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ABSTRACT 20 

Motivation: Untargeted metabolomics of host-associated samples has yielded insights into 21 

mechanisms by which microbes modulate health.  However, data interpretation is challenged by 22 

the complexity of origins of the small molecules measured, which can come from the host, 23 

microbes that live with the host, or from other exposures such as diet or the environment. 24 

Results: We address this challenge through development of AMON: Annotation of Metabolite 25 

Origins via Networks.  AMON is an open-source bioinformatics application that can be used to 26 

determine the degree to which annotated compounds in the metabolome may have been 27 

produced by bacteria present, the host, either (i.e. both the bacteria and host are capable of 28 

production), or neither (i.e. neither the human or the fecal microbiome are predicted to be 29 

capable of producing the observed metabolite).   30 

Availability and Implementation: This software is available at 31 

https://github.com/lozuponelab/AMON as well as via pip. 32 

Contact: catherine.lozupone@ucdenver.edu 33 

 34 

  35 
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INTRODUCTION 36 

The host-associated microbiome can influence many aspects of human health and disease 37 

through its metabolic activity. Examples include microbe-host co-metabolism of dietary 38 

choline/carnitine to TMAO as a driver of heart disease (Wang et al., 2011), microbial production 39 

of branched chain amino acids as a contributor to insulin resistance (Pedersen et al., 2016), and 40 

microbial production of 12,13-DiHOME as a driver of CD4+ T cell dysfunction associated with 41 

childhood atopy (Fujimura et al., 2016). A key way of exploring which compounds might 42 

mediate relationships between microbial activity and host disease is untargeted metabolomics 43 

(e.g. mass spectrometry) of host materials such as stool, plasma, urine, or tissues. These analyses 44 

result in the detection and relative quantitation of hundreds to thousands of compounds, the sum 45 

of which is referred to as a “metabolome”. Host-associated metabolomes represent a complex 46 

milieu of compounds that can have different origins, including the diet of the host organism and 47 

a variety of environmental exposures such as pollutants.  In addition, the metabolome contains 48 

metabolic products of these compounds, i.e. metabolites, that can result from host and/or 49 

microbiome metabolism or co-metabolism (Shaffer et al., 2017). 50 

One way to estimate which metabolites in host samples originate from host versus microbial 51 

metabolism is to use metabolic networks described in databases such as KEGG (Kanehisa et al., 52 

2017). These networks capture the relationship between metabolites, the enzymes that produce 53 

them, and the genomes of organisms (both host and microbial) that contain genes encoding those 54 

enzymes. These networks provide a framework for relating the genes present in the host and 55 

colonizing bacteria, and the metabolites present in a sample. 56 

Here we present AMON, which uses information in KEGG to predict whether measured 57 

metabolites are likely to originate from singular organisms or collections of organisms based on 58 
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a list of the genes that they encode. As an example, AMON can be used to predict whether 59 

metabolites may originate from the host itself versus from host-associated microbiomes as 60 

assessed with 16S ribosomal RNA (rRNA) gene sequences or shotgun metagenomics. We 61 

demonstrate our tool by applying it to a dataset from a cohort of HIV positive individuals and 62 

controls in which the stool microbiome was assessed with 16S rRNA gene sequencing and the 63 

plasma metabolome was assessed with untargeted liquid chromatography mass spectrometry 64 

(LC/MS). We also illustrate how much information is lost when we only focus on compounds 65 

and genes of known identity/function, emphasizing the need for complimentary approaches to 66 

general metabolomic database searches for the identification of microbially produced 67 

compounds. 68 

 69 

METHODS 70 

AMON 71 

AMON (Annotation of Metabolite Origins via Networks) is a command line tool for 72 

predicting which compounds are produced by microbes and which are produced by the host that 73 

is available at https://github.com/lozuponelab/AMON. The basis of this method is in multi-74 

organism metabolic networks as depicted in Figure 1A. This is a directional network with a flow 75 

starting from nodes representing the organisms present in a community and edges connecting to 76 

the genes in the organism’s genomes. These genes connect to the chemical reactions that the 77 

proteins that they encode perform, which connect to the compounds that those reactions consume 78 

(incoming edges) and produce (outgoing edges). We trace up this network from compound to 79 

organism to determine the possible origin of a metabolite. For example, in Figure 1A, we can 80 

infer that the microbiome could have generated compound 9 because of the presence of gene 4 in 81 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/439240doi: bioRxiv preprint 

https://doi.org/10.1101/439240
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

the genome of Bacteria 2. However, compound 9 could also have been produced by the host 82 

because of the presence of gene 5 in the human genome. In contrast, compound 8 could only be 83 

produced by the bacteria present and not the host. 84 

AMON takes as input lists of KEGG KO (KEGG Orthology) identifiers that are predicted to 85 

be present in different potential sources (e.g. the metagenome of a host-associated microbiome or 86 

the genome of host organism) and a list of KEGG compound IDs, such as from an annotated 87 

metabolome (Figure 1B).  AMON uses the multi-organism metabolic network constructed with 88 

information in KEGG to produce a table indicating which compounds (from the entire set of 89 

KEGG compounds and from the list of those annotated to be present in the metabolome) could 90 

be produced by each of the different provided KO sets and a file for input to KEGG mapper 91 

(https://www.genome.jp/kegg/mapper.html) which can be used to overlay this information on 92 

KEGG pathway diagrams. AMON uses the hypergeometric test to measure enrichment of KEGG 93 

pathways in metabolites predicted to originate specifically from each source environment that are 94 

present in the metabolome. Specifically, the set of metabolites predicted to be produced by the 95 

list of KO identifiers provided by the user is tested for enrichment of metabolites present in 96 

KEGG pathways relative to the background set of all compounds in all KEGG pathways that had 97 

at least one metabolite predicted to be produced by the provided gene sets. It produces a 98 

summary figure (Venn diagram) illustrating predicted metabolite origins. 99 

 AMON is built to be flexible as to the type of technology and informatics methods used to 100 

obtain the list of KOs present in each source sample and compounds present in a metabolome. 101 

As shown in our Case Study below, 16S rRNA data can be used to predict the KO list using 102 

PICRUSt (Langille et al., 2013), which uses whole genome sequence information to predict KOs 103 

present. Other ways to produce this list of KOs include annotation of genes present in a shotgun 104 
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metagenome, e.g. using tools such as HUMAnN (Abubucker et al., 2012). The host KOs can be 105 

acquired from KEGG using the extract_ko_genome_from_organism.py script, which downloads 106 

the KOs from the KEGG API or parses them from a KEGG FTP file and makes a list of KOs 107 

present in that file. 108 

AMON does not require the user to purchase a KEGG license. For individuals who have 109 

purchased a KEGG license, files containing KO and reaction information provided by KEGG 110 

can be loaded into AMON. As another option, AMON can also download the required 111 

information using the publicly available KEGG API (https://www.kegg.jp/kegg/rest/), although 112 

this method is comparatively slow and limits maximum dataset size based on the limits of the 113 

KEGG API.  114 

Case Study 115 

We used AMON to relate the stool microbiome (as assessed with 16S rRNA gene 116 

sequencing) to the plasma metabolome (as assessed with untargeted LC/MS), in a cohort of HIV 117 

positive individuals (n=37) and HIV-negative controls (n=22). These data represent a subset of 118 

the cohort described in (Armstrong et al., 2018) and are paired with metabolome data as a part of 119 

a study described at ClinicalTrials.gov (Identifier: NCT02258685). The overall goal of our case 120 

study was to use AMON to determine the degree to which annotated compounds in the plasma 121 

metabolome of our study cohort may have been produced by bacteria present in fecal samples, 122 

the host, either (i.e. both are capable of production), or neither (i.e. neither the human or the fecal 123 

microbiome are predicted to be capable of producing the observed metabolite).  124 

All study participants were recruited from University of Colorado Hospital with an approved 125 

IRB protocol (CoMIRB 14-1595). Stool samples from 59 individuals were collected at home in a 126 

commode specimen collector within 24 hours of the clinic visit in which blood was drawn. Stool 127 
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samples were stored at -20°C during transit and at -80°C prior to DNA extraction with the 128 

MoBIO kit and preparation for barcoding sequencing using the Earth Microbiome Project 129 

protocol (http://www.earthmicrobiome.org/protocols-and-standards/16s/). The 16S rRNA gene 130 

V4 region of stool microbes was sequenced using MiSeq (Illumina), denoised using DADA2 131 

(Callahan et al., 2016) and binned into 99% Operational Taxonomic Units (OTUs) using 132 

UCLUST (Edgar, 2010) and the greengenes database (version 13_8) via QIIME 1.9.1 (Caporaso 133 

et al., 2010). We used PICRUSt (Langille et al., 2013) to predict a metagenome and AMON to 134 

predict metabolites. 135 

Plasma Sample Preparation:  136 

A modified liquid-liquid extraction protocol was used to extract hydrophobic and hydrophilic 137 

compounds from the plasma samples (Yang et al., 2013).  Briefly, 100 µL of plasma spiked with 138 

internal standards underwent a protein crash with 400 µL ice cold methanol.  The supernatant 139 

was dried under nitrogen and methyl tert-butyl ether (MTBE) and water were added to extract 140 

the hydrophobic and hydrophilic compounds, respectively.  The upper hydrophobic layer was 141 

transferred to a new tube and the lower hydrophilic layer was re-extracted with MTBE.  The 142 

upper hydrophobic layer was combined, dried under nitrogen and reconstituted in 200 µL of 143 

methanol.  The hydrophilic layer was dried under nitrogen, underwent a second protein crash 144 

with water and ice-cold methanol (1:4 water-methanol).  The supernatant was removed, dried by 145 

SpeedVac at 45 °C and reconstituted in 100 µL of 5% acetonitrile in water.  Both fractions were 146 

stored at -80 °C until LCMS analysis. 147 

Liquid Chromatography Mass Spectrometry 148 

The hydrophobic fractions were analyzed using reverse phase chromatography on an Agilent 149 

Technologies (Santa Clara, CA) 1290 ultra-high precision liquid chromatography (UHPLC) 150 
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system on an Agilent Zorbax Rapid Resolution HD SB-C18, 1.8um (2.1 x 100mm) analytical 151 

column with an Agilent Zorbax SB-C18, 1.8 micron (2.1 x 5 mm) guard column.  The 152 

hydrophilic fractions were analyzed using hydrophilic interaction liquid chromatography 153 

(HILIC) on a 1290 UHPLC system using a Phenomenex Kinetex HILIC, 2.6um (2.1 x 50mm) 154 

analytical column with an Agilent Zorbax Eclipse Plus C8 5µm (2.1 x12.5mm) guard column.   155 

The hydrophobic and hydrophilic fractions were run on Agilent Technologies (Santa Clara, CA) 156 

6520 and 6550 Quadrupole Time of Flight (QTOF) mass spectrometers, respectively.  Both 157 

fractions were run in positive and negative electrospray ionization (ESI) modes, as previously 158 

described (Heischmann et al., 2016).   159 

Mass Spectrometry Data Processing 160 

Compound data was extracted using Agilent Technologies (Santa Clara, CA) Mass Hunter 161 

Profinder Version B.08 (Profinder) software in combination with Agilent Technologies Mass 162 

Profiler Professional Version 14 (MPP) as described previously (Heischmann et al., 2016). 163 

Briefly, a naive feature finding algorithm, Find By Molecular Feature, was used in Profinder to 164 

extract compound data from all samples and sample preparation blanks.  To reduce the presence 165 

of missing values, a theoretical mass and retention time database was generated for compounds 166 

present in samples only.  This database was then used to re-search the raw sample data in 167 

Profinder using the Find By Ion algorithm.  168 

An in-house database containing METLIN, Lipid Maps, KEGG, and HMDB spectral data 169 

was used to putatively annotate metabolites based on exact mass, isotope ratios and isotopic 170 

distribution with a mass error cutoff of 10 ppm. This corresponds to a Metabolomics Standards 171 

Initiative metabolite identification level 2 (Sumner et al., 2007).  172 

 173 
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RESULTS 174 

We used PICRUSt to determine the genome content of the OTUs detected in the fecal 175 

samples. PICRUSt drops from the analysis OTUs that do not have related reference sequences in 176 

the database and produces an estimate of the nearest sequenced taxon index (NSTI) which 177 

measures how close those sequences are to sequenced genomes (those more closely related to 178 

genomes have more power to make predictions regarding gene content). Since human gut 179 

bacteria are well represented in genome databases, only 0.7% of total reads of the detected 180 

sequences were dropped on account of not having a related reference sequence in the database. 181 

Furthermore, the average NSTI across samples was 0.08, indicating that most OTUs were highly 182 

related to an organism with a sequenced genome. We applied PICRUSt to the 16S rRNA dataset 183 

with only OTUs present in more than 11 of 59 samples included. The 267 remaining OTUs were 184 

predicted to contain 4,409 unique KOs using PICRUSt. We used the KEGG list of KOs in the 185 

human genome to represent human gene content. 186 

We provided these lists of gut microbiome and human KOs to AMON to produce a list of 187 

compounds generated from the gut microbiome and the human genome. Of the 4,409 unique 188 

KOs that PICRUSt predicted to be present in the gut microbiome, only 1,476 (33.5%) had an 189 

associated reaction in KEGG. Those without associated reactions may represent orthologous 190 

gene groups that do not perform metabolic reactions (such as transporters), or that are known to 191 

exist but for which the exact reaction is unknown, showing gaps in our knowledge (Fig 2A). 192 

Using information in KEGG, AMON predicted these KOs to produce 1,321 unique compounds 193 

via 1,926 unique reactions. The human genome was predicted to produce 1,376 metabolites via 194 

1,809 reactions. 195 
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Our metabolomics assays detected 5,971 compounds, of which only 1,018 (17%) could be 196 

putatively annotated with KEGG compound identifiers via a database search; only 471 (6%) of 197 

the 5,971 detected compounds were associated with a reaction in KEGG (Supplemental Table 1). 198 

Of these 471 annotated compounds in the plasma metabolome with associated KEGG reactions, 199 

189 were predicted to be produced by enzymes in either human or stool bacterial genomes. 40 200 

compounds were exclusively produced by bacteria, 58 exclusively by the host, and 91 by either 201 

human or bacterial enzymes (Fig 2B). The remaining 282 compounds may be 1) from the 202 

environment, 2) produced by microbes in other body sites or 3) host or gut microbial products 203 

from unannotated genes (Supplemental Table 1). 204 

We used AMON to assess enrichment of pathways in the detected human and bacterial 205 

metabolites using the hypergeometric test (Figure 3A; Supplemental table 2). The 41 compounds 206 

predicted to be produced by stool bacteria and not the host were enriched in xenobiotic 207 

degradation pathways, including nitrotoluene and atrazine degradation, and pathways for amino 208 

acids metabolism, including the phenylalanine, tyrosine and tryptophan biosynthesis pathway 209 

and the cysteine and methionine metabolism pathway. The metabolite origin data was visualized 210 

using KEGG mapper for the phenylalanine, tyrosine and tryptophan biosynthesis pathway 211 

(Figure 3B). This tool helps to visualize the host-microbe co-metabolism and which genes are 212 

important for compounds that may have come from multiple sources. For instance, Figure 3B 213 

allows us to see that Indole is a compound found in our metabolome that could only have been 214 

produced by bacterial metabolism via the highlighted enzyme (K01695, tryptophan synthase). 215 

Also, Tyrosine is a compound found in our metabolome that could have been synthesized by a 216 

variety of enzymes found only in bacteria, only in humans, or in both and so further exploration 217 

would be needed to understand origins of this compound. The 51 compounds which were 218 
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detected and predicted to be produced by the human genome were enriched in pathways that 219 

include bile secretion, steroid hormone biosynthesis and gastric acid secretion.  220 

 221 

DISCUSSION 222 

Taken together, these analyses show that AMON can be used to predict the origin of 223 

compounds detected in a complex metabolome, such as stool. Our case study shows the specific 224 

application of predicting origins of plasma compounds as being from the fecal microbiome 225 

versus the host. However, this tool can be used to compare any number of different sources – e.g. 226 

from the microbiomes of different body sites or compounds that may come directly from plants 227 

consumed in the diet. Also, the outputs of AMON can be used in conjunction with lists of 228 

metabolites that were determined to significantly differ with disease state or correlate with other 229 

host phenotypes to predict origins of metabolites of interest. 230 

Although our example uses PICRUSt to predict compounds of bacterial origin using 16S 231 

rRNA sequence data, AMON requires a list of KEGG Orthology identifiers as input and so could 232 

also be used with shotgun sequencing data. This can allow for a more thorough interrogation of 233 

host microbiomes that account for strain level variation in genome content and opens its 234 

application to environments with less understood genomes. 235 

The pathway enrichment of compounds predicted to be unique to the gut microbiome and the 236 

host provide a level of validation for these results. The pathways enriched with compounds 237 

predicted to only be from microbes are consistent with known roles for gut bacteria in degrading 238 

various xenobiotics (Maurice et al., 2013; Lu et al., 2015; Das et al., 2016; Saad et al.; Clayton 239 

et al., 2009) and for influencing amino acid (Neis et al., 2015; O’Mahony et al., 2015) and 240 

vitamin metabolism (Streit and Entcheva, 2003). Likewise, the pathways enriched with 241 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/439240doi: bioRxiv preprint 

https://doi.org/10.1101/439240
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

compounds predicted to be human only include host processes such as taste transduction and bile 242 

secretion. Further, since the microbial community measured was from the human gut and the 243 

metabolome came from plasma, these results suggest that these microbial metabolites can 244 

translocate from the gut into systemic circulation. This is consistent with the gut microbiome 245 

being linked with many diseases that occur outside of the gut. Examples include interactions 246 

between the gut and brain via microbially derived compounds such as serotonin (O’Mahony et 247 

al., 2015), and branched chain amino acids from the gut microbiome as a contributor to insulin 248 

resistance (Pedersen et al., 2016). 249 

However, this analysis also highlights limitations in this approach due to issues with 250 

annotation of both metabolites and the enzymes that may produce them. Overall, it is striking 251 

that of 5,971 compounds in the LC/MS data, only 471 could be linked to enzymatic reactions in 252 

KEGG. For example the human genome is known to contain approximately 20,000 genes 253 

(Ezkurdia et al., 2014); however, there are only 7286 KOs annotated in KEGG. These KOs only 254 

predict the creation of 1376 unique compounds while the Human Metabolome Database 4.0 255 

contains 114,100 (Wishart et al., 2018).  Part of this discrepancy is because multiple species of 256 

lipids are, generally, reduced to a single compound in KEGG.  For example, while KEGG 257 

includes a single phosphatidylcholine (PC) lipid molecule in the Glycerophospholipid pathway, 258 

in fact, there are over 1,000 species of PCs. It is also important to note that metabolite 259 

annotations are based on peak masses and isotope ratios, which can often represent multiple 260 

compounds and/or in-source fragments; our confidence in the identity of these compounds is 261 

only moderate. 262 

The situation is even worse for complex microbial communities, where even fewer genes are 263 

of known function. Because of these gaps in our knowledge of metabolite production, efforts to 264 
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identify microbially produced metabolites that affect disease should also use methods that are 265 

agnostic to these knowledge-bases. These include techniques such as 1) identifying highly 266 

correlated microbes and metabolites to identify potential productive/consumptive relationships 267 

that can be further validated 2) molecular networking approaches which take advantage of 268 

tandem mass spectroscopy data to annotate compounds based on similarity to known compounds 269 

with related MS/MS profiles (Watrous et al., 2012) or 3) coupling LC/MS runs with data from 270 

germ-free versus colonized animals (Wang et al., 2011; Rothhammer et al., 2016; Hsiao et al., 271 

2013) or antibiotic versus non-antibiotic treated humans (Tang et al., 2013; Antunes et al., 272 

2011).  Because AMON takes only KO identifiers and can pull database information from the 273 

KEGG API or user provided KEGG files, it will become increasingly useful as KEGG improves 274 

as well as other parts of the annotation process.  275 

Although our application is specifically designed to work with the KEGG database, similar 276 

logic could be used for other databases such as MetaCyc (Caspi et al., 2014). Our tool also does 277 

not apply methods such as gap-filling (Thiele et al., 2014; Orth and Palsson, 2010) and metabolic 278 

modeling (Orth et al., 2010; Mendes-Soares and Chia, 2017) in its estimates. The goal is not to 279 

produce precise measurements of the contributions of the microbiome and host to the abundance 280 

of a metabolite. Rather, AMON is designed to annotate metabolomics results to give the user an 281 

understanding of whether specific metabolites could have been produced directly by the host or 282 

its microbiomes. If a metabolite is identified by AMON as being of microbial origin and is 283 

associated with a phenotype, this result should motivate the researcher to perform follow up 284 

studies. These can include confirming the identity of the metabolite, via methods such as tandem 285 

mass spectrometry, and performing experiments to confirm the ability of microbes of interest to 286 

produce the metabolite. 287 
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AMON also does not account for co-metabolism between the host and microbes. An example 288 

of this is the production of TMAO from dietary choline. Our tool would list TMAO as a host 289 

compound and its precursor TMA as a microbiome derived compound but would not indicate 290 

that TMAO could overall not be produced from dietary substrates unless a microbiome was 291 

present. Further inspection of metabolic networks may be needed to decipher these co-292 

metabolism relationships. 293 

When researchers are seeking to integrate microbiome and metabolome data, identifying the 294 

origin of metabolites measured is an obvious route. AMON facilitates the annotation of 295 

metabolomics data by tagging compounds with their potential origin, either as bacteria or host. 296 

This allows researchers to develop hypotheses about the metabolic involvement of microbes in 297 

disease. 298 
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Figure 1: 379 

 380 

 381 

 382 

Figure 1: The network analysis and data flow of AMON. A) A simple multi-organism metabolic 383 

network. Blue nodes represent genomes, red nodes represent genes, orange nodes represent 384 

reactions and yellow nodes represent compounds. Edges between blue and red nodes indicate 385 

that the bacterial genomes contain the indicated genes and edges between red and orange nodes 386 

indicate the reactions which the genes can mediate. Yellow to orange edges connect reactants to 387 

a reaction and orange to yellow edges connect the reactions to its products. This network can be 388 

traversed to connect products of reactions to the genes and organisms which could produce these 389 

products. B) This schematic shows the flow of data through the AMON tool. The required input 390 

is a list of KEGG orthology (KO) identifiers which will be used with the KEGG database to 391 

build a metabolic network and determine the possible metabolites produced. This information is 392 

output to the user along with a pathway enrichment analysis to show functionality in the 393 

produced metabolite and a KEGG mapper file for visualization of metabolite origin in KEGG 394 

pathways. 395 

  396 
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Figure 2: 397 

 398 

 399 

Figure 2: The results of a case study running AMON with 16S rRNA sequencing data from stool 400 

and PICRUSt to predict the metagenome along with the KEGG human genome and an LC/MS 401 

untargeted metabolome. A) A flow diagram showing how much data is lost between parts of 402 

analyses at all data levels. B) A Venn diagram showing overlaps in compound sets. The red 403 

circle shows compounds detected with untargeted LC/MS with an annotated KEGG compound 404 

ID. The green and purple circles show compounds that the metabolic network tells us could have 405 

been produced by the bacteria present in the microbiome and the host respectively. 406 
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 407 

Figure 3: Enrichment of pathways and a single enriched pathway colored with metabolite origin. 408 

A) A heatmap showing the p-values associated with a pathway enrichment analysis with KEGG 409 

pathways. The first column is p-values for enrichment of KEGG pathways in compounds that 410 

were detected via untargeted LC/MS of plasma and we predict could be generated by members 411 

of the fecal microbiome. The second column is the same but for compounds that we predicted 412 

could have been generated by the human host. B) This pathway map is colored by putative origin 413 

of the compound, which are circles, and presence of the reaction, which are rectangles. Dark blue 414 

is a compound or gene with a bacterial origin, yellow is a compound or gene with a human 415 

origin, orange outlined compounds are detected in the metabolomics. Circles or rectangles could 416 

be of human or bacterial origin. 417 
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