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Abstract

Many human genetic disorders and diseases are known to be related to each other
through frequently observed co-occurrences. Studying the correlations among multiple
diseases provides an important avenue to better understand the common genetic
background of diseases and to help develop new drugs that can treat multiple diseases.
Meanwhile, network science has seen increasing applications on modeling complex
biological systems, and can be a powerful tool to elucidate the correlations of multiple
human diseases. In this article, known disease-gene associations were represented using
a weighted bipartite network. We extracted a weighted human diseases network from
such a bipartite network to show the correlations of diseases. Subsequently, we proposed
a new centrality measurement for the weighted human disease network in order to
quantify the importance of diseases. Using our centrality measurement to quantify the
importance of vertices in the weighted human disease network, we were able to find a set
of most central diseases. By investigating the 30 top diseases and their most correlated
neighbors in the network, we identified disease linkages including known disease pairs
and novel findings. Our research helps better understand the common genetic origin of
human diseases and suggests top diseases that likely induce other related diseases.

Author summary

Introduction 1

During the past decades, significant progress has been made in our understanding of 2

human diseases [1]. However, the genetic architectures of complex diseases are still 3

largely unclear. Many common diseases tend to be related to each other, and it is 4

suspected that they may share common genetic origin. Thus, studying the correlations 5

of human diseases has the potentials of better understanding the genotype to phenotype 6

mapping [2, 3] and better predicting disease association genes [4, 5, 6, 7, 8]. 7

Furthermore, learning which diseases are correlated can help use existing drugs to treat 8

multiple similar diseases [9, 10, 11, 12, 13]. 9

Meanwhile, network science is a rising field where entities and their complex 10

relationships are studied on a global scale [14, 15, 16], and has seen increasing 11

applications to perform advanced analysis on biomedical data [17, 18, 19, 20, 21, 22]. 12

There are various cellular components in the human body that interact with each other 13

within the same cell or across different cells [15]. A network called the human 14

interactome can be constructed according to the interactions of those different cellular 15

components. Each component can be represented as a vertex in the network and 16
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interactions among them can be captured as links (or edges) connecting pairs of the 17

cellular components. Those cellular components can be proteins or metabolites, and the 18

network refers to protein-protein interaction (PPI) network [23, 24, 25] or metabolic 19

network [26, 27, 28]. 20

Some studies aimed at identifying the correlations among diseases through network 21

analysis [15, 29, 30]. Goh et al. [31] constructed a human disease network (HDN) by 22

connecting pairs of diseases when they share common association genes. Of 1,284 23

diseases in the HDN, 867 have at least one link to other diseases, and 516 form a giant 24

component, suggesting that the genetic origins of most diseases, to some extent, are 25

shared with other diseases. Moreover, the HDN naturally and visibly clustered 26

according to major disease classes such as cancer cluster and neurological disease cluster. 27

Zhou et al. [32] extracted over twenty million bibliographic records from PubMed [33] in 28

order to obtain 147,978 connections between 322 symptoms and 4,219 diseases. A 29

human symptoms-disease network (HSDN) was then constructed and was able to show 30

the symptom similarity between all pairs of diseases (7,488,851 links) in the network. 31

The weight of links represented the similarity of symptoms between two diseases. They 32

showed that the correlations among diseases were significantly related to the genetic 33

associations that each pair of diseases had in common as well as the interactions 34

between their related proteins. Lee et al. [34] built a disease metabolism network in 35

order to study disease comorbidity for better disease prediction and prevention. Two 36

diseases are connected with each other if a mutated enzyme catalyzes metabolic reaction 37

between them. Their results show that diseases with higher degrees, i.e., connecting 38

with many other diseases, have a higher rate of prevalence and mortality. 39

Measuring the centrality of vertices helps identify important vertices in the network 40

in terms of connecting to all other vertices. Centrality measures have been used 41

frequently to analyze biological networks over the past decades [35, 36, 37]. The most 42

common centrality measures include degree (the total number of neighbors), closeness 43

(the total distance to all other vertices), and betweenness (the fraction of locating on 44

the shortest paths of all pairs of vertices) [38]. Despite wide applications in biological 45

networks, these centrality measures are rather general and may not be able to capture 46

all the properties of vertices in the context of biological networks. Therefore, carefully 47

tailored centrality measures are needed for specific network of interest, in this study, the 48

human disease network. 49

Köhler et al. [39] proposed a vertex importance measure for disease genes in the 50

context of PPI networks. They used a random walk strategy to assess the distance 51

between vertices in the network, and reported improved performance comparing with 52

conventional distance-based centrality measures. Wu et al. [40] integrated PPI networks 53

with gene expression data in order to rank disease genes associated with various cancers. 54

They showed that their method was able to find replicable high-rank genes using 55

different datasets. Martinez et al. [41] proposed a generic vertex prioritization method 56

using the idea of propagating information across data networks and measuring the 57

correlation between the propagated values for a query and a target set of entities. The 58

authors tested their method by ranking disease genes associated with Alzheimer’s 59

disease, diabetes mellitus type 2 and breast cancer. They reported some new high-rank 60

association genes that could bring new insights into the diseases. 61

In the article, we propose a new method for the construction of a weighted human 62

disease network (WHDN) and a new centrality measure to identify the most important 63

diseases. First we use a large database of disease-gene associations to build a weighted 64

bipartite disease-gene network, and then construct a weighted disease network where 65

link weights capture the strengths of the pairwise disease correlations. After the 66

backbone extraction of the WHDN, we design a centrality measure for the context of 67

the WHDN that considers not only the degree of a vertex but also the importance of its 68
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incident edges. Finally, we compare our new centrality measure with degree, closeness 69

and betweenness by evaluating the network efficiency decline rate with the removal of 70

top-ranked vertices by each centrality measurement. 71

Methods and Results 72

Given the multiple-step pipeline structure of this study, we show the result of each step 73

after the description of the corresponding method. 74

Disease-Gene Associations (DGAs) 75

The data used in this project contains disease-gene associations (DGAs) from multiple 76

curated databases including UNIPROT, CTD (human subset), PsyGeNET, Orphanet, 77

and HPO. The disease-gene association data are conducted by DisGeNet group, 78

available on DisGeNET v4.0 [42]. The current version of the data set contains 130,821 79

DGAs, between 13,075 diseases and 8,949 genes. Each DGA is assigned with a score aki , 80

for disease i and gene k, within the range of [0,1] based on its level of evidence, the 81

number and the type of database sources supporting the DGA, and the number of 82

publications verifying the association between the gene and the disease [42]. We first 83

clean up the data in order to ensure that all diseases and genes in the dataset are 84

unique and that there is no replication of disease-gene associations. Next, since we 85

would like to consider the correlation among all diseases, we keep diseases and 86

syndromes in the dataset for our analysis and remove injuries or poisonings, anatomical 87

abnormalities, acquired abnormalities, mental or behavioral dysfunctions, signs or 88

symptoms, findings, congenital abnormalities, neoplastic processes, and pathologic 89

functions. We use DisGeNet web-based application [42] for this filtering. 90

Network Construction 91

Bipartite Disease-Gene Association Network 92

The best representation for depicting the associations among genes and diseases is a 93

bipartite graph, which is called the disease-gene association network in this research. 94

The bipartite graph contains two different sets of vertices. One set includes diseases and 95

another one contains genes. By definition, no edge is allowed to connect a pair of 96

vertices in the same set of vertices in a bipartite graph. That is, there can be no link 97

either between a pair of diseases or a pair of genes. There is an edge between a gene 98

and a disease if there is an association between them. Their link weight is assigned as 99

the score aki , for disease i and gene k, computed in the DGA database described in the 100

previous section. A sample subgraph of the bipartite network is shown in Figure 1. 101

Figure 2 depicts the degree distributions of diseases and genes in the bipartite 102

disease-gene association network. For the set of diseases, the maximum degree is 564, of 103

the disease epilepsy, and the average degree is 5.43. In Figure 2 a), the degree 104

distribution of the diseases is right-skewed and approximately follows a heavy-tailed 105

distribution, indicated by the straight linear fit on a log-log scale. For the set of genes, 106

the maximum degree is 111, of the gene LMNA, and the average degree is 5.81. 107

The bipartite network is comprised of multiple connected components with a single 108

giant component. Figure 3 shows its distribution of the size of connected components. 109

The giant component has 10,212 vertices consisting of 5,278 diseases and 4,934 genes. 110

Apart from the giant component, all other connected components are small with a size 111

varying from two to nine, and most of them are only single pairs of one disease and one 112

gene. Figure 3 shows that there is a considerable number of components with two 113

vertices, i.e., 844 isolated disease-gene pairs. Since we are interested in investigating the 114
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Fig 1. An example subgraph of the human disease-gene association network. The
bipartite network has two sets of vertices, i.e., genes and diseases, represented by
rectangle and gray ellipses respectively. An edge connects a disease and a gene if there
is a known association between them. The weight of an edge indicates the strength of
the DGA aki between disease i and gene k.

Fig 2. Degree distribution of a) diseases and b) genes in the bipartite disease-gene
association network. The distributions are shown on a log-log scale.

Fig 3. The size distribution of the connected components in the bipartite disease-gene
network. The network has a single giant component with 10,212 vertices, and the
majority of other connected components are of size two, i.e., consisting of only one
disease and one gene.

large-scale genetic correlations of human diseases, we focus the giant component of the 115

disease-gene bipartite network in the downstream analyses. 116

Weighted Human Disease Network (WHDN) 117

We construct the weighted human disease network (WHDN) using the giant connected 118

component of the bipartite disease-gene network. We use D and G to denote sets of 119

5,278 diseases and 4,934 genes respectively in the giant connected component. In the 120

WHDN, an edge links two diseases i and j if they have at least one association gene in 121

common, and the weight of the edge, wij , is computed based on the number of shared 122

association genes, as well as the strengths of those associations. 123

Such a weight definition is inspired by Newman’s study on scientific collaboration 124

networks [14], where vertices are scientists and two scientists are connected by an 125

unweighted edge if they have coauthored one or more scientific papers together. To 126

define the strength of the tie between two connected scientists, two factors are 127

considered. First, two scientists whose names appear on a paper together with many 128

other coauthors know one another less well on average than two who are the sole 129

authors of a paper. Thus, the collaborative ties are weighted inversely according to the 130

number of coauthors of a paper. Second, authors who have written many papers 131

together will know one another better on average than those who have written few 132

papers together. Thus, all coauthored papers are added up to account for the tie 133

strength of two scientists. 134

Here, similarly, first we consider that the correlation of two diseases through a gene 135

is stronger when they are the sole associated diseases with this gene than when there 136

are many other diseases associated with the same gene. Second, the correlation of two 137

diseases is considered stronger when they share more genes through stronger 138

associations than less genes or weaker associations. Thus, we extend Newman’s method 139

to weighted graph and define the weight of edge wij between two diseases i and j as 140

wij =
∑
k∈G

δki δ
k
j (aki + akj )

sk
, (1)

where δki is one if disease i and gene k have a DGA, and zero otherwise. aki is the score 141

of their DGA assessed by DisGeNET as discussed in the previous section, and sk is the 142

strength of gene k as a vertex in the bipartite disease-gene network, defined as the sum 143

of the scores of the DGAs between gene k and its directly linked diseases, 144

sk =
∑
i∈D

aki . (2)
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Fig 4. Distribution of edge weights in the WHDN. The weight of an edge quantifies the
shared genetic background of two connected diseases. There are 112,324 edges in the
graph with weights ranging from 0.0152 to 22.4506.

Such a weight definition indicates that the correlation strength of two diseases is 145

weighted inversely according to the strengths of the genes they share, and is 146

proportional to the total number of genes they share and the strengths of their DGAs. 147

For example, in Figure 1, the weight between diseases contact dermatitis (CD) and
white sponge nevus 1 (WSN1) is calculated as follows,

wCD,WSN1 =
∑
k∈G

δkCDδ
k
WSN1(akCD + akWSN1)

sk

=
aKRT4
CD + aKRT4

WSN1

sKRT4

=
0.2 + 0.48

0.881
= 0.7718.

Note that the weight of two diseases can be greater than one when they share
multiple genes. For example the weight between diseases WSN1 and hereditary mucosal
Leukokeratosis (HML) is calculated as follows,

wWSN1,HML =
∑
k∈G

δkWSN1δ
k
HML(akWSN1 + akHML)

sk

=
aKRT4
WSN1 + aKRT4

HML

sKRT4
+
aKRT13
WSN1 + aKRT13

HML

sKRT13

=
0.48 + 0.201

0.881
+

0.2 + 0.2008

0.6008
= 0.7729 + 0.6671

= 1.44.

Since the WHDN is constructed using vertices from the giant component of the 148

bipartite disease-gene association network, it only has a single connected component 149

with all 5,278 vertices in the disease set D. Two vertices have an edge connecting them 150

if the represented two diseases have at least one shared gene, and the edge weight is 151

assessed as described above. The WHDN has 11,2324 edges and an average vertex 152

degree of 42.56. That is, a disease correlates with on average 42.56 other diseases with 153

varying strengths. Figure 4 depicts the distribution of all the edge weights in the 154

WHDN. As we can see that a large number of edge weights are of small values and may 155

not be particularly interesting for the subsequent analysis. Those weak edges not only 156

add computational overhead to the network analysis, but also render the network 157

difficult to interpret. Therefore, next we perform an edge reduction and only extract the 158

most meaningful structure of the network. 159

The Multi-Scale Backbone of WHDN 160

The most straightforward strategy for network reduction is to use a global weight 161

threshold and remove all links that have weights lower than the threshold. However, 162

such a global thresholding strategy is somewhat arbitrary and may overlook the network 163

information present below the cutoff scale. Here, to preserve the multi-scale backbone of 164

the weighted human disease network (WHDN) while removing less relevant and 165
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meaningful edges we use a multi-scale filtering method proposed by Serrano et al. [43]. 166

Such a multi-scale backbone exaction algorithm has been used to reduce the network 167

size while preserving the meaningful structure of biological networks in multiple 168

studies [32, 44, 45, 46]. 169

First, the weight of edge linking vertex i with its neighbor j can be normalized as 170

pij =
wij

si
, (3)

where si is the vertex strength, i.e., the sum of weights incident to vertex i, defined as 171

si =
∑

j∈
∏

(i)

wij , (4)

where
∏

(i) is the set of vertex i’s neighbors. Therefore, there are two different 172

normalized values for a link eij using the strengths of its two end vertices si and sj as 173

the denominator. 174

Second, a null model is used to assess the expectation if the weights of links 175

connecting to a particular vertex were distributed randomly. That is, the normalized 176

weight pij that corresponds to the link connecting to a certain vertex of degree k is 177

produced by a random assignment from an uniform distribution. Thus the probability 178

density function for the variable taking a particular value x is 179

p(x)dx = (k − 1)(1− x)k−2dx. (5)

Then, to identify whether the probability, βij , of link weight pij is compatible with 180

the null model with a threshold β is given as 181

βij = 1− (k − 1)

∫ pij

0

(1− x)k−2dx < β. (6)

All links with computed βij lower than a given threshold β are preserved in the 182

network. Note that each edge has two different values βij and βji. For solving this 183

problem, OR and AND rules can be used. Under the first rule, if either βij and βji is 184

lower than β, the link will be preserved. In the second case, an edge is preserved if both 185

βij and βji are lower than β. Darabos et al. [44] empirically found that the AND rule 186

preserve the network features better than using the OR rule in the context of human 187

phenotype networks. In this article, the AND rule is adopted to reduce the size of the 188

network by removing the links which are less relevant. 189

To find the best cutoff for β, we calculate clustering coefficient, percentage of 190

remaining vertices and links, and total weight of the networks after applying a β cutoff 191

while β changes from 0 to 1. Figure 5 shows the results of network metrics as a function 192

of β cutoffs. We choose a β cutoff when the clustering coefficient and the remaining 193

vertices and weights are maximally preserved while as many links are removed as 194

possible. Accordingly, the cutoff β = 0.501 can be determined, shown as the vertical 195

dashed line in the figure. 196

After the backbone extraction, the WHDN has 4,898 vertices and 38,275 edges. 197

Those vertices are no longer connected in a single component. Figure 6 shows the size 198

distribution of its connected components. There is a giant component with 4,810 199

vertices and its degree distribution is shown in Figure 7. Again the degree distribution 200

is heavy tailed and resembles a power-law relationship. The vertex epilepsy has the 201

highest degree of 576. This giant component will be the focus for our next step analysis, 202

i.e., measuring vertex importance in order to find the most central diseases in terms of 203

correlating with other diseases. 204
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Fig 5. Choosing the β value. CC represents clustering coefficient, %Vertices is the
percentage of remaining vertices, %Weights is the percentage of weights left after
removing links, and %Links is the percentage of remaining links.

Fig 6. The size distribution of connected components in the extracted backbone of the
WHDN. The network has a single giant component with 4,810 vertices.

Fig 7. Degree distribution of vertices in the giant component of the extracted
backbone of the WHDN. The distribution is shown on a log-log scale.

Fig 8. An example weighted graph.

Measuring Vertex Importance in WHDN 205

Although various vertex centrality measures have been proposed in the literature, the 206

quantification of the importance of a vertex in a network is often context-specific. For 207

some networks, measuring degree may suffice since a vertex can be considered important 208

when its number of neighbors is the sole criterion. For some networks, e.g., information 209

communication networks, a vertex may be considered more important if its distances to 210

all other vertices are short, then closeness centrality serves this purpose well. For our 211

WHDN, a disease is considered important if it correlates with many other diseases 212

(degree) as well as if the correlations are themselves very important (edge importance). 213

We propose a vertex importance measure for the weighted human disease network 214

(WHDN) by extending a centrality measure for unweighted networks proposed by Liu et 215

al. [47]. This measure assesses the centrality of a vertex based on both its degree and 216

the importance of its incident links (DIL centrality). For its extension on weighted 217

graphs, we name it the DIL-W centrality. 218

First, in the context of unweighted graph, the importance of a link eij that connects 219

vertex vi and vj can be calculated as follows: 220

Ieij =
Ueij

λeij
, (7)

where Ueij = (ki − p− 1)(kj − p− 1) and λeij = p
2 + 1. Following the convention, ki and 221

kj are the degrees of vertex vi and vj , respectively, and p is the number of triangles 222

with one edge being eij . 223

Subsequently, the contribution that vertex vi makes to the importance of eij is 224

computed as 225

Cvivj
= Ieij ×

ki − 1

ki + kj − 2
, (8)

where j ∈ Γi, and Γi is the neighborhood of vertex i. 226

Then, the DIL centrality of vertex vi is calculated by combining both its degree and 227

the importance of its incident links, 228

DILvi = ki +
∑
vj∈Γi

Cvivj . (9)

For weighted networks, we modify the computation of U in Equation (7) as 229

Ueij = (si − pi)× (sj − pj), (10)

where si is the strength of vertex vi, calculated by Formula (4), and pi is the weight 230

sum of links incident to vertex vi that form triangles with eij . This follows the intuition 231
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that first an edge is considered more important when its two end vertices have higher 232

strengths. Second, the importance of an edge is reduced when it has alternative two-hop 233

paths connecting the same set of end vertices. Therefore, we subtract pi from si in 234

Equation (10). 235

We define λ for weighted graphs as 236

λeij =
pi + pj

2
+ 1. (11)

Finally, the importance of a vertex can be measured by 237

DIL-Wvi = si +
∑
vj∈Γi

Cvivj , (12)

where Cvivj is defined as 238

Cvivj
= Ieij ×

si
si + sj

. (13)

In the weighted graph given in Figure 8, vertex a has a higher strength but a lower 239

degree than vertex b. We compute their DIL-W centralities and investigate which one is 240

more central when both factors are considered. 241

First we have their strength values sa = 0.9 + 0.3 + 0.5 + 0.6 = 2.3, and
sb = 0.2 + 0.11 + 0.2 + 0.7 + 0.5 = 1.71. Their neighborhoods are Γa = {b, c, d, g} and
Γb = {a, c, e, f, g}. For vertex a,∑

vj∈Γa

Cavj = Cab + Cac + Cad + Cag,

where
Cab = Ieab

× sa
sa + sb

,

and

Ieab
=
Ueab

λeab

=
(sa − pa)× (sb − pb)

pa+pb

2 + 1
.

We have
pa = wac + wag = 0.3 + 0.6 = 0.9,

and
pb = wbc + wbg = 0.2 + 0.7 = 0.9.

So

Cab =
(sa − pa)× (sb − pb)

pa+pb

2 + 1
× sa
sa + sb

=
(2.3− 0.9)× (1.71− 0.9)

0.9+0.9
2 + 1

× 2.3

2.3 + 1.71

= 0.3423

We can also have

Cac = 0.3285, Cad = 1.4878, and Cag = 0.4312.

Then

DIL-Wa = sa +
∑

vj∈Γa

Cavj

= 2.3 + (0.3423 + 0.3285 + 1.4878 + 0.4312)

= 4.8898.
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Fig 9. Distribution of DIL-W centrality in the giant component of the WHDN on a
log-log scale.

Fig 10. Correlation of DIL-W scores with a) degree centrality, b) closeness centrality, and c)
betweenness centrality in the WHDN.

Similarly, we can compute the DIL-W centrality of vertex b DIL-Wb = 2.8916. 242

Therefore, based on both the degree and importance of incident edges, vertex a is 243

considered more important than vertex b. 244

We apply the DIL-W centrality measurement to the giant component of the 245

backbone of WHDN, the distribution is shown in Figure 9. The DIL-W scores have a 246

high dynamic range, from 0.0610 to 80688.1129. The majority of the vertices have low 247

scores and a few number of vertices can have scores that are greater by orders of 248

magnitude. 249

Comparison and Evaluation 250

We compare our DIL-W measurement with three most commonly used centralities, i.e., 251

degree, closeness, and betweenness, when applied to the giant component of the 252

backbone of WHDN. For weighted graphs, degree centrality is calculated as vertex 253

strength given by Equation (4). Closeness and betweenness are shortest-path-based 254

centralities. Shortest path computation can be extended for weighted graph as follows, 255

dwij = min(
1

wih
+ ...+

1

whj
). (14)

Here dwij denotes the weighted distance between vertex i and j, and wih is the weight of 256

the edge linking vertex i and h. Since in our WHDN edge weight suggests strength, the 257

distance between two vertices is the minimum sum of the inverse of edge weight along 258

the path connecting them. Once the weighted distance is defined, closeness and 259

betweenness can be calculated by their original definitions. 260

Figure 10 shows the correlation of DIL-W scores with a) degree, b) closeness, and c) 261

betweenness centralities. As we can see, there is a positive correlation between DIL-W 262

measure and all other three vertex centrality measures. The Spearman’s rank 263

correlation coefficient is 0.672 comparing DIL-W with closeness, is 0.71 comparing 264

DIL-W with betweenness, and is 0.947 comparing DIL-W with degree. 265

To evaluate our new vertex importance quantification method, DIL-W, we measure 266

the network efficiency before and after we remove the most important vertices in the 267

WHDN. In the context of the WHDN, the network efficiency indicates the extend to 268

which the original connectivity of the network is maintained. We calculate the decline 269

rate of network efficiency after removing m top-rank vertices. The network 270

efficiency [48] is computed based on the connectivity of a network. A higher 271

connectivity suggests a higher network efficiency. The network efficiency is defined by 272

η =
1

n(n− 1)

∑
vi 6=vj∈V

1

dij
, (15)

where n is the total number of vertices in the network, V is the vertex set, and dij is 273

the weighted distance between vertex vi and vj . Thus, the decline rate of the network 274

efficiency is calculated as 275

µ = 1− η

η0
, (16)

where η0 is the efficiency of the original network, and η is the network efficiency after 276

some vertices are removed. 277
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Fig 11. Decline rate of network efficiency after removing a single vertex ranked by a) degree
centrality (DC), b) closeness centrality (CC), c) betweenness centrality (BC), and d) DIL-W.

Fig 12. The decline rate of the network efficiency as a function of removing the top m
vertices ranked by degree centrality (DC), closeness centrality (CC), betweenness
centrality (BC), and DIL-W.

When a more importance vertex is removed, we expect to see a greater decline rate 278

of the network efficiency. Thus we can use µ as a indicator for the actual impact of 279

removing a vertex in the network. Figure 11 shows the decline rate of the network 280

efficiency when we remove each of the top 40 vertices ranked by a) degree (DC), b) 281

closeness (CC), c) betweenness (BC), and d) DIL-W. Further removal of top ranked 282

vertices could be investigated but was not included in the current study given the high 283

computational demand. As shown in the figure, we do not observe a monotonic 284

relationship across all four centrality methods. However, the correlation analysis shows 285

that our method, DIL-W, has a slighter stronger negative correlation between the 286

decline rate and the rank of the removed vertex than the other three. The Spearman’s 287

rank correlation coefficient, ρ, for degree, closeness, and betweenness is −0.1801, 288

−0.0017, and −0.0679, respectively. In comparison, DIL-W has a negative correlation 289

coefficient −0.2698. 290

We also consider removing all m top-rank vertices at once and see how this 291

accumulative removal affects the efficiency of the network. Figure 12 shows the decline 292

rate of the network efficiency after removing all top m vertices ranked by different 293

centrality measures. The graph shows that the proposed method, DIL-W, has the 294

highest decline rate of network efficiency for 57.5% of the data points, while 295

betweenness, closeness, and degree have 27.5%, 10%, and 5%, respectively. This 296

suggests that DIL-W is able to select a set of more important vertices comparing with 297

the other three centrality measures. As seen in Figure 12, the four methods are very 298

comparable until the top 11 diseases are removed from the network. Then DIL-W has a 299

significant higher network efficiency decline rate than the rest. Betweenness centrality 300

catches up around point 30 and becomes very comparable afterwards. 301

Table 1 shows the top 30 diseases ranked by our DIL-W method, their degrees, and 302

their neighbors that have the strongest correlations (i.e., edge weights). References that 303

support the known comorbidity of the disease pairs are also given. 304

Table 1. The 30 top-ranked diseases by DIL-W and their most correlated dieases

Rank Disease Degree The most correlated disease Ref.

1 Epilepsy 576 Pediatric failure to thrive –
2 Pediatric failure to thrive 462 Epilepsy –
3 Sensorineural hearing loss

(disorder)
313 Retinitis pigmentosa [54]

4 Anemia 327 Pediatric failure to thrive [50]
5 Obesity 268 Retinitis Pigmentosa [49]
6 Osteoporosis 326 Osteopenia [55]
7 Nystagmus 276 Epilepsy [56]
8 Liver cirrhosis 278 Chemical and drug induced

liver injury
[51]

9 Low vision 270 Nystagmus [57]
10 Heart failure 311 Obesity [58]
11 Muscle degeneration 277 Amyotrophic lateral sclerosis [59]
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Table 1. The 30 top-ranked diseases by DIL-W and their most correlated dieases

Rank Disease Degree The most correlated disease Ref.

12 Diabetes mellitus, non-
insulin-dependent

245 Obesity [60]

13 Strabismus 293 Epilepsy [61]
14 Exophthalmos 302 Strabismus [62]
15 Myopia 266 Sensorineural hearing loss

(disorder)
[63]

16 Degenerative polyarthritis 239 Rheumatoid arthritis [64]
17 Cerebral atrophy 267 Epilepsy [65]
18 Optic atrophy 236 Nystagmus –
19 Rheumatoid arthritis 188 Lupus erythematosus, sys-

temic
[66]

20 Hydrocephalus 250 Epilepsy [67]
21 Alopecia 241 Dystrophia unguium –
22 Myocardial ischemia 166 Obesity –
23 Myocardial infarction 228 Coronary artery disease [68]
24 Chemical and drug in-

duced liver injury
174 Cholestasis [69]

25 Asthma 198 Dermatitis, atopic [70]
26 Endometriosis 135 Obesity [71]
27 Hypertrophic cardiomy-

opathy
187 Pediatric failure to thrive [72]

28 Conductive hearing loss 163 Sensorineural hearing loss
(disorder)

[73]

29 Brain ischemia 191 Diabetes mellitus, non-insulin-
dependent

–

30 Gastroesophageal reflux
disease

190 Epilepsy [74]

Discussion 305

In this article, we use a network-based analysis to identify important human diseases 306

that share genetic background with many other diseases through strong associations. 307

We collect a large number of known disease-gene associations (DGAs) using DisGeNET 308

in order to construct a bipartite disease-gene network. Subsequently, a weighted human 309

disease network (WHDN) is built by connecting pairs of diseases that share associated 310

genes and the edge weights reflect the number of genes they share as well as the 311

strength of the DGAs. Then we propose a new vertex centrality measure DIL-W that 312

considers both the degree of a vertex and the importance of its incident edges in 313

weighted graphs. Upon application to the WHDN, DIL-W is shown to outperform three 314

commonly used centrality measures, degree, closeness and betweenness, and has 315

identified top diseases including epilepsy, anemia, and obesity. 316

Table 1 shows the degree in the WHDN and the most correlated disease of those 30 317

top-rank diseases. We are also able to find previous publications that verify almost all 318

the correlations of those pairs of diseases, shown as references in the table. Besides some 319

very well-known correlations such as heart failure - obesity and diabetes - obesity, the 320

table also reports some less known but interesting correlations. For instance, Savin [49] 321

showed that atypical retinitis pigmentosa is correlated with obesity. Moreover, the 322

correlation between anemia and pediatric failure to thrive had not been reported in the 323
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literature until recently Dimmock et al. [50] suggested anemia as one of the novel causes 324

of failure to thrive in children. Zimmerman [51] studied the cause of different types of 325

cirrhosis resulting from different drug-induced injuries. This supports our finding on the 326

correlation between cirrhosis and chemical and drug induced liver injury. 327

The disease-gene associations come from DisGeNet [42] only. While this is a valuable 328

resource, it is merely one of the many databases that have disease gene information 329

(including Jensen Lab’s DISEASES [52] and DiseaseConnect [53] databases), all of 330

which have their own disease association scoring convention. The alternative databases 331

will be explored in our future study. 332

Conclusion 333

Apart from many existing related work, in this article, we construct a weighted human 334

disease network (WHDN) and propose a new centrality measure DIL-W designed 335

specifically for the WHDN. Our network-based analysis methods are shown to be able 336

to identify more important diseases comparing to degree, closeness and betweenness 337

centralities. The identified disease-disease correlations include previous knowledge 338

supported by published literature as well as less known and novel correlations that can 339

be valuable for future studies. Our understanding of human diseases is still largely 340

unclear and the disease-gene associations are far from being complete. Future studies 341

could explore the utilization of multiple types of data and more powerful computational 342

tools to better cluster and categorize human diseases and to predict new genes and 343

other factors that can explain diseases. 344
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42. Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J,
Centeno E, et al. DisGeNET: a comprehensive platform integrating information
on human disease-associated genes and variants. Nucleic Acids Research.
2017;45(D1):D833–D839.
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