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ABSTRACT 

Super-resolution (SR) microscopy has been used to observe structural details beyond the diffraction limit 

of ~250 nm in a variety of biological and materials systems. By combining this imaging technique with 

both computer-vision algorithms and topological methods, we reveal and quantify the nanoscale 

morphology of the primary cilium, a tiny tubular cellular structure (~2-6 m long and 200-300 nm 

diameter). The cilium in mammalian cells protrudes out of the plasma membrane and is important in many 

signaling processes related to cellular differentiation and disease.  After tagging individual ciliary 

transmembrane proteins, specifically Smoothened (SMO), with single fluorescent labels in fixed cells, we 

use three-dimensional (3D) single-molecule SR microscopy to determine their positions with a precision 

of 10-25 nm. We gain a dense, pointillistic reconstruction of the surfaces of many cilia, revealing large 

heterogeneity in membrane shape. A Poisson surface reconstruction (PSR) algorithm generates a fine 

surface mesh, allowing us to characterize the presence of deformations by quantifying the surface 

curvature. Upon impairment of intracellular cargo transport machinery by genetic knockout or small-

molecule treatment of cells, our quantitative curvature analysis shows significant morphological 

differences not visible by conventional fluorescence microscopy techniques. Furthermore, using a 

complementary SR technique, 2-color, 2D STimulated Emission Depletion (STED) microscopy, we find 

that the cytoskeleton in the cilium, the axoneme, also exhibits abnormal morphology in the mutant cells, 

similar to our 3D results on the SMO-measured ciliary surface. Our work combines 3D SR microscopy 

and computational tools to quantitatively characterize morphological changes of the primary cilium under 

different treatments and uses STED to discover correlated changes in the underlying structure. This 

approach can be useful for studying other biological or nanoscale structures of interest.  
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MAIN TEXT: 

Introduction 

Revealing the three-dimensional (3D) nanoscale membrane structure of biological cells in both a non-

invasive and precise manner remains a challenging problem. Structural components that define the cell 

outer morphology have been examined using various conventional fluorescence microscopy methods (1, 

2), but the resolution is ultimately limited by diffraction (~250 nm). Super-resolution (SR) fluorescence 

microscopy circumvents the diffraction limit by either imaging and localizing a sparse set of single 

molecules (SM) separated in time (3-5) or by shrinking the effective excitation point-spread function 

(PSF) via STimulated Emission Depletion (STED) microscopy (6-8). The relatively non-invasive nature 

of optical microscopy can then be utilized for nanoscale structural analysis. 

The first technique, SM super-resolution (SR) microscopy, requires the structure of interest to be 

densely labeled with a fluorophore that has at least two states with distinct emissive (on-off) properties, 

and this mechanism is crucial to force sparsity in each imaging frame (9). Active control of the labels can 

be achieved either optically (e.g. illumination with a near-UV light source for photoactivation) (10-13) or 

non-optically (e.g. label reacting with a nearby ligand in a reversible fashion to induce blinking) (14-16). 

Each molecule is then fit with a mathematical function that determines its position with a precision that 

scales as ~1/√𝑁 where N is the number of photons detected, and the locations are eventually merged 

together to create a reconstructed image with an enhanced resolution of typically ~20-40 nm for 

fluorescent protein labels, with improved precisions for small-molecule emitters providing more photons. 

However, determining 3D position information is difficult due to the standard PSF being symmetric about 

the focal plane and only observable over a relatively small axial range (~500 nm) compared to typical 

structures of interest (17). To address these issues, recent developments in PSF engineering have made it 

possible to encode depth information within the PSF shape of the SM emitter, including astigmatism (18), 
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multiplane (19), 4Pi (20), and Fourier domain manipulation (21-26). In particular, the double-helix (DH) 

PSF allows for 3D SM localization, because individual emitters appear as two spots on the camera which 

revolve around one another in different z-positions, thus the angle between the two lobes encodes z 

information over a relatively large axial depth-of-field (~2 µm) (27). The DH-PSF is generated by moving 

the camera away from the intermediate image plane (IIP) by four focal lengths f, and then placing an 

optical phase mask in the collection path equidistant between two lenses of focal length f, referred to as a 

4f system (28). This technique has been used to study nanohole arrays across large fields of view (29), 

protein localization patterns within bacteria (30-32), and organelles inside mammalian cells (33). 

An alternate SR microscopy method, STED microscopy (6-8), requires two laser beams which work 

in concert to shrink the effective PSF of the excitation spot in a confocal scanning configuration. The 

excitation beam is focused to a diffraction-limited spot onto a sample and pumps the molecules into the 

first electronic excited state. A second overlapping depletion beam at longer wavelengths is shaped 

optically into a donut with a dark center, selectively forcing emitters that lie at the edge of the excitation 

spot to produce far-red stimulated emission light that is filtered out. In this way, only the fluorophores at 

the very center of the donut undergo normal fluorescence emission, which yields imaging resolution better 

than the diffraction limit. Images are generated by scanning over the co-aligned laser beams over the 

region of interest (34, 35). This technique has been used to examine nitrogen-vacancy centres (36), 

neurons (37), centriole proteins (35, 38), and many other structures at high resolution. 

In this work, we employed both imaging techniques to study the primary cilium in cells, which is a 

tubular structure ~2-6 µm long and ~200-300 nm in diameter. The overall structure is based on the 

axoneme (39), a column of nine-fold symmetric microtubule doublets, running through the center of the 

cilium. The cilium is covered by the ciliary membrane, an extension of the plasma membrane which has 

a distinct protein-lipid composition to the rest of the cell (40). This non-motile, antenna-like sensory 
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organelle is essential for facilitating proper signal transduction, cell-to-cell communication, and proper 

regulation of cell division in mammalian cells (41, 42). Impaired ciliary function leads to a collection of 

human diseases termed “ciliopathies” with a broad range of pathologies of various severities including 

polydactyly (multiple digits), cystic kidney disease, obesity, and retinal degeneration (43). One reason 

these debilitating diseases arise is due to impaired expression of intraflagellar transport (IFT) complexes, 

which is a family of proteins that move components required for constructing the cilium up and down 

along the structure (44). When IFT is functioning incorrectly, cilia are often found completely missing or 

misshapen when observed using fluorescence or electron microscopy (EM) (45-48). Although recent 

studies using SR microscopy have elucidated the distribution of a plethora of proteins residing within the 

primary cilium (35, 49-51), there remains a need for quantitative approaches to characterize the ciliary 

membrane shape.  

Here we describe a method for revealing and quantifying the membrane structure of the primary cilium 

using a combination of SR microscopy techniques and computer-vision algorithms. In mouse embryonic 

fibroblast (MEF) cells, we genetically express and label a crucial transmembrane ciliary protein 

Smoothened (SMO) with a bright fluorophore, add a blinking buffer for STORM (52), and perform 3D 

SM SR using the DH-PSF with a precision of 10-25 nm. Our processed 3D molecular positions of SMO 

are then fed into the Poisson Surface Reconstruction (PSR) algorithm, which produces 3D triangulated 

surface meshes representing the shape of each primary cilium membrane. Computing the mean (H) and 

Gaussian (K) curvature provides a quantitative picture of the surface shape at a high resolution. Upon 

impairment of the retrograde transport machinery through genetic modification or treatment, the 

narrowing and bulging near the the tip of the cilium is more severe. Surface information allows us to 

calculate the Willmore Energy (𝑊𝐸) (53) as an appropriate metric for measuring its overall characteristic 

shape, and shows a significant increase in our mutant cells. Furthermore, when imaging primary cilia in 
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IFT25 mutant cells using 2-color 2D STED microscopy, we observe fluorescently labeled αTubulin 

spanning the entire primary cilium and in some cases occupying the bulging ciliary membrane at the tip,  

features in which we did not find in wild type MEF cells. By combining SR fluorescence microscopy and 

quantitative surface meshing, this method of shape analysis may be used to study a broad range of 

nanoscale tubular structures in a more quantitative and precise way. 

 

Materials and Methods 

Cell culture: Mouse embryonic fibroblast (MEF) cells were generated, which stably express 

Smoothened (SMO) proteins with an extracellular SNAP tag (SNAP-SMO) and Pericentrin-YFP (PACT-

YFP) as a basal marker. Cell lines used: (1) SMO-/-, SNAP-SMO, YFP-PACT; (2) IFT25-/- (IFT25), 

SNAP-SMO, YFP-PACT as described in Ref. (54).  

Sample preparation (3D SR Microscopy): MEF cells are first labeled with Benzylguanine-Alexa647 

(NEB, S9136S), then fixed with 4% paraformaldehyde (PFA) and finally treated with a quenching solution 

of 10 mM NH4Cl. The samples are washed 3x with 1x PBS, pH 7.4 then either imaged immediately or 

stored at 4°C up to 1-week before being discarded.  

3D SM Microscopy Imaging: Experiments are performed on a customized inverted microscope 

(Olympus IX71) where our sample is mounted on a piezo-electric stage (PI-Nano) and is in contact with 

an oil-immersion objective (Olympus, 100x, 1.4 NA, UPLANSAPO). New imaging buffer is added for 

each primary cilium imaged (1-2 hours), which consists of glucose oxidase (Sigma-Aldrich, G2133), 

catalase from bovine serum (Sigma-Aldrich C100), 100 mM Tris-HCl, pH 8.0 (ThermoFisher Scientific, 

15568025), 10% (w/v) glucose solution (Sigma-Aldrich, 49139), 140 mM beta-mercaptoethanol (Sigma-

Aldrich, M6250), and H2O (Nanopure) (52). We locate one primary cilium and image SNAP-SMO-

Alexa647 and PACT-YFP using the 641 nm (Coherent Cube, 100 mW) and 514 nm (Coherent Sapphire, 
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50 mW) lasers, respectively. When we place the cilium at the center of the field-of-view (FOV), the 

double-helix (DH) phase mask is carefully placed at the Fourier Plane (FP) in our 4f system (Fig. S1 in 

the Supporting Material). The DH-phase mask has the effect of optically splitting the standard PSF into 

two lobes, where the midpoint determines its x, y position while the angular orientation provides z 

information which is separately calibrated (see Supporting Material). To begin imaging, the intensity of 

the 641 nm laser (1-5 kW/cm2) is increased, and the collection of labels is allowed to bleach down until 

single-molecule concentrations are achieved and imaging frames are recorded in the presence of blinking. 

Over the next hour, irradiation from a secondary 405 nm (Obis, 100 mW) laser is used to maintain 

photoblinking labels at suitable densities. Red fluorescent fiducial beads are also imaged simultaneously 

several microns away from the cilium to correct for sample drift. Detected fluorescence is recorded using 

a silicon EMCCD camera (Andor Xion, DU-897U-CS0-#BV) at a speed of 20 frames/second (50 

ms/frame) with an electron-multiplying gain of 200, and further analyzed using the easyDHPSF program, 

which is freely available online (55).  

Meshing: Using MeshLab (ISTI-CNR, Pisa, Italy), we apply the Poisson Surface Reconstruction 

algorithm to our 3D data in order to create a triangulated surface as described in the SI. The results are 

exported in a ‘*.ply’ file format which is used to plot our 3D mesh in MATLAB (The Mathworks, Natick, 

MA) and for our curvature analysis.  

Curvature Analysis: We then fit a surface to a “patch” of points, which consists of the 1st & 2nd 

nearest neightbors to each vertex of the mesh (Fig. S4 in the Supporting Material), to the following form: 

𝑧 = 𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 

where its coefficients are used to calculate the Mean Curvature (H) and Gaussian Curvature (K) as follows 

(56): 

𝐻 =
𝑎 + 𝑐 + 𝑎𝑒2 + 𝑐𝑑2 − 𝑏𝑑𝑒

(1 + 𝑑2 + 𝑒2)
3
2

 , 𝐾 =
4𝑎𝑐 − 𝑏2

(1 + 𝑑2 + 𝑒2)2
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We can then calculate the Willmore Energy (53) by the following expression: 

𝑊𝐸 = ∑ 𝑎𝑖(𝐻𝑖
2 − 𝐾𝑖)

𝑖

 

where 𝐻𝑖, 𝐾𝑖, and 𝑎𝑖 are the mean curvature, Gaussian curvature, and surface area of the 𝑖𝑡ℎ triangle of 

the mesh respectively. The Willmore Energy Density is defined as 𝑊𝐸,𝐷 = 𝑊𝐸/𝐴, where 𝐴 = ∑ 𝑎𝑖𝑖 . 

Sample Preparation  for 2D STED: Cell samples are fixed with 4% PFA for 15 min at 25°C, washed 

with 1x PBS, then immersed in a blocking solution, consisting of 1% TritonX-100, Normal Donkey Serum 

(Jackson ImmunoResearch, 017-000-121), and 1x PBS, for 30 min at 25°C. We stain our samples with 

primary/secondary antibody, targeting SNAP-SMO with Atto647N and αTubulin with Star520SXP. 

2-color 2D STED Microscopy: STED images were collected on a bespoke 2-color fast scanning 

STED microscope (Fig. S6 in the Supporting Material).  Briefly, laser pulses of 750 nm for the depletion 

beam and 530 nm and 635 nm for the excitation beams are scanned along the fast axis using a 7.5 kHz 

resonant mirror and along the slow axis using a piezo stage.  Fluorescence is detected through a ~0.7 and 

0.8 A.U. pinhole (in the red and green channels, respectively) sequentially on a Si APD between 550-

615 nm for the green channel and 660-705 nm for the red channel.  The images are acquired using a 

custom LabVIEW algorithm running on an FPGA.  See Supporting Material for details. 

 

 

 

Results and Discussion 

 

3D SR Microscopy reveals heterogeneity in membrane shape 

 

To study the ciliary membrane, we chose the transmembrane protein SMO as the labeling target 

because these proteins are known to move in a largely diffusive manner and be relatively dense during Hh 

pathway activation (54, 57, 58). Our baseline MEF cells, denoted as wt, were treated with a drug named 

Smoothened Agonist (SAG) (59), which activates the Hh signaling pathway and triggers SMO to localize 
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specifically to the primary cilium (Fig. 1a). SMO is conveniently labeled extracellularly using cells 

expressing a genetic fusion to the SNAPtag (SNAP), which reacts with a benzyl-guanine-derivatized 

fluorophore, here Alexa647. After SNAP-SMO is covalently labeled with the Alexa647 fluorophore and 

chemically fixed, we first imaged our samples, in the presence of a blinking buffer, using a 641 nm laser 

to detect a diffraction-limited image of SNAP-SMO, then used a 514 nm laser to detect PACT-YFP, which 

is a fluorescent marker of the primary cilium base (Fig. 1b). In order to gain as much information of the 

ciliary surface, a longer-than-normal time (~60 min) is spent imaging blinking labels for one sample, 

where each detected molecule appears as two spots that both roughly take on the shape of a Gaussian on 

our camera. We capture molecules within a 2 µm-thick axial range with a high spatial precision and a 

relatively large x-y area (40 µm x 40 µm) which allows us to simultaneously image SNAP-SMO and a 

nearby bright fiducial marker used to correct for sample drift (Fig. 1c). The single emitters produced a 

signal of ~8700 photons on average and a mean background level of ~216 photons/pixel, yielding a ~10-

25 nm spatial resolution with several thousands of localizations for each cilium (Fig. S2 in the Supporting 

Material). Our complete 3D reconstructions, or “point clouds”, revealed localizations densely-packed 

within the ciliary membrane in a near homogenous fashion (Fig. 1d). By looking at cilia in 3D on many 

wt MEF cells, we observe a variety of distinct morphological classes, such as bending, kinking, bulging, 

and the occasional budding with a diameter of ~100 nm (Fig. 1c, e, f). In addition, we were also able to 

detect a few SNAP-SMO molecules outside of the primary cilium, likely on the plasma membrane and 

were not analyzed further. Despite the fact that these cells were grown under identical conditions, the wide 

range of heterogeneity in shape from one cilium to another is clearly apparent. Furthermore, our results 

demonstrate that the underlying structure of the primary cilium is not a simple cylinder/hemispheric-cap  

as it is frequently modeled.  
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2D surface fitting captures the ciliary membrane surface and enables curvature quantification 

In order to extract the complex surface of the ciliary membrane, we used the Poisson Surface 

Reconstruction (PSR) algorithm in the freely available package MeshLab (60). The advantages of this 

algorithm are that it is robust to noisy, non-uniform point cloud data, and outperforms other commonly 

used surface fitting methods (61). We prepared our dataset by first selecting only the points that reside 

within the primary cilium. Because the algorithm works best when the underlying surface is topologically 

closed, we selected several points near the base of the cilium to determine a plane of best fit. The point 

cloud was then copied and rotated 180° about the plane axis, producing a rotationally symmetric point 

cloud made up of two identical shapes. Using the proper fitting parameters, we then generated 2D 

triangular meshes of each primary cilium, providing us with a clearer picture of the surface (Fig. 2a). 

Rather than having to navigate through a point cloud, we are able to observe the contours of the surface 

with greater clarity from many different perspectives (Movie S1, S2 in the Supporting Material). Similar 

to our super-resolution reconstructed images, we can better identify regions of bulging, narrowing, and 

enlargement along the ciliary membrane, which are prominent features in IFT25 mutant cells (Fig. 2b). In 

addition, the vertices of the mesh allowed us to obtain the ciliary axis, a centroid line that spans from the 

base to the tip of the primary cilium (see Fig. 3 below). If necessary, surface meshes for wt and mutant 

cells can also be 3D-printed using standard plastic-filament material, a true 3D representation of the 

meshes shown in Fig. 2 (Fig. S3 in the Supporting Material). 

We then quantified the local shape of the ciliary membrane by calculating its mean (H) and Gaussian 

(K) curvature along the entire surface (Fig. 3). A K surface heat map highlights regions of curvature where 

they represent one of the following shapes: (1) sphere, (2) cylinder, or (3) saddle point. When comparing 

one cilium to another, it is easy to recognize morphological differences and locate where regions of 

unusual or interesting behavior occur. Further, by measuring the surface area, A, and the length of the 
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cilium, l, we can then compute an approximate diameter along the shaft of the primary cilium (Table 1). 

When plotting the values of A and l cell by cell in a 2D scatterplot, overall they follow a linear relationship, 

as expected (Fig. S5 in the Supporting Material). None of the diameters are significantly different across 

all four conditions. 

To further quantify the cilium’s overall morphology, we calculated its Willmore energy (𝑊𝐸) which 

is expressed by the following 

𝑊𝐸 = ∑ 𝑎𝑖(𝐻𝑖
2 − 𝐾𝑖)

𝑖

 

where 𝐻𝑖, 𝐾𝑖, and 𝑎𝑖 are the mean curvature, Gaussian curvature, and surface area of the 𝑖𝑡ℎ triangle of 

the mesh respectively. The intuition behind 𝑊𝐸 is that it is a strictly positive quantity with a minimum 

value of 0 when the object is a sphere. For a surface that is characterized to be morphologically more 

complex, which includes being stretched in a certain direction or severely indented, 𝑊𝐸 will take on a 

larger value. However, a normal cilium that is unusually long with a large surface area can have a value 

of 𝑊𝐸 comparable to one that is relatively short but very narrow and bulbous. To offset the variability in 

surface area and to ensure a fairer comparison, we computed the total surface area of one mesh, 𝐴 = ∑ 𝑎𝑖𝑖 , 

and define here the Willmore energy density 𝑊𝐸,𝐷 = 𝑊𝐸/𝐴. By calculating this value for all of our 

primary cilia, we found it to be a useful metric for comparing overall shape phenotype. 

 

Altered morphology is detected in cells with impaired retrograde transport 

 

We examined cells where IFT25 were genetically knocked out, which allows SMO to densely 

accumulate to the primary cilium despite the absence of pathway activation. 3D SM microscopy on many 

different cilia in untreated IFT25 cells shows an altered morphology (Fig. 4c). In particular, there was a 

larger proportion of cells that exhibited a bulbous tip which was apparent upon generating the surface 

meshes. We characterized the surfaces by calculating their respective H and K profiles, where large 
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negative values of K correspond to regions of severe narrowing of the mesh (Fig. 4). As a related condition,  

IFT25 cells treated with SAG should have an added accumulation of SMO, and these cells showed a 

similar phenotype to the IFT25 cells without SAG. This suggests that increased bulging effects in the 

primary cilium are largely due to the absence of transport complexes and the accumulation of non-SMO 

proteins, rather than driven strictly by SMO protein accumulation.  

To see if we could observe a similar phenotype in our wt MEF cells when transport is modified, we 

treated them with ciliobrevin D and performed 3D SM microscopy. This small-molecule inhibitor of the 

motor cytoplasmic dynein perturbs retrograde protein trafficking within the primary cilium (62). It has 

been previously shown that prolonged incubation of cells with ciliobrevin D leads to complete cilia loss, 

but within a 4-hour incubation period, cilia are still present, although with disrupted retrograde transport 

(62). As expected (Fig. 4b), in cells treated with ciliobrevin D, increased bulging and narrowing was 

observed, similar to the morphological features found in IFT25 mutant cells.  

To quantitatively distinguish distinct categories of morphology, we calculated the curvatures and 

Willmore energies adjacent to a constriction. The most significant contstriction occurs at the position of 

minimum Gaussian curvature K (𝐾𝑚𝑖𝑛). By computing the average K, (�̅�) at the constriction and on both 

sides of the position of the 𝐾𝑚𝑖𝑛 value,  the average curvature is significantly smaller for each of the three 

mutant cases compared to the wt condition, indicating a more severe narrowing near this region (Fig. 5a). 

Furthermore, when calculating 𝑊𝐸,𝐷 for every cilium under the different mutant conditions, the value was 

on average higher among IFT25 cells compared to the wt case, and was also higher when wt cells are 

treated with ciliobrevin D (Fig. 5b).  

Our 3D SR methods for quantifying the morphology of the primary cilium clearly reveal measurable 

morphological changes when the retrograde transport machinery is severely impaired in MEF cells, either 

by genetic knockout of IFT25 or inhibition of dynein-2 function. Changes in ciliary membrane 
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morphology can be subtle under certain physiological conditions, but by combining 3D SM microscopy 

and existing quantitative methods from differential geometry, we were able to reveal and characterize 

features that would have been impossible to observe using conventional microscopy techniques. Although 

we show IFT25 to have at the very least an indirect effect on the membrane shape, the direct mechanism 

of these structural defects in the ciliary membrane is a subject of future study.  

 

Characterizing the membrane & axoneme simultaneously using 2-color 2D STED microscopy  

Based on previous studies (63), we hypothesized the axoneme, a 9-fold symmetric microtubule doublet 

structure providing the central core of the primary cilium, may also be altered in our IFT25 mutant cells. 

We observed both SMO and the α-tubulin component of the axonemal microtubules using 

primary/secondary antibody staining in fixed MEF cells. To achieve a resolution beyond the diffraction 

limit, we utilized STED microscopy which provided both a secondary verification of the morphological 

changes detailed above and also allowed us to correlate the relative distributions of SMO and the inner 

cytoskeleton of the same primary cilium. With a full-width half-maximum (FWHM) resolution of 50-100 

nm, we were able to resolve the two sides of the ciliary membrane in the SMO channel and obtained an 

enhanced resolution of the axoneme in our STED images compared to the corresponding confocal images 

(Fig. S7 in the Supporting Material). In addition, we were able to measure the diameters of the membrane 

and the axoneme (Fig. S9 in the Supporting Material), which are consistent with previous EM studies of 

the primary cilium (64). We find that, as expected, the ciliary membrane diameter is larger than the 

axonemal diameter by ~25%, but these diameters are not significantly different when comparing wt to 

IFT25 cells. For the wt MEF cells, the majority of the primary cilia had a normal phenotype, where the  

ciliary membrane and the axoneme were largely cylindrical in shape, although the latter was often found 

to stop a few hundred nanometers before it reached the tip (Fig. 6a). Although a very small proportion of 
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wt cilia had a bulged membrane near the tip of the cilium, the axoneme did not extend all the way to the 

tip, similar to other wt cells (Fig S8a in the Supporting Material). Despite this, the tip still maintained a 

semi-hemispheric structure in 2D which is consistent with our 3D SR results. In contrast, most of the 

IFT25 mutant cells imaged exhibited clear bulging near the tip of the ciliary membrane which also agrees 

with our 3D SR results.  Furthermore, a larger proportion of these cells had antibody-labeled α-tubulin 

proteins spanning the entire primary cilium length and occupying the bulging ciliary tip  (Fig. 6b). 

Although the images of the axoneme in some IFT25 mutant cells are found to lose the normal cylindrical 

structure near the tip and resemble a large bulge, it is possible that this region is occupied by monomeric 

α-tubulin proteins (Fig S8b in the Supporting Material). Based on these observations, one may speculate 

that when IFT25 is absent, a larger number of ciliary proteins accumulate at the tip , leading to a bulge in 

the ciliary membrane. Therefore, IFT25 clearly plays some role in ensuring that the primary cilium 

maintains a normal shape, even though previous studies show this protein is not required for ciliogenesis.  

 

Conclusion 

We have demonstrated a quantitative approach for interrogating the primary cilium morphology in 

mammalian cells using super resolution fluorescence microscopy of a transmembrane protein of the ciliary 

surface. By combining 3D SR microscopy and a meshing algorithm, we obtain high-resolution images of 

the ciliary membrane surface revealing a variety of nanoscale features. This high-resolution approach has 

revealed the existence of structural defects that were not seen in previous reports of diffraction-limited 

images of IFT25 mutants in MEF cells (64); specifically our analysis indicates significant changes in cilia 

morphology manifested in our measurements of 𝐻, 𝐾, 𝑊𝐸,𝐷. We are also able to demonstrate that wt cells 

treated with ciliobrevin D exhibit similar phenotypes to the IFT25 mutant cells. Therefore, impaired 

retrograde transport, either as a result of inhibiting retrograde motor dynein or due to a genetic deletion of 
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IFT25, affects the overall shape of the ciliary membrane, primarily in form of bulging, which is indicative 

of a underlying mechanism related to the mobility of cargo in the cilium. We also resolved the axoneme 

structure within mammalian cells by implementing STED microscopy. Notably, the antibody-labeled α-

tubulin proteins in the IFT25 mutant cells are observed to span the entire primary cilium. This suggests 

that IFT25 plays a role in properly maintaining the structure of the primary cilium, especially near the tip, 

even though it is not required for ciliogenesis. Our method for characterizing the biophysical and 

morphological properties of the ciliary membrane can be used to study other nanoscale structures, such as 

bacteria or the nuclear envelope, in a similarly quantitative manner, if the surfaces can be labeled with 

suitable dyes for SR microscopy.  
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Figure 1: Labeling and 3D SR imaging of the ciliary membrane. (a) SNAP-SMO proteins, where the 

SNAP protein is on the extracellular side, are covalently labeled with BG-Alexa647 along the ciliary 

membrane, which are usually found near the coverslip surface. PACT-YFP indicates the base of the cilium 

and a nearby bright fiducial is used to correct for spatial drift. (b) Overlaid diffraction-limited images of 

the SNAP-SMO and PACT-YFP in chemically fixed control MEF cells that were treated with SAG. 3D 

SR microscopy using the double-helix point spread function (DH-PSF) was performed to obtain a 

localization map of SNAP-SMO molecules along one primary cilium, reconstructed as a (c) 2D histogram 

and (d) 3D scatterplot. For SNAP-SMO distributions of other primary cilia, there is evidence of (e) 

kinking, (f) bulging, and budding within the same control MEF cells. Scale bar = 1 µm.  
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Figure 2: 2D surfaces of the ciliary membrane. MeshLab is used to create a triangular mesh using the 

input point cloud for (a) control MEF primary cilium and (b) IFT25 mutant cell, where different colored 

regions indicate, from left to right, bulging at the tip of the cilium, narrowing, and then enlargement. Scale 

bar = 1 µm.  
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Figure 3. Calculating Mean and Gaussian Curvature along mesh. (a) Mean curvature (H) and (c) 

Gaussian curvature (K) are calculated for each vertex along the mesh for a control MEF cell, and 

displayed here as heat maps. Each panel is a 90° rotation about the horizontal axis. The average (b) H 

and (d) K is calculated over a 100-nm wide window that slides along the ciliary axis in 20-nm steps. 
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(Inset figures) Yellow lines indicate the measured ciliary axis; blue points are the vertices of the mesh. 

Reporting mean ± S.E.M. Scale bar = 0.5 µm.  
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Figure 4: Comparing Gaussian Curvature (K) heat maps for different representative primary cilia 

across all conditions. Largely normal cilia are found among the control MEF cells, while in the mutant 

cells, there is severe narrowing occurring along the ciliary surface, indicated by the corresponding black 

arrows and red areas. Heat maps are all on the same scale. Scale bar = 0.5 µm.  

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/437640doi: bioRxiv preprint 

https://doi.org/10.1101/437640
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 
 

 
 

Figure 5: Quantitatively detecting changes in primary cilia morphology in MEF cells. When 

calculating the �̅�𝑚𝑖𝑛 and both neighboring regions 0.1 µm for each cilium, (a) there is a significant 

decrease in �̅�𝑚𝑖𝑛 found in mutant cells compared to the control wt MEF cells. (b) 𝑊𝐸,𝐷 measures the 

overall shape of the object and is found to be significantly higher in mutant cells. Reporting mean ± 

S.E.M. (dark gray), and mean ± S.D. (light gray). (** p < 0.01, * p < 0.05)  
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Figure 6: 2D STED microscopy reveals structural changes in the axoneme for IFT25 knockout 

cells. SNAP-SMO (Smo) and αTubulin (αTub) are stained with Atto647N and Star520SXP-labeled 

antibodies respectively in chemically fixed MEF cells, and are subsequently imaged using a 2-color 

confocal and 2-color STED microscope. Yellow double arrows indicate both magnitude shift and 

direction between the two red and green images.  (a) In control wt MEF cells, (i-v) the ciliary membrane 

exhibits a largely cylindrical shape while the axoneme is frequently observed to not extend to the tip of 

the cilia. (ii) Dotted line indicates where the axoneme ends. (b) In IFT25 cells, results similar to the 3D 

SR data are observed, where (i) kinks and (ii) narrowing of both the ciliary membrane and axoneme are 

pointed out in white arrows. (iii) Bulging and budding often occurs at the tip, and the axoneme appears 

to extend all the way to the tip and (iv) sometimes has an uneven diameter throughout the cilium. (v) 

Severe swelling of the ciliary membrane and the axoneme is also observed, although this is relatively 

rare. Scale bar = 1 µm. Image contrast within each cell line condition is identical for both channels.  
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 𝑤𝑡𝑆𝐴𝐺  𝑤𝑡𝑆𝐴𝐺
𝑐𝑏  𝐼𝐹𝑇25𝑁𝑜𝐴𝑔 𝐼𝐹𝑇25𝑆𝐴𝐺  

Number of Cells 17 14 16 12 

Ciliary Length (µm) 2.821 ± 0.658 2.564 ± 0.779 3.170 ± 0.640 3.083 ± 0.371 

Surface Area (µm2) 2.403 ± 0.631 1.960 ± 0.610 2.594 ± 0.728 2.475 ± 0.349 

Diameter (nm) 272 ± 40 244 ± 29 258 ± 41  257 ± 31 

 

 

Table 1: Measuring the length, surface area, and diameter of the primary cilium for different 

conditions from 3D SR imaging. Ciliary length is simply the complete length from the tip to the base 

of the cilium, summing over the areas of all the triangles is the surface area, and the diameter displayed 

is computed from a model assuming the cilium is a cylinder with a hemispheric cap (Fig. S5, Supporting 

Material). Reporting mean ± S.T.D. 
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1. Cell Culture 

 

Mouse embryonic fibroblast (MEF) cells are used for all our samples, which stably express Smoothened 

proteins with a SNAP tag (SNAP-SMO) and Pericentrin-YFP (PACT-YFP). Cell lines used: (1) wt: SMO-

/-, SNAP-SMO, PACT-YFP; (2) IFT25: IFT25-/-, SNAP-SMO, PACT-YFP 19. Cells are cultured in 

DMEM/High Glucose (Hyclone, SH30243.01) with 10% Fetal Bovine Serum (FBS) (Hyclone, 

SH30070.03), in 25 cm2 surface area cell culture flasks (Falcon) maintained in an incubator at 37°C and 

5% CO2 (ThermoFisher, Heracell 160i). When cells reach 80-90% confluency, cells are detached from 

the surface using 0.25% Trypsin (Hyclone, SH30042.01) and are pipetted into a 4-well chambered 

borosilicate coverglass (Fisher Scientific, 12-565-401). Immediately after they are plated, 200 nm 

diameter red fluorescent beads, ex: 580 nm, em: 605 nm (Invitrogen, F8801) are added to the sample. Cells 

are cultured in 10% FBS media for 24-48 hrs before they are serum starved in 0.5% FBS media for an 

additional 20-24 hrs. (1) wt cells are treated with 10 uM Smoothened Agonist (SAG) for 4 hr at the 20-hr 

mark of serum starvation. A separate chamber containing wt cells are treated with 10 uM ciliobrevin for 

1 hr before the 24-hr mark. (2) IFT25 cells are either (a) treated with SAG or (b) none at all (NoAg). 

 

2. Sample Preparation (3D SM Microscopy) 

Cell samples are first labeled with BG-Alexa647 (NEB, S9136S) at 3 uM concentration for 20 min at 37°C 

and 5% CO2. Each chamber of cells is washed with 0.5% FBS three times at 5-min intervals. Cells are 

fixed using 4% paraformaldehyde (PFA) (Alfa Aesar, 43368) for 15 min and then treated with a quenching 

solution of 10 mM NH4Cl for 10 min, both steps at 25°C. The samples are washed with PBS, pH 7.4 (1X) 

(Gibco, 1789842) at 5-min intervals and then stored at 4°C up to 1-week before being discarded. 

3. 3D SM Microscopy Setup 
 

Experiments are performed on a customized inverted microscope (Olympus, IX71) where the sample is 

mounted on a piezo-electric stage (PI-Nano) and is in contact with an oil-immersion objective (Olympus, 

100x, 1.4 NA, UPLANSAPO) applied with a small drop of oil (Immersol, 12-624-66A) before mounting. 

New imaging buffer is added for each primary cilium imaged (1-2 hrs), which consists of glucose oxidase 

(Sigma-Aldrich, G2133), catalase from bovine serum (Sigma-Aldrich, C100), 100 mM Tris-HCl, pH 8.0 

(ThermoFisher Scientific, 15568025), 10% (w/v) glucose solution (Sigma-Aldrich, 49139), 140 mM beta-

mercaptoethanol (Sigma-Aldrich, M6250), and H2O (Nanopure) 45. We locate one primary cilium and 

image SNAP-SMO-Alexa647 and PACT-YFP using the 641 nm (Coherent Cube, 100 mW) and 514 nm 

(Coherent Sapphire, 50 mW) laser, respectively. Fluorescence (emission) is collected through the 

objective, a dichroic filter (Semrock, FF425/532/656-Di01), and two bandpass filters (Chroma, 680-60; 

Chroma, 655LP). When the primary cilium is placed at the center of the field-of-view (FOV) and is in 

focus, the double-helix (DH) phase mask is carefully placed at the Fourier Plane (FP) in our 4f system, 

with our lenses each having a focal length of 𝑓 = 90 𝑚𝑚. We increase the intensity of the 641 nm laser 

(1-5 kW/cm2) and allow the fluorescent dye to bleach down to the single-molecule regime. Over the next 

hour, we gradually increase the 405 nm (Obis, 100 mW) laser intensity until either 1 hr has passed or 

single-molecule blinking becomes extremely sparse. Red fluorescent beads are also imaged 

simultaneously several microns away from the PC. Detected fluorescence is recorded using a silicon 

EMCCD camera (Andor Xion, DU-897U-CS0-#BV) at a speed of 14-20 frames/second (50-70 ms/frame) 

with an electron-multiplying gain of 200.  
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Figure S1: 3D SR Microscopy setup with the Double-Helix Phase Mask (DH-PM). Lasers go through a 

series of mirrors (M), dichroic mirrors (DC), and a periscope (PS), before it passes through the Kohler 

lens and the objective. The sample consists of a primary cilium that is sandwiched between the attached 

cell and the coverslip surface, and a nearby stationary fiducial. Emission is collected with the objective 

which then goes through the tube lens (TL) and rather than placing the camera at the intermediate image 

plane (IIP), the 4f system is implemented, where the double-helix phase-mask (DH-PM) is placed 

equidistant between two 4f lenses (L). A bandpass filter (BP) is placed right in front of the camera 

(EMCCD) which is used to detect the emitted fluorescence. 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/437640doi: bioRxiv preprint 

https://doi.org/10.1101/437640
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

28 
 

4. Z Calibration with Fiducials 

DHPSF calibrations are done using two different beads: (1) 625/645 nm, which is for the SNAP-SMO, 

and (2) 580/605 nm, which is for fiducials in our sample, correcting for sample drift. Calibration imaging 

samples are prepared by spin-coating the beads in 1% polyvinyl alcohol (PVA) onto a glass coverslip. 

Samples are then mounted onto the 3D SR microscopy imaging setup with the DH-PM placed at the FP. 

Using our piezo-electric stage, we scan over a 3 µm range along the z axis with a 50 nm step-size with 30 

frames measured at each z-height. We perform a forward and backward scan to account for hysteresis 

during the z-scan. This calibration step also produces template images of the DH-PSF which are used for 

the identification of single-molecule signals during post-processing of the raw data. All imaging is done 

at 25°C. 

 

5. 3D Localization of SNAP-SMO Molecules 

Using the easyDHPSF 41 MATLAB program, a z-axis calibration over a 3-µm range is obtained via a 2D 

Double-Gaussian fit, which provides us with xy positions, width, amplitudes, and offset levels of each 

lobe of the fluorescent bead. Collected raw data is used to calculate the phase-correlation to locate single-

molecules in the FOV and is ultimately fitted using the same model. An array of 3D positions is obtained, 

including information on photon counts, background counts, and other parameters relevant to our fits. 

 

6. In-situ Localization Precision Calculations 

For one 3D localization dataset from one primary cilium, we choose one localization of interest and pool 

in any other localizations that are both (1) within the next 10 frames and (2) within a ~74 nm 3D radius 

(√(30 𝑛𝑚)2 + (30 𝑛𝑚)2 + (60 𝑛𝑚)2). Each cluster of localizations has a minimum of 5 frames that 

meet our criteria. For calculating the localization precision, we calculate the standard deviation for each 

set of x, y, and z positions. Average signal and background photons is calculated by evaluating the mean 

over all localizations within each cluster.  

 

7. 2D Surface Meshing 

Scatterplots are prepared in the following way. We first select a few points near the base of the cilium, 

perform an elliptic fit, which also defines a plane of rotation, and then produce a direct copy of the original 

scatter plot which is rotated 180°. This step is important for creating a closed surface and to minimize 

artifacts near the base when performing our final curvature analysis. This new scatterplot is then used to 

extract out the three-dimensional surface using MeshLab. This program is used to first calculate the normal 

vectors of each point using a range of 30-200 neighboring points, which varies depending on how many 

localizations there are in one point cloud. Then, a Poisson Surface Reconstruction algorithm is applied to 

our processed data in order to create a triangulated surface (Octree Depth = 13; Solver Divide = 6; Samples 

per Node = 5; Surface Offsetting = None). Gaussian curvature is calculated to highlight areas of both 

positive and negative curvature. This data is then exported in the standard ‘*.ply’ file format which is used 

to plot our 3D mesh and further curvature analysis.  
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Figure S2: Localization precision measurements for x, y, and z with average number of signal and 

background photons per frame. 
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8. 3D-Printed Meshes 

 

Figure S3: 3D printed cilia. 

MeshLab creates the .STL file format which lists the x,y,z coordinates of the vertices on the mesh. An 

Ultimaker-2 printer using PLA filament and an infill setting of 25% printed the model. Printing was 

performed at the Atherton public library in San Mateo County. 
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9. Curvature Analysis 

 

Figure S4: Illustration of mesh with 1st and 2nd order neighboring points to the black point. 

We first choose a vertex along the mesh and search for its 1st & 2nd order nearest neighbors, which all 

make up a “patch” of triangles. Within each patch, we calculate the normal vector for every triangle and 

the angle at the vertex of interest. We determine the overall weighted normal vector of the patch and is 

used to rotate all points such that this vector is oriented along the z-axis. We then fit a surface to our points 

of the following form: 

𝑧 = 𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 
 

If we further define 𝑝 = [𝑎 𝑏 𝑐 𝑑 𝑒], 𝐴 = [𝑥2 𝑥𝑦 𝑦2 𝑥 𝑦], we solve for p by evaluating the following: 

 

𝐴𝑝 = 𝑧 → 𝑝 = (𝐴𝑇𝐴)−1𝐴𝑇𝑧 
 

Using the coefficients in p, we then calculate the Mean Curvature (H) and Gaussian Curvature (K) using 

the following expressions 46: 

 

𝐻 =
𝑎 + 𝑐 + 𝑎𝑒2 + 𝑐𝑑2 − 𝑏𝑑𝑒

(1 + 𝑑2 + 𝑒2)
3
2

 , 𝐾 =
4𝑎𝑐 − 𝑏2

(1 + 𝑑2 + 𝑒2)2
 

 

This was done for every vertex and are represented as heat maps, interpolated along the mesh. We 

calculate the Willmore Energy by calculating the following 

𝑊𝐸 = ∑ 𝑎𝑖(𝐻𝑖
2 − 𝐾𝑖)

𝑖

 

where 𝐻𝑖, 𝐾𝑖, and 𝑎𝑖 are the mean curvature, Gaussian curvature, and surface area of the 𝑖𝑡ℎ triangle of 

the mesh respectively. 
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10.  Ciliary Length and Surface Area 

 

 

Figure S5: Ciliary length and surface area for each condition, cell by cell. The total surface area of 

the cilium, 𝐴𝑐𝑖𝑙𝑖𝑢𝑚, is calculated by adding up the areas of all the triangles of the ciliary mesh. The ciliary 

length, 𝑙, is calculated as the length of the ciliary axis from the base to the tip. The population diameter, 

𝑑𝑐𝑖𝑙𝑖𝑢𝑚, is estimated by the output slope of a linear regression performed for each data set. Here we are 

making an assumption that the cilium takes on the approximate shape of a cylinder with a hemispheric 

cap, as shown in the figure inset on the bottom-right corner.  

 

For values of the diameter for each cell, d, in Table 1, the following derivation and calculation was utilized: 

 

𝐴𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝐴ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑐𝑎𝑝 + 𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 

= 2𝜋𝑟2 + 2𝜋𝑟(𝑙 − 𝑟) 

= 2𝜋𝑟𝑙 = 𝜋𝑑𝑙 
→ 𝑑 = 𝐴𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒/𝜋𝑙 

 

11. Sample Preparation (2D STED) 

Cell samples are fixed with 4% PFA for 15 min at 25°C, washed with 1x PBS, then immersed in a blocking 

solution, consisting of 1% TritonX-100, Normal Donkey Serum (Jackson ImmunoResearch, 017-000-

121), and 1x PBS, for 30 min at 25°C. We stain our samples with primary antibody for 1 hr, consisting of 

anti Smo-C and anti AlphaTubulin (Sigma-Aldrich, T6199) in blocking solution. Samples are then washed 

3x with 1x PBS at 5-min intervals, then stain our samples with secondary antibody for 1 hr, consisting of 

goat anti-rabbit atto647N (Active Motif, 15048) and goat anti-mouse Star520SXP (Abberior, 2-0002-009-

9) in blocking solution. Samples are then washed 3x with 1x PBS at 5-min intervals then are either 

immediately imaged or are stored at 4°C for up to 1 week 
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12. 2-color 2D STED Microscopy 

 

Figure S6: 2D STED Microscopy Schematic. Lasers are sent through a cleanup polarizer (Pol) and 

spectral filter (SF).  The two excitation lasers’ polarization are rotated by half-wave plates (HWP) prior 

to coupling into a polarization preserving fiber (PPF).  The depletion laser pulse is temporally stretched 

by a dispersive glass rod (DGR) before the beam is expanded by a beam expander (BE) and is further 

temporally stretched by 100 meters of PPF.  The fiber outputs are collimated using objective lenses.  The 

depletion beam is sent through another Pol and the donut shape is imparted by a vortex phase plate (VPP).  

All three beams are coupled by a series of dichroics (DC), and are scanned by a resonant mirror (RM), 

made conjugate to the back focal plane of the imaging objective by a telescope lens pair.  The beams are 

made circularly polarized by a quarter-wave plate (QWP).  Emission is collected with the imaging 

objective, is de-scanned by the same RM, and passes through the DCs.  It passes through a confocal 

pinhole (PH), is filtered by a SF, which changes depending on the color channel, and is detected on an 

avalanche photodiode (APD).  A beam splitter (BS) is used to image a small fraction of reflected/emitted 

fluorescence onto a camera (CCD) for alignment purposes. 
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STED images were collected on a bespoke 2-color fast scanning STED microscope (Figure S6).  The 750 

nm depletion laser is provided by a titanium-sapphire mode-locked oscillator operating at 80 MHz (Mira 

900D, Coherent).  The pulses are dispersed to ~200 ps in duration using 30 cm of SF2 glass, 10 cm of SF6 

glass, and 100 m of polarization maintaining optical fiber (OZ Optics).  The pulses are spectrally filtered 

(FF01-715/LP, Semrock) and the donut shape is created using a vortex phase-plate (RPC Photonics).  The 

excitation pulses are provided by 530 nm and 635 nm pulsed diode lasers (LDH-P-FA-530B & LDH-P-

C-635B, PicoQuant) that are electronically triggered to arrive prior to the depletion pulses.  The excitation 

beams are spatially filtered by polarization maintaining fibers (Thorlabs), and combined using a 532 nm 

longpass and 514/640 nm notch dichroic (ZT532RDC & ZT514/640RPC, Chroma).  The excitation beams 

are combined with the depletion beam by a 5 mm thick 710 nm shortpass dichroic (Z710SPRDC, Chroma).  

The beams enter the back-port of a Nikon TE300 inverted microscope and are converted to circularly 

polarized light using a quarter-wave plate (767 nm zero-order, Tower Optical).  The light is focused 

through an oil immersion objective (Plan Fluor 100x/1.3 NA, Nikon).  At the sample plane the green and 

red excitation beams have an average power of 40-60 kW/cm2 and 50-80 kW/cm2, respectively.  The 

depletion beam has an average power of 120-130 MW/cm2.  The fast axis is scanned using a 7.5 kHz 

resonant mirror (Electro-Optical Products) that is imaged onto the back focal plane of the objective using 

a Keplarian telescope.  The slow axis is scanned using a piezo stage (PD1375, Mad City Labs).  

Fluorescence is detected through the same objective, is de-scanned by the same resonant mirror, and 

passes through the previously mentioned dichroics.  An aperture corresponding to a ~0.7 AU and 0.8 AU 

(red and green channels respectively).  The fluorescence is then spectrally filtered by a 715 nm shortpass 

(FF01-715/SP, Semrock) followed by either a 635 nm longpass (BLP01-635R, Semrock) or a bandpass 

(ET585/65m, Chroma) for the red and green channels respectively.  Fluorescence is detected on a Si APD 

detector (SPCM-ARQH-13, Perkin Elmer).  Scan control and image acquisition use a custom LabVIEW 

algorithm running on an FPGA (PCIe-7842R, National Instruments) and host computer.  STED images 

have a pixel size of 20 nm.  Images in the red channel are obtained as a single frame with 1000 resonant 

mirror scans per line or an average pixel dwell time of ~0.1 ms/pixel.  Images in the green channel are 

obtained as 2-3 frames with 200 resonant mirror scans per line for each frame or an average pixel dwell 

time of ~20 µs/pixel/frame. 
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13. 2D STED Resolution  

 

Figure S7: Comparing confocal and STED image line profiles for one primary cilium in both color 

channels for SMO (upper) and -tubulin (lower). Line profiles were generated by extracting signal counts 

that reside in 20 nm bins underneath the drawn line for both channels. 
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14. Additional 2D STED Images of Unusual Primary Cilia 

 

 

Figure S8: Additional 2D STED images of unusual primary cilia. (a) Control MEF cells also exhibit 

(i,ii) bulging at the tip at times, where the axoneme does not extend to the tip. (b) Some cases of IFT25 

mutant cells produce oddly-formed cilia which are (iii) very short with a circular tip or (iv) very long with 

a narrowing along the shaft of the cilium with a bulging tip 
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15. Membrane/Axoneme Diameter Calculations 

 
Figure S9: Distributions of diameter measurements using 2D STED. Histograms and bar plots of (a) 

SNAP-SMO (𝐷𝑆𝑚𝑜), (b) α-tubulin (𝐷𝛼𝑇𝑢𝑏), and (c) difference (𝐷𝑆𝑚𝑜 − 𝐷𝛼𝑇𝑢𝑏). There is ~18% and 24% 

difference between SNAP-SMO and α-tubulin for wt and IFT25 mutant cells, respectively. Reporting 

mean ± S.E.M (𝑁𝑤𝑡,𝑐𝑖𝑙𝑖𝑎 = 12, 𝑁𝑤𝑡,𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 = 801, 𝑁𝐼𝐹𝑇25,𝑐𝑖𝑙𝑖𝑎 = 15, 𝑁𝐼𝐹𝑇25,𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 = 993).  

 

2D STED SNAP-SMO images are used to determine the ciliary axis, which is done by performing a spline 

fit to a set of user-selected input points chosen along the center of the cilium by eye. The intensity line 

profile, 600 nm long with a bin width of 20 nm perpendicular to the ciliary axis is determined at 50-nm 

long steps along the ciliary axis for both channels, resulting in a representation of the lateral extent of the 

cilium at each position. A 1D double-Gaussian fit to each profile is performed of the following form: 

𝑓(𝑥) = 𝐴 ∗ 𝑒𝑥𝑝 (−
(𝑥 − 𝑥01)2

2𝜎1
2 ) + 𝐵 ∗ exp (−

(𝑥 − 𝑥02)2

2𝜎2
2 ) + 𝐶 
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where A,B are the amplitudes, C is the constant background, 𝑥01, 𝑥02 are the centroids, 𝜎1, 𝜎2 are the 

standard deviations. The full-width half-maximum (FWHM) is calculated for each profile, 𝐹𝑊𝐻𝑀 =
𝑥1𝑓(𝑥1)=1/2 − 𝑥2𝑓(𝑥2)=1/2, which we define in this study as the diameter for the SMO-determined 

membrane and the axoneme.  
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16. Supplementary Movies 

Movie 1: Control wt MEF primary cilium 3D mesh 

Camera flythrough, which starts above the mesh, then follows along the ciliary axis, and finally pans 

away. This is the same mesh as shown in Figure 2a. White bounding box dimensions, 2750 nm x 1500 

nm x 1500 nm; video speed, 30 frames/sec. The HSV color scaling represents z in the image over a range 

from -175.8 to 1194.5 nm. 

Movie 2: IFT25 mutant MEF primary cilium 3D mesh 

Camera flythrough, which starts above the mesh, then follows along the ciliary axis, and finally pans 

away. This is the same mesh as shown in Figure 2b. White bounding box dimensions, 3700 nm x 900 nm 

x 600 nm; video speed, 30 frames/sec.  The HSV color scaling represents z in the image over a range from 

-196.4 to 227.1 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/437640doi: bioRxiv preprint 

https://doi.org/10.1101/437640
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

40 
 

Literature Cited 

1. Stephens, D. J. and V.J. Allan 2003. Light microscopy techniques for live cell imaging. Science. 300, 

82-86. 

2. So, P. T., C.Y. Dong, B.R. Masters and K.M. Berland 2000. Two-photon excitation fluorescence 

microscopy. Annu. Rev. Biomed. Eng. 2, 399-429. 

3. Betzig, E., G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. 

Davidson, J. Lippincott-Schwartz and H.F. Hess 2006. Imaging intracellular fluorescent proteins at 

nanometer resolution. Science. 313, 1642-1645. 

4. Rust, M. J., M. Bates and X. Zhuang 2006. Sub-diffraction-limit imaging by stochastic optical 

reconstruction microscopy (STORM). Nat. Methods. 3, 793-796. 

5. Hess, S. T., T.P.K. Girirajan and M.D. Mason 2006. Ultra-high resolution imaging by fluorescence 

photoactivation localization microscopy. Biophys. J. 91, 4258-4272. 

6. Hell, S. W. and J. Wichmann 1994. Breaking the diffraction resolution limit by stimulated emission: 

Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780-782. 

7. Klar, T. A., S. Jakobs, M. Dyba, A. Egner and S.W. Hell 2000. Fluorescence microscopy with 

diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. U. S. A. 97, 

8206-8210. 

8. Hell, S. W. 2007. Far-field optical nanoscopy. Science. 316, 1153-1158. 

9. Sahl, S. J. and W.E. Moerner 2013. Super-resolution fluorescence imaging with single molecules. 

Curr. Opin. Struct. Biol. 23, 778-787. 

10. Dickson, R. M., A.B. Cubitt, R.Y. Tsien and W.E. Moerner 1997. On/off blinking and switching 

behavior of single molecules of green fluorescent protein. Nature. 388, 355-358. 

11. Biteen, J. S., M.A. Thompson, N.K. Tselentis, G.R. Bowman, L. Shapiro and W.E. Moerner 2008. 

Super-resolution imaging in live caulobacter crescentus cells using photoswitchable EYFP. Nat. 

Methods. 5, 947-949. 

12. Dertinger, T., R. Colyer, G. Iyer, S. Weiss and J. Enderlein 2009. Fast, background-free, 3D super-

resolution fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. U. S. A. 106, 22287-22292, 

S22287/1-S22287/8. 

13. Uno, S., M. Kamiya, T. Yoshihara, K. Sugawara, K. Okabe, M.C. Tarhan, H. Fujita, T. Funatsu, Y. 

Okada and S. Tobita 2014. A spontaneously blinking fluorophore based on intramolecular 

spirocyclization for live-cell super-resolution imaging. Nature Chemistry. 6, 681. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/437640doi: bioRxiv preprint 

https://doi.org/10.1101/437640
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

41 
 

14. Dempsey, G. T., M. Bates, W.E. Kowtoniuk, D.R. Liu, R.Y. Tsien and X. Zhuang 2009. 

Photoswitching mechanism of cyanine dyes. J. Am. Chem. Soc. 131, 18192-18193. 

15. van de Linde, S., A. Loeschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann and M. Sauer 

2011. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. 

Protoc. 6, 991-1009. 

16. Dempsey, G. T., J.C. Vaughan, K.H. Chen, M. Bates and X. Zhuang 2011. Evaluation of 

fluorophores for optimal performance in localization-based super-resolution imaging. Nat. 

Methods. 8, 1027-1036. 

17. von Diezmann, A., Y. Shechtman and W.E. Moerner 2017. Three-dimensional localization of single 

molecules for super-resolution imaging and single-particle tracking. Chem. Rev. 117, 7244. 

18. Huang, B., S.A. Jones, B. Brandenburg and X. Zhuang 2008. Whole-cell 3D STORM reveals 

interactions between cellular structures with nanometer-scale resolution. Nat. Methods. 5, 1047-

1052. 

19. Dalgarno, P. A., H.I.C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D.C. Logan, D.P. Towers, 

R.J. Warburton and A.H. Greenaway 2010. Multiplane imaging and three dimensional nanoscale 

particle tracking in biological microscopy. Opt. Express. 18, 877-884. 

20. Schnitzbauer, J., R. McGorty and B. Huang 2013. 4Pi fluorescence detection and 3D particle 

localization with a single objective. Optics Express. 21, 19701-19708. 

21. Pavani, S. R. P., M.A. Thompson, J.S. Biteen, S.J. Lord, N. Liu, R.J. Twieg, R. Piestun and W.E. 

Moerner 2009. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction 

limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. U. S. A. 106, 2995-2999. 

22. Backer, A. S., M.P. Backlund, M.D. Lew and W.E. Moerner 2013. Single-molecule orientation 

measurements with a quadrated pupil. Opt. Lett. 38, 1521-1523. 

23. Shechtman, Y., S.J. Sahl, A.S. Backer and W.E. Moerner 2014. Optimal point spread function 

design for 3D imaging. Phys. Rev. Lett. 113, 133902. 

24. Backer, A. S., M.P. Backlund, A.R. von Diezmann, S.J. Sahl and W.E. Moerner 2014. A bisected 

pupil for studying single-molecule orientational dynamics and its application to 3D super-resolution 

microscopy. Appl. Phys. Lett. 104, 193701-193705. 

25. Backer, A. S. and W.E. Moerner 2014. Extending single-molecule microscopy using optical fourier 

processing. J. Phys. Chem. B. 118, 8313-8329. 

26. Shechtman, Y., L.E. Weiss, A.S. Backer, S.J. Sahl and W.E. Moerner 2015. Precise 3D scan-free 

multiple-particle tracking over large axial ranges with tetrapod point spread functions. Nano Lett. 

15, 4194-4199. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/437640doi: bioRxiv preprint 

https://doi.org/10.1101/437640
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

42 
 

27. Thompson, M. A., M.D. Lew, M. Badieirostami and W.E. Moerner 2010. Localizing and tracking 

single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-

helix point spread function. Nano Lett. 10, 211-218. 

28. Gahlmann, A., J.L. Ptacin, G. Grover, S. Quirin, A.R.S. von Diezmann, M.K. Lee, M.P. Backlund, 

L. Shapiro, R. Piestun and W.E. Moerner 2013. Quantitative multicolor subdiffraction imaging of 

bacterial protein ultrastructures in 3D. Nano Lett. 13, 987-993. 

29. von Diezmann, A., M.Y. Lee, M.D. Lew and W. Moerner 2015. Correcting field-dependent 

aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy. 

Optica. 2, 985-993. 

30. Lew, M. D., S.F. Lee, J.L. Ptacin, M.K. Lee, R.J. Twieg, L. Shapiro and W.E. Moerner 2011. Three-

dimensional superresolution colocalization of intracellular protein superstructures and the cell 

surface in live caulobacter crescentus. Proc. Natl. Acad. Sci. U. S. A. 108, E1102-E1110. 

31. Lee, M. K., P. Rai, J. Williams, R.J. Twieg and W.E. Moerner 2014. Small-molecule labeling of live 

cell surfaces for three-dimensional super-resolution microscopy. J. Am. Chem. Soc. 136, 14003-

14006. 

32. Bayas, C. A., J. Wang, M.K. Lee, J.M. Schrader, L. Shapiro and W.E. Moerner 2018. Spatial 

organization and dynamics of RNase E and ribosomes in caulobacter crescentus. Proc. Natl. Acad. 

Sci. U. S. A. 115, E3712-E3721. 

33. Gustavsson, A., P.N. Petrov, M.Y. Lee, Y. Shechtman and W.E. Moerner 2018. 3D single-molecule 

super-resolution microscopy with a tilted light sheet. Nat. Commun. 9, 1-8. 

34. Willig, K. I., B. Harke, R. Medda and S.W. Hell 2007. STED microscopy with continuous wave 

beams. Nat. Methods. 4, 915-918. 

35. Lau, L., Y.L. Lee, S.J. Sahl, T. Stearns and W.E. Moerner 2012. STED microscopy with optimized 

labeling density reveals 9-fold arrangement of a centriole protein. Biophys. J. 102, 2926-2935. 

36. Rittweger, E., K.Y. Han, S.E. Irvine, C. Eggeling and S.W. Hell 2009. STED microscopy reveals 

crystal colour centres with nanometric resolution. Nature Photon. 3, 144-147. 

37. Nagerl, U. V., K.I. Willig, B. Hein, S.W. Hell and T. Bonhoeffer 2008. Live-cell imaging of 

dendritic spines by STED microscopy. Proc. Natl. Acad. Sci. U. S. A. 105, 18982-18987. 

38. Lee, Y. L., J. Sante, C.J. Comerci, B. Cyge, L.F. Menezes, F.Q. Li, G.G. Germino, W.E. Moerner, 

K. Takemaru and T. Stearns 2014. Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the 

centriole-cilium interface and facilitates proper cilium formation and function. Mol. Biol. Cell. 25, 

2919-2933. 

39. Mirvis, M., T. Stearns and W. James Nelson 2018. Cilium structure, assembly, and disassembly 

regulated by the cytoskeleton. Biochem. J. 475, 2329-2353. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/437640doi: bioRxiv preprint 

https://doi.org/10.1101/437640
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

43 
 

40. Rohatgi, R. and W.J. Snell 2010. The ciliary membrane. Curr. Opin. Cell Biol. 22, 541-546. 

41. Goetz, S. C. and K.V. Anderson 2010. The primary cilium: A signalling centre during vertebrate 

development. Nat Rev Genet. 11, 331-344. 

42. Briscoe, J. and P.P. Thérond 2013. The mechanisms of hedgehog signalling and its roles in 

development and disease. Nat Rev Mol Cell Biol. 14, 416-429. 

43. Han, Y. and A. Alvarez-Buylla 2010. Role of primary cilia in brain development and cancer. Curr. 

Opin. Neurobiol. 20, 58-67. 

44. Lechtreck, K. F. 2015. IFT–cargo interactions and protein transport in cilia. Trends Biochem. Sci. 

40, 765-778. 

45. Huangfu, D. and K.V. Anderson 2005. Cilia and hedgehog responsiveness in the mouse. Proc. Natl. 

Acad. Sci. U. S. A. 102, 11325-11330. 

46. Tran, P. V., C.J. Haycraft, T.Y. Besschetnova, A. Turbe-Doan, R.W. Stottmann, B.J. Herron, A.L. 

Chesebro, H. Qiu, P.J. Scherz, J.V. Shah, B.K. Yoder and D.R. Beier 2008. THM1 negatively 

modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport 

in cilia. Nat Genet. 40, 403-410. 

47. Jacoby, M., J.J. Cox, S. Gayral, D.J. Hampshire, M. Ayub, M. Blockmans, E. Pernot, M.V. 

Kisseleva, P. Compere and S.N. Schiffmann 2009. INPP5E mutations cause primary cilium 

signaling defects, ciliary instability and ciliopathies in human and mouse. Nat. Genet. 41, 1027. 

48. Ko, H. W., R.X. Norman, J. Tran, K.P. Fuller, M. Fukuda and J.T. Eggenschwiler 2010. Broad-

minded links cell cycle-related kinase to cilia assembly and hedgehog signal transduction. 

Developmental Cell. 18, 237-247. 

49. Huang, F., G. Sirinakis, E. Allgeyer, L. Schroeder, W. Duim, E. Kromann, T. Phan, F. Rivera-

Molina, J. Myers, I. Irnov, M. Lessard, Y. Zhang, M. Handel, C. Jacobs-Wagner, C. . Lusk, J. 

Rothman, D. Toomre, M. Booth and J. Bewersdorf 2016. Ultra-high resolution 3D imaging of 

whole cells. Cell. 166, 1028-1040. 

50. Shi, X., G. Garcia III, Van De Weghe, Julie C, R. McGorty, G.J. Pazour, D. Doherty, B. Huang and 

J.F. Reiter 2017. Super-resolution microscopy reveals that disruption of ciliary transition-zone 

architecture causes joubert syndrome. Nat. Cell Biol. 19, 1178. 

51. Kohli, P., M. Hohne, C. Jungst, S. Bertsch, L.K. Ebert, A.C. Schauss, T. Benzing, M.M. Rinschen 

and B. Schermer 2017. The ciliary membrane-associated proteome reveals actin-binding proteins as 

key components of cilia. EMBO Rep. 18, 1521-1535. 

52. Halpern, A. R., M.D. Howard and J.C. Vaughan 2015. Point by point: An introductory guide to 

sample preparation for Single‐Molecule, Super‐Resolution fluorescence microscopy. Curr. Protoc. 

Chem. Biol. 7, 103-120. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/437640doi: bioRxiv preprint 

https://doi.org/10.1101/437640
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

44 
 

53. Bobenko, A. I. and P. Schröder 2005. Discrete willmore flow. ACM SIGGRAPH 2005 courses. 5. 

54. Milenkovic, L., L.E. Weiss, J. Yoon, T.L. Roth, Y.S. Su, S.J. Sahl, M.P. Scott and W.E. Moerner 

2015. Single-molecule imaging of hedgehog pathway protein smoothened in primary cilia reveals 

binding events regulated by Patched1. Proc. Natl. Acad. Sci. U. S. A. 112, 8320-8325. 

55. Lew, M. D., A.R.S. von Diezmann and W.E. Moerner 2013. Easy-DHPSF open-source software for 

three-dimensional localization of single molecules with precision beyond the optical diffraction 

limit. Protocol Exchange., 026. 

56. Garimella, R. V. and B.K. Swartz 2003. Curvature estimation for unstructured triangulations of 

surfaces. Los Alamos National Laboratory. 

57. Milenkovic, L., M.P. Scott and R. Rohatgi 2009. Lateral transport of smoothened from the plasma 

membrane to the membrane of the cilium. J Cell Biol. 187, 365-374. 

58. Corbit, K. C., P. Aanstad, V. Singla, A.R. Norman, D.Y.R. Stainier and J.F. Reiter 2005. Vertebrate 

smoothened functions at the primary cilium. Nature. 437, 1018-1021. 

59. Chen, J. K., J. Taipale, K.E. Young, T. Maiti and P.A. Beachy 2002. Small molecule modulation of 

smoothened activity. Proc Natl Acad Sci USA. 99, 14071-14076. 

60. Cignoni, P., M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli and G. Ranzuglia 2008. Meshlab: 

An open-source mesh processing tool. Eurographics italian chapter conference. 129-136. 

61. Cao, L. and F.J. Verbeek 2013. Analytical evaluation of algorithms for point cloud surface 

reconstruction using shape features. Journal of Electronic Imaging. 22, 043008. 

62. Firestone, A. J., J.S. Weinger, M. Maldonado, K. Barlan, L.D. Langston, M. O’Donnell, V.I. 

Gelfand, T.M. Kapoor and J.K. Chen 2012. Small-molecule inhibitors of the AAA ATPase motor 

cytoplasmic dynein. Nature. 484, 125. 

63. Liu, H., W. Li, Y. Zhang, Z. Zhang, X. Shang, L. Zhang, S. Zhang, Y. Li, A.V. Somoza and B. Delpi 

2017. IFT25, an intraflagellar transporter protein dispensable for ciliogenesis in somatic cells, is 

essential for sperm flagella formation. Biol. Reprod. 96, 993-1006. 

64. Keady, B. T., R. Samtani, K. Tobita, M. Tsuchya, J.T. San Agustin, J.A. Follit, R. Subramanian, 

C.W. Lo and G.J. Pazour 2012. IFT25 links the signal-dependent movement of hedgehog 

components to intralflagellar transport. Dev Cell. 22, 940-951. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/437640doi: bioRxiv preprint 

https://doi.org/10.1101/437640
http://creativecommons.org/licenses/by-nc-nd/4.0/

