with genome-wide microarray-based data including over 20,000 genes for ~500 sampling 

sites distributed over the whole brain. See 86 for more details about the data collection. Normalized 

microarray data were used in the present study. To date (search conducted on Mar. 30, 2017), six adult 

donors with no history of neuropsychiatric or neurological conditions were available in the database 

(age 24, 31, 34, 49, 55, and 57 years; 1 female). Left hemisphere cerebral cortical data are available 

for all six donors whereas right-hemisphere data are available for only two of them. Detailed 

information on donors and analysis methods is available at www.brain-map.org. Structural brain 

imaging data of each donor were used to align sampling sites into standard coordinate space. We also 

used data from the Allen Institute’s BrainSpan project (http://www.brainspan.org/), which includes 

human brain tissues from age 8 weeks post conception to 40 years, sampling an average 13 regions 

(range, 1-17) from one to three brains per time point, and measured using RNA-sequencing 87. We 

used these latter data for examining the expression of specific genes of interest across human brain 

development. 
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Single cell RNA-sequencing data for mouse cerebral cortex. Cell-type-specific expression 

levels, as indexed as fragments per kilobase of transcript, per million fragments sequenced (FPKM), 

were obtained to investigate the preferential expression pattern of genes of interest 88 

(http://www.stanford.edu/group/barres_lab/brain_rnaseq.html). In addition, we employed a more 

recently available single-cell gene expression database 50 to investigate cell-type specificity. 

GWAS results for ASD, Schizophrenia and intelligence. We downloaded summary statistics 

from the Psychiatric Genomics Consortium (http://www.med.unc.edu/pgc) for ASD with up to 7387 

cases and 8567 controls (ASD GWAS 2017) 51, and schizophrenia with up to 36,989 cases and 

113,075 controls (PGC-SCZ2) 32. We also downloaded GWAS association results for intelligence, 

based on 78,308 individuals from the UK Biobank, CHIC consortium, and five additional cohorts 

(https://ctg.cncr.nl/software/summary_statistics) 52.  

 

Defining Cortical Regions for Sentence Processing 

We employed three strategies and data sources for defining the cortical sentence processing 

network. To refer to the regions defined under each of these three approaches, we will use the terms 

Supramodal Sentence Areas (SmSA), Synthesized Sentence Areas (SSA), and One-contrast Sentence 

Areas (OcSA). Given left-hemisphere dominance of language network (see Introduction) and limited 

post mortem gene expression data for the right hemisphere (see above), we focused on the left 

hemisphere in the present study.  

SmSA. We applied the definition of left-hemispheric high-order and supramodal sentence areas 

provided by The FALCON atlas 35. This atlas of language integrative and supramodal areas, involving 

142 healthy rigth-handers, is based on the conjunction of activation across sentence production, 

listening and reading, as contrasted with activation for lists of overlearned words (again presented as 

either production, listening or reading tasks) in the same participants. Then, a second criterion was 

applied whereby leftward activation asymmetry was required during the 3 sentence minus words 

contrasts. See Labache et al. (2018) for a full description of this definition approach. Task fMRI data 

were used from the BIL&GIN dataset (see above) for this purpose. In order to obtain accurate 

measures of functional asymmetry, this work is based on the use of the AICHA atlas, including left-

right homotopic regions of interest based on resting-state functional connectivity data 43. In the 179 

left-right pairs of homotopic regions of the AICHA atlas, fMRI signal variation and asymmetry were 

calculated for each task contrast and each participant. Regions with both significant activation and 

leftward asymmetry across the three sentence-level versus word-list task contrasts were identified. A 

significance threshold of Bonferroni-corrected p < 0.05 was applied. Thirty-two left-hemisphere 

regions were obtained, including 25 cortical and 7 subcortical regions 35.   
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SSA were defined based on a large-scale neuroimaging meta-analysis of fMRI studies using 

Neurosynth (see above). A combination of terms related to sentence processing were used, including 

“sentence comprehension”, “sentence”, and “sentences” (411 studies). The resulting meta-analysis 

map (i.e., the likelihood map that shows there would be activation in some specific brain regions given 

the presence of particular terms) was used in this study to cover regions that are relevant to the 

network of interest. To control the false positive rate in the statistical map, a false discovery rate (FDR) 

threshold was used of 0.01 on a whole brain basis. As for SmSA, the AICHA atlas was used to define 

the areas for functional network construction. Specifically, if a region from the AICHA atlas had more 

than half (50%) of its voxels showing significant specificity based on the thresholded mask from the 

meta-analysis (FDR-corrected p <0.01), we included that region as one of the SSA.   

OcSA were defined based on the probabilistic activation map of a single fMRI contrast from the 

EvLabN60 dataset (see above). The passively reading task has been previously shown to reliably 

activate language-sensitive regions and to be robust to the materials, task, and modality of presentation 

40, 42, 76, 77. The map was created by overlapping the statistical maps from all participants for the 

contrast of sentences versus non-words (t >2.3) onto the MNI152 template, and then dividing by the 

total number of participants (e.g., 83). The value for each voxel in the obtained map indicated the 

probability of the voxel showing a significant contrast activation across the population. A probability 

threshold of 50% was applied to identify voxels showing consistent activation (t > 2.3) across subjects, 

and regions from the AICHA atlas with more than half of the voxels activated were included as OcSA.  

Exclusion of regions: We excluded one region which was relatively small (less than 150 voxels; 

i.e., G_Cingulum_Post-3) and had limited gene expression data in the AHBA (fewer than 2 sampling 

sites), as well as subcortical areas which are known to have very different gene expression profiles to 

cerebral cortex and would swamp the analysis (e.g., Hippocampus), a region that had resting-state data 

missing in the GEB dataset (i.e., G_Paracentral_Lobule-4), and two deep regions where the gene 

expression data was found to diverge substantially from most cerebral cortical regions (i.e., 

G_ParaHippocampal-1 and G_Insula-anterior-1) (Supplemental Fig. S1). This resulted in 21 SmSA, 

22 SSA, and 12 OcSA. The same criteria were also applied for defining the comparison systems below 

(Supplemental Table S1).  

Comparison networks. The NeuroSynth term ‘navigation’ was used to localize cortical regions 

involved in spatial navigation (64 studies; search conducted on Nov. 3, 2016). A FDR threshold of 

0.01 was used to control the false positive rate. Moreover, the default mode network and the fronto-

parietal multiple demand networks were defined using the EvLabN60 dataset (see above), with the 

probabilistic activation maps of fMRI contrast Easy versus Hard, and Hard versus Easy, respectively, 

based on the spatial working memory task. Again, a probability threshold of 50% was applied to 

identify voxels showing consistent activation (t > 2.3) across subjects. Next, the AICHA atlas was 
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used to identify regions for each functional network. Our purpose was to define a similar number of 

top regions for each comparison network, to support similarly-powered analyses of all networks in the 

downstream analyses. In order to obtain comparable numbers of top regions for each network, 

different thresholds of overlap were applied for each network. Specifically, we found that a threshold 

of 1/4 defined 19 top regions of the spatial navigation network (SNN) (see below), a threshold of 1/2 

defined 12 top regions of the multiple demand network (MDN), and a threshold of 3/4 defined 17 top 

regions of the default mode network (DMN).  

 

Construction of the Functional Connectivity Networks  

Two independent rs-fMRI datasets, i.e. BIL&GIN and GEB (above), were used for functional 

connectivity network construction among the sets of regions defined based on task fMRI activation.  

Functional connectivity in the BIL&GIN dataset. The preprocessing of the BIL&GIN dataset 

was done by the Bordeaux group (MJ). Preprocessing procedures included head motion correction, 

registration onto the anatomical T1 image, the latter being stereotaxic registered on the MNI152 

standard space. Additionally, time series for white matter and cerebrospinal fluid, the six head motion 

parameters, and the temporal linear trend were removed from the stereotaxic normalized rs-fMRI data 

using regression analysis and time series data were temporally filtered using a least squares linear-

phase finite impulse response (FIR) filter design bandpass (0.01-0.1 Hz). For each participant and each 

region, a time series was then calculated by averaging the rs-fMRI time series of all voxels located 

within that region. For each individual, we computed the Pearson’s correlation coefficient between the 

time series of each pair of cortical regions from a given task-defined set of regions. Correlation 

coefficients were transformed to Gaussian-distributed z scores via Fisher’s transformation. For each of 

the 6 networks (3 sentence processing and 3 other functional networks), the functional connectivity 

matrix was computed by averaging data from each individual. For a full description of the processing 

see 89.  

Functional connectivity in the GEB dataset. The preprocessing of the GEB dataset was done by 

the Beijing group (JL). Preprocessing procedures included head motion correction, spatial smoothing, 

intensity normalization, and removal of linear trend, using the FEAT preprocessing workflow 

implemented with Nipype 90. A temporal band-pass filter (0.01-0.1 Hz) was applied to reduce low 

frequency drifts and high-frequency noise. To eliminate physiological noise, such as fluctuations 

caused by motion or cardiac and respiratory cycles, nuisance signals were regressed out. Nuisance 

regressors were averaged cerebrospinal fluid signal, averaged white matter signal, global signal 

averaged across the whole brain, six head realignment parameters obtained by rigid-body head motion 

correction, and the derivatives of each of these signals. The 4-D residual time series obtained after 

removing the nuisance covariates were registered to MNI152 standard space. After preprocessing, a 
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continuous time course for each region of a given task-based functional network was extracted by 

averaging the time courses of all voxels within that region. Temporal correlation coefficients between 

the extracted time course from a given regions and those from other regions were calculated to 

determine the strength of the connections between each pair of regions of a given functional network 

at rest. Correlation coefficients were transformed to Gaussian-distributed z scores via Fisher’s 

transformation to improve normality, resulting in a symmetric Z value matrix (i.e., functional 

connectivity) for each task-defined system of each participant. Due to the ambiguous biological 

explanation of negative correlations 91, we restricted our analyses to positive edges and set negative 

edges to 0. We have applied the same processing procedure in several previous studies (e.g., 44, 84). 

After resting-state functional connectivity networks were obtained corresponding to each task-defined 

set of regions, a mean functional connectivity network for each set of regions was calculated by 

averaging across participants, which was then used for subsequent analyses. 

 

Construction of the Transcriptomic Networks  

Transcriptomic networks were constructed based on gene expression profiles in the human brain 

from the AHBA (above). Specifically, we first extracted the normalized expression scores for each 

gene, from each sampling site and each donor. For genes with multiple microarray probes in the 

AHBA data, average values were calculated per gene at each sampling site and in each donor. Given 

that AICHA atlas regions are defined in the standard MNI space, the location of each sampling site 

was then translated into the standard space using the alleninfo (https://github.com/chrisfilo/alleninf). 

Gene expression data from within a given region were then averaged per gene and across donors, to 

obtain a single expression measure of each gene per region. We restricted our analyses to cerebral 

cortical regions with at least two sampling sites summed across all donors. We also restricted our 

analyses to the top 5% of all genes based on differential stability across donors as assessed over the 

entire cerebral cortex, i.e. a set of 867 genes that had differential stability greater than 0.357, as 

previously calculated 47. We also repeated our analysis using a lower stability threshold (i.e., top 10%, 

stability larger than 0.25; N = 1735 genes), in order to assess the robustness of our findings with 

respect to this threshold. As a negative control, we additionally repeated the analyses using the lowest 

5% and lowest 10% of genes as regards differential stability across donors, with which we would 

expect null results.  

Our processing of the genetic data produced a vector of gene expression values across regions. 

Transcriptional Similarity (TS) between pairs of regions was then estimated by Spearman correlation, 

as a measure of ‘transcriptomic connectivity’.  
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Similarity between the Functional and Transcriptomic Networks 

Network similarity analysis. To examine the similarity between functional connectivity networks 

and transcriptomic networks, correlation analyses were performed. Specifically, a vector was extracted 

from the upper triangle of the connectivity matrix of each network, and Spearman correlation was then 

calculated between the vectors of the functional connectivity networks and their corresponding 

transcriptomic networks. To rule out potential influence of spatial proximity, we also calculated the 

correlations between residuals of the two measures after controlling for the spatial distance between 

centers of regions (i.e., the Euclidean distance of MNI coordinates, available within the AICHA atlas 

43) using a regression approach. 

Gene contribution index (GCI). In addition to the overall correlations between functional 

connectivity and corresponding transcriptomic networks, we formulated a novel index, the gene 

contribution index (GCI), for estimating the contribution of each individual gene to an observed 

overall correlation. GCI was defined as the difference in the overall correlation before and after 

removing that gene at the step of transcriptomic network construction, i.e. based on a ‘leave-one-out’ 

approach.  

Identification of ‘consensus genes’ correlated with the sentence processing network. We 

identified a set of ‘consensus genes’ (N = 41) which had positive CGI scores in all six analyses of the 

sentence processing network, i.e. the three definition strategies SmSA, SSA, and OcSA, by the two 

independent rs-fMRI datasets BIL&GIN and GEB. For each of the three independent comparison 

networks (spatial navigation, fronto-parietal multiple demand, and default mode networks) we also 

identified the same number of top genes (i.e., 41) showing the highest GCIs, based on the averaged 

score of each gene in the two analyses relevant to each of those networks, i.e., with the two rs-fMRI 

datasets. 

 

Follow-up Analyses of the Consensus Genes  

We further investigated the consensus genes correlated with the sentence processing network by 

use of literature searches and bioinformatics tools: 

Gene ontology. The gene ontology provides a classification scheme for genes based on what is 

known with respect to their molecular functions, the biological processes that they are involved in, or 

cellular components that they encode (http://www.geneontology.org/). Gene ontology analyses were 

performed with the Bioconductor package gProfileR (https://biit.cs.ut.ee/gprofiler/), using ontologies 

from Ensembl release 91. Gene sets containing between 25-1000 genes were included. All known 

genes were used for determining the statistical domain size in the analysis. The default g:SCS method 

in the tool was used for multiple testing correction (corrected p < 0.05).  
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Expression across brain development. We queried the Allen Institute’s BrainSpan project data 

(see Datasets above) for the consensus genes, in relation to their developmental changes in expression. 

Gene expression specificity. For the 41 consensus genes correlated with the sentence processing 

network, we contrasted their expression levels between those cortical regions that were assigned to the 

sentence processing network under any definition (i.e. all SmSA, SSA and OcSA) (N = 31), versus all 

regions outside the system that were included among the SNN, MDN or DMN (N = 34). More 

information about the lists of regions can be found in Supplemental Table S1. The independent 

samples t-test (equal variances not assumed) was used to contrast expression levels. Since multiple 

comparisons were performed across 41 genes, a significance threshold of FDR-corrected p value of 

0.05 was applied (Benjamini-Hochberg FDR).  

In terms of cell-type specificity, the expression levels of each of the 41 consensus genes correlated 

with the sentence processing network, were queried in a published dataset based on mouse cortical 

data as indexed as reads per kilobase of exon per million reads mapped (FPKM) 88. We also queried 

another single-cell gene expression database 50 to investigate the cell-type specificity of genes. 

 

Enrichment Analysis using GWAS Summary Statistics for ASD, Schizophrenia and Intelligence  

We tested the hypothesis that the consensus set of sentence processing network genes was 

enriched for association signals with ASD, schizophrenia or intelligence. (There were no GWAS 

results based on more than 10,000 subjects yet available for reading/language measures in the general 

population, or disorders such as dyslexia or language impairment which involve linguistic deficits.) 

Specifically, we ran gene set analyses using the MAGMA software (Version 1.06; 

http://ctg.cncr.nl/software/magma) 92. MAGMA was run with default settings and no gene extension 

window. Briefly, gene-based association scores were derived using the SNP-wise mean model, which 

considers the sum of -log(p-values) as derived from GWAS analysis, for single nucleotide 

polymorphisms (SNPs) located within the transcribed region of a given gene (using NCBI 37.3 gene 

locations). MAGMA accounts for gene-size, number of SNPs in a gene, and linkage disequilibrium 

(LD) between SNPs when estimating gene-based association scores. LD between SNPS was based on 

the 1000Genomes phase 3 European ancestry samples 93. In this analysis, the score for a given gene 

therefore indicates how strongly genetic variation within, or in linkage disequilibrium with, that gene 

is associated with the trait of interest (i.e., ASD, schizophrenia, or intelligence). These GWAS-based 

gene scores were subsequently used to compute gene set enrichment within the 41 consensus genes 

associated with the sentence processing network. The enrichment analysis tests whether the genes in a 

given set have, on average, higher GWAS-based gene scores than the other genes in the genome. No 

cutoff was made on the GWAS-based gene scores, so that for all genes the degree of association with 

the trait of interest was taken into account. Similarly, we conducted the gene set analysis with top 
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genes for the other comparison functional networks, to compare with results for the sentence 

processing network.  
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