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ABSTRACT 25 

The tumour microenvironment comprises complex cellular compositions and interactions between 

cancer, immune, and stromal components which all play crucial roles in cancer. Various computational 

approaches have been developed during the last decade that estimate the relative abundance of 

different cell types in an unbiased manner using bulk tumour RNA data. However, a comparison that 

objectively evaluates the performance of these approaches against one another has not been 30 

conducted. Here we benchmarked six widely used tools and gene sets: Bindea et al. gene sets, Davoli 

et al. gene sets, CIBERSORT, MCP-counter, TIMER, and xCell. We also introduce ConsensusTME, a 

consensus approach that uses the union of genes that the six tools used for cell estimation, and 

corrects for tumour type specificity. We benchmarked the seven tools using TCGA DNA-derived purity 

scores (33 tumour types), methylation-derived leukocyte scores (30 tumour types), and H&E deep 35 

learning derived lymphocyte counts (13 tumour types), and individual benchmark data sets (PBMCs 

and 2 tumour types). Although none of the seven tools outperformed others in every benchmark, 

ConsensusTME ranked consistently well in all cancer-related benchmarks making it the top performing 

method overall. Computational methods that provide robust and accurate estimates of non-

cancerous cell populations in the tumour microenvironment from tumour bulk expression data are 40 

important tools that can advance our understanding of tumour, immune, and stroma interactions, 

with potential clinical application if high accuracy estimates are achieved. 

INTRODUCTION 

The tumour microenvironment (TME) plays an active role in in tumour initiation, progression, 

metastasis, and treatment response. Thus, studying the TME is a central paradigm of cancer research. 45 

However, a great variety of stromal and immune cell types populate tumour tissues, and the complex 

interactions between these different components of the tumour microenvironment is still unclear. 
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Traditionally, cells from the TME have been quantified using immunohistochemistry (IHC), 

immunofluorescence (IF), and flow cytometry, and more recently using cytometry by time of flight 

(CyTOF). These methods, although accurate, are laborious, low throughput and require pre-selected 50 

cellular markers, making their application in large number of samples and measurements challenging. 

Thus, their systematic application for comprehensively investigating the various different cell types in 

the TME in an unbiased manner is limited. Single cell RNA sequencing (scRNA-seq) has begun to fill 

this gap, however scRNA-seq is still too expensive to apply on large number of samples such as The 

Cancer Genome Atlas (TCGA) which consists of thousands of genomically profiled tumour samples 55 

which are also clinically well annotated. The study of the different cell subpopulations of the TME in 

TCGA has become an important goal, but also an important challenge for bioinformatics, since cell 

type information identity is mixed in bulk tumour transcriptomics data.  

 

Estimation of non-cancerous cell proportions from bulk tumour samples has been performed using 60 

genomics data such as whole-exome sequencing, microarrays, RNA-seq, or DNA methylation data. 

During the last decade, multiple computational approaches have been developed intending to 

quantitatively or semi-quantitatively calculate distinct TME cell type population estimates1. A variety 

of statistical frameworks and algorithmic procedures have been employed, and each method has used 

different benchmark datasets1. In general, two different algorithmic classes into which most methods 65 

can be classified are: deconvolution algorithms and gene set enrichment-based methods. Importantly, 

both classes rely on cell type specific markers that are selected according to prior knowledge. The 

deconvolution algorithms use linear combinations of the expression values of the cell-specific genes, 

while gene set enrichment-based methods rank the genes of a mixture sample and compute 

enrichment scores as a function of the ranked selected genes. This is a challenging task, particularly 70 

to reliably estimate lowly abundant cell populations, and also because the gene sets are not unique 

to any particular cell type. Thus, there is not a straightforward solution for accurate TME cell 

estimation, and one of the problems in the field is that each method has claimed to outperform others 
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in their own benchmarking experiments2,3. Thus, the need for independent and more comprehensive 

benchmarks has been pointed out4. Here, we developed a consensus approach (ConsensusTME) that 75 

leverages current state-of-the-art knowledge by compiling common cell type specific gene sets used 

by six published TME cell estimation methods. We performed pan-cancer benchmarks using publicly 

available bulk RNA sequencing data from TCGA and side-by-side comparisons using the methods’ 

independent benchmarks. The ConsensusTME approach is evolvable by design allowing new methods 

and algorithms to be incorporated and their performance compared with continuously updated 80 

benchmark data sets. Overall, the consensus approach will lead towards robust and improved tools 

for the estimation of cell type quantities using bulk expression data of human tumour samples. 

RESULTS 

Consensus tumour type specific superset of tumour microenvironment cell populations 

Following the generation of large data sets of tumour genomic profiles such as TCGA and ICGC, various 85 

computational tools assessing TME cell populations have been developed, each using different 

algorithms, gene markers, and validation benchmarks. To build on the knowledge of cell type specific 

gene sets represented in the diversity of these methods, we sought an integrative strategy that 

incorporates knowledge from existing tools. ConsensusTME integrates cell type specific gene markers 

from independent cell estimation methods and uses single sample gene set enrichment analysis 90 

(ssGSEA) to compute TME cell type and tumour specific enrichment scores from bulk expression data 

(Figure 1A). The ssGSEA approach was selected because its treats microarray and RNAseq values in 

the same way, since it is based on the ranked genes rather than the actual values. To generate 

ConsensusTME gene sets, we selected six widely used cell estimation methods: CIBERSORT5, TIMER6, 

MCP-counter7, xCell 8, and the gene sets generated and use in Bindea et al.9 and Davoli et al.10 here 95 

called “Bindea” and “Davoli” supersets, respectively. In brief, we first selected cells that are estimated 

by at least two methods. Second, we generated a gene set for each cell type by using the union of 
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genes used by the methods to estimate that cell type, and removed genes that correlate (rho > -0.2) 

with tumour purity6  (see Methods). Therefore, ConsensusTME aggregates cell type specific genes that 

have been independently considered relevant by different methods, and estimates their abundance 100 

in a tumour type specific manner. 

Pan-cancer leukocyte and lymphocyte benchmarks 

To benchmark the different methods in an objective and systematic manner, we used publicly 

available data from between 13 and 32 tumour types comprising 9,142 tumour samples in total. First, 

to evaluate the ability of each method to capture the overall amount of immune component in the 105 

TME we correlated DNA-based tumour purity scores11,12  with immune scores inferred by the different 

methods either natively, or derived when not generated by default (see Methods). Since tumour 

purity does not account only for immune cell infiltration but also for other stromal cells (e.g. 

fibroblasts and endothelial cells), this would affect the correlation of methods that only estimate 

immune cells. Therefore, we inferred stromal non-immune related content of all samples using 110 

ESTIMATE13 and added this value to all methods’ immune  scores to create a purity score. We found 

that all six methods and ConsensusTME perform very similar to each other, with CIBERSORT, 

ConsensusTME, and Davoli as the top 3 pan-cancer negative correlations (Figure 1B). Across tumour 

types, the different methods performed similar and very few correlations were not statistically 

significant. However, cancer-specific performance of methods was observed with methods 115 

consistently performing well in cancers such as ovarian cancer (OV) and glioblastoma multiforme 

(GBM) while showing lower performance in pancreatic adenocarcinoma (PAAD). Variation in 

performance was largely independent of cancer cellularity, mutation load, leukocyte fraction, and 

sample size for any of the methods.  

 120 

We further evaluated the performance of the methods by using leukocyte fractions derived from 

methylation data for 30 tumour types12. For the initial analysis we assessed performance by 
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correlating levels of CD8+ T cells, an important prognostic cell type, with leukocyte fraction. The best 

performing methods for this analysis were ConsensusTME, Davoli and MCP-Counter. To extend this 

analysis to account for accuracy across multiple cell types we fitted multiple linear regression models 125 

using the leukocyte fraction as a response variable and only cell type estimates in the category of 

being leukocytes as explanatory variables for each method. Since different methods estimate different 

number of leukocytes, the coefficient of determination can be artificially increased by the number of 

variables in a model (i.e. overfitting). Thus, to more appropriately compare the models in an unbiased 

way we used adjusted coefficients of determination (R2), the Akaike information criterion (AIC), and 130 

Bayesian information criterion (BIC) for model comparison. These penalise model complexity (i.e. 

number of cell types used in the models) to varying degrees. When comparing the R2 of the different 

models, the best performing methods were Bindea, ConsensusTME, and Davoli (Figure 1D). Similarly, 

AIC and BIC scores showed that ConsensusTME, Davoli, and Bindea models perform better than the 

other methods (models with lower AIC and BIC values are preferred). We also implemented multiple 135 

linear regression analysis using tumour-infiltrating lymphocyte counts derived from digitised H&E-

stained images analysed through a deep-learning convolutional neural network approach14. Although 

low coefficient of determination values was obtained across methods, likely due to the very difficult 

task of computationally detect leukocytes on H&E images, the methods that obtained a higher 

coefficient of determination were Bindea, CIBERSORT, and ConsensusTME, while the lowest AIC and BIC 140 

values were obtained by ConsensusTME, Davoli, and TIMER (Figure 1E). Together, these broad pan-

cancer benchmarks show a variation in the performance of the different methods when compared to 

each other, and no single method consistently outperforms the others. The cancer specific 

performance observed in these experiments was also an important finding that should be taken into 

account when considering the appropriateness of using these tools.  145 
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Figure 1: Benchmark of methods for estimating TME cell components using purity and leukocyte data from 

TCGA data. A) Bioinformatic tools benchmarked, and ConsensusTME development strategy (see Methods). B) 

Kendall’s correlation coefficients (τ) of DNA-derived ABSOLUTE purity scores11,12 and RNA-derived estimated 150 

purity by the different methods. ESTIMATE’s stromal scores were added to all the methods to account for 

stromal quantities, since not all methods analyse stromal cells. C) Kendall’s correlation coefficients (τ) of 

methylation-derived leukocytes’ scores12  and RNA-derived CD8+ T cell estimations. D) Multiple linear regression 

models of leukocyte methylation scores as response variable12 and RNA-derived leukocyte estimations as 

explanatory variables. Column heatmaps are sorted according to leukocyte methylation scores (Left: Low, Right: 155 

High), rows are sorted according to median performance (Top to Bottom: Decreasing performance). E) Multiple 
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linear regression models of deep learning H&E-derived lymphocyte counts as response variable14 and RNA-

derived lymphocyte estimations as explanatory variables. Kendall’s correlation significance is shown with 

small/large squares as indicated by the q-value multiple test corrected. Adjusted R2, Akaike Information Criterion 

(AIC) z-scores, and Bayesian Information Criterion (BIC) z-scores were compared across models generated by 160 

each tool cellular estimations. Lower AIC and BIC values represent a better goodness-of-fit penalising the 

number of variables. Median single nucleotide variants (SNVs), ABSOLUTE purity scores (purity), and leukocyte 

methylation scores (Leuk.) per tumour type are shown in B, C, and D. Violin plots are sorted according to median 

correlation coefficient (Left to Right: Decreasing performance).  

Independent methods benchmarks 165 

All methods tested, except Bindea and Davoli gene supersets, performed their own independent 

benchmarks in the original publications. Thus, we collected benchmarking data for CIBERSORT, xCELL, 

TIMER, and MCP-counter to carry out a side-by-side comparisons. We used the CIBERSORT benchmark 

data that consisted of peripheral blood mononuclear cells (PBMCs) of 27 human subjects quantified 

by flow cytometry5. Correlations between estimated immune cell types and the flow cytometry 170 

fractions showed that the best performing methods were MCP-counter, CIBERSORT, and xCELL (Figure 

2A). However, most of the correlations lacked statistical significance, and due to the different cell 

types estimated by the different methods it is difficult to reach a conclusion. Similarly, the xCELL 

benchmark data set consisted of 16 PBMC leukocyte subsets from two different studies with 61 and 

104 human subjects each, where PBMCs were measured using Cytometry by Time of Flight (CyTOF)8. 175 

Again, MCP-counter, CIBERSORT, and xCELL were the methods that showed best performance in these 

PBMC benchmarks, however many cell types did not reach statistical significance (Figure 2B). 

 

Finally, we used cancer-related benchmarks from TIMER6 and MCP-counter7. For TIMER’s benchmark, 

404 TCGA bladder cancer samples were analysed by a pathologist who categorised them as low, 180 

medium, or high according to their neutrophil counts using H&E stained slides. Then performance was 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 11, 2018. ; https://doi.org/10.1101/437533doi: bioRxiv preprint 

https://doi.org/10.1101/437533
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

assessed by measuring the significance of difference between the computational estimates of samples 

in each category. Here, ConsensusTME, Bindea, and TIMER obtained the best separation between 

categories, but only ConsensusTME and Bindea separated significantly the three categories after 

multiple test correction (Figure 2C). Interestingly, xCell, CIBERSORT, and MCP-counter were unable to 185 

differentiate the three categories, while Davoli does not estimate neutrophils. The MCP-counter 

benchmark consisted of IHC digital quantification of CD3+ (T cells), CD8+ (CD8+ T cells), and CD68+ 

(Monocytic lineage) cell densities from 38 colorectal cancer samples. Correlations between the 

methods’ estimations and the cellular fractions were computed (Figure 2D). ConsensusTME, MCP-

counter, and Davoli methods provided the best correlations, with ConsensusTME outperforming on the 190 

three cell types.  

 

When observing the rank of methods across all benchmarking experiments (Supplementary figure S1) 

no one method was shown to consistently outperform all others. However, the integrative 

ConsensusTME approach was in the top three for all cancer-based benchmarks and achieved the lowest 195 

mean rank of all methods.  
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Figure 2: Side-by-side benchmark using original benchmarking datasets published by the individual methods. 

A) Kendall’s correlation coefficients (τ) of CIBERSORT PBMCs’ flow cytometry (n=20 samples) and B) xCell PBMCs’ 

CyTOF benchmarks. SDY311 (n=61 samples) and SDY420 (n=104 samples) are different benchmarks available 200 
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from ImmPort15. Since not all methods estimate cell activation states, cell proportions were aggregated into the 

cell type and used for correlation with the methods that do not estimate the specific activation states. The grey 

box represents correlation coefficients that have a q-value > 0.05 (B-H method). Box plots are sorted according 

to median correlation coefficient (Left to Right: Decreasing Performance). C) Comparison between low, medium, 

and high categories of BLCA (n=404 samples) neutrophil H&E pathology counts. One-way ANOVA with Tukey 205 

HSD post hoc tests were employed to calculate q-values. Plots are sorted according to performance (Left-Top: 

Best, Right-Bottom: Worst). D) Kendall’s correlation coefficients (τ) of MCP-counter COADREAD IHC (n=38 

samples) cell densities (cell/mm2). Plots are sorted according to median correlation coefficient (Left to Right: 

Decreasing Performance). 

DISCUSSION 210 

With the recent generation of large publicly available molecular profiling of cancer samples, a variety 

of computational tools for analysis of cell components of the TME have been generated. In principle, 

the method of choice should be based on performance, however popularity and ease of use can also 

be reasons behind the method researchers select4. In the case of TME cell estimation from bulk 

expression data, this problem is magnified by the lack of objective and independent benchmark 215 

analyses, since most methods use their own benchmarks which may introduce biases and reliance on 

one type of data. Here we performed an unbiased and objective benchmarking exercise comparing six 

of the most widely used and recent tools, and also developed ConsensusTME: a gene set enrichment-

based method that integrates cells and genes from these six different tools in order to generate a 

consensus gene superset for each cell type that is tumour type specific. 220 

 

We performed pan-cancer benchmarks using orthogonal data types generated for TCGA samples. 

While DNA-derived tumour purity scores correlated negatively with RNA-derived TME estimations in 

all methods, leukocyte methylation scores showed some distinction across methods, and a lack of 

correlation in some cases. Also, different tumour types showed varying levels of correlation with 225 
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leukocyte estimations, which could be due to the leukocyte methylation signature model. This was 

generated by comparing pure leukocyte cells and normal tissue methylation patterns with tumour 

type specific methylation patterns12, and tumour infiltrating leukocytes may have different 

methylation patterns. Furthermore, lymphocyte deep learning H&E quantifications provided a lower 

association with lymphocyte RNA-derived estimations, an observation that has been reported before 230 

and considered to be in part due to the RNA-derived estimates reflect more cell counts, while spatial 

image-derived estimates reflect the fraction of lymphocytes per area14,16. Thus, this benchmark is 

inconclusive due to the uncertainty of both RNA-derived and imaged-based derived lymphocyte 

estimates, but it was included to achieve more comprehensive and orthogonal benchmarks. 

Moreover, similar results to the leukocyte methylation benchmark were detected. Side-by-side 235 

benchmarking on the different methods data sets showed that PBMC-based benchmarks present a 

low number of significant correlations across methods, and due to the diversity of cells tested and 

estimated by the different methods obtaining a concluding result out of these benchmarks is 

challenging. Moreover, for the application of TME cell estimation using bulk RNA tumour data, PBMC 

benchmarks may not be very informative as the transcriptomes of the circulating and tumour 240 

infiltrating immune cells are different. In contrast, both BLCA and COADREAD benchmarks on 

neutrophils, CD3+, CD68+, and CD8+ cells showed significant associations for some tools, particularly 

ConsensusTME. These benchmarks showed that no independent method consistently outperforms 

other methods. Nevertheless, overall ConsensusTME ranked among the top three best performing 

methods in all cancer-relates benchmarks. Lastly, ConsensusTME is an evolvable method by conception, 245 

which means that other genes used by new methods can be added to existing supersets and tested 

with already established benchmarks, thus potentially improving its performance as new methods and 

gene sets are developed. 
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METHODS 250 

Contact for Reagent and Resource Sharing 

Further information and requests for resources should be directed to and will be fulfilled by the Lead 

Contact, Martin L. Miller (martin.miller@cruk.cam.ac.uk). 

 

Quantification and Statistical Analysis 255 

Single-sample gene set enrichment analysis 

Single-sample gene set enrichment analysis17, a modification of standard GSEA18, was performed on 

RNA measurements for each sample using the GSVA package version 1.28.019 in R version 3.5.0 with 

parameters: method = 'ssgsea', and tau = 0.25. Normalized enrichment scores (NES) were generated 

for the hallmark gene sets20, immune and stromal signatures13, TME cell gene sets obtained from 260 

previous publications9,10, as well as the ConsensusTME gene sets (Figure S3A). Hallmark gene sets were 

obtained from MSigDB database version 6.120. 

ConsensusTME 

To generate the ConsensusTME gene sets we identified cell types that were deconvoluted by at least 2 

different methods, 18 in total. We then combined the gene sets that the different methods considered 265 

for the deconvolution of such cell types. To include genes used in CIBERSORT, we first filtered out 

genes whose expression value was below 1.96 standard deviations of the mean for each cell type. In 

addition, we collapsed activated and resting states for corresponding cell types. The union of genes 

was the filtered to exclude genes whose expression has a Pearson’s correlation coefficient > -0.2 and 

a p-value > 0.05 when correlated with tumour purity; as defined by TIMER6. Finally, ssGSEA was 270 
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employed to calculate NES for each cell type as described above. General immune scores for each 

tumour types were generated by combining the genes of the different immune cells into one gene 

set. 

Comparison statistical metrics  

Concordance between computational estimates and ground truth values was measured using either 275 

Kendall’s rank correlation coefficient or the multiple linear regression goodness of fit metrics: adjusted 

R-squared, Akaike information criterion (AIC), and Bayesian information criterion (BIC). AIC and BIC z-

scores values were calculated to incorporate different tumour types in the comparisons since AIC and 

BIC values are unitless. Differences between groups of variables were identified using one-way ANOVA 

with Tukey honest significant differences post-hoc tests. All statistical tests were adjusted for multiple 280 

testing using the Benjamini-Hochberg procedure to control for false discovery rate (FDR). 

TCGA immune estimations  

RNA-sequencing (RNA-seq) data was collected from cBioPortal21. Batch normalisation had been 

applied and gene expression values calculated using the “RSEM” pipeline22. Four existing TME cell 

estimation methods and two published gene sets were used alongside ConsensusTME to produce 285 

relative abundances of immune cell types per sample across 32 tumour types. For each method, a 

general immune score was also derived if it was not already provided, representing the total level of 

immune cell infiltration in each tumour sample. 

TME cell deconvolution methods 

Cell deconvolution methods were used to estimate levels of non-cancerous cells in the TME. The 290 

methods employed were CIBERSORT5, MCP-counter7, TIMER6, xCell8, as well as gene sets collected 

from two previous publications9,10. 
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Bindea et al. and Davoli et al. gene sets 295 

Gene sets provided by Bindea et al. and Davoli et al. were used with ssGSEA to provide enrichment 

scores for each of the immune signatures9,10. To generate general immune scores, genes selected for 

immune cells where combined into one gene set for each method independently. 

 

xCell 300 

The “xCell” R package (version 1.12) was used to generate immune estimates for the xCell method8. 

A general immune estimation score is already provided by xCell. 

 

MCP-counter 

Estimations for the MCP-counter method were produced using the “MCPcounter” R package (version 305 

1.1.0)7. Immune scores for this method were produced in a similar manner as the ssGSEA methods by 

creating a union of signature genes for each of the cell types. The “MCPcounter.estimate” function 

was used to allow for the new signature.  

 

CIBERSORT 310 

CIBERSORT estimations were produced using the R source code, provided on request from the web 

resource5. CIBERSORT was run in “Absolute mode” (under beta development) using 100 permutations 

and quantile normalisation disabled as recommended for RNA-seq data. Absolute scores representing 

the “overall immune content” is produced natively by the algorithm in absolute mode. 

 315 

TIMER 

TIMER estimations were produced using R source code, available from the web resource6. Immune 

scores for TIMER were produced as a sum of the coefficients for each cell type. 

  

 320 
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Purity score benchmark 

Pan-cancer purity scores were downloaded from the NIH Genomic Data Commons 

(https://gdc.cancer.gov/about-data/publications/PanCan-CellOfOrigin)12. Purity scores were 

generated using ABSOLUTE11 which uses copy number, variant allele frequency, and tumour specific 

karyotype data to calculate the cancer fraction of a tumour samples. To benchmark the immune 325 

estimation methodologies using purity of samples the immune scores were added to an independent 

stromal score; calculated through the use of ESTIMATE (version 1.0.13)13. ABSOLUTE’s derived tumour 

purity and the different methods tumour purity scores were correlated independently for each 

tumour type. ACC n=77, BLCA n=397, BRCA n=1052, CESC n=293, CHOL n=36, COAD n=281, DLBC n=47, 

ESCA n=162 , GBM n=154, HNSC n=509, KICH n=66, KIRC n=498, KIRP n=285, LGG n=519, LIHC n=359, 330 

LUAD n=504, LUSC n=493, MESO n=81, OV n=293, PAAD n=159, PCPG n=165, PRAD n=473, READ n=92, 

SARC n=246, SKCM n=460, STAD n=403, TGCT n=155, THCA n=469, THYM n=103, UCEC n=175, UCS 

n=56, UVM n=80  

  

Leukocyte methylation benchmark  335 

Leukocyte methylation scores were downloaded from the NIH Genomic Data Commons 

(https://gdc.cancer.gov/about-data/publications/PanCan-CellOfOrigin)12. Leukocyte methylation and 

CD8+ T cell estimations were correlated, since CD8+ T cells are estimated by all the methods. Multiple 

linear regression was then employed using all leukocytes the methods estimate as explanatory 

variables and the leukocyte methylation scores as response variable. Leukocyte methylation data was 340 

log transformed to meet the normality and heteroscedasticity assumptions of the model. Adjusted R2, 

AIC, and BIC metrics were calculated to compare the goodness of fit between the methods while 

taking into consideration the number of variables included in the model. ACC n=79, BLCA n=405, BRCA 

n=1077, CESC n=306, CHOL n=36, COAD n=278, ESCA n=185, GBM n=137, HNSC n=522, KICH n=66, 

KIRC n=528, KIRP n=291, LGG n=526, LIHC n=372, LUAD n=505, LUSC n=499, MESO n=87, OV n=306, 345 
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PAAD n=179, PCPG n=184, PRAD n=494, READ n=94, SARC n=263, SKCM n=471, STAD n=415, TGCT 

n=137, THCA n=509, UCEC n=177, UCS n=57, UVM n=80.   

 

Somatic single nucleotide mutation data 

Somatic single nucleotide mutation data was downloaded from the Broad Institute GDAC Firehose23. 350 

 

H&E deep learning lymphocyte fractions benchmark  

Lymphocyte fractions were generated by Saltz et al. for 13 TCGA cancer types14. Multiple linear 

regression was applied in a similar manner as for the leukocyte methylation analysis, instead using a 

hyperbolic sine transformation of lymphocyte fraction as a response variable to meet normality and 355 

heteroscedasticity assumptions of the model. Models for each method were fitted using only method 

estimates of lymphocytes as explanatory variables. BLCA n=298, BRCA n=944, CESC n=229, COAD 

n=414, LUAD n=470, LUSC n=385, PAAD n=169, PRAD n=332, READ n=142, SKCM n=384, STAD n=335, 

UCEC n=447, UVM n=63. 

  360 

Independent methods side-by-side benchmarks  

The benchmarking validation analyses for each of the methods were replicated, where possible, to 

match the parameters used in the original publications. Of the six methods there were four 

benchmarking datasets available; either online or provided by the authors. Each of the datasets 

contained samples with bulk gene expression values along with matched “ground truth” values. The 365 

CIBERSORT benchmarking dataset, provided by the authors on request5, consisted of flow cytometry 

values of different immune cell types from PBMC samples. The xCell benchmarking datasets, SDY311 

and SDY420, were publicly available for download from ImmPort15, and the validation data consisted 

of matching CyTOF quantification of immune cells from PBMC samples. The MCP-counter publication 

used gene expression profiles from GEO (accession number GSE39582) and IHC counts of CD3+, CD8+, 370 

and CD68+ cells (available on request from the authors)7. TIMER benchmark consisted of H&E stained 
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slides from TCGA Bladder urothelial carcinoma (BLCA) study. Pathological estimations of these slides 

were carried out to categorise each sample into one of three categorical levels for neutrophil 

abundance: “Low”, “Medium” or “High”; estimations are available from the TIMER online resource6. 

For all benchmarking experiments, except TIMER, concordance was measured using correlation 375 

between “ground truth” values and the immune estimations of each method. Due to the variation in 

the degree of specificity to which cell subsets were defined, summations of subsets were required to 

allow accurate comparisons in some cases. For the TIMER benchmark, the in-silico neutrophil 

estimations for each method were grouped by low, medium and high pathological estimation, then 

compared through ANOVA with Tukey post hoc. 380 

DATA AVAILABILITY 

All code and data generated from this study are available either on request or at: 

https://github.com/cansysbio/ConsensusTME 
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SUPPLEMENTARY FIGURES 

 

Figure S1: Summary of benchmarking experiments with ConsensusTME highlighted. Line plot for rank of method 

in each benchmark. Mean rank in final column. As Davoli the method does not allow for prediction of neutrophils 395 

it was given the lowest rank for the TIMER benchmark.  
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