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Abstract 
 

Ongoing fluctuations in neural excitability and in network-wide activity patterns before 

stimulus onset have been proposed to underlie variability in near-threshold stimulus 

detection paradigms, i.e. whether an object is perceived or not. Here, we investigated the 

impact of pre-stimulus neural fluctuations on the content of perception, i.e. whether one or 

another object is perceived. We recorded neural activity with magnetoencephalography 

before and while participants briefly viewed an ambiguous image, the Rubin face/vase 

illusion, and required them to report their perceived interpretation on each trial. Using 

multivariate pattern analysis, we showed robust decoding of the perceptual report during 

the post-stimulus period. Applying source localization to the classifier weights suggested 

early recruitment of V1 and ~160 ms recruitment of category-sensitive FFA. These post-

stimulus effects were accompanied by stronger oscillatory power in the gamma frequency 

band for face vs vase reports. In pre-stimulus intervals, we found no differences in oscillatory 

power between face vs. vase reports neither in V1 nor in FFA, indicating similar levels of 

neural excitability. Despite this, we found stronger connectivity between V1 and FFA prior to 

face reports for low-frequency oscillations. Specifically, the strength of pre-stimulus 

feedback connectivity (i.e. Granger causality) from FFA to V1 predicted not only the category 

of the upcoming percept, but also the strength of post-stimulus neural activity associated 

with the percept. Our work shows that pre-stimulus network states can help shape future 

processing in category-sensitive brain regions and in this way bias the content of visual 

experiences. 
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Introduction 

 

Ongoing fluctuations in neural activity interact with perceptual and cognitive processes. 

They help explain why repetitions of the same physical stimuli elicit different percepts and 

responses from trial to trial in both animals (1) and humans (2-5). Both local excitability 

changes in task-relevant sensory regions (6, 7) and neural network connectivity patterns 

have been shown to underlie trial-by-trial fluctuations in perception (8-11). 

 

The paradigms to study the impact of ongoing neural activity on perception typically involve 

near-threshold detection and discrimination tasks, in which pre-stimulus neural fluctuations 

influence the perceptual fate of stimuli, for example whether an object is seen (“Hit”) or not 

(“Miss”; e.g. (8, 10-19)). Beyond mere stimulus detection and discrimination, one of the 

visual system’s essential functions is to identify and categorize objects and, in this way, 

construct the content of visual experiences (19-21). Indeed, neural correlates of object 

perception and categorization have been shown to rely on the information flow between 

occipital and inferior temporal cortical regions (22-24). Here, we focus on the impact of 

neural excitability and connectivity patterns before stimulus onset on the content of 

perceptual operations. 

 

Bi-stable perception paradigms are uniquely suited to address this question (25). In such 

paradigms, the brain is conflicted between multiple possible interpretations of visual 

content. Typical examples include the Rubin's face/vase stimulus (26), the Necker cube (27), 

and binocular rivalry ((28); as cited in (29)). Recent evidence from fMRI studies has shown 

that rivalry between two competing percepts is resolved relatively early in the visual 

hierarchy (e.g. (30, 31)), such as in category-sensitive inferior temporal lobe regions ((32); 

but see (33) and (34) for fMRI and electrophysiological evidence showing an influence of 

parietal and frontal cortices; and see (35) for a recent review). In particular for the Rubin’s 

face/vase illusion, greater BOLD activity has been observed in the fusiform face area (FFA) 

when participants reported seeing a face rather than a vase (36). Importantly, this BOLD 

increase in FFA was also observed prior to stimulus onset (37), possibly because the pre-
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stimulus brain state biased perception towards the “face interpretation”. Still, a more 

comprehensive, mechanistic account requires means to simultaneously measure neural 

activity in multiple cortical areas with high temporal resolution, in order to map out the 

cortical hubs and their inter-areal information flow before and during perception of an 

ambiguous stimulus. For example, enhanced BOLD activity in FFA could be a consequence of 

either increased feedforward activity from earlier visual regions, or of increased feedback 

activity to earlier visual regions. 

 

In the current study, we used a similar Rubin face/vase paradigm as the aforementioned 

fMRI study (37). Advancing on previous work, we thoroughly characterized neural activity 

and connectivity patterns with high temporal resolution prior to and during perception of 

the ambiguous Rubin stimulus by means of magnetoencephalography (MEG). We 

hypothesized that category-sensitive processing region (here FFA) should exhibit differential 

pre-stimulus connectivity patterns preceding subsequent face vs. vase reports. Based on the 

“Windows to Consciousness” framework (11, 38), fluctuating connectivity levels of sensory 

regions shape upcoming stimulus processing (i.e. whether a stimulus is perceived or not). 

We extended these predictions to visual object perception and investigated whether 

categorical responses to the content of the Rubin stimulus were biased by local excitability, 

feedforward connectivity, or feedback connectivity between primary visual cortex and FFA.  

 

Results 

 

Twenty participants took part in the MEG experiment. We showed them the Rubin’s face / 

vase stimulus briefly and asked them to report whether they had seen faces or a vase on 

each trial (see SI Methods for details). Vase and face reports were equally likely (Face mean: 

49.9 %; SD: 12.47%; range 22.6% to 84.8%; t-test against chance (50%) t(19) = 0.04, p = .97). 

To ascertain that the reported perception was stochastic trial-by-trial, we analysed the 

sequences of reported percepts by binning the trials into a range of 0 to 10 repetitions . A 

binomial distribution accounted well for the binned data for both vase and face trials 

(goodness-of-fit R2 = 0.96 for face, R2 = 0.98 for vase) indicative of no systematic reporting of 

either percept. That is, during each trial a participant was equally likely to report a face or 

vase irrespective of the previous trial.  
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In a first step, we aimed to extract category-specific information from the recorded MEG 

data to see whether source localization of this information would yield the ROIs found in 

previous work (i.e. V1 and FFA), and to later use this information to link pre- and post-

stimulus neural activity. For this purpose, we trained a classifier in a cross -validation 

approach and decoded face vs vase reports from the MEG sensor-level data (magnetometers 

and gradiometers). The analysis was shifted over time on a sample-by-sample basis, yielding 

temporally resolved decoding results shown in Fig. 1A. Decoding performance 

(operationalized as Area Under Curve, AUC) gradually increased following stimulus onset and 

reached a peak close to the offset of the stimulus mask, the event which prompted the 

response query. From there on, decoding performance gradually decreased, reaching chance 

level after approximately 700 ms.. Decoding accuracy was significantly above chance after 

100 ms (pcluster = 9.9990e-05; tested over the first 350 ms after stimulus onset to exclude the 

response epoch). 

 

Figure 1: Post-stimulus MEG data contains category-sensitive information with respect to the 

processing of the Rubin vase stimulus. A) Temporal decoding of face vs vase reports. * 
represents p = .0001 significance of decoding accuracy (t-test vs chance) starting 100 ms 

post-stimulus. B) Unmasked activation maps resulting from the source reconstruction of the 
classifier weights (in arbitrary units a.u.), applying a procedure proposed by Marti and 
Dehaene (2017), at different time points, suggesting temporally changing informative 
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regions (V1 around 100 ms and FFA around 160 ms after stimulus onset). C) Time-frequency 
contrast in V1 (face vs vase reports). Colors represent smoothed T-values obtained from 

cluster-based permutation testing of the contrast (face – vase; ns). D) Time-frequency 
contrast in FFA (face vs vase reports). Colors represent smoothed T-values obtained from 

cluster-based permutation testing of the contrast (face – vase; pcluster = .029).  Black lines 
surround the time-frequency gamma-range cluster that drove the significant statistical 

difference. 
 

To find the brain regions that provided informative activity, we adapted a previously 

reported approach (39), which projects the classifier weights from sensor to source space 

(for sources see Fig. 1B). This analysis suggested that the brain regions that provide 

informative activity changed over time (Fig. 1A). At earlier (< 120 ms) time intervals, 

informative activity was predominantly localized in and around right V1 (centered on MNI 

coordinates: [12 -88 0] mm). In the subsequent time interval (120 – 200 ms), informative 

activity was predominantly localized in and around right FFA (centered on MNI coordinates: 

[28 -64 -4] mm). Although informative activity also spread to left V1 and FFA, the locations of 

maximum activity, which we used for subsequent analyses, were located in the right 

hemisphere. The location, lateralization, and timing of informative neural activity 

correspond well with reports on the spatiotemporal dynamics of face perception (40, 41). 

For all subsequent analysis, we used the source-reconstructed data from V1 and FFA. 

 

Next, we performed time-frequency analysis in FFA after stimulus onset to reveal the 

oscillatory patterns that contributed to the decoding results. We contrasted trials on which 

participants reported seeing a face vs. a vase and corrected for multiple time-frequency 

samples with a cluster-based permutation approach (42). We found that face reports 

showed enhanced post-stimulus gamma activity (pcluster = .029; Fig. 1D) compared to vase 

reports, consistent with the functional role of gamma activity for visual perception and 

specifically for face perception (43, 44). Over time, this cluster covered the entire relevant 

post-stimulus time-range and peaked at around 40ms. In terms of frequencies, the cluster 

covered a range between 48-93Hz and peaked between 60-70Hz. In the lower frequencies, 

there were no clusters in the time-frequency maps which contributed to the statistical effect 

(see Fig. 1D). We repeated the same analysis and contrast in V1 and found no statistical 

differences (no time-frequency clusters; Fig. 1C). Finally, we ran a sensor-wise time-

frequency analysis, repeated the same contrast, and found no statistical differences on the 

whole-brain level (no time-frequency-sensor clusters). Overall, this analysis showed that 
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perceiving the stimulus as face was accompanied by enhanced post-stimulus gamma activity 

in FFA. 

 

The MVPA analysis yielded favorable ROIs to test whether pre-stimulus connectivity 

dynamics between early visual regions (V1) and later category-sensitive regions (FFA) bias 

the report of upcoming subjective percepts (see Fig. 1A). First, we focused on oscillatory 

power as an index of local excitability in these regions and tested whether excitability alone 

predicted the reported categories of upcoming stimuli. Oscillations reflect rhythmic changes 

in the activity of neural populations and thus reflect phases of high and low excitability (45). 

Cluster-based permutation testing revealed no statistical differences in pre-stimulus 

oscillatory power between face and vase trials, neither in V1 nor in FFA (Fig. 2A; shaded 

error regions represent the standard error of the mean for within-subjects designs (46)). 

Nevertheless, the power spectra in both conditions showed that pre-stimulus oscillatory 

activity was largely restricted to lower frequencies (5 to 25 Hz, see Fig. 2A) with a clear peak 

in the alpha range (~10 Hz). Since frequency-domain measures of connectivity (such as 

coherence or Granger causality) assume underlying oscillatory activity (i.e. oscillations with 

high power), we restricted statistical testing for the subsequent connectivity analyses to this 

frequency range.  
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Figure 2: Pre-stimulus MEG connectivity is predictive of upcoming perceptual decision. 
Shaded error regions represent the standard error of the mean for within-subject designs 
(Morey, 2008). A) No statistical differences in pre-stimulus spectral power between face and 
vase trials in either V1 (left) or FFA (right). B) Compared to vase trials, face trials show 
increased pre-stimulus coherence between V1 and FFA in the alpha and beta frequency 

ranges. C) Compared to vase trials, face trials show increased pre-stimulus feedback 
connectivity from FFA to V1 in the alpha range (right), but no differences in pre-stimulus 

feedforward connectivity from V1 to FFA (left). 
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Next, we focused on pre-stimulus connectivity between V1 and FFA. Specifically, we 

hypothesized that increased pre-stimulus coherence between V1 and FFA would precede 

face reports. A cluster-based permutation test in the frequency range of 5 to 25 Hz revealed 

that pre-stimulus coherence between V1 and FFA was significantly greater on face vs. vase 

trials (pcluster = .0036). This increase was most pronounced in a cluster of frequencies ranging 

from 8.5 to 16.5 Hz (Fig. 2B). To control for spurious coherence as a result of field spread 

(47), which might explain the high-frequency noise in Fig. 2B, we repeated the 

aforementioned analysis using the imaginary part of coherency (48). We obtained 

qualitatively and quantitatively similar results but with far less high-frequency. 

 

To further characterize the observed connectivity effect, we used Granger causality to 

resolve the question of whether increased connectivity prior to face reports represented an 

increased feedforward drive from V1 to FFA, or an increased feedback drive from FFA to V1. 

We contrasted face and vase trials separately for the feedforward and feedback directions. 

The cluster-based permutation test revealed no statistical differences between face and vase 

reports in the pre-stimulus Granger causality estimates in the feedforward direction (V1 to 

FFA; Fig. 2C, left); however, for feedback-connectivity we found significantly greater pre-

stimulus Granger causality estimates during face trials compared to vase trials  (FFA to V1, 

pcluster = .0115). This increase was most pronounced in a cluster of frequencies ranging from 

5 to 10.5 Hz (Fig. 2C, right). The directionalities of the Granger estimates were reversed for 

time-reversed data (that is, the feedforward Granger estimates of the original data 

resembled the feedback Granger estimates of the time-reversed data, and vice versa), 

thereby confirming our results (49). Given the inter-individual variability in participants’ 

behavioral reports (22.6% to 84.8% face reports), we were concerned that the Granger 

results might reflect some participants’ predispositions to report one or the other percept. 

However, we found no correlation between the Granger strength and the report 

percentages (r= .22, p=.35), making this possibility unlikely. In sum, we show that face 

reports (vs. vase reports) were preceded by increased connectivity between V1 and FFA, and 

that this relative connectivity increase was predominantly driven by an increase in feedback 

connectivity (FFA to V1). 
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Finally, we focused on the relationship between pre-stimulus connectivity and post-stimulus 

activity. We extracted for each participant the maximum decoding accuracy (AUC), FFA 

gamma-band effect, and pre-stimulus feedback connectivity. The maximum FFA gamma 

effect (max. face – vase power over time and frequencies) and maximum decoding accuracy 

were correlated (r= .58, p = .008; Fig. 3C), despite the gamma band having been excluded 

from the frequency range that went into the decoder. Importantly, we found that maximum 

pre-stimulus feedback connectivity was correlated with both the maximum gamma effect (r 

= .57, p = .009; Fig. 3A) and maximum decoding accuracy (r = .48, p = .034, Fig. 3B). In sum, 

we found that pre-stimulus feedback connectivity strength predicted not only the category 

of the upcoming percept, but also the strength of post-stimulus neural activity associated 

with the percept. 

 

 

Figure 3: Pre-stimulus connectivity is correlated with post-stimulus activity across 

participants. r values represent Pearson’s correlation coefficients. Shaded areas represent 

95% confidence intervals. A) Maximum pre-stimulus feedback Granger causality estimates 

are correlated with maximum post-stimulus gamma differences (face – vase). B) Maximum 

pre-stimulus feedback Granger causality estimates are correlated with maximum post-

stimulus decoding (AUC) scores. C) Maximum post-stimulus gamma differences (face – vase) 

are correlated with maximum post-stimulus decoding (AUC) scores. 

 

Discussion 

 

While most studies that investigated the effects of pre-stimulus activity on perception were 

concerned with determining the requisites of successfully detecting stimuli at perceptual 

threshold (near-threshold paradigms; e.g. (11)), our main interest was with the requisites of 

perceiving one or another content of perception. We found that prior to the Rubin face/vase 
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stimulus onset, FFA was more strongly connected to V1 when face rather than vase was 

subsequently reported, specifically in the feedback direction of FFA to V1. Connectivity 

between these two regions was concentrated in the alpha and beta frequency bands 

(around 5 to 25 Hz). Further, pre-stimulus feedback connectivity strength was correlated 

with post-stimulus neural activity strength as well as decoding accuracy. Taken together, our 

findings suggest that fluctuations in neural activity in the absence of stimulation can bias the 

perceptual content of subsequently presented stimuli. 

 

The connectivity pathway we’ve identified, specifically the involvement of FFA, is well in line 

with works that have localized face responses using ambiguous stimuli (eg: (36, 50)). While 

this particular pathway is likely specific to face stimuli, the involvement of functionally 

specialized extrastriate regions in the subjective perception of ambiguous stimuli is firmly 

established (51). Indeed, processing semantic content typically relates to ventral stream 

activity, so this activity is also expected to play a crucial role in perceiving ambiguous images 

of semantic content, such as the Rubin vase image (52). That the connectivity pathway is in 

the feedback direction and in the lower frequencies is also well in line with the finding that 

alpha/beta oscillations subserve feedback connectivity among human (53) and monkey (54) 

visual cortical areas. Additionally, occipital alpha oscillations have been shown to predict the 

persistence of bistable perception (55), and percept-dependent changes in occipital 

oscillatory activity have been suggested to reflect top-down modulations of V1 by 

extrastriate areas (56). Our findings therefore suggest that in the absence of visual 

stimulation, mechanisms that mimic known dynamics of unambiguous as well as ambiguous 

visual object perception are at play. 

 

MEG studies on face perception have reported gamma responses to faces starting 100 ms 

after stimulus onset (e.g. (57, 58)), yet we observed a peak gamma response at 40 ms. But 

while these studies typically compare responses to faces with non-face stimuli and apply 

baseline corrections to their data, we compared responses to the same exact stimulus and 

did not apply any baseline corrections such that we could observe potential pre- and peri-

stimulus effects. The early latency of our gamma effect is in line with recent MEG work 

showing differential 40ms evoked responses to forms (59). The 40 ms response was also 

reported for face stimuli and localized in FFA and other visual areas (60), indicating 
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parallelism in visual input streams and challenging the commonly held supposition that V1 is 

the sole entry point for visual input (61, 62). That our gamma cluster starts at stimulus onset, 

and is to some extent observable even before, suggests that it likely reflects an interaction 

between pre-stimulus anticipatory processes (in which gamma oscillations have also been 

implicated; eg: (14, 63, 64)) and very early sensory processes.  Modelling work has suggested 

that gamma oscillations enhance neural network responsiveness (65), a mechanism possibly 

mediating our pre- and post-stimulus effects. That this gamma effect was correlated with 

both the strength of pre-stimulus feedback (Fig. 3A) and post-stimulus decoding accuracy 

(Fig. 3C) lends support to this interpretation. Given that the pre-stimulus connectivity 

pathway was in the feedback direction from FFA to V1, one might additionally hypothesize 

that the strength of feedback connectivity correlates with V1 gamma activity. But V1 gamma 

modulations have been shown to depend on stimulus features (e.g. (66)), and the stimulus 

was unchanged throughout our experiment. Indeed, we did not observe any gamma effects 

in V1 (Fig. 1C), so we could not test this hypothesis.  

 

A recent fMRI study employing the Rubin face-vase stimulus (37) found that pre- and post-

stimulus neural activity was pronounced in the FFA and interpreted the observed pre-

stimulus BOLD signal differences as differences in baseline excitability. Indeed, this 

interpretation is consistent with a large body of work that shows that alpha band activity in 

task-sensitive sensory regions, an index of neuronal excitability in those regions, predicts 

behavioral outcome (8, 10, 11, 67). Yet, we found no differences in pre-stimulus alpha 

activity that could account for the behavioral outcome. Local excitability as indexed by alpha 

oscillations might therefore be behaviorally relevant in near-threshold cases, but not in cases 

where the stimuli are supra-threshold and the task requires object perception rather than 

stimulus detection or discrimination. Taken together, these results show that measures of 

local activity paint an incomplete picture of the underlying dynamics  of object perception, 

and that the connectivity between regions of interest must be considered for a more 

comprehensive account. 

 

Given the nature of this and similar experiments (e.g. (37)), it is difficult to pinpoint distinct 

cognitive processes to our effects with certainty. However, our findings are well in line with 

predictive processing notions that hierarchically downstream regions predict activity in 
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upstream areas via feedback connections. The reported frequency band conforms to the 

assumptions and findings of this framework (68, 69). Since this connectivity effect precedes 

the presentation of the ambiguous stimulus, an interpretation along the lines of anticipatory 

predictive processes appears promising (70). Indeed, our findings add to a recent and fast-

growing literature converging towards the idea that low-frequency oscillations carry top-

down context (71), category information (72), anticipation (73), and expectations or 

predictions (74, 75). That cognitive, top-down influences come to play leaves open the 

possibility that the reported connectivity effects are not strictly spontaneous, and might be 

voluntarily driven to some extent. This possibility cannot be entirely ruled out, although it is 

unlikely given our design (short, temporally difficult-to-predict inter-stimulus intervals of 1-

1.8 s) and behavioural analysis which ruled out systematic reports of one percept. Relatedly, 

an alternative explanation could be that stronger connectivity relates to a stronger 

predisposition to perceive a face. However, connectivity strength was not correlated with 

the percentage of face reports, making this interpretation unlikely too. 

 

Our results are in line with the Windows to Consciousness framework which emphasizes the 

influence of pre-established connectivity patterns of relevant sensory regions to 

downstream processing regions on upcoming perceptual processing (11, 38). We offer a 

mechanistic account defined in time, space, oscillatory frequency, and directional 

connectivity. Our account proposes a key role of pre-stimulus neural fluctuations in 

activating connectivity pathways and biasing categorical percepts. Specifically, pre-stimulus 

feedback connectivity in the alpha range from FFA to V1 represents such a connectivity 

pathway that biases towards face perception of the Rubin face/vase stimulus.  

 

Conclusion 

 

By recording MEG signals at high temporal resolution before and while people were exposed 

to an ambiguous stimulus, the Rubin face/vase illusion, we showed that the content of visual 

perception is critically shaped by the ongoing network states, in this case feedback alpha-

band connectivity between face-sensitive FFA and early visual cortex. Our work bridges 

object perception-related pre- and post-stimulus effects and shows how a pre-stimulus 

network state can shape future processing in a category-sensitive brain region. 
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Materials and Methods 
 

20 volunteers participated in this MEG experiment. At the beginning of each trial, a fixation 

cross would appear at the centre of the screen for 1 to 1.8 s. After this jittered period, the 

Rubin vase picture would appear at the centre of the screen for 150 ms (Fig. 4). A mask 

stimulus would then appear for 200 ms, after which we asked participants to report whether 

they saw the face or the vase. The experiment consisted of 400 trials in total .  

 

 

Figure 4: Trial structure. 

 
To test for the stochastic nature of the response, we binned the data for each participant 

according to how many trials in a row they responded with the same perceptual report. We 

broke this down in 11 bins with 0 repetitions to 10 repetitions, averaged the number of 

repetitions within each bin across participants, and then fit the averaged data to a binomial 

distribution across the 11 bins before calculating goodness-of-fit. 

 

We performed the decoding analysis on the broadband 1-33 Hz time-domain signal. We 

implemented a 4-fold cross-validation procedure within each subject. The analysis was 

shifted over time on a sample-by-sample basis. For each time-point at each sensor, we Z-

normalized the MEG data, trained a Logistic Regression classifier on three folds, and tested 

on the left-out fold. To find out which brain regions contributed to above chance decoding 

performance the most, we used the classifier weights that the classifier used to separate 

face from vase reports and projected them into source space (39). Finally, we averaged the 
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source-level weights across the intervals 50 to 120 ms and 120 to 200 ms and applied a 95%-

max threshold to mask our ROIs.   

 

We performed the post-stimulus time-frequency analysis on V1, FFA, and the whole-brain 

average in source space. We estimated power using multitaper Fast Fourier Transform (FFT) 

with discrete prolate spheroidal sequences (dpss) tapers (76). We calculated power, 

coherence, and Nonparametric Granger causality (77) in the pre-stimulus period between 

FFA and V1 in source space. We used multi-taper frequency transformation to get Fourier 

coefficients in the pre-stimulus period (-1 to 0 s), after which we extracted power and 

computed coherence and bivariate Granger causality. This gave us separate estimates of 

connection strengths from FFA to V1 ("feedback") and vice versa ("feedforward"). We 

repeated the same Granger causality analysis on time-reversed data, expecting reversals in 

the directionalities of the estimates to rule out spurious connectivity results (49).  

 

We tested decoding performance against chance level (50%) using one-sided dependent-

samples T-tests. For all remaining statistical analyses, we used nonparametric cluster 

permutation tests (42). We used 2-sided T-tests for the post-stimulus time-frequency 

contrasts and pre-stimulus power contrasts, and 1-sided T-tests for the coherence and 

feedforward and feedback connectivity contrasts, as we had hypothesized greater values of 

these measures on face trials compared to vase trials. We restricted the statistical testing 

window of coherence and Granger to the frequency window 5-25 Hz. 
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