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Several studies have documented a global pattern of phenological advancement across multiple taxa 

that is consistent with ongoing climate change1–3. However, the magnitude of these phenological 

shifts is highly variable across taxa and locations2–4. This variability of phenological responses disrupts 

species interactions under climate change5–9, but has been difficult to explain mechanistically10–13. To 

understand how climate change could evoke such variable responses in different groups of organisms, 

we constructed a model for the evolution of phenological cueing strategies using historic climate data 

from 78 locations in North America and Hawaii. Here we show how phenological cueing strategies can 

evolve in predictable ways, but still express highly variable responses to climate change. Across 

locations, organisms in our model evolved diverse strategies that reflected geographic differences in 

the reliability of different environmental cues for predicting future conditions. Within locations, a 

wide range of evolved strategies showed similar emergence phenotypes under historical conditions. 

However, these same strategies revealed previously hidden and variable responses under novel 

climatic conditions, with strong fitness consequences. These cryptic differences in cueing strategies 

evolved under historical conditions because epistasis and non-additive genotype × environment 

interactions among years resulted in weak selection gradients across an extensive region of trait 

space. These findings show how the evolution of integrated phenological cueing strategies can explain 

observed variation in phenological shifts and unexpected responses to climate change. 

Recent years have seen increasing interest in the study of phenological shifts. While organisms around 

the world have generally shown a “global coherent fingerprint” of advancing phenology with climate 

change1–3, several studies also point to substantial unexplained variation in phenological shifts2–4. This 

variation in responses to climate change is an important factor driving phenological mismatch and the 

disruption of  species interactions8,9. It has become increasingly clear that understanding how organisms 

integrate multiple environmental cues will be necessary to explain and predict phenological shifts10–13.  

In order to examine the causes of variation in phenological shifts, we developed a model that simulates 

how different environmental histories shape the evolution of phenological cueing strategies. We 

hypothesized that organisms experiencing different environmental histories would evolve different 

phenological strategies, caused by consistent differences in the reliability of predictive information 

provided by different kinds of environmental cues. We further hypothesized that these variable 

strategies create variation in phenological responses to climate change.  
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Our model simulates the evolution of a generalized organism in a simplified environment defined by 

daily maximum temperature, total daily precipitation, and day of the year (hereafter, temperature, 

precipitation and day). These environments are drawn from historic climatic records representing an 

average of 98 years from each of 78 locations in North America and Hawaii. In our model, these real-

world environmental data provide cues to anticipate future environmental conditions each year, and 

also determine the fitness of individuals in the population (Extended Data Fig. 1). The environmental 

cues (E) on each day are cumulative annual daily maximum temperature (𝛾𝑡𝑒𝑚𝑝), cumulative annual 

daily precipitation (𝛾𝑝𝑟𝑒𝑐𝑖𝑝), and day of year (𝛾𝑑𝑎𝑦,):  

𝐸 = [𝛾𝑡𝑒𝑚𝑝, 𝛾𝑝𝑟𝑒𝑐𝑖𝑝, 𝛾𝑑𝑎𝑦]          (1) 

The use of cumulative annual temperature and precipitation is based on the assumption that organisms 

are aware of and can be influenced by past environmental conditions, consistent with degree-day 

models of development and phenology. Each individual has a genotype (G) defined by three traits (𝜏), 

which reflect its sensitivity to the three environmental cues: 

𝐺 = [𝜏𝑡𝑒𝑚𝑝, 𝜏𝑝𝑟𝑒𝑐𝑖𝑝, 𝜏𝑑𝑎𝑦]          (2) 

Each day of the simulation, each individual combines its cues and genotype into a weighted sum, which 

represents the emergence signal (S): 

𝑆 =
𝛾𝑡𝑒𝑚𝑝

𝜏𝑡𝑒𝑚𝑝
+

𝛾𝑝𝑟𝑒𝑐𝑖𝑝

𝜏𝑝𝑟𝑒𝑐𝑖𝑝
+

𝛾𝑑𝑎𝑦

𝜏𝑑𝑎𝑦
          (3) 

When this signal crosses the threshold S≥1, the organism makes an irreversible decision to emerge. Its 

fitness is then dependent on daily temperature and moisture conditions over a fixed window, beginning 

one day after the threshold is crossed. We defined fitness as a function of daily temperature and 

moisture using a multivariate skew-normal distribution with optimal temperature and moisture values 

set to the 90th percentile of all values observed in a given location. This assumes that fitness is a fixed, 

asymmetric function of environmental conditions and that physiological performance is adapted to past 

local conditions. For each location, we ran 60 simulations with the same parameters. Each simulation 

included 1000 randomly resampled years of climatic data and a population of 500 individuals whose 

initial genotypes were drawn from a broad uniform random distribution (Extended Data Fig. 2). 

The results of this model suggest two key findings. First, the mean evolved strategies of each location in 

our model are spatially autocorrelated, indicating that similar strategies evolved in locations that 

experienced similar climates, while individuals from different climates consistently evolved different 

strategies (Fig. 1, Fig. 2, Extended Data Fig. 3 and Extended Data Fig. 4). These evolved differences 

reflect geographic differences in the relative reliability of temperature, precipitation and day cues for 

predicting future fitness outcomes. This finding was qualitatively robust across model variants that used 

different cues, fitness functions, and emergence durations (Extended Data Fig. 5).  We evaluated several 

climatic and location-based variables in order to explain the pattern of evolved cueing strategies, but 

most showed small or counterintuitive effects (Extended Data Fig. 6). In general, these evolved 

strategies did not conform to predictions based on simple assumptions about latitude, climatic 

variability, predictability or seasonality14,15; instead, they illustrated the complexity of the location-

specific climatic regimes and fitness landscapes that affect organisms in this model. Selection favored 

cues based on their ability to predict future environmental conditions – both the ability to consistently 

trigger emergence ahead of favorable conditions, and the ability to avoid triggering emergence ahead of 
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unfavorable conditions. Although the simplified environmental data in our model showed unexpected 

complexity, the spatial autocorrelation of evolved strategies in our model suggests that information 

constrains the evolution of phenological cueing strategies in predictable ways. 

The second key finding of this model is that repeated simulations from the same location produced 

diverse strategies that expressed similar phenotypes under historical conditions (Figs. 2 and 3, Extended 

Data Fig. 3), but showed strong phenotypic and fitness differences under simulated climate change (Fig. 

4, Extended Data Fig. 7). This finding was an unanticipated consequence of cue integration, which allows 

a wide range of strategies to be almost equally effective under the same environmental conditions. This 

pattern emerges in our model because the function combining environmental conditions and traits is 

non-injective: multiple combinations of traits can yield the same expressed phenotype. In our model, 

multiple cues are combined to yield a single emergence signal; in this context, epistatic interactions 

between traits mean that increased sensitivity to one cue can compensate for reduced sensitivity to 

another. Moreover, the expressed phenotype results from a non-additive genotype × environment 

interaction which allows genotypes to show different reaction norms across years16, driven by the 

complex structure of real-world climate data. On average, genotype x environment interactions 

explained 29% of observed fitness variation across all locations (Extended Data Fig. 8). As a result, the 

phenotypic and fitness differences between evolved genotypes are inconsistent from year to year in a 

way that reduces the long-term mean fitness differences between genotypes (Extended Data Fig. 9). The 

outcomes of these processes are weak selection gradients across a wide range of trait space (Extended 

Data Fig. 10). The resulting diversity of phenological cueing strategies could contribute to observed 

variation in phenological responses to climate change2,3,17 and the evolution of cryptic genetic 

variation18,19.  

Climate change had a strong effect on both phenotypes and fitness in most locations (Fig. 4, Extended 

Data Fig. 7). We modeled two simple climate change scenarios. In the first (“shift”) scenario, we 

advanced both temperature and precipitation regimes by 5 d. In the second (“warming”) scenario, we 

increased all daily maximum temperatures by 3°C. With each changed climate regime, the mean 

genotypes that evolved under historical conditions in 30 simulations were evaluated against all available 

years.  In both scenarios, populations advanced their phenology and generally showed reduced fitness 

(Fig. 4). These effects were non-random; for example, organisms in the shift scenario that relied more 

on day cues were less likely to advance their emergence timing on pace with the changed climate 

(χ2(1)=466.7, p<0.00001), and generally showed negative fitness consequences relative to individuals 

that favored temperature or precipitation cues (χ2(1)=11.1, p=0.0009, Fig. 4). This result is consistent 

with expectations about the costs of relying on invariant day-of-year cues under a climate change 

scenario20,21, and the potential for adaptive plasticity in response to changing climates. By comparison, 

under the warming scenario, organisms with greater reliance on day cues also showed reduced 

phenological advancement (χ2(1)=35.5, p<0.00001), but generally showed higher fitness than organisms 

that were more reliant on climatic cues (χ2(1)=9.0, p=0.0026). This unexpected result occurs because the 

warming scenario broke the historic correlation structure between temperature- and precipitation-

based factors in most climates, causing many strategies to demonstrate maladaptive plasticity in a novel 

climate22,23.  

The key prediction of this model is that evolved phenological cueing strategies will show hidden 

variation in their responses to climate change. In our model, environmental history shaped the evolution 

of phenological cueing strategies in ways that reflected local differences in environmental conditions. 
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However, instead of favoring a single climatically-determined optimum strategy in each location, 

selection produced substantial variation in the ways individuals combined multiple cues to determine 

their emergence phenology. Importantly, the fundamental mechanisms driving this finding will emerge 

from any reasonable model of cue integration where multiple cues are combined to inform phenological 

decisions. This underlying principle likely contributes to the observed variability of phenological 

responses to novel climates around the world, and challenges our ability to predict phenological 

responses and fitness consequences under climate change. Developing a stronger understanding of 

phenological cueing mechanisms may improve our ability to understand and predict the ecological 

effects of climate change. 

Methods 

Environmental data 

All available years of daily maximum temperature (degrees Celsius) and daily precipitation (mm rainfall 

equivalent) data were obtained from the NOAA Climate Data Online portal24 for 82 locations in North 

America and Hawaii. Years with <325 daily temperature and precipitation observations were excluded 

from further analysis, and four locations with <50 years of data remaining were also excluded. For each 

of the remaining 78 locations, the interquartile range (IQR) was calculated as the difference between 

first quartile (Q1) and third quartile (Q3) observations. Temperature observations less than (Q1-4*IQR) 

and greater than (Q3+4*IQR) were identified as extreme outliers likely resulting from measurement 

error, and were excluded; such outliers were a small proportion (0.0012%) of the overall dataset. 

Missing observations in the remaining dataset (less than 1% of observations) were imputed using an 

expectation-maximization with bootstrapping (EMB) algorithm. Imputed values for temperature and 

precipitation were bounded by the observed minimum and maximum values of each location, and 

informed by priors based on the means and standard deviations of each location. This procedure 

imputed a complete dataset of daily maximum temperatures and daily precipitation for each location, 

with an average duration of 98 years (SD = 18.9 years).  

Organisms used cumulative temperature and precipitation as climatic cues, and their fitness was 

affected by daily temperature and moisture during their emergence period. Temperature for each 

location was shifted so that the minimum transformed temperature for that location was zero. This 

meant that cue values were always non-negative. Environmental moisture (m) was calculated based on 

daily precipitation totals (p) in the dataset using a formula that includes a proportional retention 

constant (α, set to 0.8) to represent the partial retention of moisture over time, as well as the input of 

new precipitation each day (p). Changing the retention constant did not qualitatively change the model. 

𝑚𝑡 = 𝑚𝑡−1𝛼 + 𝑝𝑡          (4) 

Day of the year was represented as an integer value reflecting the number of days since January 1 of 

each year inclusive. The 366th day was truncated from leap years in the dataset. Day of year provides a 

proxy for a consistent and non-climatic environmental cue akin to photoperiod, implicitly assuming 

physiological mechanisms in each organism that are able to infer the day of the year from photoperiodic 

dynamics with equal accuracy across all locations. This simplifying assumption is supported by studies 

showing that although the amplitude photoperiodic changes is larger at higher latitudes, tropical species 

are able to detect the extremely small changes in photoperiod that occur near the equator25,26. This 

assumption also allows us to infer the relative information content of day as a cue across multiple 
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locations, separate from the effect of increasing photoperiodic amplitude at higher latitude. In 

examining spatial variation in the evolution of phenological strategies, day of year conservatively 

assumes that the phenological information available to organisms is unaffected by latitude. Using 

cumulative photoperiod produced qualitatively similar results (e.g., Extended Data Figure 5). 

Emergence signal 

Organisms in our model accrue fitness for 10 days after the emergence signal exceeds 1. To facilitate 

interpretation, this emergence signal model uses linear coefficients equal to the inverse of the trait 

value, so that genotypic traits are represented in same units as the cue itself, and trait values indicate 

the critical cue value that would trigger emergence in the hypothetical absence of other cues. Thus, 

large trait values correspond to low sensitivity and small trait values correspond to high sensitivity to the 

corresponding cue. 

Fitness and reproduction  

Individuals that emerge reproduce at a rate proportional to the cumulative fitness they accrue over their 

lifespan. The fitness gained on any given day is the product of two skew-normal function outputs – one 

based on temperature, the other on moisture. The thermal performance curves of ectotherms are 

generally asymmetrical, with a sharp decline above their optimal temperature and a more gradual 

decline below it27,28. For simplicity, we used the same skew normal functional form (with a skew 

parameter of -10) for both temperature and moisture. This function was parameterized separately for 

each location for both temperature and moisture, such that the peak for each occurred at the 90th 

percentile of temperature and of moisture of all daily observations for a given location, and the function 

had a value that was 10 percent of the peak when the cue was at the 10th percentile of all daily 

observations. This parameterization assumes that organisms are physiologically adapted to the 

prevailing conditions at each location, with an expected 10% of temperature and moisture values 

exceeding the optimal values. To evaluate the robustness of observed results, we tested this model at a 

range of alternative fitness parameterizations with qualitatively identical results (see below). Because 

the skew normal function does not have a simple mathematical relationship between its parameters 

and the location of the peak, we fit parameter values by minimizing the sum of squared errors. After 

both skew normal functions were parameterized, we calculated the daily fitness payoff for each day in 

each year of each climate as the product of the two skew normal function outputs. The fitness of each 

emerged individual (Wi) was calculated as the sum of daily fitness payoffs over its lifespan. Organisms 

that did not emerge by the end of the year received zero fitness. Individuals reproduced asexually with 

mutation (see below), with population size held constant at 500 individuals and expected realized fitness 

of each individual proportional to its calculated relative fitness. Reproduction was implemented as a 

lottery model to allow for demographic stochasticity. For each evolved strategy in the final generation, 

we calculated its geometric mean fitness across all years.  

Heritability and mutation 

Offspring genotypes reflected the trait values of their parent, modified by mutation. We modeled 

mutation by adding random numbers drawn from a normal distribution with mean 0 and a small 

standard deviation to the traits of all individuals in each generation. We set the standard deviation of 

mutation to be 0.5 percent of the overall cue range in order to produce mutation distributions with the 
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same expected effect size in each location. In the case of the day cue, we used 360 as the maximum, 

leading to a standard deviation of 1.8 for mutation rate of the day trait in all locations.  

Initialization and execution 

For each simulation, each individual in the initial generation was assigned uniform random trait values 

between 0 and 4*(the maximum cue value in that location, or 360 in the case of the day cue). This 

results in an initial population of individuals with emergence phenotypes ranging between emerging on 

day 1 and never emerging. Each simulation run experienced 1000 years of environmental conditions 

drawn by year with replacement from the set of available environmental data for that location (e.g., 

Extended Data Figure 2).  

Assessing realized relative cue use 

We define the “trait effect” (Τ) as a metric of proportional cue use in order to assess the relative degree 

to which an organism’s emergence decision was affected by each environmental cue. This metric 

quantifies each organism’s realized reliance on different cues represented by the proportion of the 

emergence signal that is contributed by each 
𝛾

𝜏
 term on the day emergence is triggered. This metric 

allows the relative contribution of each cue type to be compared across locations. The trait effect metric 

also allows realized relative cue use to be analyzed as a dataset of mathematical compositions, and thus 

plotted on ternary plots. Because of the discontinuous nature of daily cues, individuals might have an S > 

1 when they emerged; we rescaled the trait effect values for each individual so that they sum to 1. For 

each individual in the final population at the end of each simulation, we calculated the Aitchison 

compositional mean3 of the trait effects that would have been realized for each year of actual climate 

data used. This compositional mean represents the expected relative cue use of that genotype in the 

historic environment.  

Sensitivity analyses 

We conducted sensitivity analyses using a range of values for lifespan, lag, moisture decay parameter α, 

and normal and skew-normal fitness distributions using different optimal temperature and moisture 

values. All parameters and distributions yielded qualitatively identical results, and we present a 

representative set of model parameters. We also tested additional climatic cues, including daily 

temperature and moisture, cumulative photoperiod, and quadratic formulations of temperature, 

moisture and day. These models showed results consistent with those presented here.  

Analysis of explanatory factors 

We conducted analyses to examine correlations between evolved strategies and three sets of potential 

explanatory variables. The first set of analyses considered five location variables that provide a broad 

biogeographic description of each location: distance to coast, elevation, latitude, mean annual 

precipitation and mean annual temperature. The second set of analyses focused on six variables that 

quantify climatic variance and predictability: the mean annual coefficient of variation for daily maximum 

temperature, the mean annual coefficient of variation for daily precipitation total, the coefficient of 

variation for annual mean daily maximum temperatures, the coefficient of variation for annual mean 

daily precipitation totals, the lag=1 autocorrelation coefficient for daily maximum temperature, and the 

lag=1 autocorrelation coefficient for daily precipitation totals. The first two of these variables provide 

metrics of intra-annual climatic variation, the second two provide metrics of inter-annual climatic 
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variation, and the last two provide metrics of short-term predictability. The third set of analyses used six 

published metrics of climatic predictability, variability and seasonality12,30: Lisovski et al.’s predictability 

and seasonality metrics for temperature and precipitation, and Pau et al.’s variance metrics for 

temperature and precipitation. Because the Pau et al. and Lisovski et al. metrics of seasonality were 

highly correlated, we did not also include the Pau et al. metrics of seasonality.   

These analyses used a dataset composed of the mean strategies that evolved in each simulation 

conducted in each location.  For each analysis set, we used linear mixed models including all a priori 

explanatory variables as fixed factors for each trait effect dimension, with an additional random factor 

to allow intercepts to vary by location. We find qualitatively identical results using logit-transformed 

trait effects, but present analyses of untransformed data here so that the effect sizes are reported in 

interpretable units (Extended Data Fig. 6).  

Climate change scenarios 

We examined how the individuals from the final generation of each simulation performed in novel 

climate regimes using two simple climate change scenarios. In the “shift” scenario, we advanced the 

historic temperature and precipitation regime in each year by 5 days. In the “warming” scenario, we 

increased all daily temperatures by 3 degrees; the precipitation regime was unchanged. In both 

scenarios, we calculated the emergence, fitness, and  Aitchison compositional mean 29 of the trait 

effects that would have been realized for each individual in each unique year of the modified climate 

regime. This allowed us to assess how climate change affected the phenotype and fitness consequences 

of each genotype that evolved under historical conditions. 

We assessed correlations between each trait effect (Τ) and the change in emergence timing, and 

between each trait effect and geometric mean fitness for each evolved genotype, in all cases using 

linear mixed models with location as a random factor allowing intercepts and slopes to vary.  

References 

1. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural 

systems. Nature 421, 37–42 (2003). 

2. Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, 

freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313 (2010). 

3. Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological 

response to global warming. Glob. Change Biol. 13, 1860–1872 (2007). 

4. Pearse, W. D., Davis, C. C., Inouye, D. W., Primack, R. B. & Davies, T. J. A statistical estimator for 

determining the limits of contemporary and historic phenology. Nat. Ecol. Evol. 1, 1876–1882 

(2017). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/436857doi: bioRxiv preprint 

https://doi.org/10.1101/436857


5. Visser, M. E. & Both, C. Shifts in phenology due to global climate change: the need for a yardstick. 

Proc. R. Soc. Lond. Ser. B 272, 2561–2569 (2005). 

6. Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and 

unequal phenological changes across four trophic levels: constraints or adaptations? J. Anim. Ecol. 

78, 73–83 (2009). 

7. Rafferty, N. E., CaraDonna, P. J. & Bronstein, J. L. Phenological shifts and the fate of mutualisms. 

Oikos 124, 14–21 (2015). 

8. Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent 

decades. Proc. Natl. Acad. Sci. 201714511 (2018). doi:10.1073/pnas.1714511115 

9. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. 

Syst. 37, 637–669 (2006). 

10. Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in 

ecology and evolution. Philos. Trans. R. Soc. B Biol. Sci. 365, 3101–3112 (2010). 

11. Visser, M. E., Caro, S. P., Oers, K. van, Schaper, S. V. & Helm, B. Phenology, seasonal timing and 

circannual rhythms: towards a unified framework. Philos. Trans. R. Soc. B Biol. Sci. 365, 3113–3127 

(2010). 

12. Pau, S. et al. Predicting phenology by integrating ecology, evolution and climate science. Glob. 

Change Biol. 17, 3633–3643 (2011). 

13. Chmura, H. et al. The mechanisms of phenology: the patterns and processes of phenological shifts. 

Ecol. Monogr. (in press). 

14. Molina-Montenegro, M. A. & Naya, D. E. Latitudinal patterns in phenotypic plasticity and fitness-

related traits: assessing the climatic variability hypothesis (CVH) with an invasive plant species. PLOS 

ONE 7, e47620 (2012). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/436857doi: bioRxiv preprint 

https://doi.org/10.1101/436857


15. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in 

ectotherms. Proc. R. Soc. B-Biol. Sci. 278, 1823–1830 (2011). 

16. Grishkevich, V. & Yanai, I. The genomic determinants of genotype × environment interactions in 

gene expression. Trends Genet. 29, 479–487 (2013). 

17. Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 

241–245 (2016). 

18. McGuigan, K., Nishimura, N., Currey, M., Hurwit, D. & Cresko, W. A. Cryptic Genetic Variation and 

Body Size Evolution in Threespine Stickleback. Evolution 65, 1203–1211 (2011). 

19. Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive 

phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. 

Ecol. 21, 394–407 (2007). 

20. Coppack, T. & Pulido, F. Photoperiodic Response and the Adaptability of Avian Life Cycles to 

Environmental Change. in Advances in Ecological Research 35, 131–150 (Academic Press, 2004). 

21. Way, D. A. & Montgomery, R. A. Photoperiod constraints on tree phenology, performance and 

migration in a warming world. Plant Cell Environ. 38, 1725–1736 (2015). 

22. Chevin, L.-M. & Lande, R. Evolution of environmental cues for phenotypic plasticity. Evolution 69, 

2767–2775 (2015). 

23. McNamara, J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing of activities under 

environmental changes. Ecol. Lett. 14, 1183–1190 (2011). 

24. Climate Data Online (CDO) - The National Climatic Data Center’s (NCDC) Climate Data Online (CDO) 

provides free access to NCDC’s archive of historical weather and climate data in addition to station 

history information. | National Climatic Data Center (NCDC). Available at: 

https://www.ncdc.noaa.gov/cdo-web/. (Accessed: 7th September 2018) 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/436857doi: bioRxiv preprint 

https://doi.org/10.1101/436857


25. Hau, M., Wikelski, M. & Wingfield, J. C. A neotropical forest bird can measure the slight changes in 

tropical photoperiod. Proc. R. Soc. B Biol. Sci. 265, 89–95 (1998). 

26. Dawson, A. Seasonality in a temperate zone bird can be entrained by near equatorial photoperiods. 

Proc. R. Soc. Lond. B Biol. Sci. 274, 721–725 (2007). 

27. Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal 

performance curves and body temperatures? Ecol. Lett. 19, 1372–1385 (2016). 

28. Huey, R. B. & Stevenson, R. D. Integrating Thermal Physiology and Ecology of Ectotherms: A 

Discussion of Approaches. Am. Zool. 19, 357–366 (1979). 

29. Boogaart, K. G. van den & Tolosana-Delgado, R. Analyzing Compositional Data with R. (Springer 

Science & Business Media, 2013). 

30. Lisovski, S., Ramenofsky, M. & Wingfield, J. C. Defining the degree of seasonality and its significance 

for future research. Integr. Comp. Biol. icx040–icx040 (2017). doi:10.1093/icb/icx040 

 

Acknowledgements 

We thank Stephen Ellner, Andy Sih, Sebastian Schreiber, Jay Rosenheim, and Jaime Ashander for 

comments on the development of this work. CBE was supported by an NSF Graduate Research 

Fellowship, and LHY was supported by NSF DEB-1253101. 

Author Contributions 

Both authors contributed equally to this work.  

Author Information 

We do not have any competing financial and/or non-financial interests in relation to the work described. 

Correspondence and requests for materials should be addressed to lhyang@ucdavis.edu and 

cbe36@cornell.edu   

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/436857doi: bioRxiv preprint 

mailto:lhyang@ucdavis.edu
mailto:cbe36@cornell.edu
https://doi.org/10.1101/436857


Figures 

 

 

Figure 1. Evolved strategies show spatial autocorrelation in relative cue use (Τ); similar strategies evolve 

in nearby locations with similar climates, and different strategies evolves in distant locations with 

different climates.  
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Figure 2. Ternary plots illustrate proportional cue use at the time of emergence for six selected 

locations. Each point represents the mean strategy at the end of one simulation; each strategy is 

represented as a composition of the trait effects (Τ) in percents, which represent relative cue use (see 

“assessing realized relative cue use” in Methods). Point color reflects geometric mean fitness as a 

percent of the maximum geometric mean fitness (�̅�) for each location. Simulations within 10% of the 

maximum observed geometric mean fitness in each location are represented as triangles and included in 

a gray convex hull. All other points are represented as circles. Ternary plots for all 78 locations are 

presented in Extended Data Fig. 1, locations are described in Extended Data Table 1.   
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Figure 3. Cryptic genetic variation persists under selection in part because a wide range of genotypes 

show similar phenotypes and fitness outcomes. Each point represents the maximum proportional range 

of trait effects (Τ) and the maximum proportional range of geometric mean fitness (�̅�) of final 

populations across 30 simulations for each of 78 locations. The null expectation is shown as a solid line. 

Strategies show a wide range trait effects with relatively small effects on mean geometric fitness. The 

color of each point depicts which of the three trait effects produced the maximum proportional range 

depicted. 
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Figure 4. Under two climate change scenarios, organisms with different environmental histories 

generally emerge earlier, but show variable degrees of advancement and highly variable fitness 

consequences. The position of each circle represents the mean change in emergence day and the 

proportional change in geometric mean fitness averaged across all evolved genotypes of 60 simulations 

for each of 78 locations, relative to the historical climate in that location, represented by a black 

triangle. The color of each circle represents the historical trait effect of day (Τday), indicating the relative 

use of a climatically invariant cue. 

 

Supplementary Information 

Supplementary Videos 1-6. Animated 3-D view of fitness surfaces 

Supplementary Table 1. Location data 
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Extended Data  

 

Figure 1. Schematic diagram of model. a.) Genotypes combined with environmental cues (including 

cumulative annual daily temperature maximums, cumulative annual daily precipitation totals and day of 

year) result in expressed phenotypes (emergence days). b.) The proportional contribution of each trait 

to the first emergence decision (a representation of the interaction between genotype and 

environment) can be expressed as a composition and presented on a ternary plot. c.) The fitness of 

different phenotypes is determined by climatic (temperature and moisture) conditions during a 10-day 

window after emergence. A lottery model of reproduction determines the number of offspring 

produced by each individual, and mutation results in new genotypes for the next generation. d.) 

Selection results in evolved phenological cueing strategies that anticipate favorable conditions and avoid 

unfavorable conditions. In this panel, the solid blue line represents the long-term expected fitness 

outcome for each day under historical conditions, while the dotted black lines represent the fitness 

outcomes for the first and last year of the simulation for the left and right panels respectively. The black 

arrows at the top of each panel represent the emergence timing of the population. Initially emergence is 
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spread across the year, but after 1000 generations of selection, most of the population shows similar 

emergence timing.  

 

Figure 2. Temperature, precipitation and day traits evolve over 1000 generations in this representative 

simulation from Davis, CA. Each simulation begins with a broad uniform distribution of initial values for 

each trait; selection drives the evolution of specific strategies. The inset figure shows an expanded view 
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of trait evolution in the final 100 generations. Each point represents the trait value of one individual; 

point colors show individual fitness proportional to the maximum value in this simulation.  
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Figure 3. Evolved strategies for 30 simulations in each of 78 locations. Each point represents the mean strategy at the end of 

one simulation; each strategy is represented as a composition of the “trait effects” in percents, which represent relative cue use 

(see “assessing realized relative cue use” in Methods). Point color reflects the mean geometric mean fitness for each simulat ion 

scaled by location. Simulations within 10% of the maximum observed geometric mean fitness in each location are represented 

as triangles and included in a gray convex hull. All other points are represented as circles.  
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Figure 4. Spatial autocorrelation in reliance on day, temperature and photoperiod cues. Evolved 

strategies show significant positive spatial autocorrelation in reliance on a) day, b) temperature, and c) 

precipitation cues up to at least 1000 km. Filled circles are significantly correlated, open circles are not 

(Moran's I). 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/436857doi: bioRxiv preprint 

https://doi.org/10.1101/436857


 

Figure 5. Spatial autocorrelation evolves among phenological cueing strategies in different locations 

under an alternative model formulation. To generate this alternative map, our model used cumulative 

photoperiod as the cue for day of year, and we imposed a developmental baseline temperature of 0 C 

across all locations below which organisms are insensitive to thermal cues. 
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Figure 6. Simple hypothesized explanatory variables were not strongly correlated with evolved 

strategies. Values indicate fixed effect estimates from linear models (see “Analysis of explanatory 

factors”).  

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/436857doi: bioRxiv preprint 

https://doi.org/10.1101/436857


 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/436857doi: bioRxiv preprint 

https://doi.org/10.1101/436857


  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/436857doi: bioRxiv preprint 

https://doi.org/10.1101/436857


  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/436857doi: bioRxiv preprint 

https://doi.org/10.1101/436857


 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/436857doi: bioRxiv preprint 

https://doi.org/10.1101/436857


 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/436857doi: bioRxiv preprint 

https://doi.org/10.1101/436857


 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/436857doi: bioRxiv preprint 

https://doi.org/10.1101/436857


 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/436857doi: bioRxiv preprint 

https://doi.org/10.1101/436857


 

Figure 7. Location specific responses to a) a 5-day shift in temperature and precipitation regimes and b) 

3-degree C warming. For each location, each of 30 genotypes is represented by a blue and red circle 

showing its emergence day and proportional fitness under historical and changed conditions, 

respectively.  
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Figure 8. Genotype x environment interactions mean that different genotypes have greater relative 

fitness advantages in different years; phenological cueing strategies interact with climatic variation to 

reduce consistent fitness advantages. a.) In this example, each color represents an individual genotype, 

evaluated in a random subset of 20 years. To facilitate interpretation, a random individual is highlighted 

as a black line. b.) Genotype x environment interactions account for 29% of fitness variation across all 

locations on average. The blue probability density function represents the distribution of mean fitness 

variance components due to genotype x environment interactions in each of 78 locations. The dashed 

line shows the mean proportion of variation attributable to genotype x environment interactions.  
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Figure 9. Most simulations result in evolved strategies that have geometric mean fitnesses that are 

within 10% of the most fit simulation in each location.  
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Figure 10. Fitness surfaces. Diverse genotypes can produce similarly high fitness phenotypes. A 

100x100x100 grid spanning trait values ranging from the 10th through 90th percentiles of observed cues 

in each location were evaluated for fitness in each recorded year of climate. Points represent genotypes 

with geometric mean fitness within 90% of highest observed value in each location, with axes showing 

the full range of tested points. Animated rotating versions of each panel which better illustrate the 

three-dimensional structure can be found in Supplementary Videos 1-6. 
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