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Abstract 

The comprehensive analyses of databases and biobanks, using advanced bioinformatics tools, 

have made a tremendous amount of data available to the scientific community. These advances 

prompt the development of tools that allow quick and robust overview of data, particularly for non-

specialists. Therefore, we have developed Islet Gene View (IGW), a tool that aims to make 

information on gene expression in human pancreatic islets from organ donors accessible to the 

scientific community. Islet Gene View currently consists of information on islets from 188 donors 

where islet RNA expression of more than 15 000 genes can be related to phenotypic information 

(gender, age, BMI, HbA1c, insulin and glucagon secretion etc.) and expression of other genes as 

well as regulation by genetic variation (GWAS). The data can be accessed by the easy-to-use Islet 

Gene View web application. This tool will soon be available online after a simple sign-up process.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 5, 2018. ; https://doi.org/10.1101/435743doi: bioRxiv preprint 

https://doi.org/10.1101/435743


3 

 

Introduction 

Gene expression analysis provides a link between genetics and cellular function and is crucial for 

the elucidation of pathophysiological mechanisms. Information on gene expression in different 

tissues has been instrumental to the scientific community. The Genotype-Tissue Expression 

(GTEx) project (2013) has provided a pioneering example on how to share information from 

deceased humans. Unfortunately, GTEx has limited information on human pancreatic islets of 

Langerhans, as sequencing has only been performed on whole pancreas from deceased donors. 

Importantly, the pancreas needs to be removed while blood flow is still intact to retain functionality 

of the pancreatic cells, and therefore more information on human pancreatic islets can be derived 

from pancreas obtained from organ donors for transplantation purposes where blood flow still has 

been kept intact or from partial pancreatectomies of pancreatic tumors. 

The Human Tissue Laboratory (HTL), which was created as part of a collaboration between 

Uppsala and Lund universities and funded by a strategic research grant, i.e. the Excellence of 

Diabetes Research in Sweden (EXODIAB), has generated a large repository of tissue samples 

(islets, fat, liver and muscle) from deceased human donors. RNA sequencing and Genome Wide 

Association Studies (GWAS) have been performed to allow analysis of effects of genetic variation 

on gene expression, i.e. eQTLs (Expression Quantitative Traits). Also, individual information such 

as gender, BMI, and age are provided together with information on glucose-stimulated insulin 

secretion, and expression of other pancreatic hormones. To provide rapid and robust overview of 

the data, as well as “look-ups”, for scientists in EXODIAB, a web-based tool, Islet Gene View, was 

created. It will now be made available to the scientific community.  

 

Materials and methods 

Sample acquisition 

Human pancreatic islets (n = 188), fat (n = 12), liver (n = 12) and muscle (n = 12) were obtained 

through the EXODIAB network from the Nordic Transplantation Program 

(http://www.nordicislets.org). The isolation of total RNA including miRNA was carried out using the 

miRNeasy (Qiagen) or the AllPrep DNA/RNA  (Qiagen) mini kits. The quality of isolated RNA was 

controlled using a 2100 Bioanalyzer (Agilent Technologies) or a 2200 Tapestation (Agilent 

Technologies) and quantity was measured using NanoDrop 1000 (NanoDrop Technologies) or a 

Qubit 2.0 Fluorometer (Life Technologies). Clinical characteristics of the donors are shown in 

Table 1.  
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Islet Phenotypes 

Purity of islets was assessed by dithizone staining, and estimates of the contribution of exocrine 

and endocrine tissue were assessed as previously described (Friberg et al., 2011).  

T2D diagnosis: Type 2 diabetes diagnosis was defined in two ways; one was based on clinical 

diagnosis (T2Ddiagnosed, N = 33) and the other, based on the patient exhibiting an HbA1c above 

6.5% (NGSP; = 48 mmol/mol; IFCC) (T2DHbA1c, N = 25). IGT was defined as HbA1c between 6 

and 6.5% (N = 30). 

BMI and gender information was obtained from donor records.  

Stimulatory index was used as a measure of glucose-stimulated insulin secretion. To calculate 

this, the islets were subjected to static perifusion of glucose, which was raised from 1.67 to 16.7 

mmol/l; insulin was measured at both high and low glucose. The fold change in insulin levels 

between the two states was used as a measurement of glucose-stimulated insulin secretion. 

Sample preparation for sequencing 

One µg of total RNA of high quality (RIN>8) was used for sequencing with a TruSeq RNA sample 

preparation kit (Illumina). The size selection was made by Agencourt AMPure XP beads (Beckman 

Coulter) aiming at a fragment size above 300 bp. The resulting libraries were quality controlled on 

a 2100 Bioanalyzer and a 2200 Tapestation (Agilent Technologies) before combining 6 samples 

into one flow cell and sequenced using a HiSeq 2000 sequencer (Illumina). 

Data analysis 

The raw data were base-called and de-multiplexed using CASAVA 1.8.2 (Illumina) before 

alignment to hg38 with STAR version 2.4.1. To count the number of reads aligned to specific 

transcripts, featureCounts (v 1.4.4)(Liao et al., 2014) was used, with GENCODE version 22 as 

gene, transcript and exon models. 

Raw data were normalized using trimmed mean of M-values (TMM) and transformed into log2 

counts per million (log2 CPM), using voom (Law et al., 2014) before linear modeling. Samples with 

less than 10 million reads in total were excluded from further analysis. In addition, genes with 

lower than 1 CPM in at least 10 samples were also excluded, leaving 15,017 genes for analysis in 

the 188 samples. After TMM-normalization, the data were adjusted for batch effects using ComBat 

(Combatting batch effects when combining batches of microarray data) from the sva (surrogate 

variable analysis) R package (Leek et al., 2012). The effective length of each gene in each sample 

was calculated using RSEM (Li and Dewey, 2011). The resulting CPM values were converted into 

FPKM values by dividing the transcripts by their effective lengths and multiplying with 1000. 

A potential association between gene expression and phenotypes was calculated by linear 

modeling. P-values were calculated using the eBayes function in limma (Ritchie et al., 2015), and 
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P-values adjusted for multiple testing were calculated across all genes using Benjamini-Hochberg 

correction (Benjamini and Hochberg, 1995). 

As expression of 53% of the genes in the dataset was correlated with purity (mostly due to 

admixture of exocrine tissue), we included purity as a covariate in the linear models for all 

association analyses, together with sex and age.  

An empirical and conservative approach was used to calculate P-values for gene-gene 

correlations. First, the Spearman correlations between all gene-gene pairs were calculated. 

Secondly, the function fitdistr (fitting of distributions) in the MASS (Modern Applied Statistics with 

S) package (Venables and Ripley, 2002) was used to estimate the mean and standard deviation of 

this distribution, resulting in an average correlation of ~0.0142 with a standard error of ~0.2631. 

This distribution model represents all observed gene-gene correlations in the data set, using a 

normal distribution. For both parameters, the standard error of the fit was small (order of 

magnitude = 10-5). Based on these calculations, the observed data were used for the calculation of 

P-values. For all target secretory genes, P-values of correlations were calculated using the pnorm 

(probability of normal distribution) function in R (R Core Team, 2016) using the estimated 

parameters. Depending on negative or positive correlations, the lower or the upper tail of the 

distribution was used for testing.  

Results 

Features 

Islet Gene View (IGW) is accessible at http://www.example.com after registration. IGW uses 

several common gene identifiers (e.g. gene symbol, Ensembl gene ID, and full gene name), and 

provides graphs of gene expression in relation to islet phenotypes and expression of other genes. 

Gene expression can be related to diabetes-related phenotypes such as age, BMI, and a 

diagnosis of type 2 diabetes (T2Ddiagnosed), as well as glucose tolerance defined by HbA1c strata 

(normal glucose tolerance, NGT: HbA1c <6%, impaired glucose tolerance, IGT: HbA1c between 6-

6.5%, and T2D: HbA1c > 6.5%). Of interest is also co-expression of other cell-specific genes such 

as insulin (INS), glucagon (GCG) and islet amyloid polypeptide (IAPP). The Ensembl gene ID is 

the primary key identifier for the expression database, and additional gene identifiers and other 

annotations were derived from Ensembl using the biomaRt API (Durinck et al., 2009).  

The example of the SERPINE2 gene 

The Serpin Family E Member 2 (SERPINE2) gene was selected to illustrate the information that is 

provided by the Islet Gene View tool. SERPINE2 shows highest expression in islets, but is also 

expressed in adipose tissue, liver and muscle (figure 1A). SERPINE2 was modestly albeit 
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significantly positively correlated with purity (r2 = 0.064, p = 0.011, figure 1B). The rank (47% for 

SERPINE2) relates to the rank of the P-value for the correlation between expression of the 

SERPINE2 gene with purity as compared to all other genes within the islet samples; this means 

that expression of SERPINE2 is strongly influenced by purity, i.e. among the top 47%. For 

comparison, the Collapsin Response Mediator Protein 1 (CRMP1) gene was the top-ranked gene 

(0.013%) positively associated with purity, suggesting that it is almost exclusively expressed in the 

endocrine part of the pancreas. In contrast, the BAI1-associated protein 2 like 1 (BAIAP2L1) 

(0.0067%) gene showed the most significant negative correlation with purity, suggesting that it is 

enriched in the exocrine part of the pancreas.  

The average expression of the SERPINE2 in the islets in relation to all other genes, measured in 

Fragments Per Kilobase of transcript per Million mapped reads (FPKM) was in the top 11% of all 

genes expressed. For comparison, SERPINE2 had a higher average expression than e.g. the 

Potassium Voltage-gated Channel Subfamily J Member 11 gene (KCNJ11) and was among the 

top 11% of genes with the highest average expression. The most highly expressed gene in the 

dataset was the glucagon (GCG) gene, followed by the Regenerating Family Member 1 α 

(REG1A) gene and Mitochondrially Encoded Cytochrome C Oxidase I (MT-CO1) gene. 

Association between gene expression and diabetes-related phenotypes 

SERPINE2 was the most significantly up-regulated gene in T2D patients compared to non-diabetic 

organ donors (PFDR = 1.1 ∙ 10-5, log2 fold change = 0.58 or ~150% increase, Figure 1D). In 

contrast, the most downregulated gene in T2D donors was the Phospholipase A1 Member A 

(PLA1A) gene (log2 fold change = -1.00, PFDR = 5.9 ∙ 10-5). 

In support of the association with T2D, the SERPINE2 gene was upregulated in patients with high 

HbA1c whereas PLA1A was the most strongly down-regulated gene in donors with the highest 

HbA1c (Figure 1E). 

Expression of SERPINE2 showed a significant positive association with HbA1c (rank = 0.04%, r2 

= 0.13, r= 9.5 x 10-7). In fact, of all expressed genes, SERPINE2 showed the strongest positive 

association with HbA1c (Figure 1F). In contrast, the Solute Carrier Family 2 Member 2 (SLC2A2) 

gene, encoding the glucose transporter 2 (GLUT2), showed the strongest negative association 

with HbA1c. In support of this SLC2A2 expression was also lower in islets from T2D donors (PFDR= 

3.2 ∙ 10-4, log2 fold change = -1.08). SERPINE2 was nominally correlated with BMI with a rank of 

0.68 % compared with all genes (Figure 1G). The gene showing the strongest positive association 

with BMI was the interleukin receptor 1 type 1 (IL1R1) gene whereas the β-1,3-

Galactosyltransferase 2 (B3GALT2) gene showed the strongest negative correlation with BMI. 

However, none of these associations reached genome-wide significance suggesting that BMI does 

not have a strong influence on islet gene expression. 
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The expression of SERPINE2 was not significantly associated with insulin secretion, in the form of 

stimulatory index (SI; Figure 1H). The gene showing the strongest positive association with 

stimulatory index was Glycine Receptor α 1 (GLRA1) whereas the Transmembrane Protein 159 

(TMEM159) gene, also known as promethin, showed the strongest negative association with SI. 

However, none of these associations reached genome-wide significance. 

Among the expressed genes, 350 were significantly differentially expressed between islets from 

non-diabetic donors compared to T2D donors with an established clinical diagnosis but only 55 

when diagnosis of T2D were based upon HbA1c. The expression of 21 genes correlated with 

HbA1c, and 7902 genes were impacted by purity (Table 2). Top-ranking genes associated with 

islet-related phenotypes are shown in Supplementary Table 1. 

Co-expression of genes with expression of islet secretory genes 

The expression of the gene of interest is compared with 5 genes encoding proteins known to be 

secreted from distinct cell types within islets. These included insulin (INS, Figure 1I), glucagon 

(GCG, Figure 1J), somatostatin (SST, Figure 1K), islet amyloid polypeptide (IAPP, Figure 1L), and 

pancreatic polypeptide Y (PPY, Figure 1M). IRF2BP1 showed the highest co-expression with INS, 

whereas TUSC3, RBP4, CARTPT, SLCO1A2 and CNIH2 showed the highest co-expression with 

GCG, SST, PPY, IAPP and GHRL respectively (Table 4). The expression of the INS gene is 

correlated with the largest number of genes (Table 3), followed by GCG, SST, IAPP and PPY. For 

INS, the most strongly positively correlated gene was Interferon Regulatory Factor 2 Binding 

Protein 1 (IRF2BP1)(r = 0.85, p = 0.002) whereas the most strongly negatively correlated gene 

was GC-Rich Promoter Binding Protein 1 Like 1 (GPBP1L1). For glucagon (GCG), the most 

strongly positively correlated gene was Tumor Suppressor Candidate 3 (TUSC3) and the most 

strongly negatively correlated gene Ankyrin Repeat And BTB Domain Containing 2 (ABTB2). The 

expression of the Retinol Binding Protein 4 (RBP4) gene showed the strongest positive correlation 

with expression of the SST gene. RBP4 is negatively associated with HbA1c (P = 0.0085) and BMI 

(P = 0.023) but positively correlated with INS expression (P = 0.048). The gene showing the 

strongest negative correlation with SST was WWC2. WWC2 was negatively associated with purity 

(P = 1.8 ∙ 10-15) and was negatively correlated with expression of INS (P = 0.021), suggesting that 

it might also have an exocrine origin. SERPINE2 was not significantly co-expressed with any of 

the pancreatic hormone genes. 

We also explored how many genes expressed in the islets show positive co-expression with 

secretory genes (Figure 3A), i.e INS (581 genes), GCG (343), SST (98), and IAPP (50). Similarly 

we explored the number of genes, which were negatively co-expressed with each secretory gene 

(Figure 3B), i.e. INS (632 genes), GCG (298), SST (92) and IAPP (12). 112 genes are either 

positively or negatively co-expressed in relation to two or more secretory genes (Figure 3C) and 
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six genes were co-expressed but in opposite directions in relation to different secretory genes 

(Figure 3D). The six genes correlated with both INS and GCG, however, in opposite direction, e.g. 

WIZ, NUDC, IMP4, ZNF787, KLHL21, and ISG20.   

An example of a locus associated with T2D – CHL1 

Expression of the CHL1 gene was shown to be downregulated in islets from patients with T2D in a 

previous smaller study from our laboratory (Fadista et al., 2014). This was consistent in Islet Gene 

View with larger number of samples (Figure 2). Moreover the fasting insulin-associated SNP 

rs9841287 at the CHL1 locus was found to be an expression quantitative trait locus (eQTL) for the 

CHL1 and CHL1-AS1 genes (P = 0.028, increasing allele = G). Additionally, it was negatively 

associated with high HbA1c. 
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Discussion 

Islet GeneView (IGW) aims to provide information on gene expression from human islets in 

combination with diabetes-related phenotypes in islets from individuals with and without T2D. 

Thereby, Islet Gene View is complementary to other related databases such as the Islet eQTL 

explorer (Varshney et al., 2017), which connects genetic variation to islet gene expression and 

chromatin states in 112 samples, and GTEx (2013) which comprehensively characterizes the 

human transcriptome across many tissues, including some whole pancreas samples. GTEx, 

however, does not provide data on the islet transcriptome, which clearly is very different from that 

in the exocrine part of the pancreas. 

Compared to previous publications on the same data included in our expanded dataset (Fadista et 

al., 2014; Taneera et al., 2012), the current data set includes 188 islets from human organ donors, 

thereby representing the largest in its kind to date. Compared to our previous report (Fadista et al., 

2014), several refinements to the analytical pipeline have been made. We have introduced batch 

correction with ComBat. In addition, we have refined the methodology for calculating correlation P-

values with higher specificity and stringency in detecting potential gene-gene correlations, which 

are now less dependent on batch effects. This reduces the influence of nonspecific inter-gene 

correlations resulting from the normalization procedure for gene expression. All gene-gene 

correlations have been pre-calculated in order to estimate the null distribution of the correlation 

values. This is computationally intensive, but only has to be done once.  

An important aspect of Islet Gene View is that it can present comparisons between expression of 

different genes as simple histograms The most highly expressed genes in islets were GCG, 

followed by REG1A, MT-CO1 and MT-ATP6. While the comparability between genes is high in 

RNA-Seq compared to gene expression microarrays, gene sequence might influence the 

sequencing rate of different transcripts. Information on purity provides information of expression in 

the endocrine vs the exocrine components of the pancreas. Islet Gene View also provides 

information on differential expression between T2D and non-diabetic organ donors. Here we used 

the SERPINE2 gene as an example, as it was the gene showing the strongest differential 

expression between islets from T2D and normoglycemic individuals.  

The stimulatory index did not show genome-wide significant associations with expression of any 

gene. There might be several explanations for this. First, although being the largest dataset of its 

kind, it still has limited power to provide genome-wide significance. Stimulatory index is the result 

of experimental intervention. Thus, the variability of repeated measurements is likely to be large in 

comparison to patient-oriented phenotypes such as BMI or type 2 diabetes status. 

Islets are comprised of many cell types, e.g. α-cells, β-cells, δ-cells, ε-cells and PP-cells. Islet 
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Gene View provides information on co-expression of genes with the expression of the hormone 

mainly secreted by these cell types. Among the many genes co-expressed with INS, IRF2BP1, a 

co-repressor of Interferon Regulatory Factor 2 (IRF2) (Mashima et al., 2011), showed the 

strongest positive correlation. IRF2 is a transcription factor that suppresses the expression of 

interferon α and β, which might affect islet cell survival and proliferation. Interestingly, IRF2 is 

negatively correlated with INS expression in this dataset. This link between would provide an 

interesting candidate for functional follow-up. 

The GC-rich promoter binding protein 1 like 1 gene (GPBP1L1) showed the strongest negative 

correlation with INS expression. While the function of GPBP1L1 is unknown, it likely acts as a 

transcription factor, like its paralogous gene GPBP1 (Hsu et al., 2003).  

Bidirectional expression of several genes with INS and GCG was observed (Figure 3). 

Interestingly, expression of 6 genes correlated positively with expression of INS and negatively 

with expression of GCG, e.g. WIZ, NUDC, IMP4, ZNF787, KLHL21, and ISG20. Of them, the 

Widely Interspaced Zinc Finger Motifs (WIZ) gene is part of the G9a/GLP complex, involved in 

H3K9 methylation of CTCF binding sites resulting in suppressed gene expression. (Isbel et al.  

2016). Therefore, the G9a/GLP complex might act as a switch that regulates the balance between 

insulin and glucagon secretion and has been shown to affect insulin signaling in the liver(Xue et 

al., 2018). NUDC and KLHL21 play important roles in cell division and could possibly influence the 

mass of a particular cell population. IMP4 affects pre-rRNA processing and thus production of 

ribosomes. ISG20 is an exoribonuclease that is stimulated by interferons, and ZNF787 is a gene 

with unknown function.  

SLC2A2, encoding the glucose transporter GLUT2 plays a key role in islet function (Thorens, 

2015). Its expression was downregulated already in patients with IGT and more so in T2D. 

Common variants in SLC2A2 associate with T2D, fasting glucose and HbA1c as well as insulin 

secretion in previous GWAS (Manning et al., 2012; Scott et al., 2017). Down-regulation of SLC2A2 

could be epigenetically mediated as it has been shown to be methylated in islets from patients with 

T2D (Volkov et al., 2017). Common variants in SLC2A2 also associate with the response to 

metformin (Zhou et al., 2016).  

The SNP rs9841287 in the CHL1 gene has previously been associated with fasting insulin 

concentrations, with the A allele (Frequency = 0.69 in 1000 Genomes) increasing insulin levels in 

a previous GWAS (P = 7.78 ∙ 10-9) (Manning et al., 2012; Scott et al., 2017). Many of the findings 

suggest high expression of CHL1 in islets could provide positive effects.  

The IGW has its limitations. First, the power of the study to detect significant expression-

phenotype associations is limited by its sample size. Second, being an observational study of 

patients recruited through intensive care units, the data in Islet Gene View shows correlations, but 
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cannot on its own be used to distinguish correlation from causation. However, Islet Gene View is a 

tool to facilitate research on human pancreatic islets to serve the scientific community. 

 

Acknowledgements 

Human pancreatic islets, muscle, fat and liver samples were provided by The Nordic Network for 

Clinical Islet Transplantation. The work in this paper has been supported by grants from the 

Swedish Research Council: strategic research environment grant (EXODIAB, 2009-1039) and 

project grant (2015-2558) to LG, networking grant (2015-06722) to RP; a collaborative grant from 

the Swedish Foundation for Strategic Research to the Lund Unversity Diabetes Centre (LUDC-

IRC, 15-0067); JDRF(award 31-2008-416); Diabetes Wellness grant to RP (720-858-16JDWG); 

collaborative grants with Regeneron and Eli Lilly to LG. We thank Mattias Borell, Maria Sterner, 

Malin Neptin and Malin Svensson for technical support. We also want to express our deepest 

gratitude to the deceased organ donors as well as to their relatives. 

Author contributions 

OA, PS and RBP analysed the data and designed the study. OA, RBP, OH and LG interpreted the 

results and wrote the manuscript, with additional input from ER, HM, OK and UK. EOL and UK 

performed laboratory experiments and measurements. RBP, LG and OH supervised the project. 

LC contributed the data.  All authors provided critical feedback and helped shape the research, 

analysis and manuscript. 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 5, 2018. ; https://doi.org/10.1101/435743doi: bioRxiv preprint 

https://doi.org/10.1101/435743


12 

 

References 

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and 

powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300. 

Durinck, S., Spellman, P.T., Birney, E., and Huber, W. (2009). Mapping identifiers for the 

integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–

1191. 

Fadista, J., Vikman, P., Laakso, E.O., Mollet, I.G., Esguerra, J.L., Taneera, J., Storm, P., Osmark, 

P., Ladenvall, C., Prasad, R.B., et al. (2014). Global genomic and transcriptomic analysis of human 

pancreatic islets reveals novel genes influencing glucose metabolism. Proc. Natl. Acad. Sci. U. S. 

A. 111, 13924–13929. 

Friberg, A.S., Brandhorst, H., Buchwald, P., Goto, M., Ricordi, C., Brandhorst, D., and Korsgren, 

O. (2011). Quantification of the islet product: presentation of a standardized current good 

manufacturing practices compliant system with minimal variability. Transplantation 91, 677–683. 

Hsu, L.-C., Liu, S., Abedinpour, F., Beech, R.D., Lahti, J.M., Kidd, V.J., Greenspan, J.A., and 

Yeung, C.-Y. (2003). The murine G+C-rich promoter binding protein mGPBP is required for 

promoter-specific transcription. Mol. Cell. Biol. 23, 8773–8785. 

Isbel, L., Prokopuk, L., Wu, H., Daxinger, L., Oey, H., Spurling, A., Lawther, A.J., Hale, M.W., 

and Whitelaw, E. (2016) Wiz binds active promoters and CTCF-binding sites and is required for 

normal behaviour in the mouse. ELife 5. 

Law, C.W., Chen, Y., Shi, W., and Smyth, G.K. (2014). voom: precision weights unlock linear 

model analysis tools for RNA-seq read counts. Genome Biol. 15, R29. 

Leek, J.T., Johnson, W.E., Parker, H.S., Jaffe, A.E., and Storey, J.D. (2012). The sva package for 

removing batch effects and other unwanted variation in high-throughput experiments. Bioinforma. 

Oxf. Engl. 28, 882–883. 

Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with 

or without a reference genome. BMC Bioinformatics 12, 323. 

Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for 

assigning sequence reads to genomic features. Bioinforma. Oxf. Engl. 30, 923–930. 

Manning, A.K., Hivert, M.-F., Scott, R.A., Grimsby, J.L., Bouatia-Naji, N., Chen, H., Rybin, D., 

Liu, C.-T., Bielak, L.F., Prokopenko, I., et al. (2012). A genome-wide approach accounting for 

body mass index identifies genetic variants influencing fasting glycemic traits and insulin 

resistance. Nat. Genet. 44, 659–669. 

Mashima, H., Sato, T., Horie, Y., Nakagawa, Y., Kojima, I., Ohteki, T., and Ohnishi, H. (2011). 

Interferon regulatory factor-2 regulates exocytosis mechanisms mediated by SNAREs in pancreatic 

acinar cells. Gastroenterology 141, 1102-1113.e1-8. 

R Core Team (2016). R: A Language and Environment for Statistical Computing (Vienna, Austria: 

R Foundation for Statistical Computing). 

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 5, 2018. ; https://doi.org/10.1101/435743doi: bioRxiv preprint 

https://doi.org/10.1101/435743


13 

 

powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids 

Res. 43, e47. 

Scott, R.A., Scott, L.J., Mägi, R., Marullo, L., Gaulton, K.J., Kaakinen, M., Pervjakova, N., Pers, 

T.H., Johnson, A.D., Eicher, J.D., et al. (2017). An Expanded Genome-Wide Association Study of 

Type 2 Diabetes in Europeans. Diabetes 66, 2888–2902. 

Taneera, J., Lang, S., Sharma, A., Fadista, J., Zhou, Y., Ahlqvist, E., Jonsson, A., Lyssenko, V., 

Vikman, P., Hansson, O., et al. (2012). A Systems Genetics Approach Identifies Genes and 

Pathways for Type 2 Diabetes in Human Islets. Cell Metab. 16, 122–134. 

Thorens, B. (2015). GLUT2, glucose sensing and glucose homeostasis. Diabetologia 58, 221–232. 

Varshney, A., Scott, L.J., Welch, R.P., Erdos, M.R., Chines, P.S., Narisu, N., Albanus, R.D., 

Orchard, P., Wolford, B.N., Kursawe, R., et al. (2017). Genetic regulatory signatures underlying 

islet gene expression and type 2 diabetes. Proc. Natl. Acad. Sci. 114, 2301–2306. 

Venables, W.N., and Ripley, B.D. (2002). Modern Applied Statistics with S (New York: Springer). 

Volkov, P., Bacos, K., Ofori, J.K., Esguerra, J.L.S., Eliasson, L., Rönn, T., and Ling, C. (2017). 

Whole-Genome Bisulfite Sequencing of Human Pancreatic Islets Reveals Novel Differentially 

Methylated Regions in Type 2 Diabetes Pathogenesis. Diabetes 66, 1074–1085. 

Xue, W., Huang, J., Chen, H., Zhang, Y., Zhu, X., Li, J., Zhang, W., Yuan, Y., Wang, Y., Zheng, 

L., et al. (2018). Histone methyltransferase G9a modulates hepatic insulin signaling via regulating 

HMGA1. Biochim. Biophys. Acta 1864, 338–346. 

Zhou, K., Yee, S.W., Seiser, E.L., van Leeuwen, N., Tavendale, R., Bennett, A.J., Groves, C.J., 

Coleman, R.L., van der Heijden, A.A., Beulens, J.W., et al. (2016). Variation in the glucose 

transporter gene SLC2A2 is associated with glycemic response to metformin. Nat. Genet. 48, 

1055–1059. 

(2013). The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 5, 2018. ; https://doi.org/10.1101/435743doi: bioRxiv preprint 

https://doi.org/10.1101/435743


14 

 

Tables 

 

 

 

Table 1: Clinical characteristics of the organ donors. 

 

Variable 
Number(data 

available) 
Mean SD Min Max 

Age 187 59 10 24 81 

BMI 188 26.4 3.8 17.6 40.1 

HbA1c 169 5.9 0.7 4.3 10 

Gender 

female/male 
188 70/118    

Non-T2D / T2D 188 155/33    

 

Table 2: Number of nominally and genome-wide significant genes (p ≤ 0.05) associated with each 
diabetes-related phenotype. Values are expressed as percentages of the total list of 14 008 tested 
genes. Values in parentheses represent the absolute number of genes. 

 

 

 Upregulated Downregulated 

 Nominal Genome-wide Nominal Genome-wide 

T2Ddiagnosed 9.97%(1497) 1.31%(197) 8.78%(1318) 1.06%(159) 

HbA1c 2.49%(374) 0.05%(8) 2.62%(393) 0.09%(13) 

Stimulatory index 2.66%(400) 0%(0) 4.89%(735) 0%(0) 

BMI 6.21%(932) 0%(0) 4.42%(664) 0%(0) 

HbA1c strata – 
IGT vs NGT 

7.6%(1141) 0%(0) 4.32%(648) 0%(0) 

Hba1c strata – 
T2DHbA1c vs NGT 

5.83%(876) 0.15%(22) 5.66%(850) 0.22%(33) 

Purity 27.38%(4111) 25.18%(3782) 29.81%(4476) 27.44%(4120) 
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Table 3: The number of genes positively or negatively co-expressed with 6 different genes 
encoding secreted pancreatic hormones. 

 

 Number of correlated genes P ≤ 0.05 

Gene Positive Negative 

INS 581 632 

GCG 343 298 

SST 106 92 

PPY 1 0 

IAPP 50 12 

GHRL 0 0 

 

Table 4: Top negatively and positively correlated genes for secretory genes. Genes with nominal 
significant associations (p ≤ 0.05) are marked with bold text.  

 

Secretory gene Top correlated genes 
Spearman's 

rho 
P 

INS IRF2BP1 0.846 0.002 

 GPBP1L1 -0.719 0.005 

GCG TUSC3 0.791 0.003 

 ABTB2 -0.687 0.008 

SST RBP4 0.702 0.009 

 WWC2 -0.621 0.016 

PPY CARTPT 0.636 0.018 

IAPP SLCO1A2 0.719 0.007 

 FBXO32 -0.554 0.031 

GHRL CNIH2 0.438 0.107 

 OSMR -0.357 0.158 
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Figure 1: Example image from Islet Gene View of SERPINE2. A: expression of the gene in fat (F), islets (I), liver 

(L), and muscle (M), in the same pool of 12 individuals. B: Gene expression as a function of purity, defined as the 

percentage of endocrine tissue. C: Expression of the selected gene in relation to other genes in islets. D-H: Gene 

expression in relation to several diabetes-related phenotypes, i.e. T2D diagnosis (figure 1D), HbA1c stratum (1E), 

continuous HbA1c (1F), BMI (1G), and stimulatory index (1H). Test statistics are reported, namely: coefficient of 

determination (R2), nominal P-value, and percentage rank among all genes as calculated based on sorted P-values. 

I-M: Gene expression in relation to the secretory genes INS (figure 1I), GCG (1J), SST (1K), PPY (1L), and IAPP 

(1M). Spearman's ρ (r) and the P-value of the gene based on the empirical correlation distribution is reported. 

INS = Insulin, GCG = glucagon, SST = somatostatin, PPY = pancreatic polypeptide, IAPP = islet amyloid 

polypeptide. 
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Figure 2: Islet Gene View image of close homolog of L1 (CHL1), a gene with previous 

associations with diabetes-related traits such as HbA1c and insulin secretion. 
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