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ABSTRACT 1 

Hundreds of genes are implicated as risk factors for autism spectrum disorder (ASD). However, the 2 

mechanisms through which they are associated with ASD remain unclear. Here, we analyzed 3 

transcriptomics from ASD toddlers and discovered a core gene network with dysregulated gene co-4 

expression. The identified network includes highly expressed processes in fetal-stage brain development 5 

and is dysregulated in neuron models of ASD. We found ASD risk genes across diverse functions are 6 

upstream and regulate this core network. In particular, many risk genes impact the network through the 7 

RAS/ERK, PI3K/AKT, and WNT/b-catenin signaling pathways. Finally, the dysregulation degree of this 8 

network positively correlates with early-age ASD clinical severity. Thus, our results provide insights into 9 

how the heterogeneous genetic basis of ASD could converge on a core network with consequence on the 10 

postnatal outcome of toddlers with ASD. Deeper study into this may help decipher the molecular basis of 11 

ASD and decode the complex link between its genetic and phenotypic variation. 12 

INTRODUCTION 13 
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with prenatal and early postnatal 14 

biological onset 1-3. Genetic factors contribute to the predisposition and development of ASD with 15 

estimated heritability rates of 50-83% 4,5. Large-scale genetic studies have implicated several hundred risk 16 

(rASD) genes that could be associated with many different pathways, cell processes, and 17 

neurodevelopmental stages 6-8. This highly heterogeneous genetic landscape has raised challenges in 18 

elucidating the biological mechanisms involved in the disorder. While rigorous proof remains lacking, 19 

current evidence suggests that rASD genes fall into networks and biological processes 6,7,9-13 that modulate 20 

one or more critical stages of prenatal and early postnatal brain development, including neuronal 21 

proliferation, migration, neurite growth, synapse formation and function 3,8. However, these insights are 22 

mostly gained from focused studies on single rASD genes (see Courchesne et al.3 for a recent review) or 23 

based on transcriptome data of non-ASD brains 9-11, leaving an incomplete picture of molecular changes at 24 

the individual level and relationships with early-age clinical heterogeneity. 25 

To further complicate efforts to discern the molecular bases of ASD, the implicated rASD genes are 26 

largely identified through de novo loss-of-function mutations in their coding sequence. Such events account 27 

for 5-10% of the ASD population, and most of heritability is estimated to reside in common variants also 28 

seen in the typically developing population 5,14-17. Currently, there is a paucity of data on whether ASD 29 

cases with known rASD gene mutations manifest as special subtypes of ASD with distinct molecular 30 

etiology, or whether they share mechanisms with the general ASD population. 31 

To address these fundamental questions, it is important to understand which molecular processes are 32 

perturbed in prenatal and early postnatal life in ASD individuals, assess how they vary among subjects, and 33 

evaluate how these perturbations relate to rASD genes and early-age ASD clinical symptoms. It is expected 34 
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that the genetic changes in ASD alter gene expression and signaling in the early-age developing brain 35 
3,7,11,18. Therefore, capturing dysregulated gene expression at prenatal and early postnatal ages may help 36 

unravel the underlying molecular organization of ASD. Unfortunately, doing so is particularly challenging 37 

as ASD brain tissue cannot be obtained at these early stages, and all available postmortem ASD brains are 38 

from much older ages, well beyond the ages when rASD genes are at peak expression and the disorder 39 

begins.  However, in contrast to living neurons that have a limited time window for proliferation and 40 

maturation, other cell types constantly regenerate, such as blood cells. Given the strong genetic basis of 41 

ASD, some dysregulated developmental signals may continually reoccur in blood cells and thus be studied 42 

postnatally19-21. 43 

Reinforcing this notion, it was recently demonstrated that genes that are broadly expressed across 44 

many tissues are major contributors to the overall heritability of complex traits 22, and it was postulated that 45 

this could be relevant to ASD. Lending credence to this, previous studies have reported the enrichment of 46 

differentially expressed genes in ASD blood for the regulatory targets of CHD8 20 and FMR1 23 genes, two 47 

well-known rASD genes. Similarly, lymphoblastoid cells of ASD cases and iPS-derived models of fragile-48 

X syndrome show over-expression of mir-181 with a potential role in the disorder 24.  Likewise, leukocytes 49 

from ASD toddlers show perturbations in biological processes, such as cell proliferation, differentiation, 50 

and microtubules 25-29, and these coincide with dysregulated processes seen in neural progenitor cells 51 

(NPCs) and neurons, derived from iPS cells from ASD subjects 30,31. Ultimately, establishing the signatures 52 

of ASD in other tissues will be important to facilitate the study of the molecular basis of the disorder in 53 

living ASD subjects in the first years of life. 54 

Here we leverage transcriptomic data from leukocytes, stem cell models, and the developing brain 55 

to study the underlying architecture of transcriptional dysregulation in ASD, its connection to rASD genes, 56 

and its association with prenatal development and clinical outcomes of ASD toddlers. Specifically, we 57 

discovered a conserved dysregulated gene network by analyzing leukocyte transcriptomic data from 1-4 58 

years old ASD and typically developing (TD) toddlers. The dysregulated network is enriched for pathways 59 

known to be perturbed in ASD neurons, impacts highly expressed processes in prenatal brain development, 60 

and is dysregulated in iPS cell-derived neurons from ASD cases. Consistent with the postulated structure of 61 

complex traits 22,32, we show that rASD genes across diverse functional groups converge upon and regulate 62 

this core network. Importantly, this core network is disrupted to different levels of severity across ASD 63 

individuals, and is correlated with clinical severity in individual ASD toddlers. Thus, our results 64 

demonstrate how the heterogeneous genetic basis of ASD converges on a biologically relevant core 65 

network, capturing the underlying possible molecular etiology of ASD. 66 
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RESULTS 67 

Leukocytes display transcriptome over-activity in ASD male toddlers 68 

To identify the unique transcriptional response of ASD subjects, we analyzed 253 leukocyte gene 69 

expression profiles obtained from 226 male toddlers (119 ASD and 107 TD, Table S1). Robust linear 70 

regression modeling of the data identified 1236 unique differentially expressed (DE) genes (437 71 

downregulated and 799 upregulated; FDR < 0.05). Jack-knife resampling demonstrated that the expression 72 

pattern of DE genes was not driven by a small number of cases, but rather shared with the vast majority of 73 

ASD subjects (Fig S1). The expression patterns were validated in a replicate dataset of 56 randomly re-74 

sampled toddlers. We further confirmed the expression patterns of DE genes on another partially 75 

independent and one entirely independent cohort (Fig S1-S4).  76 

We employed a systems approach to decipher how the transcriptional perturbations in leukocytes of 77 

ASD toddlers are organized in gene networks (Fig 1.a). We reasoned that ASD associated interactome 78 

rewiring is most pronounced in networks of DE genes. To identify such rewiring, we first extracted a static 79 

network (that is, the network is indifferent to the cell context) composed of high confidence physical and 80 

regulatory interactions among DE genes, as obtained from multiple databases (Methods). We next pruned 81 

the static network using our leukocyte transcriptome data to obtain context-specific networks of each study 82 

group separately (that is, the networks differ based on their cognate gene expression data). The context 83 

specific network of each study group was obtained by only retaining interactions in the static network that 84 

were significantly co-expressed within that group with FDR <0.05. To ensure the robustness of our 85 

conclusions, we replicated all presented results on two other networks with different numbers of genes and 86 

interactions obtained from additional resources (Methods). 87 

The context-specific networks (DE-ASD and DE-TD) include published physical and regulatory 88 

interactions among DE genes that exhibit within-group co-expression in our data. DE-ASD and DE-TD 89 

networks are composed of a similar set of genes (i.e., those expressed in the leukocytes that are 90 

differentially expressed between ASD and TD samples), but the wiring of the two networks differ based on 91 

the co-expression patterns within each study group. To assess the possibility that intracellular pathways 92 

were being specifically modulated in ASD, we created a merged network by considering the union of 93 

interactions in the DE-ASD and DE-TD networks. We next examined the co-expression strength of the 94 

merged network in ASD and TD individuals (Methods) 33-35. This proxy for the transcriptional activity of 95 

gene networks 9 demonstrated that co-expression strength was higher in the ASD than the TD samples (Fig 96 

1.b; p-value < 0.01; paired Wilcoxon-Mann-Whitney test). The stronger co-expression that is driven by the 97 

DE-ASD network, suggests a higher level of concerted activation or suppression of pathways involving DE 98 

genes in ASD toddlers. This elevated co-expression activity (herein referred to as over-activity) of the 99 
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network was reproducible in the other two ASD datasets and replicable across alternative analysis methods 100 

(Fig S1-S4). 101 

In summary, the leukocyte transcriptional networks of the DE genes show higher than normal co-102 

expression activity in ASD toddlers. Moreover, the dysregulation pattern is present in a large percentage of 103 

ASD toddlers, as evidenced by the resampling analyses and the other two ASD datasets.  104 

 

The leukocyte-based gene network captures transcriptional programs of brain development 105 

We next assessed the potential association of the leukocyte-based network to the spatiotemporal 106 

neurodevelopmental signals relevant to ASD. By overlaying our network on the in vivo 107 

neurodevelopmental RNA-Seq transcriptome data from BrainSpan36,37, we found that the DE-ASD network 108 

was enriched for genes that are strongly expressed in the neocortex at prenatal and early postnatal periods 109 

(p-value <4.3x10-30; Fig 1.c). 110 

To investigate the spatiotemporal activity pattern during brain development, we measured the co-111 

expression strength of interactions in the leukocyte-based network at different neurodevelopmental time 112 

windows across brain regions using BrainSpan. We found that the highest co-expression activity of the DE-113 

ASD network temporally coincided with peak neural proliferation in brain development (10-19 post 114 

conception weeks 3,8) across the brain and then decreased in activity at later time points (Fig 1.d). Further 115 

supporting the transcriptional activity of the leukocyte-derived network in prenatal brain, we found 116 

evidence that the DE-ASD network is preserved at the co-expression level between ASD leukocytes and 117 

prenatal brain (Fig 1.e).  118 

 

Networks of rASD genes are associated with the DE-ASD network 119 

We next analyzed the DE-ASD network in the context of other studies to explore the relevance of 120 

our leukocyte-based signature to neocortical development. Parikshak et al. previously reported gene co-121 

expression modules that are responsive to the developmental trajectories of cortical laminae during prenatal 122 

and early postnatal ages 10. A subset of these modules show enrichment in rASD genes 10. We examined the 123 

overlap of our leukocyte-derived network with all modules from Parikshak et al10. The DE-ASD network 124 

preferentially overlapped with rASD gene-enriched modules from that study (Fig 1.f; Table S2). This 125 

suggests that our DE-ASD network is functionally related to rASD genes during neocortical development. 126 

We confirmed the significant overlap of our DE-ASD network with the networks of rASD genes reported in 127 

two other studies 7,9, indicating the robustness of the results (Fig 1.f). Intriguingly, the prenatal brain co-128 

expression network of high confidence rASD genes was more similar to that of ASD leukocytes than TD 129 

leukocytes (Fig 1.g), suggesting that neurodevelopmental transcriptional programs related to rASD genes 130 

might be more represented in the ASD leukocyte transcriptome than TD samples. 131 
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With the observed overlap patterns, we next tested for enrichment of rASD genes in our DE-ASD network. 132 

For this analysis, we assessed the overlap of DE-ASD network with different rASD gene lists of different 133 

size and varying confidence levels. Surprisingly, this analysis demonstrated that rASD genes are not 134 

enriched in the DE-ASD network (p-value >0.19; Methods). 135 

 

The DE-ASD network is enriched for the regulatory targets of rASD genes 136 

Many high confidence rASD genes have regulatory functions 3,7,11,18. Although the perturbed DE-ASD 137 

network is not enriched for rASD genes, it overlaps with co-expression modules and networks of known 138 

rASD genes. At the mechanistic level, the observed co-expression of rASD and DE genes in the prenatal 139 

brain could be due to the regulatory influence of rASD genes on the DE-ASD network, and thereby 140 

mutations in rASD genes could cause the network over-activity and brain maldevelopment in ASD. 141 

 

Fig 1. Elevated co-expression activity of the DE-ASD network in ASD leukocytes and its preservation in 
prenatal brain. 
a) Overview of this study. Transcriptome analysis of 226 ASD and TD toddlers identified 1236 DE genes. We 
built a comprehensive “static” network of DE genes from high confidence physical and regulatory interactions. 
The static network was next pruned to only include links supported by measured gene co-expression within the 
ASD and TD transcriptome data. This yielded context specific DE-ASD and DE-TD networks, and allowed the 
comparison of gene co-expression strength in ASD and TD subjects. To understand the link of the DE-ASD 
network to ASD risk genes, an XP-ASD network was constructed using both DE and ASD risk genes. The DE-
ASD and XP-ASD networks were analyzed in the context of neural differentiation, ASD neuron models and ASD 
clinical severity. b) The DE networks are more strongly co-expressed in the ASD toddlers compared to TD 
toddlers. For an unbiased analysis, the union of DE-ASD and DE-TD networks was considered for this analysis. 
DE networks are composed of high confidence physical and regulatory interactions. c) Genes in the DE-ASD 
network are highly expressed in the brain between 8 post conception weeks to 1 year old. For each gene, the 
number of samples strongly expressing the gene (RPKM >5) was counted based on BrainSpan normalized data 
82. The background genes were composed of all protein coding genes that were expressed in our microarray 
experiment and were present in BrainSpan RNA-Seq dataset. See also Fig S6. d) The activity pattern of the DE-
ASD network during the neurodevelopmental period across brain regions. At each time window, the distribution 
of co-expression strength of interacting gene pairs in DE-ASD network was measured using Pearson’s correlation 
coefficient. The co-expression distribution was next compared with a background distribution using Wilcoxon-
Mann-Whitney test. The y-axis indicates the z-transformed p-value of this comparison. e) Leukocyte gene co-
expression pattern of interactions in DE-ASD network is conserved in prenatal and early postnatal neocortex 
transcriptome data. The correlation of interacting gene pairs in the DE-ASD network was calculated from 
neocortex transcriptome data (8 post conception weeks until 1 year old, postnatal). The correlation patterns were 
next paired with those observed in ASD leukocytes. A p-value was estimated by comparing the observed 
preservation of DE-ASD with that of DE-TD (Fig S6). f) Overlaps of DE-ASD network with brain 
developmental modules and networks. As illustrated, modules and networks enriched for rASD genes 
significantly overlap with the DE-ASD network (FDR <0.1; Table S2). rASD networks: networks constructed 
around high confidence rASD genes 7,9; rASD modules: co-expression modules enriched for rASD genes 10; other 
modules: modules that are not enriched for rASD genes 10. g) Similarity of interactions of a brain co-expression 
network around rASD genes 9 with ASD and TD samples as measured by Pearson’s correlation coefficient. 
Boxplots represent the observed similarity based on 100 random sub-samplings of 75 ASD and 75 TD samples 
(~70% of samples in each diagnosis group). The x-axis represents the top percentile of positive and negative 
interactions based on the brain transcriptome interaction correlation value (see also Fig S5). 
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To elucidate if rASD genes could regulate the DE-ASD network, we examined if the regulatory 142 

targets of rASD genes are enriched in the DE-ASD network. Indeed, we observed that the DE-ASD 143 

network is enriched for genes regulated by two high confidence rASD genes, CHD8 38-40 and FMR1 144 
41(Fig2.a). To more systematically identify regulators of the network, we evaluated the overlap of the DE-145 

ASD network with the regulatory targets from 845 assays in the ENCODE project 42 and 615 manually 146 

curated assays in Chea201643. Strikingly, we observed DE-ASD network is significantly enriched for 11 out 147 

of 20 high confidence and suggestive confidence rASD genes (OR: 2.54; p-value: 0.05; Fig 2.b; Table S3). 148 

 

The DE-ASD network is preferentially linked to high confidence rASD genes 149 

The rASD genes were often not differentially expressed in ASD leukocytes, and therefore the DE-150 

ASD network was not enriched in rASD genes. However, to explore if rASD genes could regulate the DE-151 

ASD network, we expanded the DE-ASD network by including rASD genes. Thus, we obtained an 152 

expanded-ASD, XP-ASD, network (Table S4). To construct XP-ASD network, we used a similar approach 153 

to that of the DE-ASD network. We first curated a high confidence static network of DE and 965 154 

speculated rASD genes. The context-specific XP-ASD network was next inferred by retaining only the 155 

significantly co-expressed interacting pairs in ASD samples. This pruning step results in removal of genes 156 

from the static network that do not show significant co-expression patterns with their known partners or 157 

regulatory targets in ASD leukocytes. Accordingly, the XP-ASD network included a total of 316 out of 965 158 

(36%) likely rASD genes.  159 

Fig 2. rASD genes are enriched for the regulators of 
the DE-ASD network. 
a) Genes identified by ChIP-Seq as regulatory targets 
of CHD8 (CHD8-1: Sugathan et al. 38; CHD8-2: 
Gompers et al40; CHD8-3: Cotney et al. 39) and FMR1 
41, two high confidence rASD genes, are enriched in 
the DE-ASD network. Enrichment was assessed 
empirically (Methods). b) The DE-ASD network 
significantly overlaps with the regulatory targets of 
rASD genes based on the ENCODE and Chea2016 
repositories. FDR <0.1 was considered as significant. 
c) High confidence genes are significantly enriched in 
the XP-ASD network (hypergeometric test). The lists 
of high confidence rASD genes were extracted from 
SFARI database 44, Kosmicki et al. 16, Chang et al. 7, 
and Sanders et al. 17. List of likely gene damaging 
(LGD) and synonymous (Syn) mutations in typical 
siblings were extracted from Iossifov et al15. 
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Our list of 965 rASD genes included rASD genes of both high confidence (e.g., recurrently mutated 160 

in ASD individuals) and low confidence (some even found in typical siblings of ASD individuals). We 161 

reasoned that if the XP-ASD network is truly relevant to the prenatal etiology of ASD, a preferential 162 

incorporation of high confidence rASD genes would be expected in the leukocyte-derived XP-ASD 163 

network. By following different analytical methods, different groups have separately categorized rASD 164 

genes into high and low confidence 7,16,44. Importantly, we found a reproducible enrichment of high 165 

confidence rASD genes in the XP-ASD network (Fig 2.c) with a significant enrichment for strong evidence 166 

rASD genes with de novo protein truncating variants in ASD subjects (hypergeometric p-value <3.06x10-6). 167 

Further corroborating the regulatory role of rASD genes on DE-ASD network, we found a significant 168 

enrichment of rASD genes with DNA binding activities in the XP-ASD network (OR: 3.1; p-value <2.1x10-169 
12; Fig S7). Furthermore, the XP-ASD network was not enriched for rASD genes classified as low 170 

confidence (p-value >0.24). As negative controls, we constructed two other networks by including genes 171 

with likely deleterious and synonymous mutations in siblings of ASD individuals. Consistent with a 172 

possible role of XP-ASD networks in ASD, we found these negative control genes are not significantly 173 

associated with the DE genes (p-values >0.41; Fig 2.c). The preferential addition of high confidence and 174 

regulatory rASD genes supports the relevance of the XP-ASD network to the pathobiology of ASD, and the 175 

likelihood that the high confidence rASD genes are regulating the DE-ASD network. 176 

 

rASD genes show potential suppressing effects on the DE-ASD network   177 

To explore the regulatory effect of the rASD genes on the DE genes, we analyzed their interaction 178 

types (i.e., positive or negative correlations, alluding to activator or repressor activity). Comparative 179 

analysis of DE- and XP-ASD networks indicated a significant enrichment of negative correlations between 180 

rASD and DE genes (p-value <3.1x10-4; Fisher’s exact test), suggesting more of an inhibitory role of rASD 181 

genes on the DE genes (Fig 3.a). 182 

Supporting the inhibitory role of rASD genes, the DE-ASD network was enriched for genes that 183 

were up-regulated by the knock-down of CHD8 in neural progenitor and stem cells; but not for those that 184 

were down-regulated (Fig 3.b) 38-40. Consistently, we observed in our dataset an overall up-regulation of 185 

genes that are also up-regulated in knock-down experiments of the transcriptional repressor CHD8 (p-value 186 

<0.039 across three different studies; GSEA), but not for those that are down-regulated. We observed a 187 

similar up-regulation pattern for the binding targets of the FMR1 rASD gene in the ASD transcriptome (p-188 

value: 0.078; GSEA). The potential inhibitory role of rASD genes on the DE-ASD network was further 189 

supported in an independent dataset on neural differentiation. Specifically, we observed an anti-correlated 190 

expression pattern between the rASD and the DE genes from the XP-ASD network in in vitro-differentiated 191 

human neural progenitors (Fig 3.c).  192 
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Signaling pathways are central to the leukocyte-based networks 193 

We next identified key pathways involved in the XP-ASD and DE-ASD networks. Biological 194 

process enrichment analysis of the XP-ASD network demonstrated it is highly enriched for signaling 195 

pathways (Fig 4.a; Table S5). Moreover, the DE-ASD network was highly enriched for PI3K/AKT, mTOR, 196 

and related pathways (Fig 4.b). To delineate mechanisms by which rASD genes could dysregulate DE 197 

genes, we compared enriched biological processes of DE and rASD genes involved in the XP-ASD 198 

network. DE genes were more enriched for cell proliferation related processes, particularly PI3K/AKT and 199 

its downstream pathways such as mTOR, autophagy, viral translation, and FC receptor signaling (Fig 4.a-200 

b). However, the rASD genes were better enriched for processes involved in neuron differentiation and 201 

maturation including neurogenesis, dendrite development and synapse assembly (Fig 4.a). 202 

Our results suggest up-regulation and elevated co-expression activity of PI3K/AKT and its down-203 

stream pathways in ASD leukocytes (Fig 4.a-b). These processes are involved in brain development and 204 

growth during prenatal and early postnatal ages 3,45,46 and focused studies on rASD genes have implicated 205 

Fig 3. rASD genes potentially suppress the DE genes. 
a) Interactions between DE and rASD genes are enriched for negative interactions in the ASD leukocyte 
transcriptome. See Fig S7 for more details. b) The DE-ASD network is significantly enriched for genes that are 
up-regulated in response to the knock-down of CHD8 gene. Data were extracted from three studies: Sugathan 
et al 38 (CHD8 k/d_1), Gompers et al (CHD8 k/d_2)40, and Cotney et al 39 (CHD8 k/d_3). See also Fig S8. c) 
Expression patterns of DE genes are negatively correlated with those of rASD genes based on in vitro 
differentiation of human primary neural precursor cells 84. In each panel, gray circles represent the median 
expression of associated genes. Expression levels of each gene was normalized to have mean of zero and 
standard deviation of one across samples. While genes in the DE-ASD network are significantly down-
regulated during neuron differentiation (p-value = 4.4 x 10-6), XP specific genes (i.e., rASD genes present only 
XP-ASD network, but not DE-ASD) are significantly up-regulated (p-value = 1.2x10-3). The expression levels 
of CACNA1E, PRSS12, and CARTPT were considered as the markers of upper layer neurons83 

 (late stage of neural differentiation). See Fig S7 for the related details. 
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them in ASD 3,8,47,48. Further supporting the over-activity of the PI3K/AKT and its down-stream pathways 206 

in our cohort of ASD toddlers, gene set enrichment analysis demonstrated genes involved in PI3K/AKT 207 

signaling, mTOR pathway and the targets of the FOXO1 transcriptional repressor (the two main 208 

downstream processes of the PI3K/AKT) are altered in ASD leukocytes in directions that are consistent 209 

with PI3K/AKT over-activity (Supplementary Notes). 210 

We further investigated the DE-ASD and XP-ASD networks using an integrated hub analysis 211 

approach (Methods). In the DE-ASD network, 63% of hub genes were involved in or regulated by the 212 

PI3K/AKT pathway including PIK3CD, AKT1 and GSK3B (Fig 4.c). The PI3K/AKT pathway is known to 213 

be active in the prenatal brain and involve in neural cell proliferation and maturation3. Consistent with a 214 

potential regulatory role of rASD genes on the DE-ASD networks, genes that were only hubs in the XP-215 

ASD network were highly enriched for the regulatory genes associated with neuronal proliferation and 216 

Fig 4. The architecture of the XP-ASD network. 
a) Summary of enriched biological processes in the XP-ASD network. Each node represents a biological 
process that is significantly enriched in the XP-
preferentially include rASD and DE genes are represented by purple and green colors, respectively. The 
interactions among terms represent the connection patterns of their cognate genes in the XP-ASD network 
with thicker interactions indicating more significant connections (hypergeometric test). Only connections with 
p-value <0.05 are shown. This illustration covers 86% of genes involved in the XP-ASD network.  b) All 
processes that are significantly enriched in the DE-ASD network and up-regulated in ASD leukocytes based 
on GSEA. c) The connected graph of hubs in the XP-ASD network. Green nodes represents genes that were 
hubs in both XP-ASD and DE-ASD networks. Genes that were hubs only in the XP-ASD network are in 
purple. d) Significant enrichment of rASD genes in the XP-ASD network for the regulators of RAS/ERK, 
PI3K/AKT, WNT and -catenin pathways. The x-axis indicates the p-value that gene mutations would 
dysregulate the corresponding signaling pathways. The background is composed of all genes that were assayed 
in Brockmann et al 52, excluding rASD and DE genes. The significance of enrichment of rASD genes in XP-
ASD network for the regulators of signaling pathways were measured using Wilcoxon-Mann-Whitney test 
with background genes (illustrated in black) as control. See Fig S8-S9 for more details. 
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maturation, including regulatory members of the RAS/ERK (e.g., NRAS, ERK2, ERK1, SHC1), 217 

PI3K/AKT (e.g., PTEN, PIK3R1, EP300), and WNT/b-catenin (e.g., CTNNB1, SMARCC2, CSNK1G2) 218 

pathways (Fig 4.c; Table S6-S7). While PI3K/AKT (a hub in DE-ASD and XP-ASD networks) promotes 219 

proliferation and survival, the ERK pathway (a hub in the XP-ASD network) can trigger differentiation of 220 

neural progenitor cells by mediating PI3K/AKT associated signaling pathways3,49-51. 221 

 

rASD genes regulate DE-ASD genes through specific signaling pathways 222 

We further explored if perturbation to the rASD genes lead to the perturbation of the DE-ASD 223 

network through changes in the RAS/ERK, PI3K/AKT, and WNT/b-catenin pathways. To assess this, we 224 

leveraged genome-wide mutational screening data in which gene mutations were scored based on their 225 

effects on the activity of the RAS/ERK, PI3K/AKT, and WNT/b-catenin signaling pathways 52. The 226 

activity of the signaling pathways was directly measured based on the phosphorylation state of ERK, AKT, 227 

and b-catenin proteins 52. Consistent with functional enrichment and hub analysis results, we found that 228 

rASD genes in the XP-ASD network are significantly enriched for regulators of RAS/ERK, PI3K/AKT, and 229 

WNT/b-catenin pathways (Fig 4.d; p-value <1.9x10-10; Wilcoxon-Mann-Whitney test). Specifically, 230 

regulators of these pathways (FDR<0.1) accounted for inclusion of 39% rASD genes in the XP-ASD. As 231 

the control, no significant enrichment for the regulators of RAS/ERK, PI3K/AKT, and WNT/b-catenin 232 

pathways were observed among rASD genes that were not included in the XP-ASD network (Fig 4.d). 233 

These results support the regulatory role of rASD genes on the DE-ASD network through perturbation of 234 

RAS/ERK, PI3K/AKT, and WNT/b-catenin signaling pathways. 235 

In summary, our XP-ASD network decomposition suggests a modular regulatory structure for the 236 

XP-ASD network in which diverse rASD genes converge upon and dysregulate activity of the DE genes 237 

(Fig 4.a). Importantly, for a large percentage of rASD genes, the dysregulation flow to the DE genes is 238 

canalized through highly inter-connected signaling pathways including RAS/ERK, PI3K/AKT, and 239 

WNT/b-catenin. 240 

 

The DE-ASD network is over-active in neuron models of ASD  241 

Our results demonstrate the presence of an over-active network in leukocytes of living ASD 242 

toddlers. Furthermore, they implicate the over-activity of the DE-ASD network in the prenatal etiology of 243 

ASD by demonstrating the activity of the perturbed network during brain development and its associations 244 

with high confidence rASD genes. Also, our results suggest that the network over-activity signal is present 245 

in a large percentage of our ASD toddlers and is associated with neural proliferation and maturation. 246 

To further validate these results, we first examined if the DE-ASD network is over-active in iPS 247 

cell-derived neural progenitors and neurons of ASD toddlers compared to those of TD cases. For this, we 248 
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analyzed the transcriptomes of iPS cells from 8 ASD individuals with macrocephaly and 6 TD individuals 249 
30, which were differentiated into neural progenitor and neuron stages. Analysis of the DE-ASD at neural 250 

stages demonstrated that the network is over-active in these ASD neuron models (Fig 5), suggesting the 251 

functional relevance of identified leukocyte molecular signatures to the abnormal ASD brain development. 252 

 253 

Network dysregulation is associated with ASD severity 254 

We evaluated the potential role of the DE-ASD network activity on the development of early-age ASD 255 

symptoms. For this, we first tested if the same gene dysregulation patterns exist across individuals at 256 

different levels of ASD severity. Indeed, we observed that the fold change patterns of DE genes are almost 257 

identical across different ASD severity levels (Fig S11). The implicated RAS/ERK, PI3K/AKT, WNT and 258 

b-catenin pathways in our model are well known to have pleotropic roles during brain development from 259 

neural proliferation and neurogenesis to neural migration and maturation with implications in ASD 3, 260 

suggesting the DE-ASD network is involved in various neurodevelopmental related processes. At the 261 

mechanistic level, this suggests that the spectrum of autism could be mediated through the extent of 262 

dysregulation of the DE-ASD network, as it is composed of high confidence physical and regulatory 263 

interactions. Hence, we examined whether the magnitude of the co-expression activity level of the DE-ASD 264 

network correlated with clinical severity across individual ASD toddlers. Indeed, we found that the extent 265 

of gene co-expression activity within the DE-ASD network was correlated with ASD toddlers’ ADOS 266 

social affect deficit scores, the ASD diagnostic gold standard (Fig 6). To assess the significance of observed 267 

correlation patterns, we repeated the analysis with 10,000 permutations of the ADOS social affect scores of 268 

ASD individuals (see inset boxplots in Fig 6). This analysis demonstrated the significance of the observed 269 

Fig 5. The DE-ASD network is over-active in 
differentiating neurons of ASD cases. 
a) The DE-ASD network is more highly expressed during 
neural differentiation of iPSCs from ASD and TD cases, as 
measured by RNA-Seq. Median expression of the genes at 
neural progenitors and neurons stages were considered. b) 
The DE-ASD network shows higher co-expression level in 
ASD derived neural progenitors and neurons. To estimate 
the co-expression strength of interacting gene pairs in DE-
ASD network in neural progenitor and neurons of ASD 
and TD cases, we sub-sampled the dataset 100 times and 
measured the activity level at each iteration (a balanced 
number of ASD and TD samples were selected at each 
iteration; see Methods). The boxplots represent the 
distribution of z-transformed p-values of co-expression 
strength as measured by Wilcoxon-Mann-Whitney test. c) 
Change in the over-activity of interactions present in the 
DE-ASD network as measured by co-expression strength. 
The background distribution is based on the co-expression 
distribution of randomly selected genes that show the same 
mean expression pattern as those in of DE-ASD network. 
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correlations (Fig 6). Our results suggest the perturbation of the same network at different extents can 270 

potentially result in a spectrum of postnatal clinical severity levels in ASD toddlers. 271 

 272 

 

 

Conclusion 273 

While ASD demonstrates a strong genetic basis, it remains elusive how implicated genes are 274 

connected to the molecular dysregulations that underlie the disorder at prenatal and early postnatal ages. 275 

Towards this, we developed a systems biology framework that integrates transcriptomic dysregulations in 276 

living ASD toddlers with current knowledge on ASD risk genes to explain ASD associated fetal-stage brain 277 

transcriptomic changes and clinical outcomes. Specifically, we found a dysregulated transcriptional 278 

network that shows elevated gene co-expression activity in ASD toddlers. This core network was robustly 279 

associated with rASD genes with likely deleterious mutations in ASD subjects. Such rASD genes have 280 

potentially large effect sizes on the etiology but occur in a small percentage of the ASD population 53,54. We 281 

show that many rASD genes may exert their regulatory effect on this DE-ASD core network through the 282 

inter-connected RAS/ERK, PI3K/AKT, and WNT/b-catenin signaling pathways. The connection of the DE-283 

Fig 6. Activity level of DE-ASD networks correlates with ASD severity. 
a) ASD toddlers were sorted by their ADOS social affect scores (ADOS-SA) with higher scores representing more 
severe cases. The network activity was measured in a running window on ADOS-SA scores. The overall activity 
of DE-ASD network in a set of samples was measured by comparing the co-expression strength of interactions in 
the network with the background derived from the same set of samples (Methods). To ensure robustness of the 
results, we measured activity level of DE-ASD network at each severity group by randomly selecting 20 samples 
from that severity level, iterating 1000 times. The left inset panel illustrates the distribution of observed correlation 
values of DE-ASD network for ranges of ADOS severity, and compares it with permuted data, with 10,000 
random shuffling of ADOS-SA scores of ASD cases. b) The relative activity of DE-ASD networks compared to 
TD cases. The relative activity level was estimated by comparing the co-expression strength of interactions in DE-
ASD network between ASD and TD toddlers. For each severity group, 20 samples were randomly selected from 
each of ASD and TD samples, iterating 1000 times. Significance of the trend was evaluated by 10,000 
permutations of the ADOS-SA scores of ASD cases. 
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ASD network (constructed with data from the general ASD pediatric population) with high confidence 284 

rASD genes provides empirical evidence of shared mechanisms underlying ASD in both those with highly 285 

penetrant rASD genes and those of other etiologies (e.g., common variants) in the wider ASD population. 286 

The key aspect of our signature is that it is constructed based on transcriptomic data from young 287 

living ASD toddlers. This allows us to correlate its variations with the core clinical features of the same 288 

ASD toddlers. Indeed, the dysregulation degree of the DE-ASD network correlated with deficits in the 289 

toddlers’ ADOS social affect scores. Social and behavioral deficits are also suggested to be correlated with 290 

the genetic variations in ASD subjects 55,56; and previous studies have established the effect of the 291 

PI3K/AKT signaling pathway (central to the DE-ASD core network and significantly altered in ASD 292 

leukocytes) on social behaviors of mouse models 47,48. Together, these observations suggest that the 293 

etiological roots of ASD converge on gene networks that correlate with the symptom severity in ASD 294 

individuals. Moreover, our results reinforce the hypothesis that stronger dysregulation of the same core 295 

network could lead to higher severity in the ASD cases. The DE-ASD core network is enriched for 296 

pathways implicated in ASD, strongly associated with high confidence rASD genes, and correlate with 297 

ASD severity. However, we note that a direct causal relationship between the co-expression activity of the 298 

network and ASD remains to be established. Moreover, our network co-expression activity measure is a 299 

summary score from the strongest signal in our dataset (i.e., differentially expressed genes) at a group level 300 

(i.e., severity level). Therefore, by design, it may not capture the heterogeneity that could exist within each 301 

group. As detailed below, future work is needed to explore the causal relationship of our gene network to 302 

ASD development, symptoms, and the potential existence of other dysregulation mechanisms in ASD 303 

individuals. 304 

The emerging architecture of complex traits suggests that gene mutations often propagate their 305 

effects through regulatory networks and converge on core pathways relevant to the trait 22,32. Our findings 306 

support the existence of an analogous architecture for ASD, wherein rASD genes with diverse biological 307 

roles overlap in their down-stream function. Although not significantly overlapping with rASD genes, we 308 

found that the DE-ASD network is significantly co-expressed with rASD genes in both leukocyte and brain. 309 

We also illustrated that the DE-ASD network could be controlled by rASD genes through direct 310 

transcriptional regulation or highly interconnected signaling pathways. We postulate that the DE-ASD 311 

network is a primary convergence point of ASD etiologies, including its genetic basis as we elaborated for 312 

rASD genes, in a large portion of the ASD population. This predicts that the spectrum of autism in such 313 

cases is correlated with the degree and mechanism of the perturbation of the DE-ASD network. A detailed 314 

analysis of iPS cell-derived ASD neurons demonstrated the dysregulation of the leukocyte-based DE-ASD 315 

network in ASD neurons, supporting the neural-level relevance of the findings to ASD etiology and its 316 

prevalence in the ASD population. Furthermore, direct clinical-level relevance is demonstrated by the high 317 
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correlation we found between degree of dysregulation in the DE-ASD core network and ASD symptom 318 

severity in the ASD toddlers. 319 

The currently recognized rASD genes are not fully penetrant to the disorder, except for a handful of 320 

syndromic genes 53,54,57,58. Our analysis of the XP-ASD network provides some insights on how the effects 321 

of rASD genes could potentially combine to result in ASD. Although some rASD genes could directly 322 

modulate the DE-ASD network at the transcriptional level, our results suggest that the regulatory 323 

consequence of many rASD genes on the DE-ASD network is canalized through the PI3K/AKT, 324 

RAS/ERK, WNT and b-catenin signaling pathways. The structural and functional interrogation of the DE-325 

ASD network localized the PI3K/AKT pathway to its epicenter and demonstrated enrichment for processes 326 

down-stream of this pathway. Moreover, we found that high confidence rASD genes are better connected to 327 

the DE-ASD core network, suggesting that the closeness and influence of genes on these signaling 328 

pathways is correlated with their effect size on the disorder. These results articulate that perturbation of the 329 

PI3K/AKT, RAS/ERK, WNT and b-catenin signaling pathways through gene regulatory networks may be 330 

an important etiological route for ASD that could be associated with the disorder severity level in a 331 

relatively large fraction of the ASD population. Congruent with this hypothesis, cell and animal models of 332 

ASD have demonstrated the enrichment of high confidence rASD genes for the regulators of the RAS/ERK, 333 

PI3K/AKT, WNT and b-catenin signaling pathways 3,8,11,18,47,48,51. These signaling pathways are highly 334 

conserved and pleiotropic, impacting multiple prenatal and early postnatal neural development stages from 335 

proliferation/differentiation to synaptic and neural circuit development 3. Such multi-functionalities could 336 

be the underlying reason that we detected the signal in ASD leukocytes. 337 

It is necessary to analyze large subject cohorts from unbiased, general pediatric community settings 338 

to capture the heterogeneity that underlies ASD at early ages. This study presents the largest transcriptome 339 

analysis on early-age ASD cases thus far from such settings. However, the analyzed dataset is still of a 340 

modest size, and as such our analysis was focused on the strongest signal that best differentiates ASD cases 341 

from TD individuals (i.e., differentially expressed genes). Here we illustrate that the captured signal is 342 

informative about the transcriptional organization of ASD and shows promise in bridging the gap between 343 

genetic and clinical outcomes. Future studies with larger datasets are required to not only replicate these 344 

results, but also explore other long-standing questions in the field, such as the basis of gender bias that 345 

exists in ASD or the potential molecular mechanisms that differentiate high functioning from low 346 

functioning cases. However, perhaps the most exciting direction is to expand the presented framework to 347 

systematically diagnose, classify and prognostically stratify ASD cases at early postnatal ages based on the 348 

underlying molecular mechanisms. The concept of precision molecular medicine for ASD can only be 349 

actualized via approaches that illuminate the early-age living biology of ASD 3,18,21. ASD toddler-derived 350 

iPS cell studies show ASD is a progressive prenatal and early postnatal disorder that involves a cascade of 351 
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diverse and varying molecular and cellular changes such as those resulting from dysregulation of the 352 

pathways and networks highlighted herein 3,30,31. As such, dynamic, individual-based molecular assays in 353 

infants and toddlers will be essential to develop. The presented framework could prove invaluable for the 354 

development of quantitative, molecular-based measures for the ASD diagnosis and prognosis by identifying 355 

specific molecular dysregulations that we show are observable in leukocytes of a large fraction of living 356 

ASD toddlers at young ages.  357 
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Materials and Methods 358 

Participant recruitment and clinical evaluation 359 

The primary aim of this study was to associate the transcriptome dysregulations present in ASD 360 

leukocytes with the ASD risk genes. However, the currently available genetic information is mostly based 361 

on males, and less is known about the genetic basis of ASD females. Therefore, we focused on male 362 

toddlers for the transcriptome analysis in this study, specifically 264 male toddlers with the age range of 1 363 

to 4 years. Part of the transcriptome data of this study (153 individuals) was reported previously 21,59 and a 364 

similar methodology was employed for participant recruitment and sample collection from 111 new cases 365 
21. Research procedures were approved by the Institutional Review Board of the University of California, 366 

San Diego. Parents of subjects underwent Informed Consent Procedures with a psychologist or study 367 

coordinator at the time of their child’s enrollment. 368 

About 70% of toddlers were recruited from the general population as young as 12 months using an 369 

early detection strategy called the 1-Year Well-Baby Check-Up Approach 60. Using this approach, toddlers 370 

who failed a broadband screen, the CSBS IT Checklist 61, at well-baby visits in the general pediatric 371 

community settings were referred to our Center for a comprehensive evaluation. The remainder of the 372 

sample was obtained by general community referrals. All toddlers received a battery of standardized 373 

psychometric tests by highly experienced Ph.D. level psychologists including the Autism Diagnostic 374 

Observation Schedule (ADOS; Module T, 1 or 2), the Mullen Scales of Early Learning and the Vineland 375 

Adaptive Behavior Scales. Testing sessions routinely lasted 4 hours and occurred across 2 separate days. 376 

Toddlers younger than 36 months in age at the time of initial clinical evaluation were followed 377 

longitudinally approximately every 9 months until a final diagnosis was determined at age 2-4 years. For 378 

analysis purposes, toddlers (median age, 27 months) were categorized into two groups based on 379 

their final diagnosis assessment: 1) ASD: subjects with ASD diagnosis or ASD features; 2) TD:  typically 380 

developing (TD) controls.  For more information see Table S1. 381 

ADOS scores at each toddler’s final visit were used for correlation analyses with DE-ASD network 382 

activity scores. All but 4 toddlers were tracked and diagnosed using the appropriate module of the ADOS 383 

(i.e., Toddler, 1, or 2) between the ages of 24-49 months (Table S1), an age where the diagnosis of ASD is 384 

relatively stable 62-64; the remaining 4 toddlers had their final diagnostic evaluation between the ages of 18 385 

to 24 months. 386 

 

Blood sample collection and microarray gene expression processing 387 

Blood samples were usually taken at the end of the clinical evaluation sessions. In order to monitor 388 

health status, the temperature of each toddler was monitored using an ear digital thermometer immediately 389 

preceding the blood draw. The blood draw was scheduled for a different day in cases that the temperature 390 
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was higher than 99 Fahrenheit. Moreover, blood draw was not taken if a toddler had some illness (e.g., cold 391 

or flu), as observed or stated by parents. We collected four to six milliliters of blood into 392 

ethylenediaminetetraacetic-coated tubes from all toddlers. Blood leukocytes were captured and stabilized 393 

by LeukoLOCK filters (Ambion) and were immediately placed in a −20°C freezer. Total RNA was 394 

extracted following standard procedures and manufacturer’s instructions (Ambion). 395 

RNA labeling, hybridization, and scanning was conducted at Scripps Genomic Medicine center, 396 

(CA, USA) using Illumina BeadChip technology. All arrays were scanned with the Illumina BeadArray 397 

Reader and read into Illumina GenomeStudio software (version 1.1.1). Raw Illumina probe intensities were 398 

converted to expression values using the lumi package65. We employed a three-step procedure to filter for 399 

probes with reliable expression levels. First, we only retained probes that met the detection p-value <0.05 400 

cut-off threshold in at least 3 samples. Second, we required the probes to have expression levels above 95 401 

percentile of negative probes in at least 50% of samples. The probes with detection p-value >0.1 across all 402 

samples were selected as negative probes and their expression levels were pooled together to estimate the 403 

95 percentile expression level. Third, for genes represented by multiple probes, we considered the probe 404 

with highest mean expression level across our dataset, after quantile normalization of the data. These 405 

criteria led to the selection of 14,854 protein coding genes as expressed in our leukocyte transcriptome data, 406 

which is similar to the previously reported estimate of 14,631 protein coding genes (chosen based on Entrez 407 

Ids) for whole blood by GTex consortium66. To ensure results are not affected by the variations in the 408 

procedure of selecting expressed genes, we replicated all of our analyses (redoing DE analysis and re-409 

constructing HC DE and XP networks) by choosing 13,032 protein coding genes as expressed (Fig S14).  410 

  

Data processing and differential gene expression analysis of microarray datasets 411 

We subdivided our microarray samples into three datasets to assess the reproducibility of the results. 412 

The primary dataset included 253 high quality samples and was used for the discovery of the dysregulation 413 

signal. The second dataset replicated 56 randomly selected male toddlers from the primary dataset (35 ASD 414 

and 21 TD). The third dataset was composed of 48 male toddlers with 24 independent, non-overlapping 415 

ASD cases, while 21 out of 24 TD cases overlapped with the primary dataset. The second and third datasets 416 

were microarrays generated at the same time, but included different subjects not in the primary dataset. All 417 

three datasets used Illumina microarray technology. However, the primary dataset was analyzed by 418 

Illumina HT-12 Chips, while the second and third datasets used Illumina WG-6 Chips. The pre-processing 419 

and downstream analysis of the three datasets were conducted separately. The data are available in the 420 

Gene Expression Omnibus database (GSE42133;GSE111175). 421 

The primary dataset was originally composed of 275 samples from 240 male ASD and TD 422 

individuals. Quality control analysis was performed to identify and remove 22 outlier samples from the 423 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/435917doi: bioRxiv preprint 

https://doi.org/10.1101/435917
http://creativecommons.org/licenses/by-nc-nd/4.0/


dataset. Samples were marked as outlier if they showed low signal intensity of the microarray (average 424 

signal of two standard deviations lower than the overall mean), deviant pairwise correlations, deviant 425 

cumulative distributions, deviant multi-dimensional scaling plots, or poor hierarchical clustering, as 426 

described elsewhere 20. After removing low quality samples, the primary dataset had 253 samples from 226 427 

male toddlers including 27 technical replicates. High reproducibility was observed across technical 428 

replicates (mean Spearman correlation of 0.917 and median of 0.925). We randomly removed one of each 429 

of two technical replicates from the dataset.  430 

The limma package 67 was then applied on quantile normalized data for differential expression 431 

analysis in which moderated t-statistics was calculate by robust empirical Bayes methods68. Sample batch 432 

was used as a categorical covariate (total of two batches; both Illumina HT-12 platforms). Exploration 433 

graphs indicated that linear modeling of batch covariate was effective at removing its influence on 434 

expression values (Fig S13). MA-plots of the primary dataset did not show existence of overall bias in the 435 

fold change estimates (Fig S1). DE analysis identified 1236 differentially expressed genes with Benjamini-436 

Hochberg FDR <0.05. 437 

We performed multiple analyses to confirm that our results (1) are replicable in the other two 438 

microarray datasets, (2) are robust to alterations in the analysis pipeline, (3) are not affected by the batches 439 

or potential hidden covariates, (4) are present in the vast majority of samples, and (5) are not driven by 440 

changes in the blood cell type composition between ASD and TD toddlers (Figs S1-S4). 441 

 442 

Reproducibility of transcriptional over-activity of DE-ASD networks in an independent RNA-Seq 443 

dataset 444 

 We performed RNA-Seq experiments on 56 samples from an independent cohort of 12 (19 samples) 445 

TD and 23 (37 samples) ASD male toddlers. None of subjects overlapped with those in the primary dataset. 446 

This allowed us to ensure our results are not subject nor platform (i.e., microarray vs. RNA-Seq) specific. 447 

RNA-Seq libraries were sequenced at the UCSD IGM genomics core on a HiSeq 4000. We 448 

processed the raw RNA-Seq data with our pipeline that starts with quality control with FastQC69. Low 449 

quality bases and adapters were removed using trimmomatic70. Reads were aligned to the genome using 450 

STAR71. STAR results were processed using Samtools72, and transcript quantification is done with HTseq-451 

count73. Subsequently, low expressed genes were removed and data were log count per million (cpm) 452 

normalized (with prior read count of 1) using limma67. We performed SVA analysis74 on the normalized 453 

expression data and included the first surrogate variable as covariate to account for potential hidden 454 

confounding variables. Differential expression analysis was performed using Limma package with subjects 455 

modeled as random effects. 456 

 457 
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ASD risk genes 458 

ASD risk genes were extracted from the SFARI database 44 on Dec. 7, 2016. We also included the 459 

reported risk genes from a recent meta-analysis of two large-scale genetic studies, containing genes mutated 460 

in ASD individuals but not present in Exome Aggregation Consortium database (ExAC)16. Together, these 461 

two resources provided 965 likely rASD genes that were used for the construction of XP-ASD networks 462 

(Table S8). Previously published genes with likely gene damaging and synonymous mutations in ASD 463 

siblings were retrieved from Iossifov et al.15. 464 

ASD high confidence risk genes were extracted from the SFARI database (genes with confidence 465 

levels of 1 and 2), Kosmicki et al. 16 (recurrent gene mutations in ASD individuals, but not present in ExAC 466 

database), Sanders et al.17, and Chang et al. 7. Strong evidence genes with de novo protein truncating 467 

variants in ASD subjects were extracted from Kosmicki et al.16 and included rASD genes that were not in 468 

ExAC database and with a probability of loss-of-function intolerance (pLI) score of above 0.9. Gene names 469 

in these datasets were converted to Entrez gene ids using DAVID tools 75. 470 

To assess the overlap of DE-ASD networks with rASD genes, we considered our list of all rASD 471 

genes (965 genes), different lists of high confidence rASD genes (varying in size and composition) and 472 

their combinations, including all SFARI rASD genes, SFARI genes levels 1-to-3, SFARI genes levels 1 and 473 

2, strong evidence rASD genes from Kosmicki et al.16, and strong evidence rASD genes from Sanders et 474 

al.17 475 

 476 

Functional characterization of DE-ASD networks 477 

We set two criteria to identify biological processes that are differentially expressed between ASD 478 

and TD samples and are enriched in the DE-ASD networks. First, we required the biological process to be 479 

significantly changed between ASD and TD transcriptome samples. Second, we required the biological 480 

process to be significantly enriched in the DE-ASD networks. 481 

GSEA identified multiple gene sets that were significantly upregulated in ASD samples (FDR 482 

<0.12; Table S9), using the R version of the GSEA package and msigdb.v5.1 database (downloaded on Oct. 483 

20, 2016) 76,77. Significantly enriched processes in the DE-ASD networks were identified by examined the 484 

overlap of GSEA-identified significantly altered gene sets with the DE-ASD networks based on empirical 485 

permutation tests, and p-values were corrected for multiple testing using Benjamini-Hochberg procedure. 486 

We excluded gene sets annotated as associated with specific reference datasets in MSigDB since their 487 

generalizability to our dataset has not been established (Table S9). 488 

 489 
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Biological enrichment analysis of XP-ASD networks 490 

Significantly enriched Gene Ontology biological processes (GO-BP) were identified by Fisher’s 491 

exact test on terms with the 10-2000 annotated genes. The terms with Benjamini-Hochberg estimated FDR 492 

<0.1 were deemed as significant. The enriched terms were next clustered based on the GO-BP tree, 493 

extracted from Amigo database using RamiGO package in R 78. The general terms with more than 1000 494 

annotated genes that spanned two or more clusters were removed. The list of enriched GO-BP terms and 495 

their clustering are provided in Table S5. 496 

 

Deciphering potential regulators of DE-ASD networks 497 

To identify genes that potentially regulate DE-ASD networks, we examined the overlap of DE-ASD 498 

networks with identified targets of human transcription factors as part of ENCODE project42 and curated 499 

Chea2016 database43. We performed overlap analysis with each of the three DE-ASD networks separately 500 

using the EnrichR portal. Some of the transcription factors were assayed multiple times. To obviate 501 

potential biases, we used Fisher’s method to combine the enrichment p-values across assays related to a 502 

given transcription factor during the analysis of each DE-ASD networks. Next, p-values were corrected 503 

using the Benjamini-Hochberg procedure. Only transcription factors whose targets were significantly 504 

enriched in all three DE-ASD networks were considered as significantly overlapping with the DE-ASD 505 

networks (FDR <0.1). 506 

 

Brain developmental gene expression data 507 

Normalized RNA-Seq transcriptome data during human neurodevelopmental time periods were 508 

downloaded from the BrainSpan database on Dec. 20, 201636,37. To calculate correlations, normalized 509 

RPKM gene expression values were log2(x+1) transformed. 510 

 

Neural progenitor differentiation data 511 

Microarray transcriptome data from differentiation of primary human neural progenitor cells to 512 

neural cells 79 were downloaded from the NCBI GEO database (GSE57595). The data were already quantile 513 

normalized and ComBat batch-corrected 80. For genes with multiple probes, we retained the probe with the 514 

highest mean expression value. 515 

To observe the transcriptome response of XP-ASD networks during neuron differentiation, we 516 

correlated the gene expression patterns with the developmental time points, considering the differentiation 517 

time as an ordinal variable. The results are represented in Fig S7. 518 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/435917doi: bioRxiv preprint 

https://doi.org/10.1101/435917
http://creativecommons.org/licenses/by-nc-nd/4.0/


ASD induced pluripotent stem cells (iPSC) data 519 

ASD iPSC data 30 were downloaded from GEO (GSE67528). Gene expression counts were 520 

normalized with the TMM method 81 and filtered to exclude low-expressed genes (genes with count per 521 

million greater than 1 were retained). To calculate the correlations, normalized RNA-Seq gene expression 522 

values were log(x+1) transformed. 523 

 

Regulatory effect of gene mutations on signaling pathways 524 

Data were extracted from a genome-wide mutational study that monitored the regulatory effect of 525 

gene mutations on phosphorylation status of 10 core genes of different signaling pathways and processes 52. 526 

Genes whose mutations affected the phosphorylation status of the core signaling genes with FDR <0.1 were 527 

considered as the regulators of the cognate signaling pathway. 528 
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