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Abstract

Background: Genomic selection accuracy increases with the use of high SNP (single nucleotide polymorphism)
coverage. However, such gains in coverage come at high costs, preventing their operational implementation by
breeders. Low density panels imputed to higher densities offer a cheaper alternative. Our study is one of the
first to explore the imputation in a tree species: black poplar. About 1000 pure-breed Populus nigra trees
corresponding to a subsample of the French breeding population were selected and genotyped with a 12K
custom Infinium Bead-Chip. Forty-three of those individuals corresponding mostly to nodal trees in the
pedigree were fully sequenced (reference), while the remaining majority (target) was imputed from 8K to 1.4
million SNPs using FImpute. Each SNP and individual was evaluated for imputation errors by leave-one-out
cross validation in the training sample of 43 sequenced trees. Some summary statistics such as Hardy Weinberg
Equilibrium exact test p-value, quality of sequencing, depth of sequencing per site and per individual, minor
allele frequency, marker density ratio or SNP information redundancy were calculated. Principal component
and Boruta analyses were used on all these parameters to rank the factors affecting the quality of imputation.
Additionally, we characterize the impact of the relatedness between reference population and target population.

Results: During the imputation process, we used 7,540 SNPs from the chip to impute 1,438,827 SNPs from
sequences along the 19 Chromosomes. At the individual level, imputation accuracy was very high with a
proportion of SNPs correctly imputed between 0.84 and 0.99. The variation in accuracies was mostly due to
differences in relatedness between individuals. At a SNP level, the imputation quality strongly depended on
genotyped SNP density and to a lesser extent on the original minor allele frequency. The imputation did not
appear to result in an increase of linkage disequilibrium. The genotype densification not only brought a better
distribution of markers all along the genome, but also we did not detect any substantial bias in annotation
categories.

Conclusions: This study shows that it is possible to impute low-density marker panels to whole genome
sequence with good accuracy under certain conditions that could be common to many breeding populations.
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Background
In genome-wide analyses, accuracies in association
and genomic predictions increase with the density in
marker coverage [1, 2]. However, these coverage gains
have a high cost, which frequently prevents their
operational implementation in breeding programs.
Low-density panels imputed to higher densities
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offer an alternative to systematic genotyping or
sequencing. The idea of genotype imputation as
supplemental genotyping data was described by
Burdick et al. (2006) [3], using the term ”in silico”
genotyping. In this context, imputation refers to the
process of predicting genotyping data not directly
available for an individual. Usually, imputation uses a
reference panel composed of genotyped individuals
with high marker density to predict all missing
markers of another panel genotyped at lower density
coverage [2]. Imputation can be used in at least
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three different scenarios: (i) to correct missing data
that occurred due to technical problems, (ii) to
correct for genotyping errors, and (iii) to infer data
for non-genotyped SNPs on a set of individuals [4].
Another more extreme scenario involving imputation
is to create all the genotype information of individuals
that are no longer available from their extant relatives
[5]. Imputation software uses two main strategies:
the first is based on pedigree and Mendelian
segregation [6–8], and the second relies on linkage
disequilibrium [9, 10]. Some authors use sequentially
or in a given combination both approaches [11].
The first strategy is the one implemented in
algorithms like Lander-Green [12], Elston-Steward
[13] or Monte-Carlo sampling algorithms [14, 15].
The second strategy is commonly used for samples
with low levels of kinship and unknown ancestors,
relying instead on the linkage disequilibrium between
markers within the reference population. It uses
heuristic algorithms as Expectation Maximization
(EM) algorithm, coalescence models and Markov’s
hidden strings (HMM) [16, 17]. Recently, a study
has compared eight machine learning methods to
impute a genotype dataset, but results are of lower
quality than those from Beagle, a reference software
in the domain of imputation [18, 19] which is based
on the forecited second strategy [20]. The imputation
accuracy depends on several factors. Among them,
there are the genotyping quality, the levels of linkage
disequilibrium (LD), the marker density which in
turn influences perceived linkage disequilibrium,
and the relatedness between reference and imputed
populations. Factors affecting imputation accuracy
have already been studied both with simulated and
empirical data. For instance, Hickey et al. (2012)
[21] showed that imputation accuracy increases with
marker density. The reference population constitution
is also a decisive factor for the imputation accuracy.
The reference population should be large enough to
capture all relevant haplotypes [6] and recombination
events, as well as to estimate correctly LD. The
relatedness between the reference and the target
panel favours imputation quality, with higher
accuracies as relatedness increases between the
two groups [22]. The effects of panel size, LD and
relatedness become more important with decreasing
marker density [6, 23]. Imputation of genotyping data
has several advantages, the first being the reduction
of genotyping costs [24], which can be very important
depending on the species. In addition, imputation
of genotyping data also improves the detection of
QTLs and the model’s prediction accuracy developed
in association studies or genomic selection [2]. The
imputation of genotyping data could be used in

genetic mapping to enrich genetic maps for a higher
coverage. Finally, imputation could correct to a
certain degree the eventual heterogeneity in marker
density related to constraints in chip design. Such
heterogeneity in marker density across the genome
happened to be the case of the chip used in our study
here [25]. Often, imputation involves a difference in
densities between reference and targeted panels of
less than 10-fold (i.e. 5K to 50K [26–28] or around
10-fold 50K to 500K [29, 30]). With the increasing
access to affordable genomic sequence data, the
possibility to use full sequences in the reference
panel for imputation becomes a reality, at least
for a limited number of individuals. Two studies
simulated sequences to find the better strategy
between imputation accuracy, number of sequenced
individuals and genome coverage [31, 32]. Both
studies suggest that a good compromise is sequencing
as many individuals as possible but at medium
coverage (x8). To our knowledge, only three studies
in animals have tried to impute successfully from
low and medium densities (13 K and 50-60K) to
real sequence data (350K and 13 millions) [33–35].
These studies show that inferring whole sequences
from low-density marker panels with good accuracy is
possible under certain conditions, notably with high
levels of relatedness and persistence of LD between
the markers across populations. Our study is one
of the first to explore the benefits of imputation
to densify SNP genotyping in a forest tree species,
usually less favored than livestock in genomic
resources. This paper is based on black poplar,
specifically on one of the breeding populations that
is used to produce hybrid poplars. In the context
of this breeding effort, imputation is expected to
enrich our knowledge, for the subsequent step of
predicting and selecting candidates, in four different
aspects: (1) to detect recombination events within
chromosomes; (2) to estimate the recombination
rate within families to improve subsequent in silico
predictions of segregation; (3) to enriching the genetic
map and (4) to improve genomic evaluation accuracy.
The main objective of this study was to demonstrate
to what extent high quality imputation was feasible
from low density arrays. A complementary objective
was to identify the factors that contributed to the
quality of the imputation and its impact on the
linkage disequilibrium and the annotation profile of
covered positions.

Methods
Plant material
For this study, 1,039 Populus nigra were made
available from the French breeding population. This
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Table 1: Number of individuals and pedigree
information
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Description of black poplar breeding resources used in the

study, with mating designs involved and number of individuals

per family in the inner cells. Parental and family cells are

coloured by class in the mating regimes: yellow, factorial

mating progenies; orange, multiple pair mating progenies; red,

factorial mating parents; purple, multiple pair mating parents;

and dark cyan, unrelated individuals. In brackets, some

selected cells show the number of sequenced progenies, with

the figure in red involving 2 progenies that were subsequently

used as parental females (underlined codes) for the multiple

pair mating.

sample was structured into 35 families resulting
from 23 parents. Available families resulted from
two mating sets. As shown in the table 1, the
first mating set corresponds to an almost complete
factorial mating design involving 4 female and 4
male parents, and resulting in 413 F1 individuals
structured into 14 full sib families. The second set
involved multiple pair mating schemes involving 8
female and 7 male parents, with a number of crosses
per parent ranging from 1 to 5, and resulting in 598
F1 individuals structured into 21 full sib families. Six
individuals originated from a collection of French wild
populations were also added to the population. All
1,039 individuals in this population were genotyped
and 43 of them were also sequenced. Among the
sequenced individuals, there were 1 grand-parent,
21 parents, 13 progenies and 2 female individuals
that were both progenies in the factorial mating
design and subsequently parents in the multiple pair
mating set (table 1). The progenies to sequence
were chosen in such a way that all parents had at
least one sequenced offspring. The six sequenced
individuals originated from wild populations were
added to assess the imputation ability with unrelated
individuals. Detail of genotype list and origins were
given in table S1[see Additional file 1].

Genotyping and sequencing
We used the sequences of 6 parents previously
sequenced by Genome Analyzer IIx from
Illumina [25]. For the others parents (17), 1
grandparent, 14 progenies and 6 unrelated the
DNA extraction was made from leaf samples in
the UMR0588-BioForA collection, by using the
Macherey-Nagel Nucleospin®96 Plant II commercial
kit. Illumina paired-end shotgun indexed libraries
were prepared from one µg of DNA per accession,
using Illumina TruSeq®DNA PCR-Free Sample
Preparation kit. Briefly, indexed library preparation
was performed with DNA fragmentation by AFA
(Adaptive Focused AcousticsTM ) technology
on Covaris focused-ultrasonicator, all enzymatic
steps and clean up were realized according to
manufacturer’s instructions. Single or dual indexes
were used. Final libraries were quantified by using
qPCR using KAPA Library Quantification Kit
and Life Technologies QuantStudioTM Real-Time
PCR system. Fragment size distribution of libraries
was assessed by High Sensitivity DNA assay
either on Agilent 2100 Bioanalyzer or on Caliper
LabChip®GX nucleic acid analyser. Equimolar pools
of multiplexed samples, up to 11, were engaged in
sequencing using 4 lanes. After clusters generation on
CBot, paired-end sequencing 2 × 150 sequencing by
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synthesis (SBS) cycles was performed either on a
Illumina HiSeq®2000/2500 running in high output
mode (one lane) or on Illumina HiSeq®4000 (three
lanes ). Reads were trimmed with Trimmomatic (v.
0.32) [36], and mapped to the P.trichocarpa version
3.1 genome [37] using BWA-MEM 0.7.12- with
default parameters [17]. Picard Tools (v. 2.0.1) [38]
were used to remove duplicated reads. Local and
Indel realignments were performed using Genome
Analysis Toolkit (GATK v. 3.5) [39, 40]. The variant
detection was performed on all individuals by
two variant callers: (1) in parallel with Freebayes
(V1.0.0) [41], and (2) by each individual separately
with GATK HaplotypeCaller, to be subsequently
assembled using GenotypeGVCFs (called later
gVCF-GATK). We have used the VCFtools 0.1.15
[42] to filter variants with no missing data, with a
minimum quality score of 30 and a mean depth of 2.
We allowed among selected SNPs those harboring
three alleles, because mapping was done on another
Populus species reference genome, so it was possible
to have two alternative alleles and no reference allele
in the aligned sequences. We finally kept only SNPs
and Indels that were detected by both callers and
consistent with Mendelian segregation. To simplify,
SNPs and Indels were both called SNPs hereafter.
All individuals were genotyped using the Populus
nigra 12K custom Infinium Bead-Chip (Illumina, San
Diego, CA) [25]. We applied the same quality filters
as in Faivre-Rampant et al (2016): markers with
more than 90% of missing data were removed and
only Mendelian segregation consistent markers were
selected.

Genotype imputation
We used the FImpute software (v 2.2) [11], as
many studies have already pinpointed its good
performance for imputation when compared to many
other alternatives [16, 35, 43, 44]. FImpute can
use different sizes of rolling windows with a given
overlap to scan the genomes of target and reference
datasets. The pedigree information is used to increase
imputation accuracy. Therefore, FImpute combines
both formerly stated strategies for imputation: that
based on pedigree and that on LD. A first round
of genotype imputation was performed to predict
1% of missing data still existing on the SNP chip
panel. The second and most substantial imputation
scheme was between the genotypic data from the chip
SNP (SNPchip) and the sequence data (SNPseq).
To assess imputation accuracy, a leave-one-out cross
validation scheme was performed among the 43
sequenced individuals. The SNPseq were masked for
one individual at a time, and this individual with

only SNPchip data was subsequently imputed with
the rest of individuals. To challenge the imputation
scheme, an additional set of 6 unrelated individuals
with sequences were added to the target panel. We
estimated imputation quality (or accuracy) using
various statistics. One was the proportion of alleles
correctly imputed by each leave-one-out individual
(across SNPs, one proportion per individual and
per chromosome: Propi), and by positions (across
individuals, one proportion per position: Props). The
proportion of alleles correctly imputed by SNP might
be subjected to frequency-dependent bias, in the
sense that imputation could be correct more often
than not when the imputed allele is already highly
frequent. To overcome this, Calus et al. (2014) [45]
have proposed the use of an alternative statistic, the
Pearson’s correlation coefficient between true and
imputed individuals (across SNPs, one correlation
value per individual and per chromosome: Cori)
and between true and imputed positions (across
individuals, one value per SNP position: Cors).
In our case, this latter correlation (Cors) was not
always available for computation. The reason was
that some SNPs had such a low allelic frequency that
monomorphic outcomes happened after imputation,
leading to zero variances. In order to account for
this frequency-dependent outcome, alternatively, we
used the option proposed by Badke et al. (2014)
[46] to correct the error rate by the probability of
correct imputation by chance (cProps: corrected SNP
proportion). FImpute offers an imputation mode
based on allelic frequency (option ”random fill”),
which gives us a lower bound for imputation accuracy
by individual (lbPropi : lower bound individual
proportion) and by SNP (lbProps: lower bound SNP
proportion).

Factors affecting SNP imputation
We considered different factors describing the
heterogeneity between individuals and between
markers imputations, and we checked to what extent
these factors affected imputation. The first factors
were at the individual level: the sequence depth
(MEAN DEPTH); and the level of relatedness
defined according to the following categories : parent
of factorial (Factorial parents), parent of multiple
pair mating design (MultiplePair parents), progeny
of factorial (Factorial progenies), progeny of multiple
pair mating design (MultiplePair progenies) and
French wild population (Unrelated). At SNP level,
the following factors were considered: sequencing
depth (DEPTH) across individuals; per-site SNP
quality from the SNP calling step (column QUAL
in the vcf file, extracted with vcftools v0.1.13
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from the gVCF-GATK results files); minor allele
frequency (FreqOri); the ratio between SNPchip
density and SNPseq density in non-overlapping 500kb
windows (RatioDensity); the p-value of an exact
Hardy-Weinberg Equilibrium test (hweOri) for each
site as defined by Wigginton et al. (2005) [47] and the
level of unique information contributed by each SNP
given the level of LD with neighbouring SNPs, and
calculated as the weight (Weight) obtained by the
LDAK5 software [48]. The variation of the imputation
quality variables (Props, lbProps and cProps) were
analysed according to the different factors by a
principal component analysis. The factor’s relevance
to describe the imputation quality variables were
quantified with a Boruta algorithm which is a
wrapper built around the random forest classification
algorithm implemented in the R (R Core Team
2015) package Borut [49]. This algorithm created
”shadowMean”, ”shadowMax” and ”ShadowMin”
attribute values obtained by the shuffling of the
original attributes across objects. This set of created
attributes is used as a framework of reference. The
value of the importance of the factors tested, must be
different from the values of the attributes created, to
be considered as having importance in explaining the
observed variability.

Linkage Disequilibrium
Plink software [50, 51] was used to estimate the
linkage disequilibrium parameter D’ [52] in the
SNPchip dataset and after imputation in the SNPseq
dataset. These latest were filtered on Props (> 0.90)
and cProps (> 0.80) variables.

Annotation analysis
We were interested in assessing to what extent
imputation could change the annotation profile of
covered SNPs, notably given the fact that the process
involved a substantial change in density. Changes in
annotation profiles from enriched to non-enriched
but denser genotypes could be of relevance when
using the resulting genotypes to fit prediction models
for a large spectrum of traits. To get an annotation
profile, a gene annotation analysis was performed.
The tool Annovar (v. 2017Jul16) [53] was used with
the command “–geneanno -buildver” in the Populus
trichocarpa v3.1 gene set.

Results
Mapping and genotype calling results
Sequence datasets for every individual were mapped
on the P. trichocarpa reference genome v.3.1. In
average, 91.7% of reads were mapped, 76.5% were
paired and only 2.2% were singletons. The genome

Table 2: SNP Filter step
Filtering step Freebayes gVCF-GATK

No filter 26,489,941 27,475,756
vcftools (max allele=3, min

allele=2, minQ=30)

5,011,303 10,474,367

Monomorphic within P. nigra
individuals

1,246,546 2,504,973

Common positions between the
two callers

2,488,736 (375,566)

Homology between two callers
more than 95%

1,612,432

Consistent Mendelian
Segregation

1,466,586 (208,217)

Number of variants detected in the 43 sequenced individuals
using two callers with no filter and after filtering with different
parameters to obtain the input dataset used for imputation.
In brackets, the number of Indels out of the total number of
variants.

coverage was calculated by individual, and it varied
between 4X and 52X, with a mean coverage of 13X
(table S1[see Additional file 1]). A total of 27,475,756
SNPs and Indels were detected by gVCF-GATK,
whereas 26,489,941 SNPs were detected by Freebayes
(table 2). After scoring the SNPs on a quality
criterion (Phred score ¿30), the number of trimmed
positions were twice as many with gVCF-GATK than
with Freebayes (table 2). Among the remaining
positions, some were monomorphic within P. nigra
individuals but different from the reference sequence:
about 1 million for gVCF-GATK and twice as much
for Freebayes. A total of 2,488,736 positions were
common between the two callers at that point of the
filtering. Among these positions, 17% were Indels
and 83% SNPs. To have the best quality in genotype
calling, we kept the positions where the genotype
calling was at least 95% similar between the two
callers for all individuals. Mendelian segregation was
checked on available trios, and 142,974 positions were
removed for which the progeny were inconsistent with
parents. For the chip, after applying quality filters,
7,540 SNPs were recovered for the population under
study and were used to impute 1,466,586 SNPs from
sequences along the 19 Chromosomes. In other words,
we imputed 99% of the data.

Imputation quality at the individual level
The Pearson’s correlation between true and

imputed individuals for each chromosome (Cori) was
strongly correlated with the individual proportion of
SNPs correctly imputed (Propi) per chromosome
(R2 = 0.991, figure 1), with the former varying
between 0.5 and 0.96, and the latter between 0.84
and 0.99. The coefficient of correlation between
Cori and Propi was consistently high across
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Figure 1: Comparaison of two imputation
accuracy variables. Relationship between the
proportion of alleles correctly imputed by each
leave-one-out individual (Propi) and the Pearson’s
correlation coefficient between true and imputed
individual genotypes (Cori). The different panels
correspond to the different individual classes in
the mating regimes, and each point represents the
values for one chromosome and one individual. The
correlation value is given in each panel and derives
from the fitted regression line.

individual classes (MultiplePair parents: 0.929,
Factorial progenies: 0.938, MultiplePair progenies:
0.929 and Factorial parents: 0.984), even for unrelated
individuals where it was slightly lower with 0.896
(figure 1). Propi versus Cori relatedness clouds
were differently clustered depending on the class of
individuals (figure 1). In general, factorial mating
design progenies had higher Propi and Cori values
(respectively from 0.94 to 0.98 and from 0.81 to
0.95) than those in the Multiple pair mating design
progenies (from 0.93 to 0.96 and from 0.80 to 0.88).
Progenies from either of the two schemes had higher
Propi and Cori values than those in the parental
groups (from 0.87 to 0.90 and from 0.57 to 0.65).
The parents of the factorial mating design resulted
in the most variable ranges for Propi and Cori
with respectively from 0.88 to 0.99 and 0.6 to 0.96,
respectively, although that class had on average
higher values than those found in parents in the
multiple pair mating scheme. Finally, the unrelated
individuals are in the lowest part of Propi and Cori
variation (with respectively from 0.89 to 0.90 and
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Figure 2: Proportion of individual correctly
imputed by chromosomes Distribution of the
proportion of SNPs correctly imputed by chromosomes
(Propi). White diamond symbol stands for the mean.

from 0.62 to 0.63). There was no separate group
within individual’s categories (figure 1) meaning
that the individual class ranking was consistent
along the chromosomes. The individual lower bound
for imputation accuracy (lbPropi) was moderately
correlated to Propi (figure S1[see Additional
file 2]). The ranking of individual classes was
equivalent between lbPropi and Propi. However,
there appears to be a higher gain in Propi with
respect to lbPropi (i.e., using pedigree and LD versus
frequencies) for the multiple pair-mating progenies,
factorial progenies and factorial parents than for
the multiple pair mating parents and unrelated
individuals. In figure 2, Propi distribution is shown
per chromosome. This averaged imputation accuracy
was roughly similar for all chromosomes, except for
chromosomes 6 and 8 where means were substantially
higher (respectively 0.96, and 0.95). No relationship
between the sequencing depth (MEAN DEPTH)
and Propi was found at individual level whereas a
poorly significant correlation seems to be present
between depth (MEAN DEPTH) and lbPropi and
Cori (figure S2 [see Additional file 3]). In summary,
at the individual level, imputation accuracy was very
high with a proportion of SNP correctly imputed
ranging between 0.84 and 0.99. The variation was
mostly due to the relatedness between individuals and
to a lesser extent to sequencing quality or sequencing
depth.
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Imputation quality at the SNP level
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Figure 3: Principal Component Analysis of
Factors affecting SNP imputation (A) Principal
Component Analysis factor map of factors calculated
at SNP level: Props: proportion of SNPs correctly
imputed; cProps: proportion of SNPs correctly
imputed and corrected by the minor allele frequency;
lbProps: lower bound proportion of SNPs correctly
imputed based only on allelic frequency; hweOri: p-
value of a Hardy-Weinberg Equilibrium test for each
site [47]; Weight: LD weight estimate obtained with the
LDAK5 software; FreqOri: original allelic frequency
in the sequenced individuals; QUAL: per-site SNP
quality from the calling step; DEPTH: sequencing
depth per site summed across all individuals ;
RatioDensity: ratio between SNPchip density and
SNPseq density in a 500kb window. (B) Correlations
between parameters calculated at SNP level and
dimension of the ACP from figure 3A.

A very strong correlation between Cors and cProps
(0.94) suggests that similar information was relayed
by these two variables despite the frequency-based
correction. The figure S3 [see Additional file 4]
shows the variation of the three different estimates
of imputation quality at the SNP level (Props,
lbProps, cProps), as a function of different classes
of minor allele frequency (FreqOri). While for low
FreqOri, Props and lbProps distributions remained
similar, with increasing frequencies their respective
distributions tended to separate from each other. The

Figure 4: Comparaison of density marker before
and after imputation SNP density map before
imputation (top panel), corresponding to the SNP
chip genotyping, and after imputation from sequence
(bottom) in 500 kb windows. SNPs were selected
on two different criteria based on the percentage of
alleles correctly imputed: Props (> 0.90) and cProps
(> 0.80). The scale colour represents the density of
markers, with dark blue for low density and yellow for
high density.

frequency dependent correction applied to cProps was
strongest at low frequencies, making cProps much
lower on average than the other two counterparts.
With increasing frequency, that correction was weaker
with cProps getting closer to both Props and lbProps.
This suggests that, while the problem of sensibility
to frequencies can be easily overcome, cProps shows
imputation qualities that can be far lower than what
is actually observed. The first 5 axes of the principal
component analysis (PCA) considering the three
estimates of imputation quality and six factors that
potentially affect this quality, explained 90% of the
variance (PC1 and PC2, explained respectively 37.8
and 16.5% of the variation; figure 3A). Props showed
the highest independence with respect to the sequence
depth (DEPTH), the SNP quality (QUAL), cProps,
the ratio between SNPchip density and SNPseq
density (RatioDensity) and, to lesser extent, to
the level of unique information contributed by each
SNP (Weight). Props was negatively correlated
to the FreqOri and positively correlated to the
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p-value of an exact Hardy-Weinberg Equilibrium test
(hweOri) and to lbProps. In figure 3B, correlation
of each variable to the PCA dimensions are shown.
The first dimension was negatively correlated to
FreqOri (-0.94), and positively correlated to hweOri
(0.78), lbProps (0.92) and Props (0.87). Sequencing
quality parameter QUAL and DEPTH are highly
correlated to the second dimension (respectively
0.68 and 0.8). RatioDensity and cProps were
correlated to the third and fifth dimensions whereas
the Weight variable was only strongly correlated to
the fourth dimension. The Boruta analysis ranked
the importance of the different factors considered to
explain the variation in Props, cProps and lbProps
variables (table 3). All factors were quantified as
being of higher importance than those of lower bond
references in shadow attributes. RatioDensity
resulted in the highest importance among all factors
for Props and cProps with effects respectively being
1,351 and 1,182, largely ahead of the rest of factors,
with effects ranging between 40 and 115 for Props,
33 and 132 for cProps. lbProps showed a different
ranking of factors, dominated by FreqOri with the
maximum effect among factors, which is expected
given the fact that it is based on allele frequency. In
summary, the quality of imputation at a SNPs level
strongly depended on RatioDensity and to a lesser
extent on FreqOri. By selecting SNP sets on Props
and cProps simultaneously, we obtained 190,392 SNP
with good imputation quality (Props > 0.90), while
their level of polymorphism was not forced towards
low allele frequencies (cProps > 0.80). The SNPs
distribution along the genome after imputation was
more homogeneous than what was initially available
with the SNPchip (Figure 4).

Linkage Disequilibrium
The linkage disequilibrium (D’) calculated

in SNPchip and SNPseq sets is represented in
figure 5A, with density distributions showing
that LD was lower in SNPseq than in SNPchip.
This difference between sequence and chip sets
was consistent over classes of distances across the
genome. Figure 5B represents heat-maps for D’
values according to physical distances. In general,
D’ decreased with increasing distances, as expected,
although this trend was noticeably clearer for
SNPchip than for SNPseq. For SNPchip, that D’
decay was noticeable at the very shortest distance
lags, with a bottom value for the mean sitting at
0.25. Some increases were observed at the highest
distances, but this corresponded to very few number
of points. For SNPseq, on the contrary, the weighted
mean was almost invariable over distances with a

Table 3: Estimation of importance of different
explanatory factors by Boruta analysis

Factor cProps lbProps Props
(Mean ± SD) (Mean ± SD) (Mean ± SD)

shadowMax 1.44 ± 0.93 1.48 ± 0.70 1.80 ± 1.30
shadowMean -0.05 ± 0.79 -0.22 ± 0.52 -0.01 ± 0.82
shadowMin -2 ± 0.53 -2.22 ± 1.25 -1.57 ± 0.91
hweOri 32.96 ± 1.04 39.84 ± 0.73 40.33 ± 1.99
QUAL 98.95 ± 5.12 67.83 ± 1.70 67.90 ± 1.76
Weight 131.86 ± 3.56 92.78 ± 4.20 101.57 ± 4.23
FreqOri 64.28 ± 2.19 110.92 ± 2.79 115.02 ± 3.28
DEPTH 114.21 ± 5.08 75.51 ± 1.67 114.81 ± 4.81

RatioDensity 1,182.87 ± 39.82 36.68 ± 1.50 1,351.57 ± 43.94

Boruta analyses for the different explanatory factors assumed
for imputation quality variables Props, cProps and lbProps.
Values correspond to averaged effects and their corresponding
standard deviations allowing for a ranking of importance of the
factors. The maximum value is bolded. Props: proportion of
SNPs correctly imputed; cProps: proportion of SNPs correctly
imputed corrected by the minor allele frequency; lbProps:
lower bound proportion of SNPs correctly imputed based
only on the allelic frequency; hweOri: p-value of a Hardy-
Weinberg Equilibrium test for each site [47] ; Weight: LD
weight estimate with the LDAK5 software; FreqOri: original
allelic frequency in the sequenced individuals; QUAL: per-
site SNP quality from the calling step; DEPTH: sequencing
depth per site summed across all individuals ; RatioDensity:
ratio between SNPchip density and SNPseq density in a 500kb
window. ”ShadowMean”, ”shadowMax” and ”ShadowMin”
correspond to effects obtained by shuffling the original
attributes across objects and used as a reference for deciding
which factors are truly important.

mean value of 0.2. The very large numbers of short
distance pairs with low D’ had a high impact on the
pattern of the weighted mean. Figure 5C presents
the results under an alternative view in order to
explain the differences in patterns between SNPchip
and SNPseq. D’ values are plotted as a function of
distance and product of MAF of involved alleles, with
the idea of checking to what extent the levels of D’
was the result of low allelic frequencies in SNPseq.
For the SNPchip set, the highest values of D’ were
found distributed over different distances and levels
of MAF products, with a concentration of maximum
values at very short distances and relatively low
levels of MAF. The picture is substantially different
with the SNPseq, where the highest values of D’
were found exclusively at a very narrow band of low
frequencies, suggesting that at least part of the levels
in D’ could be explained by the low polymorphisms
brought by the sequence. As a consequence, the
imputation did not appear to result in an increase of
LD, but rather the opposite due to the differences in
spectra of frequencies between SNPchip and SNPseq.

Annotation
A total of 93.4% of SNPchip and 99.79% of SNPseq
were annotated (table 4). Most categories in the

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2018. ; https://doi.org/10.1101/437426doi: bioRxiv preprint 

https://doi.org/10.1101/437426
http://creativecommons.org/licenses/by/4.0/


Pégard et al. Page 9 of 14

Figure 5: Comparaison of linkage disequilibrium
before and after imputation Distribution of D’
values of linkage disequilibrium for the two SNP sets
in the study: SNPchip (pink) and SNPseq (blue) and
over different ranges of physical distances (panel A).
Panel B represents the distribution of D’ values versus
distances in a heat-plot with low densities in blue and
high densities in yellow, respectively for SNPchip (left)
and SNPseq (right). The red line is the average value
of D’ weighted by frequencies for a distance window of
500kb. Panel C represents the distribution of D’ values
as a function of distances between any two positions
and the product of the corresponding minor allele
frequencies in the pair of loci, with colour indicating
the average value of D’ weighted by frequencies for a
distance window of 500kb from low range (blue) to
high range (yellow), respectively for SNPchip (left)
and SNPseq (right).

annotation catalog were enriched in the SNPseq
compared to the corresponding levels of enrichment
in the SNPchip. In general imputation allowed to
increase the representation of downstream (from
2.43% to 6.23%), intergenic (from 3.78% to 32.28%),
splicing (from 0.04% to 0.1%), and upstream (from
1.8% to 5.71%) regions. On the contrary, the exonic
(from 36.18% to 14.96%), intronic (from 37.02% to

Table 4: Proportion of Annotated SNP in genomic
regions and mutation types

Value % (number)
SNPchip SNPseq

Region variant hit
downstream 2,43 (183) 6,23 (12338)

exonic 36,18 (2728) 14,96 (29607)
intergenic 3,78 (285) 32,28 (63901)

intronic 37,02 (2791) 30 (59377)
splicing 0,04 (3) 0,1 (192)

exonic; splicing 0 (0) 0,001 (3)
upstream 1,8 (136) 5,71 (11307)

UTR3 8 (603) 6,3 (12470)
UTR5 3,55 (268) 3,02 (5968)

UTR5; UTR3 0 (0) 0,01 (20)
upstream; downstream 0,6 (45) 1,18 (2340)

Annotated Positions 93,4 (7042) 99,79 (197523)
Total number of Positions 100 (7540) 100 (197932)
Mutation type

frameshift deletion 0 (0) 0,12 (246)
frameshift insertion 0 (0) 0,06 (118)

Non-frameshift deletion 0 (0) 0,08 (159)
Non-frameshift insertion 0,01 (1) 0,04 (84)

synonymous SNV 19,09 (1439) 6,64 (13133)
Non-synonymous SNV 16,92 (1276) 7,85 (15534)

Stop gain 0,15 (11) 0,15 (299)
Stop loss 0,01 (1) 0,02 (35)

Total number of exonic positions 36,18 (2728) 14,96 (29608)

Annotation results for SNPchip and SNPseq in percentage of
counts per annotation category, and number of corresponding
positions in brackets. For region variant hit: exonic;splicing
corresponds to a variant within exon region but close to
exon/intron boundary; UTR5;UTR3 corresponds to a variant
positioned where two coding regions overlapped, one in
forward and one in reverse; upstream;downstream corresponds
to a variant positioned in an intergenic region between two
neighbouring genes.

30%), UTR3 (from 8% to 6.3%) and UTR5 (from

3.55% to 3.02%) regions were less represented in

SNPseq than in SNPchip. Some SNPs were located

in or between two regions, there was already the

case with SNPchip with upstream;downstream

(1.18%) region but other case appeared with the

SNPseq as exonic;splicing (0.001%) and UTR5;UTR3

(0.01%). In the exonic region, SNPs were categorized

depending on different mutation types. With SNPseq

new locations, three new mutation types were

represented: frameshift deletion (0.12%), frameshift

insertion (0.06%) and non-frameshift deletion

(0.04%). Non-frameshift insertion and Stop Loss were

enriched (respectively from 0.01% to 0.04%, and from

0.01% to 0.02%), while there were proportionally,

less synonymous SNV (from 19.09% to 6.64%) and

non-synonymous SNV (from 16.92% to 7.85%),

when comparing SNPseq versus SNPchip (table 4).

No changes were observed, however, for Stop gain

(0.15%). In summary, the genotype densification not

only brought a better distribution of markers all along

the genome, but also no loss in annotation categories.
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Discussion
In this study, we have shown that substantial
(23-fold) densification in marker coverage is possible
in up to 1000 individuals through imputation from a
few sequenced nodal individuals (43). Simultaneously,
we attained imputation qualities as high as 0.84. This
imputation quality is similar to the one obtained
on horses [34] with Impute2 software or in cattle
[33], and higher than the one obtained on chickens
[35]. The study is based on a subset of a breeding
population in black poplar, with a relatively low
effective number of contributing parents, which
could explain partly the success of the imputation.
However, this situation is far from exceptional and
could be easily found in many other species going
through breeding activities, where an elite of a few
dozens of parents can contribute substantially to
next generation [54]. Although relatedness between
the group bringing marker density and the group
to be imputed is key in the success of imputation
[21, 24, 55], our study demonstrated also that
imputation works with relatively small losses in
quality when inferring unrelated individuals taken
from a diversity collection of the natural range of the
species in France. Moreover, such a substantial 23-fold
imputation did not appear to increase artefactually
the levels of LD. The annotation of imputed positions
showed no loss in annotation categories compared
to original low density coverage. This two results
suggest that imputed data can be of enough quality
to be the base of subsequent studies in genome-wide
predictions.

The use of a ”leave-one-out” cross validation
scheme allowed us to ascertain the actual quality
of the imputation, both by individuals and by SNP
positions. The proportion of alleles correctly imputed
by SNP gave the actual value of the imputation
quality, although with the drawback of an allele
frequency bias. Indeed, a selection based on that
proportion by SNP alone could potentially favor
positions with low MAF over the rest, as imputation
is easier when one of the alternative alleles is rare.
The correction we used based on the work of Badke
et al. [46] compensated this bias. This measure is
interesting whenever we wish to compare results
between different imputation methods or between
different software. However, it offers a less intuitive
criterion, not easily connected to the actual values of
imputation error. Therefore, we proposed to combine
the actual value of the imputation quality and the
frequency-based corrected measure to select SNPs
that fulfil both criteria with high level values. Both
criteria were given equal importance. The result in
our study led to positions with the highest imputation

quality while not necessarily resulting in an excess of
rare alleles in the imputed population.

Many factors can affect imputation quality like LD,
density ratio, minor allele frequency or relatedness
between target and reference populations [56, 57].
Our results showed that all these factors considered
in our study impacted to various degrees the quality
of imputation. It seems difficult to provide general
predictor for the imputation quality based on these
or other factors. For instance, [4] suggest that there
is no obvious pre-imputation filter ensuring a good
imputation quality. However, one of the factors with
the highest impact on imputation quality in our study
was the marker density in the neighborhood of the
considered position for imputation. This is a somehow
logical outcome, in the sense that numerous markers
in dense regions would mutually facilitate their
imputation through the extent of LD. These results
were consistent with the fact that the imputation
accuracy decrease with increasing distance between
markers [58]. When designing a low-density chip, it is
therefore important to choose SNPs regularly spaced.
These results are consistent with the results of He et
al. 2018 [59], which showed that an evenly-spaced
SNPs combined with an increased minor allele
frequencies SNP panel showed the best results.

Imputation requires some degree of LD in existing
genomes to reconstruct missing positions [21].
Whenever the reconstruction comprises large
chunks of genomes, like in our case here, one could
hypothesize that there could be a risk of artefactually
increasing the frequency of certain extant haplotypes
and, therefore, exacerbate LD among imputed
positions. A similar hypothesis has been already
proposed by Pimentel et al. [27]. However, what we
found appears to be the opposite, with a reduction
in D’ from 0.25 in the chip to less than 0.2 in the
sequence, on average. The imputed sequence led to D’
values in the low range (close to zero), which could be
related to the fact that sequences harbor high number
of rare alleles for many positions. Some studies
[60, 61] showed that the upper limit of LD between
two SNPs is mathematically determined by their
difference in MAF. In case of extreme differences,
alleles cannot match, even at small distances between
SNPs, resulting in low LD. A decrease of LD between
SNPs could be problematic for subsequent studies
based on imputed data, especially at short distances.
Indeed, LD is used to capture the effect of nearby
quantitative traits loci (QTL), whenever SNPs are
not directly placed on the QTL. This potential
loss in capacity to capture QTL effects in the
imputed sequences might be compensated for by the
genotyping densification, which could extend the
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reach of markers to unexplored regions involving new
QTLs. In summary, genotype densification allowed
to have a better repartition of the markers along
the genome and in different genomic regions. In our
case, the proportion of SNPs in intergenic regions
increased with the imputation, this compensated the
bias of our low-density SNP chip which was enriched
in coding regions [25]. Better marker repartition all
along the genome could be useful to detect causal
variants, as suggested by Jansen et al. [62]. They
showed that with the imputation of missing data, the
value of Phred-score genotype quality was improved.
This lead to a better genotyping quality, a better
causal variant identification in association studies
and a better variant annotation. Sequences in our
study have brought new spectra of allele frequencies,
involving a much higher proportion of rare alleles
compared to the chip data, which resulted from a
carefully selected set of highly polymorphic markers
[25]. While low frequencies could have some interest
in diversity studies or kinship assignment [63], their
use in the context of genomic evaluation or GWAS
would be challenging because of power issues unless
the involved rare alleles produce very large effects
and are captured with large sample sizes.

From an operational point of view, our results
showed that imputation can represent a good
strategy to reduce genotyping costs. By using a few
well-chosen sequenced individuals in the population,
very good imputation results could be obtained and
considerably increase the number of SNPs available.
It is therefore possible to create a low-density chip
to impute at high density via sequenced individuals.
This could minimize differences in imputation quality
along the genome and avoid any over-representation
of certain chromosome regions. This type of strategy
can be used in a breeding improvement program
on several generations. Yet, it would be required
to add high density genotyping or sequences every
generation [64] in order to keep a high imputation
accuracy. Not doing so could reduce the quality of
imputation and result in accumulating errors over
subsequent generations. Our study is a first step
before using gathered genotypes for genome-wide
predictions. The impact of imputation accuracy on
genomic selection accuracy was studied by several
authors. The genotype densification allowed to
increase the genomic evaluation accuracy depending
on the architecture of evaluated traits [65, 66].
Moreover, genomic selection accuracy increased with
better imputation accuracies [26, 28]. The marker
effect estimation could be biased and inbreeding
levels could be under-estimated [27], if the imputation
accuracy is too low.

Conclusion
In conclusion, we have demonstrated in this study
that high imputation quality is possible even from low
density marker sets. The relatedness had an important
impact on the imputation quality at the individual
level, but it is possible to impute unrelated individuals
with a good performance. All factors studied here
had an impact on the imputation quality at the SNP
level, but there is no obvious way to use their effects
as criteria for a pre-imputation filter. The genotype
densification towards sequences induced a decrease of
linkage disequilibrium, due to the spectra of low allelic
frequencies. The densification allowed to correct bias
in variant annotation profile of the SNPchip marker
set, with a better distribution in all genomic region
categories.
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imputation errors bias genomic predictions. J. Dairy Sci. 98(6),

4131–4138 (2015). doi:10.3168/jds.2014-9170

28. Tsai, H.-Y., Matika, O., Edwards, S.M., Antoĺın–Sánchez, R.,
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