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Abstract: Cellular functions are shaped by reaction networks whose dynamics are determined 11 

by the concentrations of underlying components. However, cellular mechanisms ensuring that 12 

a component’s concentration resides in a given range remain elusive. We present network 13 

properties which suffice to identify components whose concentration ranges can be efficiently 14 

computed in mass-action metabolic networks. We show that the derived ranges are in excellent 15 

agreement with simulations from a detailed kinetic metabolic model of Escherichia coli. We 16 

demonstrate that the approach can be used with genome-scale metabolic models to arrive at 17 

predictions concordant with measurements from Escherichia coli under different growth 18 

scenarios. By application to 14 genome-scale metabolic models from diverse species, our 19 

approach specifies the cellular determinants of concentration ranges that can be effectively 20 

employed to make predictions for a variety of biotechnological and medical applications. 21 
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Author Summary 26 

We present a computational approach for inferring concentration ranges from genome-scale 27 

metabolic models. The approach specifies a determinant and molecular mechanism underling 28 

facile control of concentration ranges for components in large-scale cellular networks. Most 29 

importantly, the predictions about concentration ranges do not require knowledge of kinetic 30 

parameters (which are difficult to specify at a genome scale), provided measurements of 31 

concentrations in a reference state. The approach assumes that reaction rates follow the mass 32 

action law used in the derivations of other types of kinetics. We apply the approach with large-33 

scale kinetic and stoichiometric metabolic models of organisms from different kingdoms of life 34 

to show that we can identify a proportion of metabolites to which our approach is applicable. 35 

By challenging the predictions of concentration ranges in the genome-scale metabolic network 36 

of E. coli with real-world data sets, we further demonstrate the prediction power and limitations 37 

of the approach. 38 
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Introduction 40 

Advances in systems biology studies have been propelled by the availability of high-quality 41 

genome-scale metabolic reconstructions for many organisms across all kingdoms of life [1]. 42 

Metabolic network reconstructions contain information about metabolites and reactions 43 

through which they are transformed to support different cellular processes [2, 3]. Alongside 44 

enzyme concentrations and phenomenological constants, reaction rates and metabolite 45 

concentrations—as two faces of the metabolic phenotype—characterize key aspects of the 46 

metabolic capabilities of an organism. Since metabolic concentrations are important 47 

determinants of reaction rates [4], understanding what controls their physiological ranges can 48 

point to cellular mechanisms that control phenotypic plasticity to ensure viability of organisms 49 

under changing conditions [5]. 50 

A naïve approach to determine a concentration range for a given component is to 51 

assume that it is present with a single molecule or that the entire cell dry weight under an 52 

investigated scenario is composed solely of that component. This derivation requires only 53 

knowledge of the component’s molecular weight, which is readily available. However, the 54 

derived ranges are vast and largely invariant under different scenarios; therefore, they are not 55 

informative. Here we ask whether large-scale metabolic models can be used for accurate 56 

prediction of concentration ranges. Resolving this question is tantamount to identifying a 57 

cellular mechanism underlying the control of concentration range for given cellular component. 58 

The change in concentration of metabolites can be described by a system of coupled 59 

ordinary differential equations (ODEs), 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑁𝑣(𝑡), where 𝑣(𝑡) = (𝑣1(𝑡), ⋯ , 𝑣𝑛(𝑡))𝑇 60 

denotes reaction rates and 𝑥(𝑡) = (𝑥1(𝑡), ⋯ , 𝑥𝑚(𝑡)) the metabolite concentrations at time 𝑡, 61 

and 𝑁 represents the stoichiometric matrix. The rows of the stoichiometric matrix correspond 62 

to metabolites, columns stand for reactions, and its entries denote the stoichiometric 63 

coefficients with which metabolites participate in reactions as substrates or products [6]. 64 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 10, 2018. ; https://doi.org/10.1101/439232doi: bioRxiv preprint 

https://doi.org/10.1101/439232


 

 

 

Reaction rates are modeled according to a kinetic law, 𝑣(𝑡) = 𝑓(𝑥(𝑡), 𝜃), which often leads to 65 

nonlinearities and involves multiple parameters, denoted by 𝜃 [7]. As a result, the coupled 66 

nonlinear ODEs are often not analytically tractable and their simulations are challenging. These 67 

issues arise since parameters remain poorly specified at a genome scale for the majority of 68 

model organisms [8, 9] and the nonlinear ODEs may lead to numerical issues [10]. In addition, 69 

determining the steady-state concentration ranges by characterizing the solutions to the system 70 

of non-linear equations 𝑁𝑓(𝑥(𝑡), 𝜃) = 0 is intractable for large-scale networks even when the 71 

equations have a simplified mass action form often used in metabolic modeling [11]. 72 

Feasible steady-state reaction rates, 𝑣, for which 𝑁𝑣 = 0, can be predicted based solely 73 

on the structure of the network with computational approaches from the constraint-based 74 

modeling framework [12]. However, since intracellular reaction rates cannot be measured 75 

directly, the validation of these predictions requires laborious labeling experiments and model 76 

fitting procedures [13]. By neglecting the effect of concentrations on reaction rates, constraint-77 

based approaches do not facilitate the usage of metabolic network reconstructions to predict 78 

concentrations of metabolites, which are becoming more accessible by quantitative 79 

metabolomics technologies [14].  80 

The existing constraint-based approaches that can make predictions of metabolite 81 

concentrations and their ranges are based on consideration of thermodynamics constraints. 82 

Thermodynamics-based metabolic flux analysis (TMFA) produces flux distributions that do 83 

not contain any thermodynamically infeasible reactions or pathways, and it provides 84 

information about the free energy change of reactions and the range of metabolite 85 

concentrations in addition to reaction fluxes [15]. However, due to uncertainty in the estimation 86 

of the standard Gibbs free energies, TMFA usually predicts unconstrained ranges for 87 

metabolite concentrations (see Discussion in Henry et al. [15]). Metabolic Tug-of-War 88 

(mTOW) extends TMFA but is based on a non-convex optimization approach which comes at 89 
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a cost of local optima and lack of robustness of predictions (validated by correlation [16]). A 90 

method to predict metabolite concentration ranges with limited knowledge about the 91 

underlying kinetic laws and parameter values would allow direct integration and validation of 92 

genome-scale models with experimental data from metabolomics technologies, enabling 93 

systems biology applications, from engineering of intervention strategies to design of new 94 

drugs [17-19]. 95 

Here we provide an approach which relies on the structure of the network, encoded in 96 

the stoichiometric matrix, to provide simulation-free prediction of steady-state concentration 97 

ranges by employing mass action kinetics. We focus on mass action kinetics since it underlies 98 

the derivation of more involved types of kinetics for different reaction mechanisms [20], allows 99 

for consideration of enzyme concentration if enzymes appear as reaction substrates, and 100 

provides a simple mathematical form that may be amenable to analytical treatment. The usage 101 

of mass action was here also favored due to lack of information about reaction mechanisms at 102 

a genome-scale level. The approach expands on the well-established concept of full coupling 103 

of reactions [21] to consider pairs of reactions whose ratio of mass-action-compatible fluxes 104 

depends only on the respective rate constants. Thus, this flux ratio is invariant at any, not 105 

necessarily steady, state of the system. The approach is also refined to predict concentration 106 

ranges for unseen cellular scenarios provided concentration data from a reference experiment. 107 

Our method complements the constraint-based modeling framework, focused on analysis of 108 

steady-state reaction rates, and thus enables a comprehensive characterization of feasible 109 

concentrations in genome-scale metabolic networks under specified conditions.  110 

111 
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Results 112 

Metabolites with structurally constrained concentrations (SCC) 113 

Consider a metabolic network composed of 𝑚 metabolites that participate in 𝑛 reactions. The 114 

(𝑚 × 𝑛) stoichiometric matrix, 𝑁, can be written as a difference of two non-negative matrices, 115 

𝑁 = 𝑁+ − 𝑁−, where 𝑁+ includes the stoichiometry of the products and 𝑁− comprises the 116 

stoichiometry of the substrates of each reaction. For instance, the stoichiometry of substrates 117 

and products given in Fig. 1b describes the metabolic network on Fig. 1a. We assume that the 118 

rate of reaction 𝑅𝑖 is modeled according to mass action kinetic, whereby 𝑣𝑖 = 𝜃𝑖 ∏ 𝑥
𝑗

𝑁𝑗𝑖
−

𝑗 , where 119 

𝜃𝑖 > 0 is the reaction constant and the concentration of each substrate molecule appears in 𝑣𝑖 120 

as a multiplicative factor.  121 

 122 

 123 

Fig. 1. Network with a component exhibiting structurally constrained concentration. (a) 124 

Reaction diagram that includes seven reactions, 𝑅1 - 𝑅7, and three components,  𝐴 - 𝐶. (b) 125 
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stoichiometric matrices associated with substrates, 𝑁−, and products, 𝑁+, for the network in 126 

(a). Reaction 𝑅7 lacks one substrate molecule of B in comparison to 𝑅2, since 𝑁22
− − 𝑁27

− = 1 127 

and 𝑁𝑖2
− − 𝑁𝑖7

− = 0 for every 𝑖 ≠ 2. Reactions 𝑅3 and 𝑅5 share the same substrate components 128 

with same stoichiometry, and hence their fluxes are fully coupled under the assumption of mass 129 

action kinetic. Reaction 𝑅3 is fully coupled to reaction 𝑅4, as are reactions 𝑅5 and 𝑅6. (c) 130 

Component 𝐵 exhibits structurally constrained concentration from the ODEs of components 𝐴 131 

and 𝐶. The network exhibits different positive steady states with changing rate of reaction 𝑅1. 132 

To state our main result, we require some concepts and terminology which we next 133 

introduce and illustrate. We will say that a reaction 𝑅𝑘 lacks one substrate molecule of 𝑋𝑖 in 134 

comparison to reaction 𝑅𝑙, if 𝑁𝑖𝑙
− − 𝑁𝑖𝑘

− = 1 and for every 𝑖′ ≠ 𝑖, 𝑁𝑖′𝑙
− − 𝑁𝑖′𝑘

− = 0. For the 135 

network in Fig. 1a, reaction 𝑅7 lacks one substrate molecule of component 𝐵 in comparison to 136 

reaction 𝑅2. Under the assumption of mass action kinetic, if a reaction lacks one substrate 137 

molecule in comparison to another, the reactions differ in their orders by one. As a result, the 138 

ratio of fluxes for such reactions at any state of the system depends only on the rate constants 139 

and the concentration of the substrate in which the reactions differ. 140 

Furthermore, two reactions 𝑅𝑘 and 𝑅𝑙 are fully coupled if there exists 𝜆 > 0, such that 141 

𝑣𝑙 = 𝜆𝑣𝑘 for any positive steady-state reaction rate 𝑣, i.e., 𝑁𝑣 = 0 [21]. Therefore, fully 142 

coupled reactions have an invariant ratio over all positive steady states that the network admits, 143 

and full coupling is a transitive relation. For the network in Fig. 1a, reaction 𝑅3 is fully coupled 144 

to 𝑅4 and 𝑅5 is fully coupled to 𝑅6. Such reactions, which are fully coupled irrespective of the 145 

kinetic law, can be efficiently determined based on the stoichiometry of large-scale networks 146 

by linear programming [21, 22] (see Materials and Methods).  147 

Under the assumption of mass action kinetic, two reactions that share the same 148 

substrates of same stoichiometry are also fully coupled [23]. In this case, the coupling holds 149 

for any, not necessarily steady, state of the system. Therefore, the consideration of mass action 150 
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kinetic expands the set of fully coupled reactions. For instance, this is the case for reactions 𝑅3 151 

and 𝑅5 that have the substrate components of same stoichiometry in Fig. 1a, whereby 
𝑣3

𝑣5
=

𝜃3

𝜃5
. 152 

Consider now a metabolite 𝑋𝑗 with an ODE given by 
𝑑𝑥𝑗

𝑑𝑡
= ∑ 𝑁𝑗𝑘

+𝑣𝑘𝑘∈𝑃𝑗
− ∑ 𝑁𝑗𝑙

−𝑣𝑙𝑙∈𝑆𝑗
, 153 

where 𝑃𝑗 is the set of reactions with 𝑋𝑗 as one of their products and 𝑆𝑗 is the set of reactions 154 

which have metabolite 𝑋𝑗 as one of their substrates. A metabolite 𝑋𝑖, not necessarily different 155 

from 𝑋𝑗, has structurally constrained concentration (SCC), if the following conditions hold: (i) 156 

for each reaction 𝑅𝑙 in 𝑆𝑗, there exists a non-empty subset 𝑄𝑙
−𝑖 of reactions lacking one substrate 157 

molecule of 𝑋𝑖 in comparison to 𝑅𝑙; the union of all 𝑄𝑙
−𝑖 yields the set of reactions 𝑆𝑗

−𝑖; (ii) all 158 

reactions in 𝑆𝑗
−𝑖 are mutually fully coupled; and (iii) all reactions in 𝑃𝑗 are mutually fully 159 

coupled. A similar argument can be made with respect to condition (i) in terms of reactions in 160 

the set 𝑃𝑗 (Materials and Methods). A metabolite 𝑋𝑖 that satisfies the conditions above will be 161 

referred to as a SCC metabolite. 162 

In the following, we use the ODE for metabolite 𝑋𝑗 to derive the concentration bounds 163 

for a metabolite 𝑋𝑖 with SCC. Let 𝑄 be a subset of  𝑆𝑗
−𝑖 that contains one and only one reaction 164 

from each of 𝑄𝑙
−𝑖. Under mass action, for the flux of every reaction 𝑅𝑙 ∈ 𝑆𝑗, it then holds that 165 

𝑣𝑙 = 𝑥𝑖
𝜃𝑙

𝜃𝑙
−𝑖 𝑣𝑙

−𝑖 (see Materials and Methods), where 𝜃𝑙
−𝑖 is the reaction constant and 𝑣𝑙

−𝑖 the 166 

flux of a reaction 𝑅𝑙
−𝑖 ∈ 𝑄. The expression for 

𝑑𝑥𝑗

𝑑𝑡
 above then becomes  ∑ 𝑁𝑗𝑘

+𝑣𝑘𝑘∈𝑃𝑗
−167 

𝑥𝑖 ∑ 𝑁𝑗𝑙
− 𝜃𝑙

𝜃𝑙
−𝑖 𝑣𝑙

−𝑖
𝑙∈𝑆𝑗

.  168 

At any positive steady state, it then holds that 
𝑑𝑥𝑗

𝑑𝑡
= 𝑣𝑝 ∑ 𝑁𝑗𝑘

+ 𝑣𝑘

𝑣𝑝
𝑘∈𝑃𝑗

−169 

𝑥𝑖𝑣𝑠
−𝑖 ∑ 𝑁𝑗𝑙

− 𝜃𝑙

𝜃𝑙
−𝑖

𝑣𝑙
−𝑖

𝑣𝑠
−𝑖𝑙∈𝑆𝑗

= 0, for any flux 𝑣𝑝 of reaction 𝑅𝑝 ∈ 𝑃𝑗 and flux 𝑣𝑠
−𝑖 of reaction 𝑅𝑠

−𝑖 ∈170 

𝑄. Due to the conditions (iii), above, the sum 𝜎𝑝 = ∑ 𝑁𝑗𝑘
+ 𝑣𝑘

𝑣𝑝
𝑘∈𝑃𝑗

 is a constant which, in the 171 
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simplest case, when all reactions in 𝑃𝑗 are fully coupled irrespective of the kinetic rate law, 172 

depends only on the network structure. In addition, due to condition (ii), above, the value of 173 

𝜎𝑠
−𝑖 = ∑ 𝑁𝑗𝑙

− 𝜃𝑙

𝜃𝑙
−𝑖

𝑣𝑙
−𝑖

𝑣𝑠
−𝑖𝑙∈𝑆𝑗

 is also a constant which depends on both the network structure and a 174 

subset of rate constants. The rate constants which appear in the expression for 𝜎𝑠
−𝑖 and 𝜎𝑝 for 175 

any 𝑄 ⊆ 𝑆𝑗
−𝑖 will be referred to as relevant rate constants, while the flux ratio 

𝑣𝑝

𝑣𝑠
−𝑖 will be called 176 

relevant flux ratio.  177 

Therefore, given a steady-state flux distribution, 𝑣, a set 𝑄 ⊆ 𝑆𝑗
−𝑖, and two reactions 178 

𝑅𝑝 ∈ 𝑃𝑗  and 𝑅𝑠
−𝑖 ∈ 𝑄, we have that 𝑥𝑖 =

𝜎𝑝

𝜎𝑠
−𝑖

𝑣𝑝

𝑣𝑠
−𝑖. This derivation establishes a direct relation 179 

between a flux distribution, under specified inputs from the environment, and the concentration 180 

of a SCC metabolite. We can also use the derived expression to obtain the concentration bounds 181 

for 𝑥𝑖 over any set, 𝐹, of steady-state flux distributions and subset 𝑄 (per definition above), 182 

yielding the following: 183 

min
{𝑄,𝐹}

𝜎𝑝

𝜎𝑠
−𝑖

𝑣𝑝

𝑣𝑠
−𝑖 ≤ 𝑥𝑖 ≤ max

{𝑄,𝐹}

𝜎𝑝

𝜎𝑠
−𝑖

𝑣𝑝

𝑣𝑠
−𝑖.  (1) 184 

For instance, component 𝐵 in Fig. 1a is SCC, derived from the ODE of component 𝐴, whereby 185 

the relevant flux ratio is 
𝑣4

𝑣7
 and the relevant rate constants are 𝜃3 and 𝜃7 (Fig. 1c). Similarly, 186 

one can show that component 𝐵 is SCC from the ODE of component 𝐶. 187 

Let the lower and upper bounds for the concentration of metabolite 𝑋𝑖 derived from the 188 

ODE of metabolite 𝑋𝑗 in Eq. (1) be denoted by 𝐿𝑖
𝑗

= min
{𝑸,𝑭}

𝜎𝑝

𝜎𝑠
−𝑖

𝑣𝑝

𝑣𝑠
−𝑖 and 𝑈𝑖

𝑗
= max

{𝑸,𝑭}

𝜎𝑝

𝜎𝑠
−𝑖

𝑣𝑝

𝑣𝑠
−𝑖, 189 

respectively. If there are 𝑟 metabolites 𝑋𝑑, 1 ≤ 𝑑 ≤ 𝑟 for which Eq. (1) applies, then the lower 190 

and upper bounds for the concentration of 𝑋𝑖 are given by the intersection of the ranges derived 191 

from the ODEs of 𝑋𝑑, i.e.. 192 

max
𝑑

𝐿𝑖
𝑑 ≤ 𝑥𝑖 ≤ min

𝑑
𝑈𝑖

𝑑.  (2) 193 
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Therefore, the lower bound is the minimum of the maxima, while the upper bound is the 194 

maximum of the minima derived from the individual ODEs. In case that the SCC of a 195 

metabolite can be derived from multiple ODEs, Eq. (2) provides more constrained predictions 196 

about metabolite concentration ranges than Eq. (1) alone. For instance, component 𝐵 in Fig. 1a 197 

is SCC not only from the ODE of component 𝐴 but also from that of 𝐶, whereby the relevant 198 

flux ratio is 
𝑣6

𝑣7
 and the relevant rate constants are 𝜃5 and 𝜃7 (Fig. 1c). In case that the upper 199 

bound is smaller than the lower bound in Eq. (2) then the system of ODEs does not have a 200 

positive solution for 𝑋𝑖, which implies that the network does not allow a positive steady state. 201 

Therefore, the approach can also be used to check for existence of positive steady state with 202 

respect to a SCC metabolite under mass action kinetics. 203 

 204 

Validation of the approach with a large-scale kinetic model of E. coli 205 

The proposed approach can be employed to determine metabolite concentration ranges by 206 

using information about full coupling of reactions, fluxes entering relevant flux ratios, and the 207 

relevant reaction rate constants. To validate the predictions, we employ a detailed kinetic model 208 

of elementary metabolic reactions of E. coli [8] from which these inputs are readily available. 209 

Of the 830 metabolites interconverted by 1,474 elementary reactions in the model, our 210 

approach determines that 23 metabolites exhibit SCC. The ranges for these SCC metabolites 211 

are fully determined by 67 relevant rate constants (4.6% of all rate constants) and fluxes of 67 212 

reactions (4.6% of all reactions) which enter in the relevant flux ratios. We use the kinetic 213 

model to simulate 100 steady states from different initial conditions (Supplementary Table S1).  214 

We determined the Euclidean distance between the predicted and simulated lower and 215 

upper bounds to demonstrate their quantitative agreement. Since metabolite concentrations 216 

vary over several orders of magnitude, the results based on Euclidean distance will be biased 217 

by the presence of very large metabolic pools; therefore, we also considered two variants of 218 
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relative Euclidean distance (see Materials and Methods). Our results from the quantitative 219 

comparison demonstrate a very good agreement between the predicted and simulated bounds 220 

(Supplementary Table S2, Supplementary Fig. S1). We also employ the Pearson correlation to 221 

assess if the predicted and simulated bounds agree qualitatively across the metabolites with 222 

SCC. We determine that there is a perfect qualitative match between the predicted and 223 

simulated lower (1, p-value < 10−6) and upper bounds (1, p-value < 10−6) of the SCC 224 

metabolites (Supplementary Table S2).  225 

It has been recently proposed that the shadow prices of metabolites can be used to 226 

quantify the ranges of metabolite concentrations, under the assumption that the cellular system 227 

optimizes an objective [24]. To compare the performance of shadow prices as a measure of 228 

metabolite concentration ranges, we employ the stoichiometric matrix of the analyzed kinetic 229 

model by using the maximization of metabolic exchange fluxes as cellular objective, shown to 230 

outperform yield as a predictor of growth rate [25]. We did not use optimization of yield, most 231 

widely used in flux balance analysis, since the model has been parameterized without 232 

consideration of a biomass reaction. We observe that for the analyzed model and the 233 

physiologically relevant objective, the calculated shadow prices for the 23 SCC metabolites 234 

cannot be used as indicators of concentration variability due to the weak negative correlation 235 

with the concentration ranges as well as with the coefficients of variation of the SCC 236 

metabolites (Supplementary Table S2). These findings point out that our approach, in absence 237 

of a cellular objective but with knowledge about a few rate constants and selected flux ratios, 238 

outperforms the existing contender for quantifying concentration ranges in large-scale 239 

metabolic networks.  240 

 241 

 242 
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Effects of missing information about rate constants 243 

While the full reaction couplings considered by our approach can be readily obtained given the 244 

structure of the network and flux ratios are increasingly available from labeling approaches 245 

[26], the resulting predictions can be affected by missing information about rate constants. To 246 

assess the effect of missing information on the accuracy of predictions, we consider the cases 247 

that 10 – 90% of rate constants used in the derivation of the ranges for the metabolites with 248 

SCC are known (see Methods). We consider three scenarios whereby the missing ratios of rate 249 

constants, appearing in Eq. (1), are substituted by: (i) a value of one, simulating a scenario in 250 

which all relevant rate constants are of the same value, (ii) the mean, or (iii) the median of the 251 

ratios of relevant rate constants that are present (i.e., known) in the model equation from which 252 

the conditions for SCC are established. We note that the units of the rate constants are not 253 

relevant since rate constants enter Eq. (1), above, as ratios. 254 

We find that the substitutions for the missing ratios of rate constants according to the 255 

three scenarios, as expected, decrease the Pearson correlation between predicted and simulated 256 

ranges over 100 instances of models in which relevant rate constants were removed at random 257 

(Fig. 2). Nevertheless, even when only 30% of the relevant rate constants are known for the 258 

cases (i) and (iii), we obtain a median Pearson correlation coefficient between the predicted 259 

and simulated ranges of at least 0.6 (Fig. 2). Substituting the missing ratio of rate constants 260 

with the mean of the ratios shows the largest variability over the 100 instances of models with 261 

partial knowledge of rate constants. The reason for this finding is that the distribution of rate 262 

constants and their ratios are highly left-skewed (Supplementary Fig. S2). Therefore, we 263 

conclude that even in the absence of information about rate constants that matches the current 264 

state-of-the-art of knowledge about E. coli (Supplementary Table S3), our approach provides 265 

qualitatively reliable estimates of concentration ranges in large-scale models. The ordering of 266 

lower and upper bounds between metabolites can be predicted well (median significant 267 
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Spearman correlation above 0.75 at significance level of 0.05 for all scenarios). However, we 268 

observe that the median over relative and log-transformed Euclidean distances between 269 

predicted and simulated lower as well as upper bounds over the 23 SCC metabolites are small 270 

(<0.71 and <0.08, respectively) when more than 50% of the relevant rate constants are known 271 

(Supplementary Fig. S3-S6). Therefore, the approach can be used for the frequently employed 272 

comparison of metabolite concentration ranges within and between conditions. 273 

 274 

 275 

Fig. 2. Effect of missing information about relevant rate constants on the accuracy of 276 

concentration range predictions for a large-scale kinetic model of E. coli. We consider 10 277 

– 90% of the relevant rate constants to be unknown by random removal. We consider three 278 

scenarios for the substitution of missing ratios of rate constants: (i) equality (i.e., kinetic rate 279 

constants are assumed to be the same), (ii) the mean, or (iii) the median of the ratios of relevant 280 

rate constants that are still present in the model. Shown are the boxplots (red lines inside each 281 

box denote the corresponding medians) of the resulting Pearson correlation coefficients 282 

between the predicted and simulated ranges over the SCC metabolites in the kinetic model of 283 

E. coli. 284 

 285 
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Effect of missing information about flux ratios 286 

We also investigate the accuracy of the predictions of concentration ranges when full 287 

information about relevant rate constants is available and relevant flux ratios are obtained from 288 

constraint-based modeling approaches. To obtain physiologically relevant predictions, we 289 

constrain the model with the simulated exchange fluxes (Supplementary Table S1), since they 290 

can be readily obtained from experiments (e.g. by following substrate depletion). As the 291 

employed kinetic model does not specify a biomass reaction, we optimize a weighted average 292 

of ATP production and total flux, known to lead to predictions in line with flux estimates from 293 

labeling experiments [2]. To this end, we determine the range for the relevant flux ratios at the 294 

optimal value for the objective and used them together with Eq. (2) to obtain concentration 295 

ranges for the 23 SCC metabolites (Materials and Methods). We find that for 13 out of 23 SCC 296 

metabolites the predicted concentration range reside inside the respective simulated range. For 297 

additional 6 metabolites the ranges overlap, while the remaining metabolites show no overlap 298 

in the predicted and simulated range using the objective of optimized ATP production and total 299 

flux (Fig. 3).  Since the approach provided accurate quantitative and qualitative predictions 300 

with perfect information in the case of kinetic modeling, the discrepancy is due to the objective 301 

used to constrain the physiologically reasonable fluxes.  302 

 303 
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 304 

Fig. 3. Effect of missing information about relevant flux ratios on the accuracy of 305 

concentration range predictions for a large-scale kinetic model of E. coli. Relevant flux 306 

ratios are obtained by constraint-based modeling in which the objective of weighted ATP 307 

production and total flux is maximized. Red bars denote simulated ranges resulting from 100 308 

different initial conditions of the large-scale kinetic model of E. coli. Black bars denote the 309 

predicted ranges following Eq. (2). Concentration ranges are predicted for 23 SCC metabolites 310 

in the employed metabolic model. 311 

 312 

Concentration ranges in a genome-scale metabolic model of E. coli 313 

Arguably the most interesting scenario for application of our approach is with genome-scale 314 

metabolic networks. We find 199 SCC metabolites in the cytosol and 168 in the periplasm and 315 

extracellular space of the most recent genome-scale metabolic network of E. coli [27] 316 

(Supplementary Table S8). However, for this model, we observe that there are data available 317 

for only 28% of relevant rate constants (Supplementary Table S3), and we have no estimates 318 

of the relevant flux ratios available from labeling experiments [28-30]. Therefore, the approach 319 

cannot be used without extensions. Given a steady-state flux distribution, 𝑣, the concentration 320 
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of a SCC metabolite 𝑋𝑖 is given by 𝑥𝑖 =
𝜎𝑝

𝜎𝑠
−𝑖

𝑣𝑝

𝑣𝑠
−𝑖. If we have data on concentration of SCC 321 

metabolites and flux predictions from the constraint-based modeling framework, we can 322 

readily obtain estimates for the ratio 
𝜎𝑝

𝜎𝑠
−𝑖. By definition, this ratio is invariant over the conditions 323 

where all steady-state fluxes appearing in relevant flux ratios are non-zero. Therefore, we can 324 

use the estimates for 
𝜎𝑝

𝜎𝑠
−𝑖 together with flux predictions to make predictions about concentration 325 

ranges following Eq. (2) for another scenario. We note that the prediction about concentration 326 

ranges inherit the uncertainty in the estimation of 
𝜎𝑝

𝜎𝑠
−𝑖 as well as the flux ratios from flux balance 327 

analysis, which may contribute to the size of the predicted ranges. 328 

Metabolite concentration data set of Ishii et al. [28]. We use the measurements of steady-state 329 

concentrations of 182 metabolites from E. coli under different growth scenarios [28]. This data 330 

set includes 15 of the 199 cytosolic SCC metabolites found in the genome-scale model. We 331 

also have access to rates of glucose and oxygen uptakes, carbon dioxide release as well as 332 

growth from the same experiments [28], which we use as constraints to a genome-scale 333 

metabolic network of E. coli. It has been shown that E. coli does not optimize a single objective 334 

(e.g., growth), but its steady-state flux distributions result from the trade-off between tasks of 335 

optimizing growth, ATP synthesis, and total flux [2]. Since growth rate is fixed from 336 

measurements, we optimize the weighted average of ATP synthesis and total flux, with a 337 

weighting factor of 0.1 on ATP synthesis to reduce the effect of the order difference in the 338 

respective optimum observed when ATP production and total flux are optimized individually. 339 

Here, too, at the obtained optimum we can efficiently estimate ranges for the relevant flux 340 

ratios (Materials and Methods). In addition, we compare obtained concentration ranges with 341 

those predicted when maximization of ATP is used as the only objective. To obtain estimates 342 

for 
𝜎𝑝

𝜎𝑠
−𝑖, we use three replicates for the concentration data and predictions of ranges for relevant 343 

flux ratios at growth rate of 0.2ℎ−1 (Supplementary Table S4). Eq. (2) can then be applied to 344 
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determine concentration ranges based on 
𝜎𝑝

𝜎𝑠
−𝑖 for a combination of replicates, to investigate the 345 

effect of outliers. We predict in turn the concentration ranges for three other growth rates (i.e., 346 

0.4, 0.5, and 0.7ℎ−1).  347 

For the objective of optimizing ATP synthesis and total flux, our results demonstrate 348 

that measurements for 9, 10, and 6 of the 15 SCC metabolites fall in the predicted concentration 349 

range for the three growth rates, respectively (Fig. 4). Nevertheless, the Spearman correlation 350 

between the measured values and the predicted lower and upper bounds is significant and larger 351 

than 0.57 and 0.56, respectively (Supplementary Table S5). Therefore, the approach can be 352 

used to compare the ordering of lower or upper bounds between different experimental 353 

scenarios (Supplementary Fig. S7). In addition, this analysis highlights the effect of the 354 

replicates of metabolite concentrations used in calculating the values of 
𝜎𝑝

𝜎𝑠
−𝑖, since estimates for 355 

some of the replicates may be outliers (Fig. 4). In contrast, we find that 4, 5 and 2 of the 15 356 

SCC metabolites fall in the measured range for the three growth rates when maximization of 357 

ATP is used as objective (Supplementary Fig. S9). Moreover, we cannot predict concentrations 358 

for 8 out of the 15 SCC metabolites due to numerical instabilities arising when using this 359 

objective under the additionally imposed constraints on growth. The reasons for the 360 

discrepancy between the predicted and measured values under both objectives include the 361 

combination of at least three factors: the inability to distinguish the concentrations of free 362 

metabolites from those bound to macromolecules experimentally [31], model (and objective) 363 

inaccuracies, and the simplifying assumption of mass action kinetic. Nevertheless, the 364 

approach can be extended to consider networks with kinetic laws derived from mass action 365 

which involve enzyme forms (e.g., Michaelis-Menten, see Discussion) at cost of increased data 366 

requirements for application.   367 

 368 
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 369 

Fig. 4. Comparison of predicted ranges with measured metabolite concentrations under 370 

the objective of optimizing ATP synthesis and sum of total flux. Comparison of the 371 
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predicted concentration ranges for 15 intracellular metabolites in E. coli with absolute 372 

concentrations measured at growth rates (GR) of (a) 0.4, (b) 0.5 and (c) 0.7ℎ−1. For metabolites 373 

with grey background, there is no access to measurements. The colored bars denote the 374 

predicted ranges from each of the three different replicates, while the black bar represents the 375 

prediction over all replicates. The red cross denotes the measured value at the respective GR. 376 

For some metabolites there is no overlap between the colored bars, indicating poor 377 

reproducibility over the replicates in the reference scenario. The nomenclature of the 378 

metabolites is provided in Supplementary Table S5. 379 

 380 

Metabolite concentration data set of Gerosa et al. [32]. We use the measurements of steady-381 

state concentrations of 43 metabolites from E. coli grown in eight different carbon sources [32]. 382 

This data set includes ten of the 199 cytosolic SCC metabolites found in the genome-scale 383 

model. We also have access to rates of carbon uptake, some secretion rates, as well as growth 384 

from the same experiments (see Supplementary Table S10), which we use as constraints to a 385 

genome-scale metabolic network of E. coli. Since growth rate is fixed from measurements, as 386 

above, we optimize the weighted average of ATP synthesis and total flux, with weighting 387 

factors 0.001 for ATP synthesis and 1000 for total flux to reduce the effect of the order 388 

difference and make the comparison to optimization of ATP synthesis. Different weighting 389 

factors are used in comparison to the analysis of the data set from Ishii et al., above, since 390 

different constraints are used that affect the optimal values of the individual objectives. Here, 391 

too, at the obtained optimum we can efficiently estimate ranges for the relevant flux ratios 392 

(Materials and Methods). To obtain estimates for 
𝜎𝑝

𝜎𝑠
−𝑖, we use the metabolite concentrations 393 

from growth on acetate (Supplementary Table S10). We then predict the concentration ranges 394 

for the ten SCC metabolites for the seven other carbon sources (Supplementary Fig. S10, S11).  395 
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In Supplementary Figures S10 and S11 measured concentration ranges are denoted by red bars 396 

and predicted concentration ranges are shown in black. In case of succinate as only carbon 397 

source we obtain a model with no feasible solution, so no concentrations could be predicted for 398 

that case without further model adaptations. In the remaining growth conditions, depending on 399 

the objective and growth condition analyzed, three to five predictions of concentrations resulted 400 

in minimum values larger than the respective maximum (missing black bars). This observation 401 

is a result of numerical instabilities occurring if flux values 𝑣𝑝 and 𝑣𝑠
−𝑖 in Eq. (1) differ by 402 

several orders of magnitude. The Spearman correlation between the average measured and 403 

predicted concentrations (Fig. 5) when optimizing ATP synthesis is 0.63 (p-value 3*10-4), 404 

while it is only 0.33 (p-value 0.03) when ATP synthesis and total flux are optimized. In 405 

addition, the Spearman correlation between the measured and predicted upper and lower 406 

bounds when maximization of ATP is used results in higher correlation values (upper bounds 407 

0.61 (p-value 4.3*10-4), lower bounds 0.85 (p-value 5.9*10-9)) than those when optimization 408 

of ATP synthesis and total flux are employed (upper bounds 0.21 (p-value 0.17), lower bounds 409 

0.54 (p-value 1.6*10-4)). These findings imply that the usage of different objectives to estimate 410 

flux ratios and through them concentrations of metabolites can also be used to discern 411 

importance of optimized objectives in a particular experiment.  412 

 413 

 414 
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 415 

Fig. 5. Average measured and predicted concentration of SCC metabolites under 416 

different carbon sources. Each data point represents a SCC metabolite (different colors, see 417 

legend) under one carbon source (● fructose, ■ galactose, ♦ glucose, ∗ glycerol, × gluconate, 418 

▲ pyruvate). Note that due to numerical instabilities a concentration could not be calculated 419 

for all (SCC metabolite, carbon source) combinations, see also Supplementary Fig. S10, S11; 420 

(a) concentration prediction using optimization of ATP synthesis and total flux (Spearman 421 

correlation 0.33) (b) concentration prediction using optimization of ATP synthesis (Spearman 422 

correlation 0.63). 423 

 424 

Changes in metabolite concentrations in knock-out mutants 425 

The fully parameterized kinetic model of E. coli can be used to test the applicability of the 426 

approach to predict changes in metabolite concentrations in metabolic engineering scenarios. 427 

Here, we test the performance of the approach with knock-out mutants based on the following 428 

procedure: We make use of the model parameterization to simulate a steady-state concentration 429 

and flux distribution from initial physiologically reasonable values for metabolite 430 

concentrations. The resulting steady-state concentrations and fluxes yield a wild type reference. 431 

We then knock-out each reaction and predict positive steady state flux distribution closest to 432 

the wild type reference, following the Minimization of Metabolic Adjustment (MOMA) 433 
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approach [33]. The resulting flux distribution is used to calculate the concentrations of the 23 434 

SCC metabolites following our approach (Eq. (1)). In the last step, the predicted changes in 435 

concentration of the SCC metabolites with respect to the reference are compared to the changes 436 

from kinetic simulations of the knock-out with the wild-type reference specifying the initial 437 

conditions. We observe similar ranges for the predicted and simulated fold-changes in SCC 438 

concentration over all 23 SCC metabolites and knock-outs of 929 reactions for which we were 439 

able to simulate a steady-state knock-out flux distribution (Figure 6, fold changes for individual 440 

SCC metabolites are shown in Supplementary Figure 12). We grouped the fold-changes into 441 

12 bins, given in the x-axis of Figure 6. For ten SCC metabolites, the predicted fold change of 442 

at least 29% of the knock-outs is in the same bin as the simulated fold change. The highest 443 

overlaps are observed for AMP (39%), phosphoenolpyruvate (38%) and isocitrate (37%). In 444 

contrast, the fold changes in concentration for metabolites like succinyl-CoA, acetyl-CoA, 445 

oxaloacetate, malate and pyruvate are in the same class as simulated for at most 1% of the 446 

knock-outs. The lack of correspondence between simulated and predicted concentrations for 447 

some SCC metabolites (Supplementary Fig. S12) indicates that principles others than those 448 

used in MOMA shape the metabolic adjustment of knock-out mutants.  449 

 450 
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 451 

Fig. 6. Fold change in concentration of SCC metabolites upon reaction knock-out. The 452 

distribution of predicted and simulated fold change in concentration of 23 SCC metabolites 453 

over 929 single knock-out mutants for which a steady-state flux distribution could be 454 

simulated.  455 

 456 

Metabolites with SCC across species 457 

We next apply Eq. (1) to 14 large-scale metabolic networks which differ in complexity due to 458 

the number of considered metabolites and reactions as well as their organization in subcellular 459 

compartments (Supplementary Table S6). The investigated metabolic networks are mass- and 460 

charge-balanced and support positive steady-state reaction rates (see Methods). Since reliable 461 

kinetic information and measurements of absolute concentration measurements are currently 462 
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missing across diverse species, we report only the number of the metabolites with SCC across 463 

the analyzed large-scale networks.  464 

We find that the percentage of metabolites with SCC ranges from 7.74 % and 8.02% in 465 

the models of N. pharaonis and C. reinhardtii to 33.66% and 36.53% in the models of A. 466 

thaliana and Y. pestis (Fig. 7a). Interestingly, the number of metabolites with SCC scales 467 

linearly with the total number of metabolites (Fig. 7b, 𝑅2 = 0.82) and the number of reactions 468 

in the examined networks (Fig. 7c, 𝑅2 = 0.76). This finding indicates that the proposed 469 

approach is not limited to networks of a particular size.  470 

 471 

 472 

 473 

 474 
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 475 

Fig. 7. Metabolites with structurally constrained concentration across species. (a) The 476 

fraction of metabolites with structurally constrained concentrations in 14 large-scale metabolic 477 

networks from all kingdoms of life. The number of these metabolites scales linearly with (b) 478 

the total number of metabolites (𝑅2 = 0.82) and (c) the total number of reactions (𝑅2 = 0.76). 479 

 480 

Different reasons can be used to explain the observation that larger networks contain 481 

more metabolites with SCC. For instance, larger networks may include more linear pathways, 482 

whereby the number of reactions which are fully coupled due to structure is expected to 483 

increase. Yet, in denser networks, which include more reactions on the same set of metabolites, 484 

it is more likely to identify reactions which share substrates of same stoichiometry, which then 485 

leads to full coupling due to mass action kinetics, as considered in our approach. To investigate 486 
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the reasons for the scaling of the number of metabolites with SCC, we determine the number 487 

of: (i) metabolites which are synthesized and used by one reaction, respectively (in support of 488 

the linear pathway explanation), (ii) fully coupled reactions only due to structure, (iii) coupled 489 

reactions due to mass action (in support of the network density explanation), (iv) the 490 

combination of (ii) and (iii), to assess the couplings due to both structure and kinetics 491 

(Supplementary Table S7). We calculate the Pearson correlation coefficient between each of 492 

these properties and the number of reactions over the analyzed networks, as a measure of 493 

network size (Supplementary Table S7). Larger networks indeed contain a bigger number of 494 

metabolites synthetized and used by a single reaction, respectively, and more reactions which 495 

are fully coupled due to both structure and kinetics. Therefore, both the linear pathway and the 496 

network density explanations contribute to the observed scaling in the analyzed networks.  497 

Due to the derivation of Eq. (1), it may be expected that the approach is not applicable 498 

to metabolites which participate in a large number of reactions, since they may be less likely 499 

to be fully coupled. Nevertheless, our findings show that between 28.89% and 62.95% of the 500 

SCC metabolites in the analyzed networks are involved in more than two reactions (see 501 

Supplementary Table S6). One reason is that a SCC metabolite may also be determined by 502 

applying Eq. (1) to the ODE of another metabolite (see Eq. (2) and Fig. 1c). 503 

Since changes in relevant fluxes directly affect the concentration of a SCC metabolite, 504 

they can be used to tightly control the concentration range. For essential metabolic processes 505 

to be carried out efficiently, metabolites that serve as coenzymes and energy currency of 506 

biological systems, namely, the oxidized and reduced version of NAD and NADP as well as 507 

the adenosine phosphates (i.e. AMP, ADP, ATP), are maintained within certain concentration 508 

ranges that can be readily controlled, as is the case for SCC metabolites. Despite the many 509 

biochemical reactions in which these ubiquitous metabolites participate (Supplementary Table 510 

S8), all of which must satisfy our conditions in order to invoke Eq. (1), we find that the 511 
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(sub)cellular concentrations of ATP and NAD are indeed structurally constrained in twelve and 512 

ten of the analyzed networks, respectively. This implies that the network structure, alongside 513 

the relevant rate constants and relevant flux ratio, imposes boundaries on and facilitates simple 514 

control over their concentrations. In addition, we find that NADP shows SCC in four of the 515 

investigated networks, including A. thaliana and C. reinhardtii (Table 1 and Supplementary 516 

Table S8). In these photosynthetic organisms, NADPH is produced by ferredoxin-NADP+ 517 

reductase in the last step of the electron transport chain which constitutes the light reactions of 518 

photosynthesis [34]. The produced NADPH provides reducing power for the biosynthetic 519 

reactions in the Calvin cycle to fix carbon dioxide as well as in the reduction of nitrate into 520 

ammonia for plant assimilation in the nitrogen cycle. Therefore, precise and simple control of 521 

NADPH will provide uninterrupted functionality of these key metabolic pathways and 522 

maintenance of carbon and nitrogen balance [35]. In addition, for ten models, we find that H+ 523 

is SCC, ensuring maintenance of the specific functions of individual organelles [36]. 524 

Altogether, our findings indicate that the concentration ranges for coenzymes and other 525 

components essential for fueling metabolism can be established by controlling few ratios of 526 

fluxes, despite their involvement in hundreds of reactions. Moreover, they imply that the 527 

network architecture may be organized such that the concentrations of these metabolites are 528 

intrinsically constrained and easy to control. 529 

 530 

 531 

 532 

 533 

 534 
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Table 1. Structurally constrained concentrations for metabolites serving as energy 535 

currency. (h=chloroplast, c = cytosol, m = mitochondria, n = nucleus, p = periplasm, e = 536 

extracellular space). The table summarizes the networks in which Eq. (1) holds for NADH, 537 

NAD, NADP, NADPH, ATP, and H+. The table includes the respective compartments in 538 

which Eq. (1) can be applied for the investigated metabolites.  539 

Network NADH NAD NADP NADPH ATP H+ 

A. niger  c c c c  

A. thaliana   h  h,c,m  

C. reinhardtii   h  h h,c 

E. coli K12  c   c c,p 

H. sapiens c c  c c,n c 

M. acetivorans  c   c c 

M. barkeri  c   c c 

M. pneumoniae       

N. pharaonic  c   c  

P. putida     c c,e 

T. maritima  c c  c c,e 

S. aureus  c    c,e 

Synechocystis sp.  c   c c,p 

Y. pestis  c   c c 

Number of networks where 

Eq.(1) can be applied 

1 10 4 2 12 10 

 540 

Discussion 541 

Genome-scale metabolic networks have propelled the understanding of the metabolic 542 

capabilities for a wide variety of organisms across all kingdoms of life. The existing large-scale 543 

modelling approaches examine the space of feasible fluxes, but cannot be used to infer the 544 

metabolite concentrations driving these fluxes without extensively relying on largely unknown 545 

kinetic parameters. Hence, the direct usage of large-scale metabolic networks to make 546 
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predictions about concentrations that are directly testable from high-throughput metabolomics 547 

data is not possible with the existing modelling approaches. 548 

Here we derive a condition that pinpoints that the structure of a metabolic network, 549 

ratios of relevant rate constants, and ratios of relevant reaction fluxes constitute the determinant 550 

of concentration ranges for selected metabolites. This link is based on the well-known concept 551 

of full coupling of reactions [21, 23] which we expand under the assumption of mass action 552 

kinetics to include reactions that share substrates of same stoichiometry. These concepts allow 553 

us to efficiently determine the admissible concentration ranges in large-scale metabolic 554 

networks endowed with mass action kinetics across all kingdoms of life. The derivation of Eq. 555 

(1) can be generalized by considering reactions which differ in order larger than one with 556 

respect to a single metabolite. For a given flux distribution this approach results in a polynomial 557 

equation in a single variable which can be efficiently solved with the Newton’s method.  558 

Our approach is also applicable to networks with kinetic laws derived from mass action 559 

which involve enzyme forms (e.g., Michaelis-Menten). This can be achieved by augmenting 560 

the network to include reactions which model substrate-enzyme complex formation as well as 561 

the synthesis and degradation of enzymes. However, these extensions come at a cost of 562 

substantially larger data sets which are not yet readily available. In addition, our analyses 563 

demonstrate that the casting of a kinetic rate law in terms of mass action mechanisms may 564 

affect the findings regarding the SCC metabolites. For instance, we find that there are many 565 

more SCC metabolites in comparison to other SCC components (i.e., enzymes and enzyme-566 

substrate complexes) in each of the analyzed models (Supplementary Table S9). With 567 

exception of the network of C. reinhardtii, the usage of enzymatic forms explicitly in mass 568 

action mechanisms leads to a decrease in the number of metabolites with SCC (Supplementary 569 

Table S9), due to the decrease in the number of reaction pairs which differ in their order by 570 
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one. Applications of the approach to other forms of kinetics will be subject in future 571 

investigations and extensions. 572 

Our approach provides a links between metabolite concentrations, relevant rate 573 

constants, and relevant flux ratios; therefore, information on two of these can be used to predict 574 

the third. Our analyses demonstrate that there is a good quantitative agreement between 575 

predicted and simulated concentration ranges based on full knowledge of rate constants from a 576 

kinetic model of E. coli. Rate constants of elementary reactions are expected to become 577 

increasingly available for model organisms, largely due to the development of computational 578 

methods coupled with high-throughput data [8, 9]. In addition, by examining the scenario 579 

where flux ratios are estimated from the constraint-based modeling framework, we observe 580 

that the approach can be used to select which objective function (or a combination thereof) is 581 

optimized by a biological system for which metabolite concentration measurements are 582 

available. 583 

Most importantly, we show that even in the absence of data on relevant rate constants 584 

and relevant flux ratios, we can apply the approach to successfully predict concentration ranges 585 

in E. coli under different growth conditions, provided measurements of concentrations for SCC 586 

metabolites in one reference condition. Therefore, the proposed approach represents an 587 

important step in complementing genome-scale metabolic networks with metabolite 588 

concentrations, widening the applicability of large-scale models to a range of biotechnological 589 

and medical applications. 590 

 591 
Materials and Methods 592 

Components with structurally constrained concentrations 593 

A metabolic network can be represented by the stoichiometric matrix, 𝑁 = 𝑁+ − 𝑁−, where 594 

𝑁+ includes the stoichiometry of the products and 𝑁− comprises the stoichiometry of the 595 
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substrates of each reaction. In the following, we derive the conditions for structurally 596 

constrained robustness of component 𝑋𝑖 based on the ordinary differential equation (ODE) for 597 

the component 𝑋𝑗 (not necessarily different from 𝑋𝑖) under the assumption that the reaction 598 

rates, 𝑣(𝑡), satisfy mass action kinetics, whereby 𝑣𝑖(𝑡) = 𝜃𝑖 ∏ 𝑥
𝑗

𝑁𝑗𝑖
−

(𝑡)𝑗 . Let the ODE be 599 

specified by 
𝑑𝑥𝑗(𝑡)

𝑑𝑡
= ∑ 𝑁𝑗𝑘

+𝑣𝑘(𝑡)𝑘∈𝑃𝑗
− ∑ 𝑁𝑗𝑙

−𝑣𝑙(𝑡)𝑙∈𝑆𝑗
, where 𝑃𝑗 is the set of reactions with 𝑋𝑗 600 

as one of their products and 𝑆𝑗 is the set of reactions which have metabolite 𝑋𝑗 as one of their 601 

substrates.  602 

We consider the following two cases: (i) the concentration of 𝑋𝑖 appears in every 𝑣𝑘(𝑡) 603 

for which 𝑁𝑗𝑘
+ ≠ 0 and for every 𝑣𝑘(𝑡) there exist a set 𝑃𝑗

−𝑖 of reactions 𝑅𝑘
−𝑖 ∈ 𝑃𝑗

−𝑖 such that 604 

𝑣𝑘(𝑡) = 𝑥𝑖(𝑡)
𝜃𝑘

𝜃𝑘
−𝑖 𝑣𝑘

−𝑖(𝑡) and (ii) the concentration of 𝑋𝑖 appears in every 𝑣𝑙(𝑡) for which 𝑁𝑗𝑙
− ≠605 

0 and for every 𝑣𝑙(𝑡) there exist a set of reactions 𝑅𝑙
−𝑖 ∈ 𝑆𝑗

−𝑖 such that 𝑣𝑙(𝑡) = 𝑥𝑖(𝑡)
𝜃𝑙

𝜃𝑙
−𝑖 𝑣𝑙

−𝑖(𝑡).  606 

 607 

Case I: 608 

The rates of a reaction 𝑅𝑘 and a reaction from the set 𝑅𝑘
−𝑖 are given by  609 

𝑣𝑘(𝑡) = 𝜃𝑘 ∏ 𝑥
𝑗

𝑁𝑗𝑘
−

(𝑡) = 𝑗 𝜃𝑘 ∏ 𝑥
𝑗

𝑁𝑗𝑘
−

(𝑡) 𝑥𝑖

𝑁𝑖𝑘
−

(𝑡) 𝑗≠𝑖 = 𝜃𝑘𝑥𝑖(𝑡) ∏ 𝑥
𝑗

𝑁𝑗𝑘
−

(𝑡) 𝑥𝑖

𝑁𝑖𝑘
− −1

(𝑡) 𝑗≠𝑖  610 

and 611 

𝑣𝑘
−𝑖 (𝑡) = 𝜃𝑘

−𝑖 ∏ 𝑥
𝑗

𝑁
𝑗𝑘

−𝑖
−

(𝑡)𝑗 = 𝜃𝑘
−𝑖 ∏ 𝑥

𝑗

𝑁
𝑗𝑘

−𝑖
−

(𝑡) 𝑥
𝑖

𝑁
𝑗𝑘

−𝑖
−

(𝑡)𝑗≠𝑖 . 612 

From rewriting the equation of 𝑣𝑘
−𝑖 (𝑡) above we have that ∏ 𝑥

𝑗

𝑁
𝑗𝑘

−𝑖
−

(𝑡) =
𝑣𝑘

−𝑖 (𝑡)

𝜃𝑘
−𝑖𝑥

𝑖

𝑁
𝑗𝑘

−𝑖
−

(𝑡)

𝑗≠𝑖 . Since 613 

𝑁𝑗𝑘
− − 𝑁

𝑗𝑘
−𝑖
− = 0 for every 𝑗 ≠ 𝑖 and 𝑁𝑖𝑘

− − 𝑁
𝑗𝑘

−𝑖
− = 1 we can rewrite the equation of 𝑣𝑘(𝑡) such 614 

that 615 

𝑣𝑘(𝑡) =
𝜃𝑘

𝜃𝑘
−𝑖 𝑥𝑖(𝑡)𝑣𝑘

−𝑖(𝑡) 𝑥
𝑖

𝑁𝑖𝑘
− −𝑁

𝑗𝑘
−𝑖

− −1

(𝑡) =
𝜃𝑘

𝜃𝑘
−𝑖 𝑥𝑖(𝑡)𝑣𝑘

−𝑖(𝑡) . 616 
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 617 

The ODE for component 𝑋𝑗 revealing structurally constrained concentration of 618 

component 𝑋𝑖 is then given by: 619 

𝑑𝑥𝑗(𝑡)

𝑑𝑡
= ∑ 𝑁𝑗𝑘

+𝑣𝑘(𝑡)𝑘∈𝑃𝑗
− ∑ 𝑁𝑗𝑙

−𝑣𝑙(𝑡)𝑙∈𝑆𝑗
=  𝑥𝑖(𝑡) ∑ 𝑁𝑗𝑘

+
𝑘∈𝑃𝑗

𝜃𝑘

𝜃𝑘
−𝑖 𝑣𝑘

−𝑖(𝑡)  − ∑ 𝑁𝑗𝑙
−𝑣𝑙𝑙∈𝑆𝑗

(𝑡). 620 

Let 𝑝 and 𝑠 bet two reaction indices such that 𝑁𝑗𝑝
+ ≠ 0 and 𝑁𝑗𝑠

− ≠ 0. In any positive state 𝑣(𝑡), 621 

we have that 622 

𝑑𝑥𝑗(𝑡)

𝑑𝑡
=  𝑣𝑝

−𝑖(𝑡)𝑥𝑖(𝑡) ∑ 𝑁𝑗𝑘
+

𝑘∈𝑃𝑗

𝜃𝑘

𝜃𝑘
−𝑖

𝑣𝑘
−𝑖(𝑡)

𝑣𝑝
−𝑖(𝑡)

− 𝑣𝑠(𝑡) ∑ 𝑁𝑗𝑙
− 𝑣𝑙(𝑡)

𝑣𝑠(𝑡)𝑙∈𝑆𝑗
. 623 

In a steady state then 624 

𝑣𝑝
−𝑖𝑥𝑖 ∑ 𝑁𝑗𝑘

+
𝑘∈𝑃𝑗

𝜃𝑘

𝜃𝑘
−𝑖

𝑣𝑘
−𝑖

𝑣𝑝
−𝑖 − 𝑣𝑠 ∑ 𝑁𝑗𝑙

− 𝑣𝑙

𝑣𝑠
𝑙∈𝑆𝑗

= 0. 625 

If for every 𝑁𝑗𝑝
+ ≠ 0, 

𝑣𝑘
−𝑖

𝑣𝑝
−𝑖 is constant because either reactions 𝑅𝑘

−𝑖 and 𝑅𝑝
−𝑖 are fully coupled or 626 

share the same substrates, then ∑ 𝑁𝑗𝑘
+

𝑘∈𝑃𝑗

𝜃𝑘

𝜃𝑘
−𝑖

𝑣𝑘
−𝑖

𝑣𝑝
−𝑖 = 𝜎𝑝

−𝑖 is a constant that only depends on a 627 

subset of rate constants and the network structure. Moreover, if for every 𝑁𝑗𝑙
− ≠ 0,

𝑣𝑙

𝑣𝑠
 is constant 628 

because either reactions 𝑅𝑙 and 𝑅𝑠 are fully coupled or share the same substrates, then 629 

∑ 𝑁𝑗𝑙
− 𝑣𝑙

𝑣𝑠
𝑙∈𝑆𝑗

= 𝜎𝑠 is a constant, too, which in the simplest case when all reactions in 𝑆𝑗 are fully 630 

coupled irrespective of the kinetic rate law, only depends on the network structure. Therefore, 631 

𝑣𝑝
−𝑖𝑥𝑖𝜎𝑝

−𝑖 − 𝑣𝑠𝜎𝑠 = 0, 632 

and 𝑥𝑖 =
𝜎𝑠

𝜎𝑝
−𝑖

𝑣𝑠

𝑣𝑝
−𝑖.  633 

For each reaction 𝑅𝑘 in 𝑆𝑗, there exists a non-empty subset 𝑄𝑘
−𝑖  of reactions lacking 634 

one substrate molecule of 𝑋𝑖 in comparison to 𝑅𝑘; the union of all 𝑄𝑘
−𝑖 yields the set of reactions 635 

𝑆𝑗
−𝑖. Let 𝑄 be a subset of  𝑃𝑗

−𝑖 that contains one and only one reaction from each of 𝑄𝑘
−𝑖. Since 636 
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the reaction indices 𝑝 and 𝑠 are arbitrarily chosen, the concentration range of metabolite 𝑋𝑖 for 637 

a given subset 𝑄 over a given set of flux distributions, 𝐹, is given as 638 

min
{𝑄,𝐹}

𝑣𝑠

𝑣𝑝
−𝑖

𝜎𝑠

𝜎𝑝
−𝑖 ≤ 𝑥𝑖 ≤ max

{𝑄,𝐹}

𝑣𝑠

𝑣𝑝
−𝑖

𝜎𝑠

𝜎𝑝
−𝑖. 639 

Case II: 640 

The rates of a reaction 𝑅𝑙 and a reaction from the set 𝑅𝑙
−𝑖 are given by  641 

𝑣𝑙(𝑡) = 𝜃𝑙 ∏ 𝑥
𝑗

𝑁𝑗𝑙
−

(𝑡) = 𝑗 𝜃𝑙 ∏ 𝑥
𝑗

𝑁𝑗𝑙
−

(𝑡) 𝑥𝑖

𝑁𝑖𝑙
−

(𝑡) 𝑗≠𝑖 = 𝜃𝑙𝑥𝑖(𝑡) ∏ 𝑥
𝑗

𝑁𝑗𝑙
−

(𝑡) 𝑥𝑖

𝑁𝑖𝑙
−−1

(𝑡) 𝑗≠𝑖  642 

and 643 

𝑣𝑙
−𝑖 (𝑡) = 𝜃𝑙

−𝑖 ∏ 𝑥
𝑗

𝑁
𝑗𝑙

−𝑖
−

(𝑡)𝑗 = 𝜃𝑙
−𝑖 ∏ 𝑥

𝑗

𝑁
𝑗𝑙

−𝑖
−

(𝑡) 𝑥
𝑖

𝑁
𝑗𝑙

−𝑖
−

(𝑡)𝑗≠𝑖 . 644 

From rewriting the equation of 𝑣𝑙
−𝑖 (𝑡) above we have that ∏ 𝑥

𝑗

𝑁
𝑗𝑙

−𝑖
−

(𝑡) =
𝑣𝑙

−𝑖 (𝑡)

𝜃𝑙
−𝑖𝑥

𝑖

𝑁
𝑗𝑙

−𝑖
−

(𝑡)

𝑗≠𝑖 . Since 645 

𝑁𝑗𝑙
− − 𝑁

𝑗𝑙
−𝑖
− = 0 for every 𝑗 ≠ 𝑖 and 𝑁𝑖𝑙

− − 𝑁
𝑗𝑙

−𝑖
− = 1 we can rewrite the equation of 𝑣𝑙(𝑡) such 646 

that 647 

𝑣𝑙(𝑡) =
𝜃𝑙

𝜃𝑙
−𝑖 𝑥𝑖(𝑡)𝑣𝑙

−𝑖(𝑡) 𝑥
𝑖

𝑁𝑖𝑙
−−𝑁

𝑗𝑙
−𝑖

− −1

(𝑡) =
𝜃𝑙

𝜃𝑙
−𝑖 𝑥𝑖(𝑡)𝑣𝑙

−𝑖(𝑡) . 648 

 649 

The ODE for component 𝑋𝑗 revealing structurally constrained concentration of component 𝑋𝑖 650 

is then given by: 651 

𝑑𝑥𝑗(𝑡)

𝑑𝑡
= ∑ 𝑁𝑗𝑘

+𝑣𝑘(𝑡)𝑘∈𝑃𝑗
− ∑ 𝑁𝑗𝑙

−𝑣𝑙(𝑡)𝑙∈𝑆𝑗
=  ∑ 𝑁𝑗𝑘

+
𝑘∈𝑃𝑗

𝑣𝑘(𝑡) − 𝑥𝑖(𝑡) ∑ 𝑁𝑗𝑙
− 𝜃𝑙

𝜃𝑙
−𝑖 𝑣𝑙

−𝑖
𝑙∈𝑆𝑗

(𝑡). 652 

Let 𝑝 and 𝑠 bet two reaction indices such that 𝑁𝑗𝑝
+ ≠ 0 and 𝑁𝑗𝑠

− ≠ 0. In any positive state 𝑣(𝑡), 653 

we have that 654 

𝑑𝑥𝑗(𝑡)

𝑑𝑡
=  𝑣𝑝(𝑡) ∑ 𝑁𝑗𝑘

+
𝑘∈𝑃𝑗

𝑣𝑘(𝑡)

𝑣𝑝(𝑡)
− 𝑣𝑠

−𝑖(𝑡)𝑥𝑖(𝑡) ∑ 𝑁𝑗𝑙
− 𝜃𝑙

𝜃𝑙
−𝑖

𝑣𝑙
−𝑖(𝑡)

𝑣𝑠
−𝑖(𝑡)𝑙∈𝑆𝑗

. 655 

In a steady state then 656 

𝑣𝑝 ∑ 𝑁𝑗𝑘
+

𝑘∈𝑃𝑗

𝑣𝑘

𝑣𝑝
− 𝑣𝑠

−𝑖𝑥𝑖 ∑ 𝑁𝑗𝑙
− 𝜃𝑙

𝜃𝑙
−𝑖

𝑣𝑙
−𝑖

𝑣𝑠
−𝑖𝑙∈𝑆𝑗

= 0. 657 
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If for every 𝑁𝑗𝑝
+ ≠ 0, 

𝑣𝑘

𝑣𝑝
 is constant because either reactions 𝑅𝑘 and 𝑅𝑝 are fully coupled or 658 

share the same substrates, then ∑ 𝑁𝑗𝑘
+

𝑘∈𝑃𝑗

𝑣𝑘

𝑣𝑝
= 𝜎𝑝 is a constant that, in the simplest case when 659 

all reactions in 𝑃𝑗 are fully coupled irrespective of the kinetic rate law, depends only on the 660 

network structure. Moreover, if for every 𝑁𝑗𝑙
− ≠ 0,

𝑣𝑙
−𝑖

𝑣𝑠
−𝑖 is constant because either reactions 𝑅𝑙

−𝑖 661 

and 𝑅𝑠
−𝑖 are fully coupled or share the same substrates, then ∑ 𝑁𝑗𝑙

− 𝜃𝑙

𝜃𝑙
−𝑖

𝑣𝑙
−𝑖

𝑣𝑠
−𝑖 𝑙∈𝑆𝑗

= 𝜎𝑠
−𝑖. The 662 

constant 𝜎𝑠
−𝑖 then only depends on a subset of rate constants and the network structure. 663 

Therefore, 664 

𝑣𝑝𝜎𝑝 − 𝑣𝑠
−𝑖𝑥𝑖𝜎𝑠

−𝑖 = 0, 665 

and 𝑥𝑖 =
𝜎𝑝

𝜎𝑠
−𝑖

𝑣𝑝

𝑣𝑠
−𝑖.  666 

For each reaction 𝑅𝑙 in 𝑃𝑗, there exists a non-empty subset 𝑄𝑙
−𝑖  of reactions lacking one 667 

substrate molecule of 𝑋𝑖 in comparison to 𝑅𝑙; the union of all 𝑄𝑙
−𝑖 yields the set of reactions 668 

𝑃𝑗
−𝑖. Let 𝑄 be a subset of  𝑃𝑗

−𝑖 that contains one and only one reaction from each of 𝑄𝑙
−𝑖.  Since 669 

the reaction indices 𝑝 and 𝑠 are arbitrarily chosen, the concentration range of metabolite 𝑋𝑖 for 670 

a given subset 𝑄 over a given set of flux distributions, 𝐹, is given as 671 

min
{𝑄,𝐹}

𝜎𝑝

𝜎𝑠
−𝑖

𝑣𝑝

𝑣𝑠
−𝑖 ≤ 𝑥𝑖 ≤ max

{𝑄,𝐹}

𝜎𝑝

𝜎𝑠
−𝑖

𝑣𝑝

𝑣𝑠
−𝑖. 672 

As a result, the ranges for steady-state concentration 𝑥𝑖 can be expressed as a function of a set 673 

of given flux distributions, ratios of specific fluxes and constants that depend only on the 674 

structure of the network and values for a subset of rate constants. Since fluxes are the integrated 675 

outcome of transcription, translation, and post-translational modifications and their interplay 676 

with the environment and nutrient availability, our derivation provides a direct relation between 677 

concentration ranges, flux ratios, and rate constants. 678 

Flux coupling 679 
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Let 𝐶(𝑁) = {𝑣 ∈ ℝ𝑛|𝑁𝑣 = 0, 𝑣 ≥ 0} be the steady-state flux cone for a given stoichiometric 680 

matrix 𝑁 with 𝑛 reactions, under the assumption that every reaction is irreversible. Here, we 681 

restrict our analysis to the subspace 𝐹 ⊂ 𝐶(𝑁) by bounding the fluxes: 𝐹 = {𝑣 ∈ ℝ𝑛|𝑁𝑣 =682 

0,0 ≤ 𝑙𝑏 ≤ 𝑣 ≤ 𝑢𝑏}, where 𝑙𝑏 and 𝑢𝑏 are lower and upper flux bounds. We will refer to 𝑣 ∈ 𝐹 683 

as the feasible flux distributions. A reaction 𝑅𝑖 is called blocked if for every 𝑣 ∈ 𝐹, 𝑣𝑖 = 0. A 684 

pair of reactions 𝑅𝑖 and 𝑅𝑗 is called fully coupled, if there exists 𝜆 > 0, such that for every 𝑣 ∈685 

𝐹, 𝑣𝑖 = 𝜆𝑣𝑗. 686 

The minimum and maximum value for the ratio 
𝑣𝑖

𝑣𝑗
 over the flux distributions in 𝐹 can 687 

be determined by the linear-fractional programming: 688 

opt  
𝑣𝑖

𝑣𝑗
 689 

𝑁𝑣 = 0 690 

𝑙𝑏 ≤ 𝑣 ≤ 𝑢𝑏, 691 

which can be rewritten following the Charnes-Cooper transformation [37] to the following 692 

linear program: 693 

opt  𝑣𝑖 694 

𝑁𝑣 = 0 695 

𝑣𝑗 = 1 696 

𝑡 ∙ 𝑙𝑏 ≤ 𝑣 ≤ 𝑡 ∙ 𝑢𝑏 697 

𝑡 ≥ 0. 698 

If the minimum and maximum values for the linear program are the same, then the reactions 699 

𝑅𝑖 and 𝑅𝑗 are fully coupled. Such reactions can be efficiently computed for large-scale 700 

networks[4, 21]. 701 

In addition, under the mass action kinetics, two reactions are fully coupled in any state of the 702 

system if they share the same substrates with the same stoichiometry. This leads to additional 703 

full couplings due to the transitivity of the relations, as demonstrated in the main text. 704 
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Metabolites with structurally constrained concentrations in mass action networks 705 

In the following, we present an algorithm determining SCC metabolites under the assumption 706 

of mass action kinetics: 707 

Input: metabolic network, list of fully coupled reactions 708 

Output: metabolites with structurally constrained concentration 709 

for each metabolite 𝑥𝑖 in the network do: 710 

 𝑆𝑖 ← set of reactions having 𝑥𝑖 as substrate 711 

 𝑀𝑖
𝑃 ← set of all products of the reactions in 𝑆𝑖 712 

 for each metabolite 𝑥𝑗 ∈ 𝑀𝑖
𝑃 do: 713 

𝑆𝑗 ← set of reactions having 𝑥𝑗 as substrate 714 

  𝑃𝑗 ← set of reactions having 𝑥𝑗 as product 715 

𝑃𝑗
−𝑖 ← set of reactions lacking one substrate molecule of 𝑥𝑖  in comparison to a 716 

reaction 𝑅𝑝 ∈  𝑃𝑗  717 

if for each reaction in 𝑃𝑗 there is a reaction in 𝑃𝑗
−𝑖 and all reactions in 𝑃𝑗

−𝑖 are 718 

fully coupled and all reactions in 𝑆𝑗 are fully coupled: 719 

𝑥𝑖  has SCC 720 

  end if 721 

end for 722 

𝑀𝑖
𝑆 ← set of all substrates of the reactions in 𝑆𝑖 723 

for each metabolite 𝑥𝑗 ∈ 𝑀𝑖
𝑆 do: 724 

𝑆𝑗 ← set of reactions having 𝑥𝑗 as substrate 725 

𝑆𝑗
−𝑖 ← set of reactions lacking one substrate molecule of 𝑥𝑖  in comparison to a 726 

reaction 𝑅𝑠 ∈  𝑆𝑗 727 

  𝑃𝑗 ← set of reactions having 𝑥𝑗 as product 728 

if for each reaction in 𝑆𝑗 there is a reaction in 𝑆𝑗
−𝑖 and all reactions in 𝑆𝑗

−𝑖 are 729 

fully coupled and all reactions in 𝑃𝑗 are fully coupled: 730 

𝑥𝑖  has SCC 731 

  end if 732 

 end for 733 

end for 734 

 735 

 736 
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Correlation analysis 737 

Using a large-scale kinetic model of E. coli we simulate 100 steady-state flux distribution and 738 

steady-state concentrations from different initial concentrations. Initial concentrations were 739 

obtained by perturbation of the original initial concentration of a metabolite by 1, 5, 10 or 20%. 740 

We run the model until a steady-state was reached. Using the simulated steady-state flux 741 

distributions we can predict concentration ranges for 23 metabolites using Eq. (2) 742 

(Supplementary Table S1). The Pearson correlation was then calculated for (i) simulated and 743 

predicted upper bounds, (ii) simulated and predicted lower bounds, and (iii) the absolute range 744 

over simulated and predicted concentrations. In addition, we also determined the correlation 745 

between shadow price for the respective metabolites and the simulated range, as well as, to the 746 

coefficient of variation obtained over simulated concentrations (Supplementary Table S2). 747 

Moreover, we calculated the Euclidean distance between upper and lower bound from 748 

prediction and simulation, respectively. Due to the high difference in the order of magnitude 749 

over the analyzed metabolites we also calculated Euclidean distance after normalizing the data. 750 

We considered the Euclidean distance of log-transformed concentration vectors, and the 751 

Euclidean distance between the concentration vectors normalized by the respective maximum 752 

value. 753 

Effect of missing information on rate constants 754 

To assess the effect of missing information about rate constants on the accuracy of the predicted 755 

concentration range, we simulated missing knowledge about parameters by removing 10, 30, 756 

50, 70 or 90% of the relevant rate constants uniformly at random. We consider only removing 757 

information about relevant rate constants to avoid bias due to removal of information in parts 758 

of the network that have no effect on the predictions of the concentration ranges. We compare 759 

the Pearson and Spearman correlation coefficient between predicted and simulated 760 
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concentration ranges as well as the two versions of Euclidean distance for each percentage 761 

obtained over 100 random removals of rate constants. 762 

Effect of missing information on flux ratios 763 

To assess the effect of missing information about flux ratios on the accuracy of the predicted 764 

concentration range, we obtained relevant flux ratios from constraint-based modeling. 765 

Therefore, we solve the following linear program optimizing a weighted average of ATP 766 

production and total flux: 767 

max 𝑧∗ = 𝑣𝑎𝑡𝑝 − 0.01 ∑ 𝑣𝑖

𝑛−1

𝑖

 768 

𝑁𝑣 = 0 769 

𝑣𝑠𝑖𝑚_𝑚𝑖𝑛 ≤ 𝑣𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 ≤ 𝑣𝑠𝑖𝑚_𝑚𝑎𝑥 770 

𝑣𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑚𝑎𝑥  771 

 𝑣𝑚𝑖𝑛 ≥ 𝜖 = 10−7 772 

In addition, the flux through exchange reactions is constrained by the respective minimum, 773 

𝑣𝑠𝑖𝑚_𝑚𝑖𝑛, and maximum value, 𝑣𝑠𝑖𝑚_𝑚𝑎𝑥, obtained over 100 simulations (Supplementary Table 774 

S1) to obtain a physiologically reasonable flux distribution. The weighting factor of 0.01 was 775 

chosen to reduce the effect of three orders of magnitude difference in the respective optimum 776 

observed when ATP production and total flux are optimized individually.  777 

Next, we determine the range for the relevant flux ratios 
𝑣𝑝

𝑣𝑠
−𝑖 at the optimum 𝑧∗ using a 778 

transformed linear-fractional program: 779 

opt  𝑣𝑝 780 

𝑁𝑣 = 0 781 

𝑣𝑎𝑡𝑝 − 0.01 ∑ 𝑣𝑖

𝑛−1

𝑖

= 𝑧∗ 782 
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𝑣𝑠
−𝑖 = 1 783 

𝑡 ∙ 𝑣𝑠𝑖𝑚_𝑚𝑖𝑛 ≤ 𝑣𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 ≤ 𝑡 ∙ 𝑣𝑠𝑖𝑚_𝑚𝑎𝑥 784 

𝑡 ∙ 𝑣𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑡 ∙ 𝑣𝑚𝑎𝑥  785 

𝑡 ≥ 𝜖 786 

𝑣𝑚𝑖𝑛 ≥ 𝜖 = 10−7. 787 

We then used the obtained ranges for 
𝑣𝑝

𝑣𝑠
−𝑖 together with Eq. (2) to calculate concentration ranges 788 

for SCC metabolite 𝑋𝑖.  789 

Extension of the approach based on available concentration measurements 790 

Using the most recent genome-scale metabolic network of E. coli [27] together with 791 

measurements of steady-state concentrations from E. coli under different growth scenarios [28] 792 

we predict concentration ranges for 15 SCC metabolites using the following procedure. We 793 

first use the concentration measurements from three replicates at a growth rate of 0.2ℎ−1 794 

(reference state) together with flux ratios obtained from constraint-based modelling to estimate 795 

the ratio 
𝜎𝑝

𝜎𝑠
−𝑖 given that 𝑥𝑖 =

𝜎𝑝

𝜎𝑠
−𝑖

𝑣𝑝

𝑣𝑠
−𝑖.  796 

For each replicate we solve the following linear programs in order to obtain ranges for the 797 

relevant flux ratios 
𝑣𝑝

𝑣𝑠
−𝑖. 798 

 max 𝑧∗ = 0.1𝑣𝑎𝑡𝑝 − ∑ 𝑣𝑖
𝑛−1
𝑖  799 

𝑁𝑣 = 0 800 

 𝑣𝑏𝑖𝑜 = 0.2 801 

𝑣𝑂2 𝑢𝑝𝑡𝑎𝑘𝑒 = 𝛽1,𝑗, 1 ≤ 𝑗 ≤ 3  802 

 𝑣𝐺𝑙𝑐 𝑢𝑝𝑡𝑎𝑘𝑒 = 𝛽2,𝑗 803 

 𝑣𝐶𝑂2 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 = 𝛽3,𝑗 804 
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 𝑣𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑚𝑎𝑥 805 

𝑣𝑚𝑖𝑛 ≥ 𝜖 = 10−7. 806 

The linear program above constrains rates of glucose and oxygen uptakes, carbon dioxide 807 

release as well as growth by values 𝛽𝑖,𝑗 (which differ between replicates 𝑗, 1 ≤ 𝑗 ≤ 3) available 808 

from measurements [28]. We optimize the weighted average of ATP synthesis and total flux. 809 

The weighting factor of 0.1 and 0.001 for ATP synthesis, for the data set of Ishii et al. [28] and 810 

Gerosa et al. [32], respectively, is chosen to reduce the effect of the order difference in the 811 

respective optimum observed when ATP production and total flux are optimized individually. 812 

In addition, we use weighting factors of 1 and 1000 for optimization of total flux in the case of 813 

Ishii et al. [28] and Gerosa et al. [32], respectively. To obtain ranges for the relevant flux ratios 814 

𝑣𝑝

𝑣𝑠
−𝑖, which are employed to calculate ranges for ratios 

𝜎𝑝

𝜎𝑠
−𝑖, we solve the following linear program 815 

at the optimum 𝑧∗: 816 

opt  𝑣𝑝 817 

𝑁𝑣 = 0 818 

𝑣𝑏𝑖𝑜 = 0.2 819 

𝑣𝑂2 𝑢𝑝𝑡𝑎𝑘𝑒 = 𝛽1  820 

 𝑣𝐺𝑙𝑐 𝑢𝑝𝑡𝑎𝑘𝑒 = 𝛽2 821 

 𝑣𝐶𝑂2 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 = 𝛽3 822 

0.1𝑣𝑎𝑡𝑝 − ∑ 𝑣𝑖

𝑛−1

𝑖

= 𝑧∗ 823 

𝑣𝑠
−𝑖 = 1 824 

𝑡 ∙ 𝑣𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑡 ∙ 𝑣𝑚𝑎𝑥  825 

𝑣𝑚𝑖𝑛 ≥ 𝜖 = 10−7 826 

𝑡 ≥ 0. 827 
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 828 

From Eq. (2) we predict concentration values for E. coli cells with growth rates of 0.4, 0.5, and 829 

0.7ℎ−1 using the previously obtained estimates for ranges of 
𝜎𝑝

𝜎𝑠
−𝑖 together with ranges of 

𝑣𝑝

𝑣𝑠
−𝑖. The 830 

latter can be obtained following the same procedure as described above using rates of glucose 831 

and oxygen uptakes, carbon dioxide release as well as growth for E. coli cells grown at rates 832 

of 0.4, 0.5, and 0.7ℎ−1.  833 

Fold changes in SCC metabolite concentrations in knock-out mutants 834 

We use a large-scale kinetic model of E. coli [8] to simulate a steady-state concentration and 835 

flux distribution from initial physiologically reasonable values for metabolite concentrations 836 

provided in the original publication. The simulated steady-state concentrations and fluxes yield 837 

a wild type reference. Next, we simulate single reaction knock-outs and predict positive steady 838 

state flux distribution closest to the wild type reference, following the Minimization of 839 

Metabolic Adjustment (MOMA) approach [33] for each mutant. The resulting flux distribution 840 

is used to calculate the concentrations of the 23 SCC metabolites following Eq. (1). In addition, 841 

we simulate steady-state flux distributions and concentrations for knock-out mutants from the 842 

kinetic model using the wild type reference as initial concentrations. For 929 out of 1474 843 

reaction knock-outs we could simulate steady-state values. Based on these knock-out mutants 844 

we then compare fold changes in concentration of the SCC metabolites with respect to the 845 

reference obtained from kinetic model simulations and predictions using MOMA.  846 

 847 

 848 

  849 
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Supplementary Figure legends: 988 

 989 

Fig. S1. Agreement between simulated and predicted bounds from a kinetic metabolic 990 

model of E. coli. The simulated and predicted (a) lower and (b) upper concentration bounds 991 

for 23 SCC metabolites in the large-scale kinetic model of E. coli. The very small discrepancies 992 

are due to numerical instabilities.  993 

 994 

Fig. S2. Distribution of rate constants used in calculation of concentration ranges for SCC 995 

metabolites in a genome-scale metabolic model of E. coli. Distribution of (a) the relevant 996 

rate constants and (b) their ratios for reactions coupled due to mass action kinetics; log-log 997 

distribution of (c) the relevant rate constants and (d) their ratios for reactions coupled due to 998 

mass action kinetics. 999 

 1000 

Fig. S3. Effect of missing information about relevant rate constants on the accuracy of 1001 

concentration range predictions for a large-scale kinetic model of E. coli. We consider 10 1002 

– 90% of the relevant rate constants to be unknown by random removal. We consider three 1003 

scenarios for the substitution of missing ratios of rate constants: (i) equality (i.e., kinetic rate 1004 

constants are assumed to be the same), (ii) the mean, or (iii) the median of the ratios of relevant 1005 

rate constants that are still present in the model. Shown are the boxplots (red lines inside each 1006 

box denote the corresponding medians) of the resulting Spearman correlation coefficients 1007 

between the predicted and simulated (a) lower bound vectors and (b) upper bound vectors of 1008 

concentrations over the SCC metabolites in the kinetic model of E. coli. 1009 

 1010 

Fig. S4. Effect of missing information about relevant rate constants on the accuracy of 1011 

concentration range predictions for a large-scale kinetic model of E. coli. We consider 10 1012 
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– 90% of the relevant rate constants to be unknown by random removal. We consider three 1013 

scenarios for the substitution of missing ratios of rate constants: (i) equality (i.e., kinetic rate 1014 

constants are assumed to be the same), (ii) the mean, or (iii) the median of the ratios of relevant 1015 

rate constants that are still present in the model. Shown are the boxplots (red lines inside each 1016 

box denote the corresponding medians) of the average Euclidean distance between the 1017 

predicted and simulated (a) lower bound vectors and (b) upper bound vectors of concentrations 1018 

over the SCC metabolites in the kinetic model of E. coli. 1019 

 1020 

Fig. S5. Effect of missing information about relevant rate constants on the accuracy of 1021 

concentration range predictions for a large-scale kinetic model of E. coli. We consider 10 1022 

– 90% of the relevant rate constants to be unknown by random removal. We consider three 1023 

scenarios for the substitution of missing ratios of rate constants: (i) equality (i.e., kinetic rate 1024 

constants are assumed to be the same), (ii) the mean, or (iii) the median of the ratios of relevant 1025 

rate constants that are still present in the model. Shown are the boxplots (red lines inside each 1026 

box denote the corresponding medians) of the Euclidean distance between the log-transformed 1027 

predicted and log-transformed simulated (a) lower bound vectors and (b) upper bound vectors 1028 

of concentrations over the SCC metabolites in the kinetic model of E. coli. 1029 

 1030 

Fig. S6. Effect of missing information about relevant rate constants on the accuracy of 1031 

concentration range predictions for a large-scale kinetic model of E. coli. We consider 10 1032 

– 90% of the relevant rate constants to be unknown by random removal. We consider three 1033 

scenarios for the substitution of missing ratios of rate constants: (i) equality (i.e., kinetic rate 1034 

constants are assumed to be the same), (ii) the mean, or (iii) the median of the ratios of relevant 1035 

rate constants that are still present in the model. Shown are the boxplots (red lines inside each 1036 

box denote the corresponding medians) of the Euclidean distance between the predicted and 1037 
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simulated (a) lower bound vectors of concentrations normalized by the respective maximum 1038 

value and (b) upper bound vectors of concentrations normalized by the respective maximum 1039 

value over the SCC metabolites in the kinetic model of E. coli. 1040 

 1041 

Fig. S7. Predicted concentration ranges for 15 intracellular metabolites in E. coli at 1042 

growth rates (GR) of 0.4, 0.5 and 0.7𝒉−𝟏 under the objective of optimizing ATP synthesis 1043 

and sum of total flux. The bars denote the predicted ranges from each of the three different 1044 

scenarios (a) over all three replicates and (b) over replicates with not more than one magnitude 1045 

difference in estimated range for the ratio of 
𝜎𝑝

𝜎𝑠
−𝑖.  The marked points denote the measured 1046 

concentrations in the employed data set. 1047 

 1048 

Fig. S8. Distribution of average Euclidean distance between simulated and predicted 1049 

concentration. From each of the 100 simulated steady-state flux distributions we predict 1050 

concentrations for the SCC metabolites and calculate the average Euclidean distance between 1051 

the simulated and predicted concentrations. 1052 

 1053 

Fig. S9. Comparison of predicted ranges with measured metabolite concentrations under 1054 

the objective of optimizing ATP synthesis for the data set of Ishii et al. Comparison of the 1055 

predicted concentration ranges for 15 intracellular metabolites in E. coli with absolute 1056 

concentrations measured at growth rates (GR) of (a) 0.4, (b) 0.5 and (c) 0.7ℎ−1. The colored 1057 

bars denote the predicted ranges from each of the three different replicates, while the black bar 1058 

represents the prediction over all replicates. For some metabolites no value could be predicted 1059 

due to numerical instabilities. The red cross denotes the measured value at the respective GR. 1060 

For metabolites with missing red cross, there is no access to measurements. The nomenclature 1061 

of the metabolites is provided in Supplementary Table S5. 1062 
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 1063 

Fig. S10. Comparison of predicted ranges with measured metabolite concentrations 1064 

under the objective of optimizing ATP synthesis and total flux for the data set of Gerosa 1065 

et al. Comparison of the predicted concentration ranges for 10 intracellular metabolites in E. 1066 

coli with absolute concentrations measured at seven different carbon sources. The red bars 1067 

denote the measured ranges over three different replicates, while the black bar represents the 1068 

predicted concentration. For some metabolites no value could be predicted due to numerical 1069 

instabilities. For the model simulating growth on succinate no steady-state solution could be 1070 

obtained without further model adaptation, therefore, no SCC concentration could be predicted.  1071 

 1072 

Fig. S11. Comparison of predicted ranges with measured metabolite concentrations 1073 

under the objective of optimizing ATP synthesis for the data set of Gerosa et al. 1074 

Comparison of the predicted concentration ranges for 10 intracellular metabolites in E. coli 1075 

with absolute concentrations measured at seven different carbon sources. The red bars denote 1076 

the measured ranges over three different replicates, while the black bar represents the predicted 1077 

concentration. For some metabolites no value could be predicted due to numerical instabilities. 1078 

For the model simulating growth on succinate no steady-state solution could be obtained 1079 

without further model adaptation, therefore, no SCC concentration could be predicted. 1080 

 1081 

Fig. S12. Fold change in concentration of SCC metabolites upon reaction knock-out. 1082 

Distributions of predicted and simulated fold change in concentration for the 23 SCC 1083 

metabolites over 929 single knock-out mutants, for which a steady-state flux distribution could 1084 

be simulated.  1085 

 1086 

1087 
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Supplementary Table captions 1088 

 1089 

Table S1. (A) Initial conditions sampled for simulations of the large-scale kinetic model of E. 1090 

coli. The initial concentration is given in units mmol/gDW. (B) Steady-state concentrations 1091 

obtained from simulations of the large-scale kinetic model of E. coli starting from the 1092 

respective initial conditions presented in Table S1A. The first two columns show the respective 1093 

minimum and maximum steady-state concentration over all 100 simulations. The concentration 1094 

is given in units mmol/gDW. (C) Steady-state flux distributions obtained from simulations of 1095 

the large-scale kinetic model of E. coli starting from the respective initial conditions presented 1096 

in Table S1A. The flux is given in units mmol/gDW/hr. (D) Simulated and predicted 1097 

concentration ranges for 23 SCC metabolites in a kinetic metabolic model of E. coli. 1098 

 1099 

Table S2. (A) Correlation between predicted concentration range and shadow price for 23 1100 

structurally constrained metabolites to the corresponding metabolic concentrations obtained 1101 

from 100 simulations of a kinetic model of E. coli core metabolism. (B) Euclidean distance 1102 

between simulated and predicted concentration bounds for 23 SCC metabolites in large-scale 1103 

kinetic model of E. coli. In addition the table provides simulated and predicted concentration 1104 

bounds in mmol/gDW. 1105 

 1106 

Table S3. List of rate constants for reactions in the genome-scale model iJO1366 of E. coli. In 1107 

addition to the used rate constants and the related organism in BRENDA, the table reports the 1108 

reaction abbreviation used in the model and the enzyme EC number related to each reaction. 1109 

In case more than one rate constant is known per reaction we consider the average value. 1110 

 1111 

Table S4. (A) Measured concentrations of SCC metabolites in E. coli under different growth 1112 

scenarios. The three replicates at growth rate 0.2h-1 are used as reference state. Measured 1113 
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volumetric concentrations1 were converted to mmol/gDW by using a ratio of aqueous E. coli 1114 

cell volume to dry weight of 0.0023L/g2. (B) Specific flux rates for E. coli grown under 1115 

different scenarios. 1116 

 1117 

Table S5. (A) Predicted concentration ranges for the 15 SCC metabolites in a genome-scale 1118 

metabolic model of E. coli with available data on concentration. (B) In addition correlation 1119 

values between predicted and simulated bounds are provided. 1120 

 1121 

Table S6. Number of metabolites with structurally constrained concentrations for each of the 1122 

metabolic networks analyzed. The numbers of reactions and metabolites correspond to the 1123 

number after reaction splitting into irreversible reactions and removal of blocked reactions. The 1124 

latter is needed to satisfy the prerequisite for a positive steady state. 1125 

 1126 

Table S7. Fraction of fully coupled reactions and reactions coupled due to mass action kinetics 1127 

in 14 analyzed genome-scale metabolic networks. 1128 

 1129 

Table S8. Structurally constrained metabolites across the 14 analyzed metabolic networks. In 1130 

addition, the in- and out-degree for these metabolites are provided. Metabolites marked in red 1131 

correspond to energy metabolism (see Table 1 in the main text) and metabolites marked in 1132 

green exhibit absolute concentration robustness. Metabolite names and their abbreviations are 1133 

used as provided in the original models. 1134 

 1135 

Table S9. Number of metabolites with structurally constrained concentrations metabolic 1136 

networks analyzed including enzyme information. The numbers of reactions and metabolites 1137 

correspond to the number after rewriting in Michaelis-Menten format, reaction splitting into 1138 
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irreversible reactions and removal of blocked reactions. Model components correspond to 1139 

metabolites, enzymes and enzyme-substrate-complexes. 1140 

 1141 

Table S10. (A) Measured concentrations of SCC metabolites in E. coli under growth on 1142 

different carbon sources. Replicates for growth on acetate are used as reference state. (B) 1143 

Specific flux rates for E. coli under growth on different carbon sources. 1144 

 1145 
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