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Abstract

White matter hyperintensities (WMH) or white matter lesions exhibit high variability

in their characteristics both at population- and subject-level, making their detection a

challenging task. Population-level factors such as age, vascular risk factors and neurode-

generative diseases affect lesion load and spatial distribution. At the individual level,

WMH vary in contrast, amount and distribution in different white matter regions.

In this work, we aimed to improve BIANCA, the FSL tool for WMH segmentation,

in order to better deal with these sources of variability. We worked on two stages of

BIANCA by improving the lesion probability map estimation (classification stage) and

making the lesion probability map thresholding stage automated and adaptive to local

lesion probabilities. Firstly, in order to take into account the effect of population-level

factors, we included population-level lesion probabilities, modelled with respect to a

parametric factor (e.g. age), in the classification stage. Secondly, we tested BIANCA

performance when using four alternative classifiers commonly used in the literature,

with respect to K-nearest neighbour algorithm currently used for lesion probability map

estimation in BIANCA. Finally, we propose LOCally Adaptive Threshold Estimation
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(LOCATE), a supervised method for determining optimal local thresholds to apply to

the estimated lesion probability map, as an alternative option to global thresholding (i.e.

applying the same threshold to the entire lesion probability map). For these experiments

we used data from a neurodegenerative cohort and a vascular cohort.

We observed that including population-level parametric lesion probabilities with re-

spect to age and using alternative machine learning techniques provided negligible im-

provement. However, LOCATE provided a substantial improvement in the lesion seg-

mentation performance when compared to the global thresholding currently used in

BIANCA. We further validated LOCATE on a cohort of CADASIL (Cerebral autoso-

mal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) patients,

a genetic form of cerebral small vessel disease characterised by extensive WMH burden,

and healthy controls showing that LOCATE adapts well to wide variations in lesion load

and spatial distribution.

Keywords: White matter hyperintensities, structural MRI, lesion probability map,

Thresholding, Machine learning, lesion segmentation

1. Introduction

White matter hyperintensities (WMH), or white matter lesions, are common radio-

logical abnormalities often associated with cognitive impairment, and one of the main

signs of cerebral small vessel disease (SVD) (Pantoni, 2010). However, despite their clin-

ical importance, accurate automated detection of white matter hyperintensities of pre-

sumed vascular origin (WMH, also known as white matter lesions, Wardlaw et al., 2013)

is very challenging due to the high variability of WMH characteristics both between-

and within- subjects. For example, at the population-level, the amount and distribution

of white matter lesions have been associated with various factors such as cognition, vas-

cular risk factors and neurodegenerative diseases (Li et al., 2013; Debette and Markus,

2010). WMH also occur more commonly at older age (Simoni et al., 2012; Vannorsdall
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et al., 2009). At the subject-level, generally WMH exhibit spatial heterogeneity and do

not appear with the same contrast in all regions of the brain on structural MRI images

(Hernández et al., 2017). For example, typically, periventricular WMH are brighter on

T2-weighted, FLAIR or proton density images and bigger compared to deep ones (Kim

et al., 2008), and hence can be detected more easily.

The variability in lesion characteristics can affect the performance of supervised

lesion segmentation methods at different stages. The estimation of the probability for

each voxel to be a lesion (lesion probability map) is affected by population-level factors

(such as age, cognition, vascular risk factors and pathological conditions) (Rostrup et al.,

2012; Zamboni et al., 2017) and lesion load (Dyrby et al., 2008; Anbeek et al., 2004).

Once a lesion probability map is generated, the determination of the threshold used

to obtain binary maps is affected by lesion load and the variation in local intensities.

In fact, heterogeneity in signal intensity affects lesion probability values determined

by segmentation algorithms (De Boer et al., 2009; Anbeek et al., 2004; Dyrby et al.,

2008), since brighter lesions (e.g. periventricular WMH) are typically assigned higher

probabilities than those with lower contrast (e.g. deep WMH). This makes it difficult

to determine the optimal threshold for obtaining the final binary lesion maps. In fact,

applying a global threshold (i.e. the same threshold to all the voxels of the lesion

probability map) typically results either in the exclusion of deep lesions or overestimation

of periventricular lesions. This often results in trading off either sensitivity or specificity

of lesion detection (Anbeek et al., 2004).

In this work, our objective was to improve our recently developed WMH segmenta-

tion method Brain Intensity AbNormality Classification Algorithm (BIANCA, Griffanti

et al., 2016) to overcome population- and subject-level variability in the lesion charac-

teristics. We aim to achieve this by systematically exploring ways of improving various

stages of the lesion probability map estimation, and also by developing a method for

thresholding that allows for spatial variability of lesion probability map.

Regarding the estimation of lesion probability map, we tested the inclusion of the

population-level lesion probabilities with respect to a parametric factor (in our case age)

and explored the performance of alternative machine learning methods.
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One way to include population-level probabilities is to obtain the distribution of le-

sions within a population with respect to a parametric factor and use it in BIANCA as

either spatial prior or additional feature in the WMH segmentation. In this work, we

modelled the spatial distribution of lesions within a population with respect to age to ob-

tain a parametric lesion probability map as described in our previous study (Sundaresan

et al., 2018, Preprint, under review).

Regarding the alternative machine learning techniques, we explored four other super-

vised classifiers used in the existing literature and compared their lesion segmentation

results with those obtained from the existing K-nearest neighbour (KNN) classification

algorithm in BIANCA. Neural networks (Dyrby et al., 2008), support vector machines

and adaboost classifier (Wen and Sachdev, 2004) have been already used for WMH seg-

mentation, while random forests have been used for the segmentation of various struc-

tures and pathological signs that have similar characteristics as WMH on structural MR

images (Geremia et al., 2011; Mitra et al., 2014; Yamamoto et al., 2010).

Aiming to improve the thresholding stage, we propose LOCATE (LOCally Adaptive

Thresholds Estimation), a supervised method to determine optimal local thresholds

for binarising the subject-level lesion probability map to take into account the spatial

heterogeneity in lesion probabilities. LOCATE is guided by local probability values and

exploits different lesion characteristics to determine local thresholds. In this work we

present LOCATE with specific applicability to BIANCA, however, in principle LOCATE

can be applied to the lesion probability map obtained by any method, provided the

availability of a training data with manual lesion masks. We evaluated LOCATE on two

clinical datasets: a neurodegenerative cohort and a vascular cohort, and later validated

it on two additional datasets with very high and negligible lesion loads to further test

its robustness.

2. Materials and methods

2.1. Datasets

In this work we used four datasets to study the effect of variations in lesion character-

istics on the WMH segmentation. The datasets are diverse in terms of population, and
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therefore WMH load and characteristics. They were acquired with a similar acquisition

protocol on two different scanners (details are provided below).

2.1.1. Dataset 1: Neurodegenerative cohort - Oxford Project to Investigate Memory and

Ageing (OPTIMA)

This is a subset of the same dataset we used in our previous work (Griffanti et al.,

2016) to optimise BIANCA (21 subjects with manual lesion segmentation available -

lesion load range: 1878 - 89259 mm3). Briefly, the dataset includes MRI data from 9

subjects with probable Alzheimer’s Disease, 5 with amnestic mild cognitive impairment

and 7 cognitively healthy control subjects recruited from the OPTIMA study and from

the Memory Assessment Clinic at the John Radcliffe Hospital in Oxford (Zamboni et al.,

2013) (age range 63 - 86 years, mean age 77.1 ± 5.8 years, F:M = 10:11). MRI images

were acquired at the University of Oxford OCMR centre on a 3 T Siemens Trio scanner

using a T2-weighted, fluid-attenuated inversion recovery (FLAIR) research sequence

(TR/TE = 9000/89 ms, flip angle 150o, FOV 220 mm, voxel size 1.1× 0.9× 3 mm) and

a high-resolution T1-weighted images (3D MP-RAGE) were also acquired (TR/TE =

2040/4.7 ms, flip angle 8o, FOV 192 mm, voxel size 1 mm isotropic) (see Griffanti et al.,

2016 for more details).

2.1.2. Dataset 2: Vascular cohort - Oxford Vascular Study (OXVASC)

The dataset consists of 18 consecutive eligible participants in the OXVASC study

(Rothwell et al., 2004), who had recently experienced a minor non-disabling stroke or

transient ischemic attack (age range 50 - 91 years, mean age 73.27 ± 12.32 years, F:M =

7:11). Scanning was performed at the Oxford Acute Vascular Imaging Centre (AVIC) on

a 3 T Siemens Verio scanner using a T2-weighted, FLAIR sequence (TR/TE = 9000/88

ms, flip angle 150o, FOV 192 mm, matrix size 174 × 52 × 192, voxel size 1 × 3 × 1

mm) and a high resolution T1-weighted sequence (3D MP-RAGE sequence, TR/TE =

2000/1.94 ms, flip angle 8o, FOV 256 mm, matrix size 208 × 256 × 256, voxel size 1mm

isotropic), and diffusion-weighted imaging (TR/TE= 8000/86 ms, GRAPPA factor 2,

flip angle 16o, FOV 192 mm, voxel-size 2×2×2 mm, 32 directions, b-value 1500 s/mm2).

Manual lesion segmentation was available for all 18 images (lesion load range: 3530 -
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83391 mm3).

2.1.3. Dataset 3: Cerebral autosomal dominant arteriopathy with subcortical infarcts

and leukoencephalopathy (CADASIL) cohort

The dataset consists of 15 patients with CADASIL (age range 33 - 70 years, mean

age 53.73 ± 11.31 years, with female to male ratio, F:M = 11:4) (Le Heron et al., 2018, in

press). CADASIL is a genetic form of small vessel disease caused by mutations within the

NOTCH-3 gene. It is the most common heritable cause of stroke and vascular dementia

in adults and it is characterised by extensive damage to white matter brain regions

(Chabriat et al., 2009). These patients are younger than those with sporadic SVD,

without confounding factors of co-existent neurodegenerative pathology (Attems and

Jellinger, 2014). They therefore provide a model of pure SVD in which to investigate

WMH (Charlton et al., 2006). Scanning was performed using the same scanner and

acquisition parameters as the OXVASC dataset. Manual segmentation was not available

for this dataset.

2.1.4. Dataset 4: Healthy controls (HC)

This dataset consists of 19 healthy controls, age-matched with the CADASIL subjects

(described in Dataset 3) with age range 29 - 70 years, mean age 54.58 ± 11.25 years, F:M

= 6:13. Scanning was performed using the same scanner and acquisition parameters as

datasets 2 and 3. Manual segmentation was not available for this dataset.

2.2. Use of population-level parametric lesion probability map (PPLPM)

Population-level parametric lesion probability maps (PPLPMs) describe the pat-

tern of lesion distribution with respect to a specific parametric factor. Therefore, they

could provide useful additional information to improve lesion segmentation. For our

experiments in this work, we considered age as our parametric factor of interest, since

relationship has been established between age and WMH distribution (Simoni et al.,

2012; Vannorsdall et al., 2009).

We modelled the PPLPM with respect to age within a population consisting of

474 subjects, as described in our previous work (Sundaresan et al., 2018, Preprint,
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Figure 1: Parametric lesion probability maps at two example points in the parametric dimension,
corresponding to two age groups (all the images are shown at z = 45 in MNI space, (a); in the younger
age group (29 - 31 years, b) the lesion probability is very low throughout the brain, while in the older
age group (59 - 61 years, c) the lesion probability is higher, especially in the periventricular regions.

under review). Briefly, our Bayesian spline model takes binary lesion maps of individual

subjects of the population as inputs and generates a 4D parametric lesion probability

map, with age (grouped at intervals of 3 years) along the 4th dimension. The resulting

parametric lesion probability map indicates the probability of lesion occurrence at a

specific age group at each voxel. Figure 1 shows the PPLPM at two example age groups,

corresponding to 29-31 years and 59-61 years.

We used the PPLPM in BIANCA in two ways: either as an additional feature to

the KNN classifier, or post-multiplying the PPLPM with the subject’s lesion probability

map that is obtained using BIANCA with existing features.

For the first experiment, we implemented the PPLPM in BIANCA as follows: (1)

we included the PPLPM (4D volume in the MNI space with 4th dimension representing

different age groups) as an additional input, (2) we included age as extra input in

BIANCA and used it to select the appropriate 3D map from PPLPM corresponding

to the specific age group and (3) we transformed the 3D map from the MNI space to

the subject’s native space before extracting its probability values as features to be used

by the KNN classifier. For the second experiment, we multiplied the age-specific 3D

map from PPLPM, transformed to the subject’s native space, with lesion probability

map obtained from BIANCA (with the existing options and no additional features). We
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also tested the effect of using an average 3D map across all age groups instead of the

age-specific one.

We performed both experiments on the OPTIMA dataset (keeping all the other

options constant, as optimised in (Griffanti et al., 2016)), and evaluated the performance

with respect to the manual masks as described in section 2.5.

2.3. Comparison of alternative classifiers within BIANCA

Currently, BIANCA is based on the KNN algorithm. In this work we assessed the

performance of four other classifiers: random forest (RF), neural networks (NN), sup-

port vector machine (SVM) and adaboost (AB). First we optimised the parameters for

each classifier based on their area under the curve values from ROC curves, and then

compared their results with KNN for the existing features. Table - 1 provides the list

of available parameters (from the python scikit-learn package) and the parameters that

were considered for tuning in the optimisation step.

Figure 2: Examples of subjects with different WMH lesion loads used for parameter tuning of the
classifiers: (a) low, (b) medium, (c) high and (d) very high lesion load. The manually segmented lesion
volumes for low, medium, high and very high lesion loads are 5409 mm3, 21005 mm3, 50585 mm3 and
89259 mm3 respectively.

For initial parameter tuning, we selected four subjects from the OPTIMA dataset

with four different lesion loads: low, medium, high and very high (ranging from 5409

- 89259 mm3), see figure 2). After optimisation, we applied the four classifiers on the

remaining 17 subjects from the OPTIMA dataset (keeping all the other options constant,

as optimised in Griffanti et al., 2016) and evaluated the performance with respect to the

manual masks as specified in section 2.5.
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Classifier
Available main parameters and
default values

Values of parameters
considered for tuning

Random
forest (RF)

No. of trees - 10
Criteria for splitting - MSE
Maximum depth of trees - Till the
leaves are pure
Minimum no. of samples required for
a split - 2
Minimum samples at each leaf node - 1
Maximum number of features for each
tree - No. of features
Minimum impurity measure at each
split - 1 × 10−7

Boostraping done - True
Out-of-bag error score - False

No. of trees - 20, 30, 40, 50
Minimum samples at each
leaf node - 200, 400, 500,
600, 800, 1000
Minimum impurity
measure at each split -
1×10−7, 1×10−6, 1×10−5,
1× 10−4, 1× 10−3, 1× 10−2

Maximum depth of trees -
25, 50, 100

Neural
network
(NN)

No. of hidden layers - 100
Activation function - RELU
Solver - ADAM
(β1 = 0.9, β2 = 0.999, ε = 1 × 10−8 )
Alpha - 1 × 10−4

Change in learning rate - Constant
Initial learning rate - 1 × 10−3

Maximum no. of iterations - 200
Tolerance - 1 × 10−4

Momentum - 0.9
Fraction of samples for validation - 0.1

No. of hidden layers - 100,
120, 150
Solver - LBFGS, ADAM
Initial learning rate -
1 × 10−4, 1 × 10−3

Maximum no. of iterations
- 1000, 1500, 1800
Tolerance - 1 × 10−4,
1 × 10−3, 1 × 10−2

Support
vector
machine
(SVM)

Type of kernel - Radial basis function
(RBF)
γ - 1/(no.of features)
Tolerance - 1 × 10−3

C-value - 1.0
Epsilon - 0.1
Maximum no. of iterations - Until
convergence

γ - 0.001, 0.01, 0.1, 1.0, 10
C-value - 0.1, 1.0, 10
Maximum no. of iterations
- 1000, 2000, 3000, 5000,
6000

Adaboost
classifier
(AB)

Base estimator - Decision Tree
Regressor
No. of trees in base estimator - 1
No. of estimators - 50
Learning rate - 1.0
Loss function - Linear

No. of trees in base
estimator - 2
No. of estimators - 30, 40,
50
Learning rate - 0.5, 0.75, 1
Loss function - linear,
exponential, square

Table 1: Parameters considered for tuning different classifiers
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2.4. LOCally Adaptive Threshold Estimation (LOCATE)

In order to overcome the impact of spatial heterogeneity of lesion probabilities due to

changes in lesion contrast, load and distribution on the final thresholded WMH map, we

propose a method that determines spatially adaptive thresholds at different regions of

the lesion probability map. LOCATE (LOCally Adaptive Threshold Estimation) takes

as input the subject-level lesion probability map obtained from a lesion segmentation

algorithm (in our case, BIANCA) and estimates local thresholds in two steps by divid-

ing the lesion probability map into sub-regions (using Voronoi tessellation), extracting

local characteristics (features) within those sub-regions and estimating the optimal local

threshold values based on the extracted features using a supervised learning method.

2.4.1. Voronoi tessellation and feature extraction

Firstly, we detected local maxima points Mi, where i = 1...N on the lesion probability

map to identify the plausible lesion locations (indicated by red dots in figure 3b). In

order to avoid spurious local maxima points due to isolated voxels, we spatially smoothed

the lesion probability map with a Gaussian kernel of standard deviation, σ = 0.5, prior

to local maxima detection.

We then tessellated the lesion probability map based on local maxima Mi into N

Voronoi polygons Vi, (figure 3b) around the maxima Mi. In order to ensure that our

Voronoi polygons are within the region of interest (in our case, the brain white matter),

we constrain the Voronoi polygons by a white matter mask obtained from FSL FAST

tissue segmentation as described in Griffanti et al., 2016.

Within each Voronoi polygon Vi, we applied different levels of thresholds (Th) from

0 to 0.9 with incremental steps of 0.05, and extracted the following features at each Th:

1. Mean greyscale intensity of the image used to identify the lesions (in our case,

FLAIR) within the thresholded region

2. Distance between the ventricles and the center of gravity of the thresholded region.

Lateral ventricles were were segmented from T1 images as described in Griffanti

et al., 2017 and the distance from the ventricle mask was calculated using the FSL

command distancemap).
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Figure 3: LOCally Adaptive Threshold Estimation (LOCATE). (a) FLAIR image; (b) detection of
local maxima (Mi, red dots) on the smoothed lesion probability map (blue-yellow); (c) Voronoi spaces
Vi around local maxima points (indicated by random colours); (d) threshold map showing the local
threshold values obtained from the regression model; (e) histogram of thresholds Th opt; (f) final
binary lesion map obtained by applying the thresholds (d) on the lesion probability map (b).

3. Volume of the thresholded region

Figure 4: Features extracted from each Voronoi polygon plotted against the threshold values for 21
subjects from the OPTIMA dataset: (a) volume of individual lesion region, (b) mean greyscale intensity
and (c) distance of the centre of gravity from the ventricles mask. A simple straightforward relationship
was not found between the features and the thresholds, indicating the need for a machine learning based
method.

Due to lack of a simple relationship between the features and the thresholds (figure 4),
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we determined the optimal local threshold for each Vi using a random forest (Breiman,

2001) regression model with 1000 trees and min leaf size of 5.

Training phase: For each Vi, among the set of thresholds Th we determined the

highest value Thmax at which we obtained the best similarity index with respect to the

manually segmented binary lesion mask. We then trained the random forest regression

model with the above features against Thmax.

Testing phase: We applied the trained regression model to get the optimal threshold

Th opt for each Vi in the test images. Figure 3d shows an instance of Th opt map.

Note that the periventricular region shows higher threshold values compared to the

deep region, indicating the variation in lesion probabilities. Moreover, the histogram of

thresholds Th opt (figure 3e) obtained for an individual image shows a wider range of

local threshold values depending on the local lesion characteristics and spatial distribu-

tion. As a final step, we thresholded the lesion probability map within each Vi using the

corresponding Th opt to get the final binary lesion map (figure 3f).

2.4.2. LOCATE evaluation and validation

We initially evaluated LOCATE on OPTIMA and OXVASC datasets. For the OP-

TIMA dataset, the lesion probability maps used as input were obtained using BIANCA

with the parameters specified in Griffanti et al., 2016. For the OXVASC dataset, the le-

sion probability maps were obtained using BIANCA with intensity features from FLAIR,

T1 and mean diffusivity images (additional options used: local average intensity within

a kernel of size = 3 voxels; MNI coordinates as spatial features, with a weighting factor

of 2). LOCATE performance was tested against the manual segmentation using the

metrics described in section 2.5. Leave-one-subject-out testing was carried out indepen-

dently on the two datasets. In order to evaluate LOCATE performance in lesions with

different characteristics, we additionally calculated the performance metrics in periven-

tricular and deep lesions separately. We adopted the 10 mm distance rule: clusters

within 10 mm distance from the ventricles were considered as periventricular lesions,

otherwise as deep lesions (DeCarli et al., 2005). While there are other criteria available

for identifying deep and periventricular lesions, the 10 mm distance rule is more suitable
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for automatic implementation, it is commonly used and agrees with the human rater,

even in most of the confluent lesion cases (Griffanti et al., 2017). We also compared the

results obtained with LOCATE with respect to the use of the optimal global threshold

using the metrics described in section 2.5.

Finally, we used CADASIL and HC datasets to further validate the robustness of

LOCATE with respect to lesion load and the flexibility of LOCATE with respect to the

training dataset. Since the CADASIL subjects have extremely high lesion loads, while

HC have negligible lesion loads, we used these datasets to test LOCATE performance

in two extreme circumstances. Moreover, since manual segmentation was not available

for these datasets, we used the OXVASC dataset for training (both for obtaining the

lesion probability map with KNN using the same features/options, and for LOCATE)

since the images were acquired using the same MRI protocol. The output obtained with

LOCATE on these datasets was qualitatively evaluated and quantitatively compared

with the lesion mask obtained by applying the optimal global threshold (0.9), determined

with leave-one-out on the training dataset. In addition, on the CADASIL subjects, we

compared LOCATE output with the mask obtained by applying a lower global threshold

(0.2), which was empirically chosen (based on visual inspection of the lesion probability

map) by an expert neurologist [CLH] as the optimal global threshold for this specific

dataset.

2.5. Performance evaluation metrics

We evaluated the lesion segmentation results using the following overlap measures

and detection rates:

• Dice Similarity Index (SI): calculated as 2 × (true positive lesion voxels) / (true

lesion voxels + positive voxels). True lesion voxels refer to the lesion voxels in the

manual segmentation and positive lesion voxels are the voxels labelled as lesions

by the classifier. We used SI to generate SI plots at different thresholds and to

perform paired t-tests between existing BIANCA and all the options used in the

experiments described in the above sections.
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• True positive rate (TPR): number of true positive lesion voxels divided by the

number of true lesion voxels

• False positive rate (FPR): number of false positive lesion voxels (voxels incorrectly

labelled as lesion) divided by the number of non-lesion voxels. We used TPR

and FPR in order to plot ROC curves for evaluating the segmentation of existing

BIANCA and all the options used in the experiments.

• Cluster-level true positive rates in deep and periventricular white matter: number

of true positive lesions divided by total number of true lesions, calculated sepa-

rately for deep and periventricular lesions. We used this metric to evaluate the

robustness of LOCATE and to perform paired t-test between the global threshold

and LOCATE results.

3. Results

3.1. Use of population-level parametric lesion probability map (PPLPM)

Figure 5 shows the ROC curves and SI plots at different thresholds for our experi-

ments using the PPLPM with respect to age on the OPTIMA dataset. Using PPLPM

as an additional feature does not improve the performance of BIANCA, although the

use of the age-specific 3D map (figure 5a) still gives better results than the use of an

average map across all age groups (figure 5b). When the PPLPM is post-multiplied with

the subject’s lesion probability map (figure 5b), the TPR and SI values are very low,

especially at higher thresholds.

The optimal threshold for the existing version of BIANCA for this dataset was found

to be 0.9 (Griffanti et al., 2016). After adding the age-specific 3D map as a new feature,

we still found 0.9 to be the optimal threshold for both age-specific and average cases,

while for the post-multiplication case the optimal threshold was 0.1. The paired t-

test showed significantly higher SI values of existing BIANCA (at the threshold of 0.9)

compared to all cases using the parametric map (p = 0.02 for age-specific map as feature,

threshold 0.9; p = 0.002 for average map as feature, threshold 0.9; p<0.001 for the post-

multiplication, threshold 0.1).
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Figure 5: ROC (left) and SI (right) curves in the case of use of PPLPM when (a) the age-specific 3D
map is added as an additional feature (light blue), (b) the average 3D map is added as an additional
feature (yellow), and (c) when age-specific 3D map is post-multiplied with BIANCA lesion probability
map (grey). The curves corresponding to the existing BIANCA results (Griffanti et al., 2016) are shown
in red for comparison in all the three cases.
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Figure 6: ROC curves (left) and SI curves (right) for alternative classifiers: (a) random forest (RF), (b)
neural network (NN), (c) support vector machine (SVM) and (d) adaboost classifier (AB). Results are
shown for each classifier’s best (blue solid line) and default parameters (blue dashed lines) along with
the results for KNN classifier, currently used in BIANCA (red solid line).15

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 8, 2018. ; https://doi.org/10.1101/437608doi: bioRxiv preprint 

https://doi.org/10.1101/437608
http://creativecommons.org/licenses/by-nd/4.0/


3.2. Comparison of alternative classifiers within BIANCA

Table 2 lists the best performing set of parameters that were obtained for each

classifier on the four subjects selected from the OPTIMA dataset in the optimisation

phase, when we tested using the area under the curve values for all possible combinations

of the parameter values listed in table 1.

Figure 6 shows the ROC curves and SI plots for the four classifiers (RF, NN, SVM,

AB) using the best and the default set of parameters, with respect to KNN, on the

remaining 17 subjects from the OPTIMA dataset. From the ROC curves and SI indices,

overall KNN performs better than other classifiers, even for their best set of parameters.

While the optimal threshold for the lesion probability map obtained from KNN classifier

is 0.9, with maximum SI of 0.77, figure 6 shows that RF, NN, SVM and AB gave the

maximum SI values of 0.76, 0.75, 0.65, 0.75 at thresholds 0.9, 0.8, 0.3 and 0.7 respectively.

The paired t-test results, using individual subject segmentations, showed that SI values

from KNN (threshold 0.9) are significantly higher than those of RF (p = 0.02 at threshold

0.9), SVM (p = 1.2 × 10−4 at threshold 0.3) and AB (p = 9.11 × 10−4 at threshold 0.7),

while SI values using NN are not significantly different from KNN (p = 0.32 at threshold

0.8).

3.3. LOCally Adaptive Threshold Estimation (LOCATE)

Figure 7 illustrates examples of BIANCA results with LOCATE outputs compared

to the global thresholded outputs and the manual segmentation: LOCATE detected

more deep lesions (Fig. 7c, d) and segmented periventricular lesions better (Fig. 7a, b,

d) with respect to the manual segmentation.
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Classifier Best performing set of parameters

Random forest (RF)

No. of trees - 50
Min. samples at each leaf node - 400
Min. impurity measure at each split - 1 × 10−3

Max. depth of trees - 25

Neural network (NN)

No. of hidden layers - 100
Solver - LBFGS, Initial learning rate - 1 × 10−3

Max. no. of iterations - 1800
Tolerance - 1 × 10−3

Support vector machine
(SVM)

γ - 1.0
C-value - 1.0
Max. no. of iterations - 5000

Adaboost classifier (AB)

No. of trees in base estimator - 2
No. of estimators - 30
Learning rate - 1.0
Loss function - exponential

Table 2: Best performing set of parameters for different classifiers
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Figure 7: Example results of LOCATE for (a) low, (b) medium, (c) high and (d) very high lesion load
(a,d from the OXVASC; b,c from the OPTIMA datasets). Manual segmentation (green) is shown along
with outputs of global thresholding at 0.9 (light blue) and LOCATE (yellow). LOCATE provides better
segmentation in deep (c, d) and periventricular white matter lesions (a, b, d) when compared to global
thresholding.
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Figure 8 shows the ROC curves, SI plots and cluster-wise true positive rate in periven-

tricular and deep white matter for BIANCA at various global thresholds and using LO-

CATE for OPTIMA and OXVASC datasets. The SI values obtained with LOCATE were

not significantly different according to the paired t-test to those obtained with global

thresholding values of 0.9 both for the OPTIMA (LOCATE SI = 0.77 ± 0.10; global

threshold SI = 0.77 ± 0.08, p = 0.94) and for the OXVASC (LOCATE SI = 0.75 ± 0.14;

global threshold SI = 0.74 ± 0.11, p = 0.94) datasets. However, in terms of detection

rates, LOCATE gave an increase in voxel-wise TPR (0.03 for the OPTIMA and 0.10 for

the OXVASC) with a negligible increase in FPR (0.001 for the OPTIMA and 0.002 for

the OXVASC) compared to the global threshold of 0.9.

The results of the paired t-test show that the cluster-wise true positive rates for LO-

CATE are significantly higher than those for global thresholding in both periventricular

white matter (figure 8c, p = 0.003 for the OPTIMA and p<0.001 for the OXVASC) and

deep white matter (figure 8d, p<0.001 for the OPTIMA and p<0.001 for the OXVASC).

Figure 9 illustrates the results of lesion segmentation with LOCATE in four subjects

from the CADASIL dataset. Since CADASIL patients have different lesion characteris-

tics compared to those in the OXVASC dataset (different lesion location and very high

lesion loads), applying the global threshold of 0.9 that was determined in the training

phase on the OXVASC dataset yields poorly segmented binary lesion maps (figure 9b).

The global threshold visually determined as optimal (by an expert neurologist CLH) was

0.2 (figure 9c), however this leads to increased false positives in some cases, as shown in

the third case of figure 9c. LOCATE provides a much better segmentation and detects

the lesions in the temporal lobe, typical of the pathology (figure 9d). A similar compar-

ison of LOCATE results with those of global thresholding at 0.9 on the HC dataset is

shown in figure 10.

When the binary lesion maps obtained using the optimal global threshold value of

0.2 is used as the reference segmentation, the paired t-test results show that the SI

values obtained for CADASIL with LOCATE (SI = 0.79 ± 0.01) are significantly higher

than those obtained using a global threshold at 0.9 (SI = 0.57 ± 0.10, p<0.001). For

CADASIL, using LOCATE increases the voxel-wise TPR by 0.48 for a constant FPR of
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Figure 9: Example results of LOCATE on the CADASIL data. (a) FLAIR image, (b) global thresh-
olding at 0.9 (light blue), (c) global thresholding at 0.2 (dark blue), (d) LOCATE results (yellow) and
(e) threshold maps obtained from LOCATE (red-yellow). Note that the threshold maps shows the
heterogeneity in the lesions probabilities in various regions of the white matter.

0.00.

To summarise the effect of LOCATE on different datasets, figure 11 shows boxplots

of local threshold values determined by LOCATE for the four datasets, along with

the optimal global threshold values for each dataset. The median threshold values of
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OPTIMA and HC datasets are higher than other two datasets, especially the CADASIL

dataset. LOCATE assigned higher thresholds for datasets with lower lesion load (HC

and OPTIMA, which contains 30% of healthy subjects) and lower threshold for datasets

with higher lesion load (OXVASC and especially CADASIL). This is also observable

from the thresholds maps shown in figure 9e and figure 10e.

In line with the results of the paired t-test, the largest improvement in SI corresponds

to the largest difference between the LOCATE threshold and the global threshold. In

the case of the HC dataset, the median of local thresholds obtained from LOCATE is

very close to the optimal threshold of 0.9, thus showing only a slight improvement in the

lesion segmentation. This is also evident from figure 10, where LOCATE results appear

very similar to the results of global thresholding at 0.9 (figure 10b and 10c).

4. Discussion

In this work, we studied the effect of single-subject and population-level heterogene-

ity in amount, location and characteristics of WMH on our recently developed WMH

segmentation method BIANCA, with the aim of improving both the classification and

the thresholding steps. At the classification step, we analysed the effect on the subject-

level lesion probability maps of using PPLPM (with age as factor of interest) and of

using alternative classifiers, that have been previously used for this task in the litera-

ture. For thresholding the lesion probability map, as an alternative to selecting a global

threshold, we proposed LOCATE, a method to determine local thresholds that are sen-

sitive to spatial differences in the lesion probabilities, giving more accurate binary lesion

masks.

We observed the effect of using the PPLPM and found that post-multiplying the

age-specific 3D map with the lesion probability map performs worse than adding the

PPLPM as an additional feature. This is because PPLPM indicates the likelihood of

finding a lesion at a given location in a population, informed primarily by the anatomy

of disease signs. On the other hand, the subject-level probability map reflects the prob-

ability of identifying a lesion versus the normal tissue and is primarily determined by
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Figure 10: Example results of LOCATE on the HC data. (a) FLAIR image, (b) global thresholding at
0.9 (light blue), (c) LOCATE results (yellow) and (d) threshold maps obtained from LOCATE (red-
yellow). Note that the threshold maps shows the heterogeneity in the lesions probabilities in various
regions of white matter.

the intensity contrasts and noise in the image. For instance, in our previous work (Sun-

daresan et al., 2018, Preprint, under review) we showed that in PPLPM the lesion
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Figure 11: Boxplots of local thresholds obtained from the random forest regression model in LOCATE.
The optimal global thresholds determined manually are shown in red circles. The mean values of local
thresholds obtained from LOCATE are shown in black circles.

probabilities typically increase more in the periventricular WM than in the deep WM in

the elder population (which is in line with the existing literature Simoni et al., 2012; Van

Den Heuvel et al., 2004; Sabayan et al., 2015). Therefore, post-multiplying the above

PPLPM with the subject-level lesion probability map can bias the subject-level lesion

probabilities more towards the periventricular lesions, irrespective of the local spatial

characteristics in the images from the individual subject. However, when we provide the

PPLPM as an additional feature, the classifier assigns sensible lesion probability values

taking into account the PPLPM and other additional features such as image intensity

contrasts for the different modalities and spatial coordinates. Particularly, we observed

that adding age-specific map as an additional feature gives better results than the av-

erage map alone, since the former models the lesion probabilities for the subject’s age

group specifically and hence is more accurate. Overall we observed that, at present,

using the PPLPM does not improve significantly the performance of BIANCA (also

evident from the p-values of our t-test results). However, the way this option will be

implemented in a future release of BIANCA will allow the user to use any 4D PPLPM

with respect to any other factor of interest, which could improve the segmentation in

their specific dataset.
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The results on the comparison between KNN and other classifiers showed that KNN

provided better segmentation. For the same set of features (excluding the PPLPM),

we observed that SVM and AB classifiers provided significantly lower SI than KNN,

especially at higher thresholds. On the other hand, SI values for RF and NN followed a

similar trend to KNN with relatively similar SI values (figure 6). SI values for RF were

still significantly lower than KNN, while NN gave SI values that were not significantly

different from KNN. Moreover, for a given FPR, KNN has a higher TPR compared to

any other classifier, indicating that KNN detects more true lesions than other classifiers.

However, since NN and RF have the potential to perform as well as KNN, they will

be included as alternative classifiers in a future release of BIANCA. At this point, it is

worth noting that irrespective of the classifier used, there is a certain degree of uncer-

tainty associated with the manual segmentation - they are an approximation to the real

ground truth, meaning that very fine discrimination may reflect errors in the manual

segmentation rather than errors in the automated classification results.

Regarding the improvements at the thresholding step with LOCATE, the initial

leave-one-subject-out results of LOCATE on the OPTIMA and the OXVASC datasets

showed improvement in BIANCA segmentation for both the datasets. LOCATE de-

tected more true positive lesions, especially in the deep white matter, and provided

better delineation of the lesions with respect to the manual segmentation as indicated

by the improved SI values and the visual results shown in figure 7. Our validation of

LOCATE on CADASIL and HC datasets proves that LOCATE is robust with respect to

the extreme variations in lesion load and location without the need to retrain BIANCA.

In fact, LOCATE can be trained on any data having the same modalities, acquired with

the same sequence to the test dataset. For instance, we used the OXVASC dataset to

train LOCATE for testing it on the CADASIL dataset since both datasets were acquired

with the same sequence.

The pattern of lesions for CADASIL subjects differs from that of vascular subjects in

the OXVASC dataset, as CADASIL subjects, in addition to the normal distribution of

WMH seen in SVD, will typically have lesions within the external capsule and anterior

temporal lobes (Chabriat et al., 2009). Due to this variability in lesion pattern, training
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BIANCA on the OXVASC dataset using features that include spatial coordinates yields

very low lesion probabilities in the temporal regions. Reflecting these lower lesion proba-

bilities, the thresholds map from LOCATE (figure 9) shows much lower threshold values,

especially in the temporal regions in the CADASIL images. Therefore LOCATE yields

much better segmentation performance (SI = 0.79) compared to a global threshold of 0.9

(SI = 0.57), when the lesion probability map thresholded at 0.2 was considered as the

reference segmentation. Moreover, LOCATE results on CADASIL showed a substantial

increase of 0.48 in TPR without an increase in FPR, due to the detection of more lesions

in the temporal region. This indicates that LOCATE takes into account different lesion

patterns and hence can be used in different pathologies.

The threshold maps obtained from LOCATE for the HC dataset show higher thresh-

olds when compared with the CADASIL dataset. This is due to the fact that HC have

mostly periventricular lesions (that are common in healthy ageing) that are usually as-

signed higher probabilities. Hence by using higher threshold values, LOCATE gives

results that appear visually similar to the global thresholding at 0.9, detecting mostly

periventricular lesions. While the threshold maps from LOCATE (figure 9 and 10) pro-

vide information regarding the spatial heterogeneity of lesion probabilities, boxplots of

thresholds shown in figure 11 show the overall characteristics of the datasets. The im-

provement in segmentation performance is more prominent in OXVASC and CADASIL

datasets when compared to OPTIMA and HC datasets. This is reflected in their cor-

responding optimal global thresholds being very different from the median of their LO-

CATE thresholds, which are more adaptive to spatially local lesion probabilities in deep

and periventricular white matter. LOCATE results on the four datasets, especially the

HC dataset (which has negligible lesion load compared with the CADASIL subjects)

show that LOCATE is more adaptive to the variation in the global lesion load in addi-

tion to the spatial heterogeneity in lesion probabilities, compared to global thresholding

(shown in figure 9 and 10).

LOCATE can be used when manual segmentation is unavailable for the test dataset,

or the number of subjects in the dataset is not enough to generate an accurate training

dataset. In its current Matlab implementation, LOCATE running time to determine a
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binary lesion map from an individual lesion probability map is approximately 15 minutes

per subject, when run on an iMac with a 2.9 GHz Intel Core i5processor.

LOCATE will be included as an additional option for generating binary lesion maps,

as an alternative to the faster, but less accurate, global thresholding, in a future release

of BIANCA.
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