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Abstract

The dynamics of evolution is intimately shaped by epistasis — interactions be-

tween genetic elements which cause the fitness-effect of combinations of mutations to

be non-additive. Analyzing evolutionary dynamics involving large numbers of epistatic

mutations is difficult. A key step is developing models that enable study of the effects

of past evolution on future evolution. In this work, we introduce a broad class of high-

dimensional random fitness landscapes for which the correlations between fitnesses of

genomes are a general function of genetic distance. The Gaussian character allows for

tractable computational and analytic understanding. We study the properties of these

landscapes and the simplest evolutionary process, random adaptive (uphill) walks. We

find that conventional measures of “ruggedness” do not much affect these. Instead,

the long-distance statistics of epistasis cause properties to be highly conditioned on

past evolution, determining the statistics of the local landscape (the distribution of

fitness-effects of available mutations and combinations of these), as well as the global

geometry of evolutionary trajectories. We also show that greedier walks tend to get

stuck sooner at local fitness maxima. We then model the effects of slowly changing

environments. These fitness “seascapes” cause a statistical steady state with highly

intermittent evolutionary dynamics: populations undergo bursts of rapid adaptation,

interspersed with periods where adaptive mutations are rare and the population must

wait for new directions to be opened-up by changes in the environment. Finally, we in-

troduce a computational framework for studying more complex evolutionary dynamics

and on broader classes of high-dimensional landscapes and seascapes.
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1 INTRODUCTION 2

1 Introduction

Evolution, even in the short term for “simple” asexual microbial populations with “simple”

selective pressures, is a complex, non-linear dynamical process. One of the many sources of

complexity is epistasis – the interactions among combinations of mutations. Most simply,

pairs of mutations can have no benefit individually but benefits together, positive effects

alone but deleterious ones together, and, once many mutations are involved, a plethora

of other behaviors. These epistatic effects lead to correlations and anti-correlations in co-

occurrence of mutations, which can have a dramatic effect on evolutionary trajectories. In

trying to model epistasis, an important observation is that, generally, whether a mutation

is beneficial or deleterious, and by how much, will depend on the both the environment and

the genomic background, and hence the evolutionary history: any mutation that is uncondi-

tionally beneficial would have already occurred and fixed. Thus the details of epistasis will

depend greatly on the context and one should hope for primarily statistical understanding.

At a basic level, we lack a theoretical understanding of the interplay between evolution and

epistasis. There is a great deal of population genetic theory in cases where mutations are

independent, and their contribution to the (log) fitness is additive [11, 14]. But, except

in simple cases involving small numbers of mutations, little is understood generally about

evolutionary dynamics in the presence of epistatic interactions. Many studies have focused on

the statistical properties of epistasis by constructing and attempting to understand models

of fitness landscapes – functions from genotype to fitness in a fixed environment. These are

often conceptualized like physical landscapes with peaks and valleys [9], and theorists have

endeavored to understand how properties of these landscapes constrain or enable evolution

[36, 37, 39]. Some approaches have focused on quantitative “local” properties, such as using

extreme value statistics to understand behaviors near fitness peaks [38], Others have focused

on quantifying the geometry of fitness landscapes, including distributions of local maxima

and numbers of uphill paths between points [10, 24, 50]. There is often an emphasis placed on

defining and quantifying measures of “ruggedness”, with the intuition that evolution is more

constrained in rugged landscapes by limiting the number of routes along which the fitness

can continue to increase, leading to getting stuck at local maxima [9]. But ruggedness is not

well defined in general, and, as we shall see, local measures of it can be misleading. Moreover,

there is an intrinsic problem with focusing primarily on fitness landscapes themselves. The

interplay between epistasis and evolution is essential; one cannot try to separately understand

them as the properties of the landscape in the vicinity of the current genome are highly

conditioned by the past evolution whether in a fixed or changing environment. The properties

of epistatic fitness landscapes conditioned on past evolution will generally be very different

than the properties of “typical” points or regions on such landscapes. Even if epistasis is

some sense “weak”, over long times individuals will accumulate a large number of mutations
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[1] and thus conditioning on history will eventually become important.

A major conceptual difficulty is that fitness landscapes are very high dimensional: there

are many potentially beneficial mutations and combinations of them. Yet intuition about

landscapes and evolution in them is usually based on low-dimensional analogies. A large

body of work in theoretical physics and probability theory has shown that geometry and

dynamics in high-dimensional spaces, such as uphill paths on complex landscapes, can be

very different than in their low dimensional analogues [6, 7].

Various experiments have provided some information about epistasis in natural systems.

Extensive work has been done on fitness effects of combinations of pairs of knockouts in var-

ious microbes, in particular S. cerevisiae and E. coli [13, 22, 48]. However most knockouts

are deleterious, and pairs of them at least as much so. But evolution is largely driven by

beneficial mutations, thus it is not clear how much is learned from such experiments about

statistical properties of epistasis that would affect evolutionary dynamics. High throughput

studies of repeatedly mated yeast populations [4] have provided potentially valuable infor-

mation, but even with some good combinations of genetic differences being produced, it is

not clear what are useful measures of the features of epistasis that affect evolution. Further-

more, these measurements have thus far combined genomes that differ by large numbers of

mutations, thus they are not directly relevant for the simpler problem of asexual evolution,

our focus here, for which the landscape is explored locally with distant genomes having to

be reached step by step.

In some relatively simple systems, a variety of empirical fitness landscapes — functions from

genotype to measured fitness — have been analyzed and the consequences for evolution

investigated theoretically. However, by their nature, these are restricted to exploring combi-

nations of genomic changes on only a modest number of sites - typically in a single protein

or RNA sequence [3, 24, 30, 50, 52]. While these studies can yield insights about specific

evolutionary scenarios, such as antibiotic resistance caused by multiple mutations in a small

number of proteins under strong, focused selective pressure, drawing general conclusions

from these, especially about much higher dimensional landscapes, is certainly problematic.

Some experiments have explored the interplay between epistasis and evolutionary dynamics

by laboratory microbial evolution [42, 50, 53]. Much has been learned about the fitness

effects of individual beneficial mutations, [25, 29, 49], but thus far only limited amounts

about epistatic interactions between the mutations found, beyond a general tendency towards

“diminishing returns” epistasis: the net effect of beneficial combinations of mutations being

less than the sum of their individual effects. However, this is not true of all combinations

and it may well be that such anomalous combinations are particularly important for driving

further evolution [23].
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All experimental studies face a spectrum of intrinsic challenges. One is the combinatorial

explosion of possible genotypes, which is exponential in the number of sites being studied.

This combinatorial explosion is associated with another key feature of epistasis: at large

genetic distances, higher order interactions are important. When many genotypes are in-

volved it is not enough to consider only pairwise interactions: correlations involving many

sites on the genome become important. Indeed, “expanding” around a particular genome

— the ancestor — in additive, pairwise, triplet interactions, and so on, is problematic. This

is at best a way to parametrize the fitness landscape in the vicinity of a particular genome

which is not essentially special: such an expansion could be already substantially different

around another genome not far away.

Another layer of complexity comes from the dynamic nature of environments in which or-

ganisms find — and have found — themselves. The landscapes are really “seascapes”, and

typically change on timescales relevant for even short term evolutionary dynamics [2, 19, 20].

These changes can be driven by external physical and chemical factors, as well as changes in

direct interactions between organisms or feedback on the environment by evolving organisms

that populate it. As the net effects of mutations can be a delicate balance between positive

and negative effects, even small changes in environment can change which mutations are

beneficial and more generally the possible routes to adaptation via multiple successive mu-

tations. Recent experiments have provided hints at how strong the effects of environmental

changes caused by evolution are even in nominally “simple” conditions. This is seen for the

first mutations that occur in yeast in low glucose [31] as well as from cumulative effects from

many mutations in Lenski’s long-term E. coli evolutions [18]. On long timescales in natural

populations, dynamical changes in the environment, whether produced by abiotic changes

or by the evolving populations themselves, are surely major drivers of adaptation.

With large numbers of sites involved in evolution, all one can hope for, generally, is to un-

derstand statistical properties of landscapes (and seascapes). New, more general theoretical

approaches are vitally needed, both to develop intuition, and to guide future experiments

and choose what statistical properties would be most instructive to measure. It is imperative

that theorists build and study models that include caricatures of these key features: high-

dimensional landscapes with some general statistical forms of epistasis, and, in the same

framework, gradual time dependence of the landscape (about which one can hope more

general can be said than about large sudden changes in the environment). Models should

have no “special genomes” — such as “wild-type” — a priori, and instead one should carry

out evolution from as random point and then try to understand the effects of epistasis and

further evolution conditioned on past evolution. Some recent work has endeavored to an-

alyze evolutionary dynamics on some classes of landscapes with simple models of epistasis,

[36, 37, 40, 41]; however these analyses are computationally limited from exploring more
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1 INTRODUCTION 5

general, or more high-dimensional landscapes.

In this work, we will develop understanding of the feedback between evolution and epistasis in

a particular rich class of toy models. Motivated by the basic observation that effects of genetic

changes are sums of many positive and negative contributions, we study (as have others)

random fitness landscapes whose properties are characterized statistically. We develop a

theoretical framework to understand a class of random fitness landscapes with distance-

dependent statistics - where the correlations between the fitnesses of genomes are some

function of the genetic distances between them. Our model class is flexible, with desirable

biologically inspired features, and encompasses — while illuminating the problems with —

many of the most commonly studied models of epistasis. By working in the tree-like limit of

genotype space where there are many possible mutations but reversions are rare (as in the

infinite-sites approximation) we develop a computational and analytical scheme which can

be used to analyze simple evolutionary dynamics on arbitrarily high dimensional landscapes,

as well as giving insights into key geometric properties of the landscapes.

Our analysis shows that evolution drives populations to highly atypical places on the fit-

ness landscape — atypical far beyond just having anomalously high fitness. The patterns

of epistasis in the neighborhood of the current genome, depends on the whole evolutionary

trajectory of the population, which itself depends on long-genomic-distance (arbitrarily high

order) patterns of epistasis. This is in part due to the high dimensionality of the fitness land-

scape, which allows rare events — although ones that evolution finds readily — to dominate

the dynamics. Additionally, we show that epistasis tends to reduce variance in evolution-

ary trajectories allowing for paths that are genotypically different to be phenotypically (as

far as fitness trajectories) similar. We then analyze slowly time-dependent landscapes and

show that the atypical nature of trajectories and local landscapes conditioned on past evolu-

tion, persists when the fitness landscape has simple — and we expect more general — time

dependence.

We conclude with potential directions for future theoretical studies and potentially informa-

tive experiments, particularly in light of our findings that intermediate-term evolution even

with simple models of effectively-random epistasis are set by long-distance, global statistical

properties of the landscape, rather than short-distance, local information such as measures

of “ruggedness”.
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2 FITNESS LANDSCAPES WITH DISTANT-DEPENDENT CORRELATIONS 6

2 Fitness landscapes with distant-dependent correla-

tions

2.1 Random fitness landscapes

We begin with some general qualitative and quantitative aspects of fitness landscapes and

epistasis. The main quantity of interest is the fitness function F (g), which maps genotypes,

g, to fitness values. The genome is most simply modeled by strings of 0’s and 1’s of length L –

points on a hypercube. (However almost all the results discussed generalize easily to the case

where all four base pairs are considered at each site.) A common convention is that all zeros

corresponds to some ancestral/reference genotype, with 1’s then representing mutations; we

will not use that convention here as we will not want to assign special characteristics to

any ancestor. Distances between genomes, defined as the number of sites at which they

differ, will be a fundamental property in our models: of course, for these, the labeling of the

reference genome is arbitrary.

The fitness function, F (g), is often called the fitness landscape. Evolution tends to drive

the population “up” the landscape to higher and higher fitness. A basic idea is that these

upward trajectories are impeded by “ruggedness” with local maxima and other features that

make some paths easier to traverse than others. In this work, we will study random fitness

landscapes : ensembles of some classes of random functions over genotype space. The use

of a random model is motivated by the fact that “fitness” is a very complex quantity. The

net effect of any mutation or combination of mutations in a relatively well-adapted organism

will be the sum of beneficial and deleterious effects, all conditioned on the evolutionary

history and dependent on the particular environment. The hope is that a caricature of the

landscape as a random function will capture some of the essence of the complex interplay

between epistasis and evolution. Most previous theoretical work on fitness landscapes falls

into two categories, focusing either on particular classes of random landscape models [15, 16,

26, 36, 52], or on models of specific simple situations like mutations in a single protein [50]

or aspects of the fitness of particular viruses [32].

We would like to study broad classes of models that have certain key properties motivated

by the desire to caricature biologically plausible/relevant features, and, secondarily, by nice

analytical properties:

1. Good scaling properties for large genomes: We want to have well-characterized

behavior in the limit of large genome sizes, but total distances between genomes much

less than L, in particular avoiding pathologies related to the combinatorics of large

genomes that are drawbacks of some oft-studied forms of epistasis.
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2 FITNESS LANDSCAPES WITH DISTANT-DEPENDENT CORRELATIONS 7

2. Evolutionary-conditioned statistics: We wish to understand evolution conditioned

on past evolution and thus regions of the landscape that the population is led to by

evolution. We would like such historical conditioning to be derived from the model as

opposed to put in by hand. In particular, we will want to be careful not to assign any

exceptional significance to a “reference” or “ancestral” genotype.

3. Flexibility: We want a modeling framework that encompasses models with a large

variety of qualitative and quantitative structure in order to broadly understand the ef-

fects of epistasis, including the effects of both small numbers of mutations and genomes

that are much further apart: i.e., both short-distance and long-distance structure.

4. Tractable dynamics: We need to be able to develop theoretical and computational

means to explore evolutionary dynamics for long times and large genome sizes, with

methods that scale well with genome length. This requires being able to efficiently

generate and store pertinent information about the landscape.

We can satisfy the first three criteria by defining fitness landscapes using distance-dependent

correlation functions. We thus choose F from an ensemble of random functions whose

statistics depend only on the genetic distances between genotypes. A fundamental property

of the ensemble is the correlation function between genomes as a function of the distance

between them. We define the correlation function of fitness differences as

C(|g − g′|) ≡ E[(F (g)− F (g′))2] (1)

for any pair of genomes g and g′. This average is taken over the ensemble of random models.

This definition of the correlation function differs from standard ones: here C represents the

relationship between the genetic distance |g− g′| between two genomes and their distance in

fitness space F (g) − F (g′). The choice to quantify the model in terms of fitness differences

is in fact natural as relative fitness drives evolution. The correlations between any pair of

fitness differences can be expressed in terms of C(`):

E[(F (g2)−F (g1))(F (g4)−F (g3))] =
1

2
[C(|g3−g2|)−C(|g3−g1|)+C(|g4−g1|)−C(|g4−g2|)].

(2)

With statistical properties defined in terms of genetic and fitness differences, no genome

is special with respect to the ensemble as a whole. This is in contrast to defining models

in terms of the distribution of fitness effects (DFE) of potential single mutations around a

particular genome. For a general random landscape, the DFE depends on the evolutionary

history: in particular, with increasing fitness the supply and magnitude of potential adaptive

mutations both decrease. This statistical phenomenon is called diminishing-returns epistasis,
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2 FITNESS LANDSCAPES WITH DISTANT-DEPENDENT CORRELATIONS 8

and there are many models which are defined by this structure [15, 16, 52]. In contrast, we

would like to understand the emergence of effects like diminishing-returns epistasis in a more

general framework, by studying how well-adapted genomes are special due to the effects of

past evolution. Our models allows us to specify global features of the epistasis, then let the

entire history of the evolutionary dynamics determine the current DFE and epistasis among

combinations of mutations around the current genome. This approach lets us generate

and study evolution-conditioned regions of the fitness landscape, rather than putting in the

structure of the “special” nature of a well-adapted genome in by hand.

While we will primarily be interested in fitness differences, in some landscapes, the absolute

fitness is well-defined and is hence an (unmeasurable) characteristic of the initial genome.

The absolute fitnesses scale as C(L)1/2. If C(L) = O(1) for large L then the absolute

fitnesses are well defined in the infinite L limit on which we will primarily focus; if instead

C(L) scales as some increasing function of L, the absolute fitnesses are undefined. However,

fitness differences (and therefore evolutionary dynamics) are always well defined in the large

L limit.

To get numerically tractable models with large genomes, and even more so to enable general

analysis of the evolutionary dynamics and effects of conditioning on past evolution, we

must make major simplifications. We will thus (for the most part) assume that F (g) is a

Gaussian random function, and therefore the choice of C uniquely defines our models. The

choice of Gaussian-random landscapes is certainly not biologically motivated, but it will

enable us to begin to address general questions and develop computational and analytical

tools. Understanding evolution on non-Gaussian landscapes is a major challenge: in the

Discussion, we make some remarks about how some analyses might begin.

To understand the relationship between formulations in terms of epistatic interactions and

the correlation function C(`) of Gaussian random landscapes, it is instructive to first consider

the two simplest models. First, is the additive model for which the effects of each mutation

are statistically independent so that the fitness can just be represented as the sum of terms

for each site with no epistasis. This corresponds to the choice C(`) ∝ `. At the other extreme

is the independent fitnesses model for which the fitness F (g) of any genotype is independent

of the fitness of all other genotypes. This corresponds to the choice C(`) = 0 for ` = 0 and

C(`) equal to some positive constant for ` > 0. The independent fitnesses model can be

considered a “maximally epistatic” model.

In general, C(`) parametrizes the correlation between the effects of the first mutation and

`th mutation from a generic genotype. As mutations correspond to fitness differences, this

correlation is given by the discrete second derivative 1
2

[C(`+ 1)− 2C(`) + C(`− 1)] (see

Appendix A.1 for a derivation). In the additive model, the second derivative vanishes cor-
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2 FITNESS LANDSCAPES WITH DISTANT-DEPENDENT CORRELATIONS 9

responding to no correlation between effects of mutations (no epistasis); in the independent

fitnesses model, the effects of one mutation and the next, and more generally, the effects of

all others are highly anticorrelated.

Another simple model is called Rough Mount Fuji (RMF) model; the fitness function is a

linear combination of an additive and an independent model [36]. The RMF model interpo-

lates between the additive and independent model, but as we will see, in the large L limit

in terms of evolutionary dynamics, it will usually behave like the additive model.

Another class of models that also interpolates between additive and independent limits has

correlations between fitnesses that fall-off exponentially with distance:

C(`) ∝ 1− e−`/ξ (3)

for some correlation length ξ. The effects of mutations are then anticorrelated over the

length-scale ξ, with correlations ∝ − 1
ξ2
e−`/ξ. For ξ → 0 this becomes the independent-

fitnesses model, while for ξ → ∞ (and rescaling to keep the fitness-differences of order

unity), it becomes the additive model. More generally, for evolution on scales ` � ξ, the

landscape is approximately additive while for `� ξ fitnesses are approximately independent.

We will show that the NK model [26], composed of many blocks of interacting sites (defined

in the next section), becomes an exponentially correlated Gaussian model in the limit of a

large number of blocks.

A particularly interesting class of models we will analyze are those with power law correla-

tions :

C(`) ∝ |`|α (4)

with 0 < α < 1. Note that α = 0 corresponds to independent fitnesses, and α = 1

corresponds to the additive model.

Figure 1 shows examples of linear cuts through landscapes for a variety of α. For intermediate

α, C is unbounded as in the additive case, but the effects of consecutive (and subsequent)

mutations are still anti-correlated. Large fitness differences exist on the landscape and are

potentially evolutionarily accessible, but the anti-correlations are felt at long range. We

will see that this structure can lead to evolutionary dynamics for which the effects of the

diminishing-returns epistasis are weak enough to allow avoidance of local maxima for long

periods of time, but eventually slow down the rate of fitness gain.

2.2 Amplitude spectra and relationship to other models

A common way to characterize epistasis is to break down the fitness into sums of contribu-

tions from k-wise interactions, with a measure of the overall contribution from the of k-wise
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Figure 1: Examples of power-law-correlated fitness landscapes characterized by correlations

C(g1 − g2) = |g1 − g2|α with α = 0, 0.5, 1. Shown are typical fitnesses along a random path

on the landscape as a function of genomic distance: the number of mutations.

interactions parametrized by the amplitude spectrum, Ak [35]. We now show how to con-

vert from the amplitude spectrum to an equivalent Gaussian model with distance-dependent

correlations, and derive the amplitude spectra of some of the models previously defined.

The amplitude spectrum characterizes epistasis by measuring the square magnitude of in-

teractions at each order. It can conveniently be written in terms of the discrete Fourier

transform over the hypercube:

fk =
1

2L

∑
g

eiπk·gF (g) (5)

with k a vector with k ones and L − k zeros. k represents a particular set of sites on the

genome. In the distance-dependent model, the symmetry under permutation of the sites in

the genome implies that the statistical properties of fk should only depend on the number

of interacting sites k. Their distribution is fully characterized by the amplitude spectrum

Ak defined by

Ak ≡ 〈f 2
k〉 . (6)

As each Fourier coefficient only depends on k sites of the genome, Ak is exactly the mean-

square kth order global epistasis; A0 the variance in average fitness (when this is finite), A1
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2 FITNESS LANDSCAPES WITH DISTANT-DEPENDENT CORRELATIONS 11

the variance of the single-site (additive) terms in the fitness, A2 the mean-square magnitude

of pairwise epistatic interactions, and so on up to order L. The Fourier coefficients fk
completely define the covariance matrix, and there is a one-to-one correspondence between

the Ak and the distance-dependent correlation C(`). For Gaussian landscapes, this amounts

to a complete definition of the model. (Note that we define the epistasis without reference to

any particular genome, in contrast to expanding in orders of epistasis about some “ancestral”

background as F (g) = F (0) +
∑

i aiσi +
∑

i,j bijσiσj +
∑

i,j,k cijkσiσjσk . . ., where σi = 1 if

site i is mutated and 0 otherwise. This correctly captures the magnitude of global epistasis.)

In the limit of large genomes, there are problems with the scaling of Ak. We would like to

study behavior that, in the limit of large L, is independent of L as long as the distances

between genomes are much less than L. For example, if the fitness was a sum of single-site

terms and pairwise epistatic terms, then one has to decide how the only non-zero coefficients,

A1, and A2, depend on L. If these do not scale with L, then the effect of a single mutation

would be pathological: the additive piece would contribute O(1) while the pairwise terms

would contribute O(
√
L).

From this example, we can also see the issues with having only a fixed number of non-zero

Ak as L→∞. This remains true even if we rescale terms by factors of L. For example, with

pairwise epistasis, the second order terms could be scaled down such that A2 = 1
L
Ã2 with

Ã2 = O(1), so their total magnitude matches the magnitude of the first order terms — as

in the conventional Sherrington-Kirkpatrick spin-glass model [45]. However, for changes of

`� L sites, the fraction of second order terms where both sites change is `
L
� 1. Therefore

over distance scales � L, this model is effectively additive, with A′1 = A1 + Ã2.

Another problem occurs if all orders of epistasis are comparably large: i.e., all Ak of the

same order. The number of terms (k’s) of order k is
(
L
k

)
. If the Ak are all non-zero and don’t

scale with L, then the middle terms with |k −L/2| = O(
√
L) dominate for large L. We will

see that this gives the independent fitnesses model.

By construction, our distance-dependent correlated landscapes avoid these large L patholo-

gies since C(`) is independent of L. To relate these models to the amplitude spectra and

make the large L limit well-behaved one needs to define a rescaled amplitude spectrum. A

convenient choice is to pull out the binomial factor for the number of terms of each order

and define

ρA(z) = L

(
L

Lz

)
ALz (7)

for z ∈ [0, 1], with Lz rounded to the nearest integer (which does not matter for large L). The

ρA(z) parameterize the magnitude of the total epistasis at order zL. The Ak (and therefore

ρA(z)) can be computed directly from C(`). Similarly, one can use ρA(z) to compute C(`):
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2 FITNESS LANDSCAPES WITH DISTANT-DEPENDENT CORRELATIONS 12

in Appendix A.3 we show that in the limit of large L

C(`) ≈ 2

∫ 1

0

(1− (1− 2z)`)ρA(z)dz (8)

Models with a well defined ρA in the limit of large L thus correspond to well-behaved distance-

dependent correlation functions C(`).

Most previously studied models correspond to simple forms of ρA(z). The additive model

has ρA(z) = δ(z) (with the limit needing to be taken carefully) while the independent model

is ρA(z) = δ(z − 1/2) since all Fourier modes in it have equal weight. More generally,

terms at different orders of epistasis contribute features of different length-scales to C with,

just as for Fourier transforms, small z — thus small k — corresponding to large length-

scale features. If a single z < 1
2

dominates, C(`) falls off exponentially with correlation

length ξ = − log(1 − 2z)−1. Terms with z > 1
2

cause oscillations in correlations and make

the landscape more “rugged”; in the extreme limit, pure z = 1 corresponds to the parity

function where every step leads to a change in sign of the fitness. The Random-Mount-Fuji

(RMF) model is a sum of additive and independent parts and thus corresponds simply to

the sum of delta functions in ρA at z = 0 and z = 1/2.

In a certain limit, Kauffman’s NK model [26] of random landscapes is equivalent to a simple

distance dependent model. The NK model splits the contribution to the fitness function

into N (potentially overlapping) blocks B, each of K interacting sites. For each block of

interactions there is an independent fitness model on the K sites in the block: which assigns

an iid random value, fB(gB), to each of the 2K configurations of the sub-genome gB, of

that block. The total fitness is then F (g) =
∑

B fB(gB). If the N blocks are chosen at

random, and L and N are large, a central-limit-theorem-like argument shows that F limits

to a Gaussian random function. More precisely, one can show that for N �
(
L
K

)
, when all

blocks are represented many times, all the moments of F converge to that of a a jointly

Gaussian random function with Ak = 1
L

(
K
k

)(
L
k

)−1
. The rescaled amplitude spectrum of the

NK model is thus simply ρA(z) ≈ δ(z − K/L). This corresponds to a distance-dependent

correlation with

C(`) ∝ (1− e−`/ξ) (9)

where ξ = − log
(
1− 2K

L

)−1
.

Typically the NK model is studied in a different limit where N is O(L), so only a small

subset of all possible blocks are represented [26, 35, 37]. However the analysis of the Gaussian

distance-dependent model should still be useful. As long as the within-block fitnesses are

not broadly distributed, the fitness difference between two genomes at a genetic distance

` is approximately Gaussian if N � L
K`

, corresponding to many blocks having at least

one mutation. For K
L

small (long correlation length), this corresponds to roughly ` � ξ
N

.
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2 FITNESS LANDSCAPES WITH DISTANT-DEPENDENT CORRELATIONS 13

This suggests that the approximation of the NK model as a distance dependent correlation

function may hold over a variety of scales, from x � ξ, for which each block has at most

one mutation and the landscape is approximately additive, to x� ξ , for which most blocks

have a mutation and the landscape is approximately independent.

The power law model C(`) ∝ `α has weight at all z but the crucial large ` behavior is

controlled by small z. For large `, the integrand in Equation 8 is dominated by z of O(`−1);

the integrand thus scales as z`ρA(z) which implies ρA(z) ∝ z−1−α for small z (see detailed

calculation in Appendix A.2). Note that with this scaling, the typical magnitudes of the

k-th order terms for small k are of order L(α−k)/2 and their net contributions to a F are of

order Lα/2 for each k.

The amplitude spectrum can be used to define distance-dependent models more generally. By

defining non-Gaussian but independent Fourier components whose second moments match

ρA(z), we can generate ensembles of functions which have second order statistics defined by

C(x) but different higher order statistics. We will discuss this approach further in Section

7.3 when we consider time-dependent landscapes. Until then we will restrict consideration to

Gaussian-random landscapes and hence need work only with the correlation function C(`);

this greatly simplifies computations and understanding.

2.3 Local properties of landscapes

Many previous studies focus on “static” properties of landscapes, that is statistics near

genomes not conditioned on prior evolution. One of the most commonly studied static

properties is the distribution of local maxima [36, 37]. This metric is often taken as a measure

of “ruggedness”, with the aim of getting intuition for how the geometry of a landscape might

shape evolution. However the notion of ruggedness is rather ambiguous, and, more generally,

the dynamical consequences of such local properties of the geometry are very different in high

dimensional spaces than intuition built on low dimensional ones might suggest.

In particular, local static properties depend entirely on short-range correlations and are

completely insensitive to longer-range ones. Specifically, in Appendix C.1 we show that the

probability of a genome being a local maximum in a Gaussian random landscape is given

asymptotically by

Ploc−max ∼ L−(1−r)/r (10)

with r the correlation coefficient of the fitnesses of the neighbors of a chosen point, which can

be computed to be r = 1− 1
2
C(2)
C(1)

. This probability of being a local maximum is exponentially

sensitive to local correlations. For the additive model, r = 0 and there is one maximum,

for the independent model, r = 1
2

so Ploc−max = 1
L

, and for the parity model r = 1 and
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2 FITNESS LANDSCAPES WITH DISTANT-DEPENDENT CORRELATIONS 14

Ploc−max = 1
2
.

But Ploc−max is independent of the structure of long-range correlations; we will show that

it is the long-range structure that drives evolution and determines how far uphill it can

proceed before reaching a local maximum. Indeed, the RMF model, NK model, and power-

law models can each be tuned to have similar numbers of local maxima, but have much

different global structure. An RMF model with the additive piece being a fraction p of the

fitness has r = 1 − p. An NK model with random blocks has r = 1
2
K
L

. A power law model

with exponent α has r = 1 − 2α−1. Therefore the NK model can have any r from 0 to 1
2
,

and the other two models any value from 0 to 1. Given any two classes of models, we can

always find pairs of models with the same local maxima structure, as these only depend on

the parameters p, K
L

and α respectively. As we will see, the long-term evolutionary dynamics

for these three models will be quite different, regardless of the value of r.

An interesting static property that depends on long range structure is the maximum fitness

difference, fmax(ball)(`), between a random point and all points in a ball of radius ` around that

point. We are interested in large `, but `� L. For the RMF model, fmax(ball)(`) ∼ p`
√

log(L)

since the maximum is achieved by mutating the ` sites with the largest additive fitness gains,

with an uncertainty of only ±
√
` from the independently random piece. For the NK model,

for N = 1 we have approximately K` independent fitnesses (as there are only K sites for

which changes lead to fitness differences). This gives us fmax(ball)(`) ∼
√
` log(K) from the

maximum of i.i.d. samples from a Gaussian.

For more general correlations, computing fmax(ball)(`) is more complicated; nonetheless, we

can proceed in a general way by realizing that most of the genomes in the ball are at the

surface (that is at distance ` from the center). We can then approximate fmax(ball)(`) as the

maximum value of these L` identically distributed Gaussian random variables with mean

0, variance C(`), and covariance C(`) − 1
2
C(2`) as the points on the surface are typically

distance 2` apart. We thus have, generally,

fmax(ball)(`) ≈
√

1

2
C(2`)

√
log(L`)±

√
C(`)− 1

2
C(2`) (11)

The second, stochastic, term is due to the fluctuations of the average difference at genetic

distance `, while the dominant first term is due to the maximization over all such differences.

For the particular case of power-law-correlated landscape, we have, asymptotically

fmax(ball)(`) ∼ 21−α`(1+α)/2
√

log(L) (12)

A crude estimate of the maximum fitness on the whole hypercube is given by fmax(ball)(L);

we expect this to be correct up to polylogs. Therefore the maximum absolute fitness F ∗ ∼
L(1+α)/2 for power law landscapes - see Appendix C.2 for another heuristic derivation.
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3 ADAPTIVE WALKS 15

We see that the behavior of fmax(ball)(`) scales quite differently for the various models — with

` and sometimes even in L. The additive piece of the RMF model has the largest differences;

the NK model and other short-range correlated models have the smallest differences as at

long-distances they are like independent models. If evolutionary trajectories are able to

travel significant distances, then long range features of the landscape, such as the maximum

in a ball, are bound to matter. This discussion should make clear that very local structure,

such as number of local maxima, gives very incomplete — indeed misleading — information.

3 Adaptive walks

“Static” properties of landscapes that focus on behavior near to typical points are mislead-

ing: one must take into account conditioning on prior evolution. To do this, we focus on

understanding the properties of random adaptive walks. An adaptive walk corresponds to

evolution in the strong selection weak mutation (SSWM) regime —adaptive mutations are

rare, and when they establish they arise to fixation before the next adaptive mutation occurs.

By studying the step-by-step dynamics of adaptive walks, particularly over a large number

of steps, we will be able to understand directly the feedback between epistasis and evolu-

tion. We can then study the properties of genomes and the statistics of available mutations

and epistasis among these, conditioned on the evolutionary history. This gives a far better

and richer picture of the evolution on rugged landscapes than making qualitative arguments

based on local geometric properties.

Specifically, we analyze a clonal population which follows some trajectory g(x) in genotype

space, where x indexes the number of mutational steps from the ancestor. At each step, the

population randomly samples the space of all possible mutations. For each sampling, the

mutation is either rapidly purged, or rapidly fixes. The probability of fixation is some non-

decreasing function of the fitness difference sg→g′ between the current population genotype

g and the mutant g′. Thus the probability of a transition going from g to g′ can be written

as

P (g → g′) = φ(sg→g′)/Z (13)

where φ, the fixation function, is the probability of fixation given a mutation, and Z is a

normalization factor. The dynamics of each step depends only on the local fitness landscape

a single mutation away. If φ allows downhill steps. the dynamics will go on indefinitely. We

will focus on uphill random walks which must eventually terminate at some local maximum.

There are various choices for φ that have been studied.

• Random: the next step is chosen uniformly at random from all uphill directions.
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3 ADAPTIVE WALKS 16

• Greedy: The best possible step is chosen.

• Reluctant: Atypically small uphill steps are chosen — the extreme limit being to

chose the smallest.

• Natural: The choice is weighted by some function of the fitness difference to reflect the

chances of that mutation fixing. The appropriate choice for moderate sized populations

in the strong-selection weak-mutation regime is φ ∝ s. In large populations, there can

be much stronger weighting to large s [51].

For the bulk of this paper we will focus, for simplicity, on the random step model (i.e with

φ(s) the step function): all adaptive mutations have the same probability of fixation, and

deleterious mutations are always purged. Later we will briefly consider natural weighting

— which results in only small changes in the behavior for modest size populations — and

reluctant walks.

3.1 Adaptive walks on landscapes generated “on the fly”

The simplest way to study adaptive dynamics numerically would be to first draw a partic-

ular example of the landscape from the ensemble, and then perform adaptive walks on it.

However this would be computationally expensive: for landscapes with non-trivial correla-

tion structure as it would require 2L random variables. Also, with only numerical work,

drawing more general conclusions beyond the particular models studied would be fraught

with difficulties.

There have been several numerical recent studies analyzing adaptive walks in the simpler

NK and RMF models [36, 37, 40, 41]. These works have primarily focused on the lengths of

adaptive walks before a local maximum is reached. Based on numerics, these claim to find a

phase transition in the length of adaptive walks walks as parameters are varied [36, 37, 41].

(We will show analytically that this is a crossover effect for large, finite L in Section 6, and

compute the crossover scale.) However, the numerical approaches used do not scale well to

other parameter regimes, or to other models. The NK model, which has complex epistasis,

has been simulated only with small blocks (K = 8) for which walks of length ∼ 103 have

been studied [36, 37]. The RMF models with large L are simple enough to run longer (up

to walks of length 106) [41]. This is because the additive part of the RMF model only has L

free parameters, and for the independent fitnesses part, only XL random parameters need

to be drawn to simulate a walk of length X: these can be drawn as the walk progresses.

Distance-dependent landscapes allow us to do something similar for general patterns of

epistasis. The Gaussian correlations make computing the local landscape around a single
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3 ADAPTIVE WALKS 17

evolutionary trajectory a tractable task, both analytically and computationally. The current

distribution of fitness effects can be computed as a conditional distribution based on the parts

of the landscape already explored. This enables simulations of dynamics for large L, and has

the big advantage of making explicit the role of past evolution on the currently accessible

fitness landscape. We develop the dynamical approach in the remainder of this section and

explore its consequences in Section 4.

The first key observation is that the stochasticity can be divided into two sources. First, the

fitnesses of genotypes adjacent to the current genotype g need to be generated. This is equiv-

alent to drawing the current distribution of possible single-mutation fitness effects (DFE).

The transition probabilities P (g → g′) can then be computed, and the next step chosen from

the resulting distribution. This process is then repeated. Separating the stochasticity in this

way ensures that the dynamical step and the DFE step remain statistically independent.

The Gaussian distant-dependent correlation structure will mean that the conditional DFE

only depends on C(`) and the already-explored parts of the landscape.

The second simplification is that in the high-dimensional limit, a walk on a hypercube looks

like a path on a tree (Figure 2a), with single mutational steps correspond to edges. The tree-

like structure comes from the fact that the same site is not likely to be mutated twice, which is

generally true if L is much larger than the total number, X, of mutations accumulated during

the evolution. (More precisely we need X2 � L, but as the number of sites mutated twice is

small as long as X � L, we do not expect substantial errors from the tree approximation.)

With the statistical symmetry of the landscape in the tree approximation, we can choose

to label the genomes, g, by the number of mutational steps taken, x, with the distance

|g(x)− g(x′)| = |x − x′|. We will henceforth label the genomes and other quantities by the

step number x.

A key property for the adaptive walk is the set of potential single-step fitness gains away from

the genome at step x: {si(x)}, with i labeling the mutated site. The probability distribution

of these, the DFE for the possible next steps, has empirical mean

µ(x) =
1

L

∑
i

si(x) (14)

the average available fitness gain. Both the potential fitness gains and their empirical mean,

µ(x), are covariate Gaussian. The value of µ(x) is typically negative during evolution,

indicating that beneficial mutations are less common than deleterious ones. Note that we

will refer to empirical means within a landscape, such as µ(x) around a particular genome, as

“averages”, while means over the ensemble of landscapes we will refer to as “expectations”.

(In statistical mechanics terminology, expectations over the random landscape would be

called “quenched averages”.)
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3 ADAPTIVE WALKS 18
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Figure 2: Schematic of adaptive walks on the hypercube. (a) In the high dimensional limit,

a single site is mutated at most once, which causes the fitness landscape to look like a tree,

with genotypes as nodes, and edges corresponding to fitness differences. (b) At any point, the

distribution of single-step fitness gains, s, is parametrized by its mean µ (blue plane), which

is typically negative, while individuals gains have some variance around µ (grey arrows). A

particular uphill step (orange) is chosen randomly from the possible uphill steps, and taken.

(c) Adaptive walks with the right statistics can be found by computing µ and then taking

a random uphill step s from the distribution with mean µ; µ depends linearly on previously

observed µ and the previous uphill steps s, plus a Gaussian random part. Evolution tends

to cause uphill steps to become rarer and rarer by driving typical µ to be more and more

negative, although the stochastic variations can sometimes make it less negative after a step.

In the limit of large L, the single-step fitnesses conditioned on the average possible gain,

{si(x)|µ(x)}, are asymptotically independent. They are Gaussian with mean µ(x) and vari-

ance

σ2 ≡ Var[si(x)|µ(x)] ≈ Var[si(x)− µ(x)] =
1

2
C(2) (15)

Therefore, knowing µ(x) completely determines the DFE around current genome — it is a

Gaussian with a known mean and variance (Figure 2b).

The value of µ(x), conditioned on previously observed fitnesses is itself a Gaussian random

variable whose statistics can be computed using standard methods which we will review here.

Suppose we have a jointly Gaussian collection of vector valued random variables Z and W,
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3 ADAPTIVE WALKS 19

with covariance matrix

Σ =

(
ΣZZ ΣZW

ΣWZ ΣWW

)
=

(
cov(Z,Z) cov(Z,W)

cov(W,Z) cov(W,W)

)
(16)

The conditional expectation E[Z|W] is a linear function of the values of W. It can be

computed as KZW, where the linear response kernel KZ is defined by

KZ = ΣZWΣ−1
WW (17)

The conditional covariance can be written as

ΣZ|W = ΣZZ −KZΣWZ (18)

In our case, the Z is merely µ(x), and the W is the set of all µ(y) and s(y) for y < x, where

s(y) are the fitness gains of the single steps actually taken during the evolution (dropping the

site i as we are in the tree-like limit). Therefore, we can write the conditional expectation

as

E[µ(x)|W] =
x−1∑
y=0

K(x, y)µ(y) + J(x, y)s(y) (19)

For ease of later computation we write the response kernels K(x, y) and J(x, y) separately.

The variance can be computed as:

Vη(x) ≡ Var[µ(x)|W] = Var[µ(x)]−
x−1∑
y=0

K(x, y)E[µ(x)µ(y)] + J(x, y)E[µ(x)s(y)] (20)

In other words, we can write:

µ(x) =
x−1∑
y=0

K(x, y)µ(y) + J(x, y)s(y) + η(x) (21)

where η(x), the random part of the average available gain, is Gaussian distributed with

variance Vη(x).

We again emphasize that this randomness is over the ensemble, conditioned on the structure

W; η(x) represents the uncertainty over the distribution of functions, not the stochasticity

of the dynamics. Also note that the statistics of µ(x) depend only on fitness differences and

not the absolute values F (x); therefore they are well defined independent of L as desired.

The structure outlined above, implies that in the large L limit, we can simulate the dynamics

by computing the statistics of the DFE, choosing a beneficial mutation, and repeating (Figure

2c). More precisely, we use the following dynamical procedure:
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3 ADAPTIVE WALKS 20

1. Generate the conditional expectation of µ(x) given the previously observed {µ(y)} and

{s(y)} and the kernels, J(x, y) and K(x, y).

2. Choose a value of µ(x) drawn from Gaussian distribution with its conditional expec-

tation and known variance, Vη(x).

3. Generate a step s(x) from the fixation function φ applied to a Gaussian with mean

µ(x) and fixed variance, σ2.

4. Repeat.

The joint Gaussianity makes computation highly efficient, as the distribution of µ(x), and

hence the distribution of the s(x), can be computed using simple linear algebra. Computing

the response kernel at step x, requires a 2x × 2x matrix inversion. This can be performed

iteratively from the covariances competed at the previous step with cost O(x2). Computing

µ(x) using the response kernels costs only O(x). The total computation time for x from 0

to some X thus grows as X3.

For all the simulated dynamics in this work, we chose, for simplicity, to approximate the

response kernel at all steps by the kernels µ(X, y) and s(X, y) at the final step X. Like-

wise, we used Vη(X) to approximate Vη(x) throughout the walk. This gives us the same

computational complexity as the iterative inversion method. Numerical results show that

Vη(x) saturates quickly to the long time value Vη(∞) (as expected) and the analytical results

in Section 3.2 suggest that the key parts of the response functions converge as well. This

approximation gives largest errors at the start of the walk, but, as we will see in Section 3.3,

the long-term dynamics depends only weakly on early times.

The response kernels depend only on the geometry of the path. If the walk geometry is

known in advance (as it is for a population in the strong selection weak mutation regime

on which we focus), the response kernels can be computed once and then used for multiple

simulations on independent but statistically identical landscapes. Therefore T simulations

of length X can be achieved in O(X3 + TX2) time in the large L limit. The generation of

the landscape “on the fly” has removed any dependence of the computational complexity on

the dimension of the genotype space.

The form of Equation 21 assumes a walk along a single path, with the geometry of a straight

line. However, the framework extends to trajectories with more complicated topologies

as well. In particular, there is a computationally straightforward extension to the case of

multiply branching paths on a single landscape. The response functions are computed via

Equation 17 to obtain µ(x) at the end of any branch, and the potential single-step fitness

gains si(x) are independent when conditioned on µ(x).
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3 ADAPTIVE WALKS 21

3.2 Single-path response kernels

In addition to enabling efficient computation, the response functions can be used to gain a

qualitative and quantitative understanding of how the dynamics of adaptive walks depend on

the past. We will take advantage of this structure to analytically approximate the statistics

of fitness trajectories for a variety of landscapes, and obtain exact results for some simple

cases.

The response kernels encode exactly the effect that the past evolution has on evolution in the

near future. Because this depends on the trajectories of µ(x) and s(x), and not simply their

most recent or average values, the detailed dynamics of evolution determines the current

DFE. The Gaussian nature of the landscape means that the present depends linearly on the

past; however the evolutionary dynamics causes non-linear feedback via the selection of the

uphill step from the DFE. This interplay between past and present is what gives rise to the

complexities of evolutionary dynamics even in these Gaussian-distributed landscapes.

As we shall show explicitly, the response of µ(x) to s(y) for y < x (via the kernel J(x, y)),

tends to be negative; the current possible steps are anticorrelated with previous ones taken.

This negative feedback makes it harder and harder to find uphill steps as the evolution

continues. The response of µ(x) to µ(y) (via the kernel K(x, y)) is somewhat subtle, but its

net effect is to make µ(x) correlated with earlier µ(y).

3.2.1 Exponentially-correlated landscapes

We begin by analyzing the case of exponential correlations:

C(`) =
1

b
(1− e−`/ξ) (22)

where b = (1 − e−1/ξ) normalizes the family so that random single mutants have identical

statistics (C(1) = 1) for any ξ.

For this model, the response structure is easy to compute in terms of the absolute fitness

values F (x). A direct calculation (detailed in Appendix B.3) shows that we have

E[µ(x)| past] = −bF (x) (23)

The dynamics is “memoryless” (Markovian) with regards to the fitnesses — only the last

observed fitness matters. This relationship is in fact exact; that is, we can write

µ(x) = −bF (x) (24)
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3 ADAPTIVE WALKS 22

without the conditional expectations. This is a very special property of the exponential

landscape (and indeed, completely characterizes it for b ∈ [0, 1]). The relationship is most

clear in the independent limit where b = 1. Here, in the large L limit, µ(x) ≡ Ex+1[F (x +

1)|F (x)] − F (x) = −F (x) + O(L−1/2) where Ex+1 is the empirical average, taken over all

single steps away from x, is zero due to independence of fitness at other sites.

Equation 25, along with the definition of the step taken, s(x) = F (x + 1) − F (x), implies

that the joint covariance matrix of the µ(x) and s(x) is singular. The response function is

degenerate to degree x. We can take advantage of the freedom of choice to make the response

kernels take simple forms; two possible choices are

E[µ(x)| past] = −b
x−1∑
y=0

s(y) + µ(0) (25)

or

E[µ(x)| past] = −bs(x− 1) + µ(x− 1) (26)

The negative correlation with the previous fitness will drive the typical µ(x) to be more and

more negative during evolution. Since the variance of µ(x) is constant, this leads to the

typical DFE having fewer and fewer beneficial mutations, slowing down the rate of fitness

gain, as expected. In Section 3.3, we will compute the dynamics for exponential correlations

explicitly.

The variance σ2 of the conditional s(x) is given by

σ2 =
1

2
C(2) =

1

2
(1 + e−1/ξ) (27)

which ranges from 1
2

(independent model) to 1 (additive model) for increasing ξ.

3.2.2 Power-law-correlated landscapes and integral approximation

To understand the behavior of long walks — in which we are primarily interested — it is

instructive to approximate the discrete response equation by the integral equation:

µ(x) ≈
∫ x

0

dy [K(x, y)µ(y) + J(x, y)s(y)] + η(x) (28)

where we abuse notation and use J and K for the continuous analogues of the discrete

response functions. Now η(x) is the random part of µ(x), a Gaussian random variable with

autocorrelation

E[η(x)η(y)] = Vηδ(x− y) (29)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/435669doi: bioRxiv preprint 

https://doi.org/10.1101/435669
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 ADAPTIVE WALKS 23

As we are interested in the long-walk behavior, we use the asymptotic value, Vη ≡ lim
x→∞

Vη(x),

at which the conditional variance saturates.

In general, the kernels will depend on both x and y. But for x − y � x, we anticipate

that they will approximately be functions of just the distance, x − y. In this limit, the

integrals become convolutions and Fourier transforms can be used. For the case of power

law correlations, Wiener-Hopf analysis (Appendix B) can be used in this x− y � x regime,

to obtain J(x, y) ≈ −cJ(x − y)−(1−ν) and K(x, y) ≈ δ(x − y) + cKP(x − y)−(1+ν) with the

exponent ν = (1 − α)/2 and P denoting the principal part (so that integrals over K have

no contribution from the divergence at x− y → 0). Here cJ and cK are positive coefficients

that can be written in terms of Beta functions and combinations of Vη and σ2.

Armed with their scalings forms, and the structure of the singular integral equations that

have to be solved, one can guess and check the exact kernels (valid when x, y and x− y are

all large):

J(x, y) ≈ −cJ sign(x− y)
(y
x

)ν 1

(x− y)1−ν (30)

and

K(x, y) ≈ δ(x− y) + cK sign(x− y)

(
x

y

)ν
P
(

1

(x− y)1+ν

)
. (31)

The responses are of opposite signs, and the J drops off less sharply than the K. However,

the sign of K is misleading due to the principal part. If the convolution with the past is

done by parts, then we get∫ x

0

dyK(x, y)µ(y) = µ(x)− cq
xν
µ(x)−

∫ x

0

dyQ(x, y)
dµ

dy
(32)

with positive coefficient cq and the kernel of dµ
dy

defined by

Q(x, y) ≡
∫ y

0

dz[K(x, z)− δ(x− z)] (33)

This form of the response shows that µ(x) is anticorrelated with both s(y) and dµ
dy

of the

past.

From the form of the response kernel, we can already see a qualitative difference between the

power-law and exponential cases; the conditional probabilities in general depend on the whole

fitness-trajectory of the past evolution, not just the most recent fitness. This dependence on

the long-ago past is crucial for shaping the long-term dynamics of random adaptive walks.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/435669doi: bioRxiv preprint 

https://doi.org/10.1101/435669
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 ADAPTIVE WALKS 24

3.3 Typical fitness-trajectories of adaptive walks

Given an analytical form for the long-distance response kernel, we can obtain analytical

understanding of the typical fitness trajectories of random adaptive walks. The response

kernels give an integral equation for the conditional expectation (across adaptive walks over

the whole ensemble of landscapes) of µ(x) in terms of past µ(y) and s(y), and then the value

of µ(x) determines the distribution of s(x). Since E[µ(x)|past] is linear in past values, we

can use the response kernels to get a self-consistent set of equations for the expectation over

all adaptive walks on all landscapes Ewalks[µ(x)] and Ewalks[s(x)].

We define the fitness gain of a trajectory as a function of the number of steps, x, along it as

f(x) ≡ F (x)− F (0). (34)

Due to the distance-dependent correlation structure, f(x) should, for walks with x� L, be

independent of L. We start with simple examples where the answers are known from simple

methods, and work up to the more complicated cases.

3.3.1 Simple landscapes

The simplest situation is the additive model: the fitness steps are uncorrelated, so both K

and J are 0. Therefore Ewalks[µ(x)] is always 0, and uphill steps are taken from the same

distribution. The average total fitness gain, Ewalks[f(x)], grows linearly in x on average, and

the variance Varwalks[f ] also grows linearly.

The other simple case is the independent model. Since the fitnesses are all independent, there

is a simple relationship between the DFE mean and the (absolute) fitness: µ(x) = −F (x)

for any x in the large L limit, with no additional variation (i.e. Vη = 0). The difficulty of

finding uphill steps is directly related to the current fitness. (Note that the absolute fitnesses

are well defined in the independent model since C(`) is bounded, as per the discussion in

Section 2.1).

We now need to understand the typical uphill steps actually taken, given µ(x). The distribu-

tion of possible steps is just determined by µ(x) and C(2) for any C(`) (with C(1) = 1). For

large negative µ(x) (−µ(x)� σ), the distribution of uphill steps is distributed approximately

exponentially with average value

Edyn[s(x)|s(x) > 0, µ(x)] ≈ σ2

−µ(x)
(35)

where, as before, σ =
√
C((2)/2 is the — history independent — standard deviation of

the potential single-step fitness gains {si(x)} given µ(x). As denoted by the subscript, this
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3 ADAPTIVE WALKS 25

average is over the stochasticity of dynamics alone. Using the above expression, we have, for

the independent fitnesses model, an approximate differential equation for F :

dF

dx
=
σ2

F
(36)

which integrates to F (x) ∼ x1/2 for large x. The fitness thus increases sublinearly, but still

as a power law in the number of steps. For x� 1, the effects of the initial fitness, F (0), are

negligible (corrections to F (x) of order 1/
√
x). Thus whether or not we condition over the

initial fitness, the long-distance behavior is essentially the same.

For landscapes with exponentially decaying correlations, we can proceed similarly, since far-

apart regions of the landscape are approximately independent. Normalizing C(1) = 1 as

before, Equation 25 gives
dF

dx
= E[Z|Z > 0] (37)

where Z is normally distributed with expectation −F (x)/b and variance σ2 = 1
2
(1 + e−1/ξ)

as calculated previously.

As long as F (x)/b� σ (equivalent to F � ξσ for large ξ), the dynamics is like the additive

model with F (x) ≈
√

2
π
σx. The correlations are too weak to influence the dynamics and F

increases roughly linearly until F ∼ ξσ, where the correlations start to matter. For F � ξσ,

the large µ approximation holds and we have

dF (x)

dx
≈ σ2ξ

F (x)
(38)

which gives us the approximate trajectory

F (x) ≈ [2ξx]1/2 (39)

at long times for large ξ. The long-distance behavior is thus like the independent-fitness

model as could have been anticipated since fitnesses that are much more than ξ apart look

roughly independent.

3.3.2 Power-law correlated landscapes

Analyzing adaptive paths on power law landscapes is more complicated, because the corre-

lations matter at all times due to the power laws in the response kernels. Figure 3 shows a

typical example of the evolutionary dynamics. The uphill steps get smaller and smaller as

the mean, µ(x), of the DFE decreases.
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Figure 3: Properties of typical of typical random adaptive walk on a power-law-correlated

landscape, with α = 0.5. Fitness gains s decrease, on average, as a power of the number of

steps, while the mean fitness gain of available steps, µ, is negative with −µ increasing as a

power of the number of steps.

Regardless, we can use the power law forms of the response kernels to self-consistently solve

for the dynamics. For power law landscapes, we must deal with fitness differences only since

F (0) depends on L (C(`) is unbounded). Accordingly, we will solve for the dynamics of the

fitness gain f(x) by making the power-law ansatz

Ewalks[f(x)] =
x−1∑
y=0

Ewalks[s(y)] ∼ xβ (40)

and by solving for the scaling forms of Ewalks[µ(x)] and Ewalks[s(x)]. We conjecture that

Ewalks[µ(x)] ∼ −xγ, while Ewalks[s(x)] ∼ xβ−1. (41)

Evaluating the convolutions in Equation 28 (with short-hand notation ∗ for the integrals

over the past) using Equation 32, we have Q ∗ dµ
dy
∼ xγ−ν and J ∗ s ∼ −xν+β−1, where

ν = (1− α)/2 < 1. The neglected terms in Equation 32 are much smaller than than Q ∗ dµ
dy

for large x; therefore the Q term must nearly cancel the J ∗ s term. Thus both those pieces

must scale the same way with x, so we conclude that β − 1 + γ = 2ν = 1− α.

To get a second equation relating the exponents, we consider the dynamics. Once −µ
becomes large, then s must be selected from the tail of the Gaussian distribution. Typically,
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3 ADAPTIVE WALKS 27

we will have

s(x) ∼ σ2

−µ(x)
. (42)

Taking random beneficial mutations pushes one into this regime after only a few steps. With

Ewalks[µ(x)] ∼ −xγ we expect

Ewalks[s(x)] ∼ σ2/Ewalks[−µ(x)] ∼ xβ−1 (43)

which gives us β − 1 = γ. Here we implicitly assume that the typical µ(x) is close to

Ewalks[µ(x)] (which we will show is supported by the numerics). Combining with the first

equation for the exponents, we can solve for β and γ and conclude that

Ewalks[µ(x)] ∼ −xγ with γ = (1− α)/2 (44)

and

Ewalks[f(x)] ≈
∫ x

0

Ewalks[s(y)]dy ∼ xβ so that β = (α + 1)/2 . (45)

The exponents interpolate linearly between the extreme cases of the additive (α = 1) and

independent fitnesses (α = 0) models.

These analytic predictions are supported by the numerics. Figure 4 shows the mean and

standard deviation of the trajectories of 300 simulations of adaptive walks on different instan-

tiations of the fitness landscape for α = 0.45 (left column). As expected, −µ is constantly

increasing, while s decreases accordingly. In the right column, we show log-log plots of µ(x),

s(x), and f(x) for various α. Since −µ(x) increases more slowly for larger α, f(x) grows

more quickly as α increases. Figure 5 shows the scalings of the log derivatives of the mean

and variance of each set of trajectories (computed numerically after 100 steps, with Gaussian

smoothing of width 5). The estimated power law exponent, γ, of µ deviates from theory as

α goes to 1; however, this is also where the estimates are most sensitive to fluctuations and

higher order corrections as µ is only slowly increasing in this limit and there are corrections

of relative order 1/x1−α (as well as 1/xα). In all, the scalings from the numerics appear to

agree well with the analytic predictions.

The simulations also illustrate the scalings of the variations about the mean of the various

quantities. The variance of µ goes to a constant while |µ(x)| increases, thus justifying the

approximation Ewalks[s(x)] ∼ −1/Ewalks[µ(x)] in the analytical calculation. The variance of s

is proportional to (Ewalks[s])
2, as one should expect for an exponentially distributed random

variable; this is roughly correct even though the variations in µ make the distribution of

s across realizations is not simply exponential, the standard deviation is still proportional

to the expectation. The variance of the fitness scales as Varwalks[f ] ∼
∑x

y=0 Varwalks[s(y)],

as would occur if the uphill steps were uncorrelated. The relative variances of both f(x)
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3 ADAPTIVE WALKS 28

and µ(x) go to 0 for large x, and therefore the “typical” trajectory is well described by the

average trajectory.

The key feature of the dynamics is that the “global” epistatic information — the long-

distance correlations in fitness – determine the rate and predictability of evolution, as op-

posed to local, short-range statistics (which are the ones responsible for things like the

number of local maxima). The evolutionary trajectories of different landscapes look similar

if their statistics are similar. We will discuss the relationship of fitness trajectories within

the same landscape in more detail in Section 4.3.
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Figure 4: Mean and standard deviation of µ(x), s(x), and f(x) for adaptive walks with

α = 0.45 averaged over 300 trajectories (left column). Log-log of averaged trajectories for

various α (right column). µ(x) is negative and decreases more slowly for larger α. This

slower decrease leads to larger s(x), and therefore to larger f(x). Relative variability of µ(x)

and f(x) decrease with x, while that of s(x) does not.
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Figure 5: Logarithmic derivatives d log(quantity)/d log(x) of trajectories for s, µ, and f .

Derivatives computed numerically from trajectories in Figure 4 around x = 100. Deriva-

tives of average values in blue, derivatives of standard deviations in orange. All quantities

roughly follow power law trajectories. Exponents of s and f increase linearly with α, while

µ decreases. Simulations (dots) match theory (dashed lines) well for s for all α and for µ for

low α. Deviations are due in part to finite walk-length effects.
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4 Properties of adaptive walks

The analytical framework introduced in the previous section allows us to understand many

features of the evolutionary dynamics quantitatively. The explicit dependence on past evo-

lution means that the long-range statistical structure of the landscape is important for un-

derstanding evolutionary trajectories. In particular, evolution drives populations to highly

non-generic places on the fitness landscape. We highlight some of the important properties

of the dynamics and the evolution-conditioned fitness landscape here.

4.1 Comparisons with typical paths to uphill points

One way to quantify the “non-generic” nature of the evolutionary dynamics is to compare

random adaptive trajectories to paths that reach the same fitness gain in the same number of

steps. We thus must ask: on a power-law correlated landscape, what does a typical random

walk of length x and fitness gain x(α+1)/2 look like?

We can use the covariances calculated in Appendix A.1 to find the average trajectory con-

ditioned on the endpoints using formulae for conditional expectations of Gaussian random

variables: For power-law correlated landscapes, we find

E[s(y)|f(x)] ≈ α

2

(
yα−1 + (x− y)α−1

)
x(1−α)/2 (46)

This is a symmetric trajectory, steepest at the ends. The average step size is at most x(1−α)/2,

and decreases to x−(1−α)/2 in the middle.

Example trajectories for α = 0.5 are shown in Figure 6. The conditional random walk

trajectories tend to be very lucky at the beginning and end (with high slopes there), and

increase only very slowly in the middle. This is in contrast to the adaptive walks, which

are typical at the beginning, and then gradually slow down while but continue to gain

fitness. In the middle portion of the typical conditioned random walk the average step size

is x−(1−α)/2, but the variance of the step size is O(1), which means that the walk does not go

systematically uphill. There is a probability only slightly less than 1
2

of steps in the middle

being deleterious. Conversely, the late steps are much larger than those of adaptive walks.

Despite these differences, the neighborhood of the endpoint of the typical conditioned walk

has µ(x) ∝ −x(1−α)/2 just like the adaptive walk. However, even though the scalings of the

µ(x) at the end of the typical walk and the adaptive walk are the same, the coefficients are

not; the typical walk has a larger negative µ(x) by a multiplicative factor. Since the fraction

of mutations that are adaptive falls off as a Gaussian in µ(x), this difference can be very
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Figure 6: Average evolutionary trajectory compared to typical trajectories of random walks

on the landscape constrained to have the same endpoints (α = 0.5). Evolution finds a steady

path uphill, while typical trajectories with the same fitness gain are lucky at the start and

end of the path.

important for future dynamics — adaptive walks are more likely to continue beyond further

beyond x before getting stuck.

4.2 Finite L and reaching a local maximum

The results discussed thus far are for the limit of infinite L: we have assumed that there are

enough beneficial mutations at any step that the distribution of fitness effects is essentially

deterministic given µ(x), and many uphill steps are always available, even when these con-

stitute a very small fraction of the total of L potential mutations. A crucial consequence of

finite L is the tendency to eventually run out of beneficial mutations: this will occur when the

fraction of mutations that are beneficial decreases to O(1/L). We can predict the magnitude

of the total fitness gained, fmax, before a local maximum is reached. This can be calculated

directly for the independent fitnesses and independent steps (additive model) cases. For

power-law correlated landscapes, we can use our large-distance-scale approximations to find

how fmax scales with genome size, L.

For the additive model, each site contributes independently to the fitness. Thus the global

maximum can be reached and fmax ∝ L. For the independent fitnesses model, at every step,
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we are presented with L independent choices of new fitnesses, F . A large fitness is unlikely

to be found when the probability of any individual neighboring fitness being greater than

the current fitness is < O(1/L). This implies that the absolute fitness Fmax will scale as

Fmax ∼
√

log(L), and since a typical starting point has F (0) ∼ O(1), fmax ∼
√

log(L) as

well. Note that this fmax is a consequence of the Gaussian tail of the fitness distribution:

with longer-tailed distributions, as we discuss in Section 6, the fitness can increase further.

The maximum fitness reached can similarly be estimated more generally: simply follow the

deterministic dynamics until a value is reached such that there is only O(1) available uphill

steps: this occurs when P (s > 0) ∼ O(L−1). With our Gaussian-random landscapes, this

condition is exp(−µ2/2σ2) = O(L−1), i.e. when −µ ≈ σ
√

2 log(L). Until then, with high

probability there exists a series of uphill steps.

For exponentially correlated landscapes, we showed that E[µ(x)] ∝ −σ(1 − e−1/ξ)1/2x1/2.

Thus the adaptive path can go (1−e−1/ξ)−1 log(L) steps, with cumulative fitness gain fmax ∝
σ(1−e−1/ξ)−1/2[log(L)]1/2. For ξ � 1, this is approximately σξ1/2[log(L)]1/2, the same scaling

with L as the independent case. (Of course, if ξ = O(L), then fmax ∝ L.)

For power-law correlated landscapes, we found that µ(x) ∝ x(1−α)/2 for a walk of length x,

and accordingly f(x) ∝ x(1+α)/2. Therefore, f ∝ (−µ)(1+α)/(1−α), and we have

fmax ∝ (logL)(1+α)/2(1−α) (47)

This is still logarithmic in L, but can be many times further than the independent case

(which corresponds to α = 0).

How good are the maxima which adaptive walks reach? Specifically, one can ask: how large

is fmax compared to the maximum fitness of any genome within the same distance from the

starting point as the length of the walk, x? Using Equation 11, we can compute fmax(ball) for

a ball of radius x. For power-law landscapes, fmax(ball) ∼ x(1+α)/2
√

log(L). As the adaptive

walk reaches fmax ∼ x(1+α)/2, it only misses out on the factor of
√

log(L). Therefore fmax
and the maximum achievable by any walk of the same length are both powers of log(L), but

the latter has an extra factor of
√

log(L).

Another method of quantification is computing fmax,up, the maximal fitness gain attainable

via any adaptive walk. This can be computed explicitly for the independent fitnesses case

(Appendix C.2) to obtain fmax,up ∼ L1/4. This is a factor of L1/4 smaller than the maximum

fitness F ∗ ∼ L1/2 of any genotype on the hypercube. Therefore the largest possible fitness

gains are inaccessible via uphill-only evolution. For non-independent fitnesses, results are

likely similar; as we will show in Section 5, even alternate weighting schemes won’t let us

approach F ∗ in any power law model (even in a scaling sense).

All the above results, underscore that understanding typical behaviors of adaptive dynamics
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4 PROPERTIES OF ADAPTIVE WALKS 34

is very different from understanding “typical” local geometry of the fitness landscape, and

even than some of the large-scale properties of the landscape.

4.3 Variability of evolutionary outcomes

The variances computed in Section 3.3 were computed across the entire ensemble of fitness

landscapes, by comparing all uphill walks on all landscapes with particular statistics. For

power law walks, we noted that Varwalks[f(x)] ∝
∑

y<x Varwalks[s(y)] - suggesting that the

correlation between individual steps is weak enough to not contribute (at least in a scaling

sense) to the overall variability of evolutionary trajectories. However, for natural populations

we are usually interested in the variability between two evolutionary trajectories starting

from a single genotype on the same landscape. This is important to understand populations

separated by spatial structure, the variability of evolutionary outcomes, and in experimental

settings to understand the statistics of parallel evolutions from a single common ancestor.

The analysis of adaptive walks suggest that the conditioning on past evolution is important

to understand this variability; therefore we should consider two adaptive walks starting from

a genotype which is itself the result of evolution. More concretely, we consider the following

scenario: a population evolves via an adaptive walk for some genetic distance xb. Then the

population is separated into two non-interacting subpopulations, each of which explores a

separate direction in the same landscape. We will refer to this trajectory as a branching

path. The walk starts at a root x = 0, continues along a shared trunk, and then splits into

two branches at the branch point xb, each branch continuing until the total number of steps

in each reaches a total of x. We will be interested in tracking the fitness fi(x) relative to

the root for the two paths i = 1, 2, and the difference ∆f(x, xb) ≡ f1(x)− f2(x) between the

fitness of the endpoints of the two paths which branched at xb. Figure 7 shows the trajectory

of f for such a walk on a power-law correlated landscape.

On power-law correlated landscapes, simulations show that long after the branching, the

variance between the two branches on the same landscape behaves the same as the variance

of a single path across different instantiations of the random landscape (trivially true for

the independent fitness model). Specifically, Figure 8 shows the ratio of Var[∆f(x, xb)] to

twice the between-landscapes variance of the post-branch parts of the walk: 2Var[f(x) −
f(xb)] (with the factor of two accounting for the variance of the difference between two —

putatively — independent fitness increases.) As expected, Var[∆f(x, xb)] is smaller than

2Var[f(x) − f(xb)] due to correlations induced by the shared trunk. However, the ratio

approaches unity for x� xb , suggesting that, indeed, variance between landscapes behaves

the same as variance between branches in the same landscape at large genetic distances. We

expect that the ratio approaches unity as a power of 1/(x− xb).
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Figure 7: Typical example of cumulative fitness gain f for the two branches of a branched

trajectory in a power-law correlated landscape. Paths branch at end of black curve (a

distance of x0 = 75 steps from root of walk). Correlations between branches quickly decay,

but global structure of epistasis keeps relative variability of f small.

The numerical results suggest that for longer evolutions, there is not much difference between

taking multiple paths on the same fitness landscape, or taking paths on different fitness

landscapes. For a branching path, the shared part provides some extra correlation, but

this only persists for short distances from the branch. The long-term variability between

branches only depends on the long-range statistics of the fitness landscape.

5 Greedy and abstemious walks

Thus far, we have considered walks that take uphill steps with probability independent of

the fitness increment, s. We now consider different ways of choosing which uphill step to

take and how this affects the statistical properties of the walks. We will also be interested

in rare (but plausible) adaptive walks whose fitness trajectories are highly anomalous.
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Figure 8: For branched random adaptive walks,ratio of the between-branch variance on a

single landscape, to the single branch variance across landscapes: Var[∆f(x, xb)]/2Var[f(x)−
f(xb)]. The different colors correspond to different distances, xb, of the branch point from

the starting point. Results for power-law correlated landscapes with several values of α are

shown. The variance ratios saturate to unity, suggesting that variability between different

paths on the same landscape behaves similarly to variability between paths on different

landscapes with the same statistics.

5.1 Natural weighting

With birth-death fluctuations in the strong-selection weak-mutation regime, the probability

of fixation of a beneficial mutation is proportional to the fitness benefit, s. We only need

a slight change in the analysis to understand the dynamics under such a weighting (and

indeed, for any power sκ). Because the distribution of non-negative s is exponential in the

limit −µ� σ, we have:

Edyn[s(x)|µ(x)] ≈ qσ2/(−µ(x)) (48)

where the coefficient q is the ratio of the average step taken to the average positive step

available. For weighting sκ, q = Γ(κ+2). For unweighted steps q = 1; for fixation probability

s, q = 2. This increase does not change the scalings, but we shall see that it changes the

fitness at which the evolution stops by a multiplicative factor.

The effects of q for power law correlated landscapes can be analyzed simply. For −µ � σ,

the change in q is similar to rescaling σ by
√
q; therefore s(x) and µ(x) scale the same way

with q. In particular, we have −µ(x) ∝ √qxν and f(x) ∝ √qx1−ν with ν = (1− α)/2. The

evolution reaches a local maximum after X steps when −µ(X) ∼ σ2
√

log(L), which gives

us X ∼ [log(L)/q]1/2ν . At this point, the fitness increase is

f(X) ∼ √qX1−ν ∼ [log(L)](1−ν)/2ν

q−1+1/2ν
(49)

Since 1/2ν = 1/(1 − α) > 1 for all positive α, the smaller the q the higher fitness the

adaptive walk reaches; being greedy is deleterious in the long run. Going from randomly
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5 GREEDY AND ABSTEMIOUS WALKS 37

chosen mutations to fixation probability proportional to s decreases the maximum fitness

reached by a factor of 2−α/(1−α). The suppression is strongest for α near 1. (Note that for

α = 1 this result does not apply as the maximum fitness is of order L independent of q which

only determine in which order the steps are likely to be taken).

In larger populations, the fixation of mutations tends to be greedier than in the strong-

selection, weak-mutation regime. Multiple mutations will arise in each generation and com-

pete with each other, giving fixation probabilities growing more rapidly than linearly in s

(indeed, can be highly non-linear). However large populations are polymorphic with the

population spread out over many genomes — effectively taking many paths in parallel —

and the behavior is much more complex; we discuss it in more detail in Section 8.

5.2 Slow but steady adaptive walks

The above analysis suggests that to reach as high as possible fitness in an adaptive walk,

one should carefully — and artificially, although using only local information and memory

— chose which uphill steps to take, being as abstemious as possible.

The independent fitness model is simplest. If from each point the smallest available step is

taken, then the walk can continue for of order L steps of size ∼ 1/L before −µ(x) becomes

of order σ and the number of available steps starts being limited. Along such a walk, L2

neighbors will have been “seen”. The maximum fitness seen will be σ
√

4 log(L); if a fitness

of this magnitude is selected, this will increase the fitness at the endpoint by
√

2 compared

to a random adaptive walk (which effectively selects the maximum of L fitnesses). A good

strategy is to take steps until such a fitness is seen (which will happen with high probability),

take the anomalously good step, and – most likely – get stuck there.

For power law-walks, the behavior is much more interesting. The analysis in the previous

sub-section is correct for any fixed q for large L; what happens when we have q ∼ L−ζ for

some positive ζ < 1? In particular, to better characterize the topology of the landscape, we

would like to know what slow steady paths are likely to exist. Unfortunately, as the number

of steps, x, starts to become of order L, the tree approximation we have been using breaks

down. A major complication is then that some fraction of possible steps — of order x out

of L — would reverse mutations that have already occurred. This changes the correlations

and the response function forms we have derived no longer obtain. But there is a simple way

out: if we only consider mutations that have not already occurred, then the symmetry under

permutation still implies that the L − x allowable next steps will still have a distribution

well characterized by the now-restricted µ(x) as long as L − x is large. Thus we should be

able to take a total number of steps, X, at least some fraction of L.
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5 GREEDY AND ABSTEMIOUS WALKS 38

For very small q, µ(x) will remain small until large x. The distribution of available s is

thus not far from symmetric and a positive s can be chosen with typical value of order q (as

long as q � 1/L). The contribution from the s(y) history to the conditional mean, µ(x), is

then simply −qxν . For Equation 28 to be true the s(y) history must cancel the µ(x) history,

so Equations 30 and 31 require that −µ ∼ qx2ν . The walk can continue in this way until

−µ(x = X1) ∼ σ which occurs for X1 ∼ 1/q1/2ν at which point the fitness gain has already

reached

f(X1) ∼ qX1 ∼ q1−1/2ν � σ. (50)

We can now choose q just small enough that X1 = O(L): q ∼ 1/L2ν = L−1+α (which is larger

than O(L−1) as required), so that f(X1) ∼ L1−2ν = Lα — a remarkably good outcome!

The walk can be continued into the regime where −µ� σ as well. To do this while keeping

the total length X of order L, one needs

q ∼ log(L)

L2ν
(51)

and this walk reaches a height

f(X) ∼ L1−2ν
√

log(L) = Lα
√

log(L) (52)

Note that the logarithmic factor should really be log(qL) as qL is the size of the pool of

neighbors with s in the bottom q fraction of the positive ones. But as log(qL) ≈ (1 −
2ν) log(L) this only decreases the maximum fitness reached by an order one factor, and the

walk could keep going a bit longer by loosening the restriction of q. However it will still

be highly restricted by conditioning on the past and we expect that not much extra can be

gained by gradually relaxing the q restriction: this could be analyzed by our methods but

as it would at best change the coefficient of the bound, we do not do so.

As explained in Section 2.3 the absolute maximum fitness on the hypercube is of order

L(1+α)/2. For α = 1, the additive model, the above estimate — up to the log factor which

is unreliable in this case — is the same as this; of course, any strategy works perfectly here.

Note that for the independent case, α = 0, the analysis above breaks down, as 2ν = 1, but

naive extrapolation does give
√

log(L) with no power of L, as for natural walks which have

q = 2.

For power-law correlated landscapes how well can one do if even longer walks are allowed,

so that many mutations are reversed with some — presumably many — reversing multiple

times? This is a complex question which we will not endeavor to answer here. But the

method of conditioning on the past should enable some exploration even in this regime. We

leave as an intriguing open question whether, using only local information, the lower bound

of the maximum reachable fitness in Equation 52 can be beaten. Note that there are already
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6 BEYOND GAUSSIAN LANDSCAPES 39

subtleties in actually finding a path by choosing from the lowest q fraction of the available

positive steps. This could be done by trying many steps and picking the lowest uphill one:

in the regime where −µ is still of order σ, only roughly 2/q steps need to be tried. But once

this is done, then in principle the future possibilities are conditioned on the s’s tested but

not chosen. This means that the rate of loss of mutations that have already been chosen

or tested is greater by this factor and the argument using the permutation symmetry of the

untried mutational directions breaks down. We suspect that this would not actually affect

the scaling of the fitness achievable, but that would require a much trickier estimate of the

effects of the conditioning-by-testing. What we have shown, is the existence of an uphill

path that can reach a fitness gain of order fα
√

log(L), but not quite how to find it with

local information.

What if global information is available? From a random initial genome, how high fitness

increase will the best possible path reach? In the independent case, a direct computation

(Appendix C.2) suggests that this goes as L1/4. More generally, answering this question is

likely to be very difficult analytically because of the strong correlations among different direc-

tions, and is numerically intractable without generating the whole landscape and exploring

— exponentially hard in L.

6 Beyond Gaussian landscapes

A key question about all our results is the generalizability of the quantitative and qualitative

features to other models of epistasis. In particular, how sensitive are the adaptive walks to the

assumptions of Gaussianity of the random landscape? Addressing this generally is beyond

the scope of this paper, but we can begin to explore by considering mixed landscapes whose

fitness function is a linear combination of an epistatic Gaussian function and a non-Gaussian

additive part. More precisely, the fitness Ftot is given by

Ftot(g) = FC(g) + FA(g) (53)

where FC is a distance dependent landscape, and FA is an additive landscape. Both parts

of the landscape depend on the same parts of the genome, but they are statistically inde-

pendent. Note that this is different than having a fraction of the sites on the genome not

participating in the epistasis with mutations at those sites simply adding to the fitness: in

that case adaptive walks can always continue until all the non-epistatic mutations are ex-

hausted. In contrast, the models we consider have many local maxima and adaptive walks

can not necessarily take O(L) steps. The RMF model is the simplest example, with FC the

independent fitnesses model.
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One way to understand models of this mixed-type is to think of the additive piece as being a

modification of the dynamical rules. Recall the general transition rule for steps, to be taken

with probability P (g → g′) = φ(sg→g′)/Z. With a mixed landscape, we can decompose the

fitness benefit, s, of each potential mutation into an additive part, sA, and the part from the

correlated landscape, which we will call sC . Then, the probability of taking a step becomes

P (g → g′) = φ(sC(g → g′) + sA(g → g′))/Z (54)

After convoluting with the distribution of sA, we can consider this to be a modified transition

rule for steps, sC , to be taken in the correlated part of the landscape. With φ(s) still a step

function, the additive part of the landscape can compensate for the non-additive part; the

path can take negative steps in the correlated landscape so long as a sufficiently positive

step in the additive part is available to make the total fitness step positive.

The effects of the loosening of the requirements for steps in the correlated part of the land-

scape, will keep the DFE mean, µC , of the correlated part of the steps from getting too

negative and allow for long evolutionary trajectories. In the limit of infinite L, µC(x) will

saturate for large x and from then on the statistics of the available steps will no longer

change. In Appendix C.3, we use the modified transition rule together with the response

kernels to directly study combinations of an additive model with a power-law-correlated

model, first analyzing the saturation of µC .

A key question, is the behavior large finite L: when can the additive part stop walks getting

stuck at local maxima? We first consider the simplest case: the RMF model (α = 0)

[36]. In this case, it is simple to show that a Gaussian additive part with relative variance

σ2
A/σ

2
C larger than O([log(L)]−1), will ensure that with high probability there are always

uphill steps available. In Appendix C.3 we show that this result also holds for power-law

correlated landscapes. This quantifies the crossover from walks that get stuck like those we

have analyzed, to walks of length O(L). In the limit of very large L, this is equivalent to the

previously observed “phase transition”” [36, 41] — really a cross-over that only exists with

mixed scaling of the statistics with L. For any fixed non-zero σ2
A/σ

2
C , in the limit of large L

adaptive walks can take O(L) steps.

It is instructive to compare how much of an additive part is needed to avoid random adaptive

paths getting stuck, with the probability that there exists an uphill path of length O(L). An

upper bound for the relative variance needed is only σ2
A/σ

2
C ∼ O(L−2). Here, the strategy is

to pick a step with positive sA, and random sC with |sC | < sA. We can do this with high

probability so long as σA � L−1. With this strategy, the induced µ(x)C is random and O(1),

so the walk can continue until all positive additive steps are taken. Such a walk would only

have fitness gain of O(1); it remains an open question if a more refined strategy can lead to

large fitness gains.
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The effects of additive parts of the fitness function are more dramatic if the additive parts

of the step-sizes are broadly distributed, especially when there are rare mutations that have

very large fitness effects. As an explicit example, we consider a distribution of sA with a

power law tail so that the cumulative distribution function is∫ ∞
s

P (sA = s′)ds′ ≈
(
s

σA

)−ψ+1

(55)

for large s. For ψ > 3, the scale σA sets the standard deviation; for smaller ψ, the variance is

infinite. When the µC of the correlated landscape is large and negative, adaptive mutations

must involve rare values in the tail of sA. If there is a large negative step sC in the correlated

landscape, the probability that the mutation is net adaptive is given by

P (s > 0|sC) ≈
(
−sC
σA

)−ψ+1

(56)

So long as this probability is greater than O(L−1), one of the L possible mutants, is likely to

have sufficiently large sA and the rare, high effect mutation will prevent getting stuck at a

local maximum. The correlations in the landscape reflected in the response kernel structure,

implies that taking deleterious steps in the correlated part of the landscape makes the DFE

mean µ tend to increase becoming less negative. Therefore if the large additive steps are rare

but not too rare, there will be a dynamical balance: evolution proceeds by usually taking

small uphill steps in the correlated landscape, and occasionally uses the broadly distributed

piece to keep going and “release the pressure” on the correlated landscape. This dynamics

is studied in detail in Appendix C.4. We find that the effects of the additive piece are strong

enough to allow this process to continue if

σA
σC
∼ L−1/(ψ−1) (57)

(with σ2
C the variance of the correlated parts of the steps). Thus only a very small additive

piece is needed to un-block long adaptive walks. (The limit ψ →∞ is like the Gaussian case

which requires σA ∝ 1/
√

log(L).) For ψ = 2, we only need an additive piece of O(L−1) for

long walks — just enough to offset the smallest possible sC when µ = O(1).

Note that with a long-tailed distribution of available mutations, the behavior can depend

strongly on the probability, φ(s), of a mutation fixing. If φ(s) ∝ s, then for ψ < 2 the largest

effect (“jackpot”) mutations would be chosen which modifies the nature of the walks and

their dependence on L.

The analysis of the additive-plus-correlated landscapes shows explicitly how long-term evo-

lutionary dynamics can depend sensitively on the tails of the distribution of fitness effects of
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7 TIME DEPENDENCE OF WALKS AND LANDSCAPES 42

mutations. Rare large effect mutations can drive evolution in parts of the landscape where

the “typical” modest effect mutations — the bulk of the DFE — are deleterious. And such

rare large mutations can unlock new sections of the fitness landscape and enable the typical

DFE to again drive the evolution. As we will discuss below, these phenomena do not require

an additive part of the landscape: they can occur whenever the distribution of effects of

available mutations around some genomes has a long tail.

7 Time dependence of walks and landscapes

7.1 Adaptive walks in time

The properties discussed thus far all depended only on the geometry of the random adaptive

walks. The pseudo-“dynamics” was in terms of number of mutations. However we are also

interested in how the evolution progresses in time. The simplest way to convert the mutation

steps to actual dynamics, which is essentially correct for modest size populations, is to take

the time between mutations to be exponentially distributed with characteristic rate 1/τM
proportional to the total population mutation rate (the product of the mutation rate per

site, L, and the population size). If a mutation is deleterious, it is purged with probability

one in a time much shorter than τM . If the mutation is adaptive, it fixes in time much

shorter than τM . We will henceforth set τM = 1.

With this dynamics, evolution on any Gaussian landscape slows down dramatically with

time. Figure 9 shows an example of the fitness gain as a function of time, plotted together

with the DFE mean µ(x(t)). When µ is a large and negative (which it will systematically

go to as the number of mutations increases), the waiting time for the next mutation is very

long. More precisely, we let τU(x) be the time taken for the xth uphill step. The average

time τ̄U(x) = E[τU(x)|µ(x)] goes as τ̄U(x) ∝ 1/P (s(x) > 0|µ(x)), which with our Gaussian

fitnesses gives

τ̄U(x) ∼ eµ(x)2/2σ2

(58)

when −µ � σ (Appendix D.1). There is a super-exponential slowdown in the beneficial

mutation rate due to the rarity of uphill directions; τ̄U(x) will reach O(L) as the number

of beneficial mutations becomes O(1) and at that point the walk is likely to stop at a local

fitness maximum.

While there are still many available beneficial mutations, the logarithm log(τU(x)) is roughly

normal (deviations discussed in Appendix D.1), with mean and variance that increase as x1−α

(Figure 9, right panel). The broad distribution of the waiting time between mutations means
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Figure 9: Time dependence of adaptive walks. Left panel shows an example of the fitness gain

versus time, F (x(t)), of a typical adaptive walk (blue) on a power-law correlated landscape

with α = 0.75, along with the dynamics of the DFE mean, µ(x(t)) (orange). The typical

time between steps, τU(x), goes as exp[µ[x(t)]2/2σ2], so that the logarithm of the waiting

time for a beneficial mutation to arise and fix has mean and variance that both increase

rapidly — although not monotonically — as the evolution progresses (right panel). Time is

in units of total population mutation rate.

that there is not a steady slowing down: initially, there will be a small number of quick, large

effect mutations, but after a while there will be a mixture of long and short intervals as seen in

Figure 9, before the evolution stops. Of course, if fluctuation effects are included, deleterious

mutations can fix, or, in larger populations, “tunneling” through deleterious intermediaries

can occur: the dynamics then becomes more complicated.

7.2 Time-dependent landscapes

In nature, and even in the lab, environments are never completely static and whether or not

mutations are beneficial can be very sensitive to even small changes in the environment [31].

As this can result from changing the subtle balance between the deleterious and beneficial

consequences of a mutation, random fitness changes are a natural caricature of these effects.

More generally, we would like to understand the effects of conditioning on evolutionary

history in environments that have been somewhat different than the current one. Thus we

are led to consider evolution in slowly changing fitness landscapes — sometimes dubbed

“seascapes”.

To make progress, we again focus on Gaussian correlated fitness functions, but now with

temporal correlations as well. The response kernel framework can be used to analyze fit-
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7 TIME DEPENDENCE OF WALKS AND LANDSCAPES 44

ness landscapes that change simply in time — we comment later on more complex time

dependence.

We consider fitness landscapes with simple time-dependent correlations C(`, t) given by

C(`, t) = e−|t|/τEC(`) (59)

for the variance in fitness difference between two genomes x mutations apart, measured

at times t apart. At any given instant in time the correlation structure is the same as

before; however, fitnesses at different times become decorrelated on a timescale of τE. The

exponential time decay corresponds to a memoryless process, which simplifies both analytical

and computational understanding (see Appendix D.2 for details).

Time dependence qualitatively changes the nature of random adaptive walks — especially

their dynamics. The system approaches a statistical steady state for which the distribution

of the time to take an uphill step τU(x) loses explicit dependence on the mutational distance

from where it started. The average time between steps, τ̄U ≡ E[τU ], plays an important role

in the overall dynamics — but there are a whole spectrum of time scales. The behavior in

the random seascape is controlled by the balance between finding uphill steps, in τU(x), and

significant decorrelation of the landscape tending to decrease −µ(x) back towards zero on

time scale τE. Calculations in Appendix D.3 show that for τE large, our focus, we expect

the steady-state value of the DFE mean, µc, to scale like

µc ∼ σ (τE/τ̄U)(1−α)/2 (60)

This is because ξD ≡ τE/τ̄U serves as an effective length scale: it is the number of steps

taken in a time τE, and gives the number of mutations in the past that still have significant

effect on the current DFE, via contribution to the current µ(x).

From Equation 58, we know that µc only depends logarithmically on τU . Equation 60 then

implies that in the dynamical steady state, to logarithmic accuracy, log(τU(x)) ≈ log(τ̄U) ≈
log(τE) so that, for self-consistency we must have

µc ≈ −σ[2 log(τE)]1/2 (61)

independent of α due to the sharp Gaussian tails of the distributions.

Numerical simulations confirm this predicted scaling: Figure 10 shows µc versus log(τE)1/2.

Each simulation was run for a fixed number of uphill steps X = 200. For low α, the

relationship is linear over a large range. For larger α, the behavior is linear for modestly

large τE, but for longer τE, namely those where |µc| � X−(1−α)/2, µ did not saturate in the

number of steps allotted for the simulations. The data in Figure 10 is thus plotted only for

τE less than this characteristic crossover value.
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Figure 10: Scaling of the steady state average available fitness step, µc, with log(τE/τU)1/2

for walk of length X = 200. Relationship is linear until ln(τE) ∼ X(1−α)/2, where simulations

have not saturated (not shown). For large α and τE, µ did not saturate for any simulations

with this X due to slower growth of −µ(x).

The typical fitness gain in one step, s(t), is of order σ2/|µc|. This, times the average rate of

fixing of beneficial mutations, ∼ 1/τ̄U , is the “fitness flux” — the apparent rate of increase

of fitness. If µc is small — when the landscape changes quickly relative to mutations —

then the fitness flux is high. Conversely, the fitness gain in any one environment — that

is, the maximal fitness of any genotype reached during evolution as measured in the fitness

landscape at a fixed time — scales as 1
τE

(σ2/|µc|). The quicker the environment changes, the

less adaptation occurs relative to any fixed environment.

But the details of the dynamical behavior are much more interesting and subtle. Due to the

broad distribution of τU(x), to understand the qualitative behavior of the dynamics we must

analyze the distribution of mutation times and not just the average τ̄U . This can be done

asymptotically for large τE. For ease of notation, we define the following quantities: µ(x)

is taken to be the mean available fitness step just after the previous step has been taken;

its scaled minus-average, m ≡ −µc/σ � 1, and its scaled variance W ≡ Var[µ(x)]/σ2, so

that the quantity h(x) ≡ (µc − µ(x))/σ has average zero and variance W (h is not exactly

Gaussian, but is close enough for these calculations).

In Appendix D.4, we show that for τE large, there are two classes of mutations: those that
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7 TIME DEPENDENCE OF WALKS AND LANDSCAPES 46

occur in time much smaller than τE, so that the landscape does not change significantly

between mutations, and those with long enough weighting times (but still smaller than τE)

such that some decorrelation has occurred. More precisely, when the fraction of beneficial

mutations, R(h) ∼ exp(−(m + h)2/2), is larger than b ≡ m2/τE, beneficial mutations will

occur in a time much smaller than τE. This is typically the case; however, for anomalously

large −µ(x), the waiting time is dominated by waiting for −µ(x) to decrease (due to the

loss of correlations with time) until the adaptive fraction, R, increases sufficiently that a

beneficial mutation occurs.

For mutations that have to wait for environmental change, the waiting time is τU ≈ τE(h−H)
m

where H is the crossover value of h, for which R(h = H) = b. Because H �
√
W , this only

occurs rarely and the distribution of h−H decays exponentially in this regime. The mean τ̄U
is found to be dominated by the “slightly-stuck” situations, places at which h(x)−H ∼ W/H:

this thus gives τ̄U in terms of the parameters.

We have found that the typical τU(x) is much smaller than the ones which dominate the

average, the slow steps that have to wait for environmental change which are only a fraction

m−κH of the total steps, where κH = 1+α
1−α + log(W/m). The evolutionary dynamics, we thus

see, will be characterized by series of fast steps when µ(x) is comparable to µc or somewhat

smaller, interspersed with occasional slow steps. The slow steps occur when just after the

previous mutational step µ(x) is substantially less than µc (by more than σH), in which case

the population must wait for the landscape to change before a beneficial mutation is found

and fixes.

Figure 11 shows a typical example of the dynamics of fitness gain with exponential tempo-

ral correlations. There is a period of rapid adaptation before the time dependence of the

environment comes into play: the fitness flux is large and µ is still decreasing (right panel).

As the dynamics slows down the time dependence matters; µ and the fitness flux (whose

integral is plotted in the figure) saturate and then fluctuate stochastically with steady-state

distributions. One can also see the heterogeneity in the fitness flux; the fitness looks as if

it is taking very discrete steps. Looking more closely (right panel), one can see that there

are periods during which mutations occur rapidly, and occasional anomalously long gaps

between successive mutations.

Figure 11 also shows the fitness gain with respect to a landscape at a fixed time. Measured

in the initial landscape, the fitness first increases and then does a random walk with diffusion

constant σ2/τ̄U as the dynamics become uncorrelated from that initial landscape. The tran-

sition from uphill behavior in the initial landscape to the random walk behavior depends on

C(`). If negative correlations with previously observed genotypes are strong, the dynamics

drives the original-landscape fitness back to zero before commencing the random walk. If
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7 TIME DEPENDENCE OF WALKS AND LANDSCAPES 47

correlations with other genotypes are weak, then the random walk commences almost imme-

diately and is centered around the highest fitness value reached during the uphill dynamics.

This can be seen most easily by examining the independent and the additive models, respec-

tively. In the independent model, once the steps are no longer biased towards being uphill,

any single step will tend to take the fitness to a random genotype (with fitness distribution

centered around zero). Conversely, for the additive model, future steps are independent of

the previous fitness gains; therefore, the average value of the fitness in the present landscape

at future times will be the average value of the current fitness — the evolution “remembers”

that it gained fitness when the landscape was the one driving the dynamics. Models that lie

between the two extremes — such as the exponentially and power-law correlated landscapes

— will either have smaller memory of the fitness gain, or memory that decays more slowly

with time than for the independent model.
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Figure 11: Dynamics of µ and fitness gains, f , for uphill random walks in exponentially time-

correlated power-law random landscapes, with time in units of the landscape correlation time

τE = 108. Rapid adaptation occurs at start of evolution until µ saturates (blue in right panel)

as the statistical steady-state is reached. The right panel shows a blow-up of this early-time

transient behavior. The left panel shows the cumulative fitness flux
∑x

y=1 s(y, ty) (sum of

fitness gains evaluated at times of mutations) which increases linearly in time (orange line).

But for any fixed time, t∗, fitness gains in the landscape at t∗, f(x(t), t∗), are guaranteed

to be positive only for times near t∗. Gain in initial landscape, t∗ = 0, (green line in both

panels) is correlated with fitness flux at start but then becomes a random walk with diffusion

coefficient σ2/τ̄U . Fitness gains in later landscapes, at t∗ = 3.3τE and at t∗ = 6.7τE are also

shown (in red and brown, respectively): they are random, then correlated with fitness flux,

then random again.

All the above analyses hold for when there are significant anticorrelations in the landscape.
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7 TIME DEPENDENCE OF WALKS AND LANDSCAPES 48

This requires there to be significant anticorrelation over the dynamically induced lengthscale

ξD. For landscapes that are additive up to a length-scale ξ (like the exponentially-correlated

landscapes), the behavior of the dynamics is qualitatively different for ξD < ξ than for

ξD > ξ. If ξD < ξ then the previous analyses hold, and there is intermittent dynamics where

the population occasionally has to wait a long time for the landscape to change before taking

a step. However, if ξ > ξD, then the landscape is effectively additive and µc is always small

(zero for the perfectly additive model). In this case evolution always proceeds steadily as

beneficial mutations are always available. Such seascapes forget past fitnesses quickly enough

that their correlations remain small and do not drive µ(x) to large negative values.

An important question is: In what sense are the fitness landscape neighborhoods in steady-

state atypical? They do not look like neighborhoods of “typical” points with the same DFE

mean µ(x) ≈ µc. To see this, consider what happens when the dynamics starts at some

random point on the fitness landscape with µ(0) < µc. Figure 12 shows that the dynamics

very quickly “resets” to what it would be if originally had µ(0) = 0. The initially large

negative µ decays away due to a combination of the exponential time decorrelation at rate

τE, but also due to the history of the trajectory. As at early times, there have not been

a large number of genotypes visited in the near past that had large negative µ, thus the

response kernel does not have enough “memory” to drive down future µ. (This is analogous

to the future evolution of a “typical” random trajectory conditioned only on the end point

fitness, discussed in Section 4.1.) This lack of a past history causes the dynamics to “forget”

its initialization.

Further evolution then drives µ down towards µc slowly; stabilization around µc requires

the development of a history of large negative µ in the near past. After some time of order

τE, µ will reach, and then fluctuate around, µc. At this point, the last few steps (more

precisely, the last ξD steps) will all have had µ ≈ µc. The population, now in dynamical

steady state, has arrived at a location on the fitness landscape that has a sort of “ridge”.

In the neighborhood of the current genome, most directions tend to decrease the fitness F

sharply while relaxing µ to less negative values. But there are some special directions —

back along the evolutionary trajectory — in which both F and µ do not change very much.

The history of evolution has led the population to a region that has different geometry than

a typical region with the same DFE mean µ.

Though many of our results depend on the Gaussian nature of the landscape, the nature

of local landscapes in dynamical steady state is less sensitive to it — and therefore may be

a general phenomenon. The “ridge-like” character only requires that the current average

potential step is correlated with the past evolutionary trajectory as a whole. This type

of dependence on the past means that to reach any sort of dynamical steady state in a

stochastically varying high-dimensional seascape, the population must be in a region of the
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7 TIME DEPENDENCE OF WALKS AND LANDSCAPES 49

current landscape for which its whole past trajectory is consistent with the steady state, so

that the memory of past history affects it in a steady-state manner. This criterion is very

different than just matching the statistics of the single-mutation DFE.
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Figure 12: Dynamics of walk started from a randomly chosen point with anomalously neg-

ative µ(0) < µc in exponentially time-correlated power-law landscape. Large negative value

of the mean-available fitness step, µ, is “forgotten” as it quickly becomes greater than the

steady state average value, µc, then approaches this from above (as occurs with random

initialization, µ(0) = 0, not shown), and then fluctuates around µc. This illustrates that

history of a trajectory, rather than just the local neighborhood parametrized by µ, matters,

and in steady state, the genomes are not at all like typical points with µ ≈ µc.

The analysis of simple exponentially-decaying temporal correlations of the landscape sug-

gests that even very slow time dependence qualitatively changes the nature of evolutionary

dynamics and the character of local landscapes conditioned on the past evolutionary history.

Exponential time correlations “blur out” the effects of the static-landscape structure. We

have seen that at long timescales in randomly changing environments, evolution reaches a

dynamical steady state where it does not improve too much in any one landscape; however,

the population is always improving in the current environment. This means that the rate

of fixation of new mutations, the fitness flux, does not decrease, on average. But in direct

head to head competition with an ancestor in the original environment, the fitness difference

of the evolving population would increase only slowly and then vary randomly. In spite of

this seemingly simple behavior, the complex dependence on the past remains, as evidenced

by the fact that neighborhoods at steady state have “flatter” directions than random points
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in the landscape with the same DFE (i.e. µ ≈ µc): the latter tend to have uniformly large

negative curvature.

7.3 General time dependent Gaussian landscapes

Many of the concrete features discussed above depend on the simple exponential time-

correlations of the landscapes. But within the Gaussian framework, one can consider more

general time correlation, parametrized by a time-dependent amplitude spectrum. In short,

each Fourier mode — roughly corresponding to each length-scale — has its own time de-

pendence. The most general form of correlations consistent with the distance-dependent

correlation structure is given by

C(`, t) = 2

∫ 1

0

[
ρA(z, 0)− (1− 2z)`ρA(z, t)

]
dz (62)

with ρA(z, t) any function of time with non-negative temporal Fourier coefficients, ρ̂A(z, ω)

which could be used to parametrize it.

Though we can formally write down the general time correlation, our current methods are

not sufficient to analyze cases beyond simple exponential time correlations — each ρA(z, t)

having the same pure exponential time-dependence — as in the previous section. Because,

in general, every order of epistasis has a different time dependence, generating the landscape

on the fly becomes problematic since the conditional probabilities of the µ no longer have

simple response kernel forms; they depend on the entire history of the known landscape. In

principle, one could compute “space-time” response kernels which were a function of distance

as well as time. However this would quickly become problematic numerically as in steady

state the landscape could need to change significantly between each mutational step so that

the number of variables would grow at least as x2 for a walk of length x, leading to matrix

inversion on the order of x6 per step for a total complexity for a walk of length X of X8

which, while still polynomial, rapidly becomes intractable. This is likely still true if the

space-time kernels were computed iteratively, although the complexity might then be held

at X6.

Further development of, heuristic, asymptotic, and approximate numerical methods are

needed to study general-time dependent Gaussian random landscapes. Because of the com-

plex environmental and evolutionary histories, and strong effects of conditioning on the his-

tory, the behavior is potentially especially interesting. For example, relatively rapid changes

of the small-scale properties of the landscapes could open up possibilities to continue evolving

in the much more slowly changing large-scale structure of the landscapes.
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8 Discussion

8.1 Lessons from the theory

Our study of evolution on random landscapes with distance-dependent correlations has given

us some key insights into the interplay between evolution and epistasis. The distance-

dependent correlation structure enables model definition based on features about which

one might have intuition, such as the relationship between genetic and phenotypic relat-

edness, rather than being constrained to convenient mathematical constructs (such as the

independent plus additive structure of the RMF models, or pairwise interaction models).

The simple relationship between the locally-defined (distance-dependent correlations) and

globally-defined (rescaled amplitude spectrum) descriptions of epistasis facilitate classifica-

tion and understanding of models; for example, we showed that the NK models, in the

appropriate scaling limit correspond to correlations that decay exponentially in genetic dis-

tance.

Our analysis of random adaptive walks on high-dimensional landscapes gives direct insight

into how epistasis can shape evolution and vice versa. One key point is that the evolution-

ary dyanamics depends more on long range properties than short range, local information.

Intuition that the “ruggedness” of landscapes — in particular distributions of local maxima

– determine how epistasis affects evolution is, in high dimensions, misleading at best. The

high dimensionality of the landscape, and consequent large number of possible mutations,

means that rare beneficial mutations can occur even when most mutations are deleterious.

Subsequently such mutations can drive large gains in fitness. This is especially true when

the distribution of fitness of potential mutations (DFE) is broadly distributed, as we showed

in the analysis of mixed models.

A primary result of our analysis is that the evolutionary history matters. The current DFE is

determined by the past evolutionary trajectory as a whole, not just the recent past. Except

in special cases — in particular with exponentially decaying correlations — it is not enough

to condition over summary statistics like the current fitness, or the fitness gain over the last

few mutational steps. For landscapes in which the fitness differences between genetically

distant genomes can be large — in particular the illustrative class we have studied for which

fitness differences typically grow as a power of genetic distance — mutations that occurred

far in the past collectively contribute in important ways to the present DFE. This reflects the

general conclusion that evolution is sensitive to large-scale properties and largely insensitive

to local structure.

The dependence on the past leads to highly non-generic points on the landscape near which
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the statistics of interactions between mutations in the neighborhood of the current genome

are very different than the neighborhoods of more generic, but superficially similar, genomes,

such as those with similarly DFEs. For example, at a random point the double-mutant DFE

(fitness difference to all genotypes distance 2 away) is determined solely by the current

(single mutant) DFE, but when evolution has occurred, the double-mutant DFE depends on

an integral over the past evolution (a generalization of the dependence of µ(x) on the past

that we have analyzed in detail).

Differences in these longer-range statistics determine the properties of future evolution con-

ditioned on past evolution. We have shown that adaptive walks tend to take populations

to places on the fitness landscape where they can continue uphill. Adaptive walks, while

taking individual steps that are not special — other than being uphill — are overall rare

and special paths through the landscape. In particular we have shown that they are very

different than typical uphill paths that take the same number of steps and have the same

total fitness increase.

Uphill evolution can continue as long as there are some beneficial mutations available. The

depletion of beneficial mutations depends on the entire past trajectory. Our results suggest

that there might be long-term benefits to “abstemious” walks where smaller fitness gains are

accrued at each step; at least in the landscapes studied here, “greedy” walks tend to lead

populations to dead ends much faster.

In some families of landscapes, in particular with an additive part of the fitness function,

an adaptive walk can “unstick” itself from genomes near which there are very few beneficial

mutations and move to where there are more. This is easier if the additive parts of the

step distribution are long-tailed: evolution can proceed in a mixed additive-plus-correlated

landscape by mostly steps that are uphill in the correlated landscape, only occasionally using

a rare, large additive mutation to get unstuck.

Similar behavior occurs when the landscape changes slowly in time. In the statistical steady

state that is reached after a long time, a large fraction of mutational steps — almost all in

the limit of very slow rate of environmental change — are uphill in the current landscape

and occur fast enough that the landscape is effectively static. Only a small fraction of

the steps “wait” for more beneficial mutations to become available because of the slightly

changed environment — but these few mutations occur slowly enough that they dominate

the average time between mutations fixing and thus the average fitness flux.

Collectively, the various features of evolution on epistatic landscapes show that the statis-

tical properties of fitness landscapes are insufficient for understanding evolutionary dynam-

ics: what really matters is the statistical properties of the landscape (and more generally

seascape) conditioned on past evolution — in general very different than unconditioned
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neighborhoods of the landscape. This conclusion is much broader than the particular class

of landscapes we have analyzed.

8.2 Possible experimental connections

The genomic fitnes landscapes we have analyzed are, of course, far from those that occur

in nature. However some insights can be gleaned for experimental microbial evolution and

some other real systems.

Richard Lenski has carried out long-term evolution experiments in E. Coli in a nominally

simple environment with selective pressure designed to be due solely to glucose limitation

[28] This experiment has run continuously for over 65,000 generations, with 12 replicate

lines. Quantitative analysis of the populations has shown that the fitness relative to the

ancestor has been steadily increasing throughout the evolution, but the rate of fitness increase

has slowed down, initially strongly and then more gradually [52]. The fitness trajectories

have been fit by a rough model of diminishing returns epistasis that predicts logarithmic

time dependence of the fitness trajectories [16, 52]. The shapes of fitness trajectories will

certainly depend on properties of the landscape, but our conclusion that they will depend

on large genetic-distance scale properties, rather than just simple features such as overall

diminishing-returns epistasis, suggests that better models are needed.

The time dependence of the fitness, and the similarity among Lenksi’s 12 separate lines,

can not be compared to our analysis, even roughly. The experimental populations are large

enough that many mutations arise, interfere, and add before any can fix. This tends to

make the evolution of large populations much steadier than the highly sporadic nature of

the evolution in small populations for which, as we have seen, the epistatic interactions

can make the number of available beneficial mutations change stochastically as the evolution

proceeds. Large populations are likely to average over some of these variations because of the

multiple directions that they explore in parallel. In addition, the likely non-Gaussian nature

of the evolution-conditioned DFEs likely makes the dynamics in both time and number of

mutations quantitatively different.

A surprising feature of Lenski’s data, revealed by following trajectories of mutations by

deep sequencing of populations every 500 generations, suggests that the rate of fixation of

new mutations does not change much after the initial decrease (with the exception of the

emergence of hypermutator strains) [18]. This could occur if the environment were gradually

changing so that the increases in fitness relative to the ancestor were not indicative of changes

relative to the current population — i.e. the fitness flux could decrease much more slowly

than the rate of increase of fitness in the original environment. Evidence from the mutation
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frequency trajectories for the development of ecological interactions (including coexistence

of evolved strains for much longer times than could be attributed to them by chance) [18],

support this candidate explanation. This would mean that the systems are evolving in a

landscape that is more like an externally time-dependent “seascape” than a static landscape.

It is worth noting that even if the time-dependence of the environment had been steady

and systematic instead of determined by the evolution itself, one would nevertheless have

expected a period of rapid adaptation in an effectively static landscape followed by reduced

adaptation in any one environment but nevertheless a relatively steady accumulation of

further mutations. Lenski’s experiments do not seem to have reached a state in which

the fitness increases in the original environment — measured by competing with labeled

ancestors that dominate the population [52] — have become random. But that is not what

would be expected if, in addition to mutations with epistatic interactions that depend on the

environment, there were also a small but still available supply of unconditionally beneficial

mutations (most simply with additive effects) that have not yet been depleted: these would

cause steady increase in fitness even measured in the original environment.

An opposite extreme of genome-wide adaptive evolution is to artificially construct a large

number of closely related genomes, and directly measure empirical fitness landscapes. Great

advances in genomics have made it possible to map out portions of a fitness landscape by

creating all possible variants at a small number of sites in the genome of an organism, and

measure the relative fitness of each variant (see the recent review article [9]). Examples in-

clude a set of mutations in a single protein, β-lactamase, which increase antibiotic resistance

[50], biosynthetic loci on yeast [21], and 24 loci on an RNA whose “fitness” is defined by its

binding affinity to a GTP agarose resin [24]. Researchers can fit the landscapes to models or,

more generally, decompose them, via their Fourier spectrum, as sums of all possible orders of

epistatic interactions. A recent meta-analysis showed that the Fourier amplitude spectra of

some low-dimensional (L = 4− 7) complete landscapes range from nearly additive to highly

epistatic (70% of variance from non-linear terms) [47]. Previous analyses had mainly focused

on fitting Rough Mount Fuji or NK models to the empirical landscapes [35, 47], with limited

success.

In addition to the question of what more general can be learned from empirical landscapes in

particular contexts, there is the much broader question of whether evolution on high dimen-

sional landscapes is fundamentally different than on low-dimensional ones. Most empirical

landscapes are very low dimensional with the number of sites varied usually ranging from

10-20. Larger studies have been carried out — see [30] for a recent example where variants

at 69 sites of an tRNA gene were considered – but they are far less comprehensive, only

probing modest pairwise-distances — in the tRNA gene, only 9 or so. With a small number

of sites, `, changed, high order epistatic effects — in the more general representation, larger
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larger length-scale components — are not probed. The combinatorial explosion of genomes

and hence interactions with ` means that even rare, strong, interactions can contribute to

the overall landscape for even modest `. The higher order interactions can dominate the

long-distance statistics of fitness landscapes, which our modeling and analysis suggests can

be a crucial driver of evolution via multiple successive mutations. Recent computational

work on fitness landscapes from data suggests that epistatic interactions determine available

evolutionary paths even in low-dimensional landscapes [44].

There are several problems with drawing lessons from empirical landscapes involving only

very small parts of the genome. Such restricted studies leave out the potential for rare

mutations on other parts of the genome that might have weak epistatic interactions with the

sub-system studied, but sufficient to “unblock” the sub-system’s fitness landscape and enable

evolution to avoid getting stuck at local maxima. Further issues are that the studies are

conditioned on both past evolution, and the sub-space studied often has special properties.

For example, for the β- lactamase protein, the collection of mutations analyzed were known

to be jointly beneficial, while for the yeast study analyzed in [47], mutations were individually

deleterious. We have shown that the properties of the fitness landscape in the neighborhood

of a particular genome, depend heavily on conditioning: this includes on whatever is already

known about relationships among mutations being considered.

Overall, we suspect that while studying regions of the genome involved in important processes

is valuable for evolution of specific traits in narrow contexts, such studies unfortunately give

few insights about how even intermediate-term evolution is affected by, and determines,

epistasis.

Can one overcome the biases caused by choice of “wild-type” genome and sets of mutations

around it? One system where this should be possible is with yeast for which a wide range

of genomic technology has been developed and the ability to bring random combinations

of mutations together is enabled by controlled mating. Empirical studies of epistasis have

been made with yeast crosses, where two genetically distinct strains of yeast are mated

repeatedly to generate a large number of offspring which are genetically “between” — in

the sense of genetic distance — their two parents [3]. In this particular experiment, the

two parental strains differ on 0.5% of their genome (roughly 3 · 104 possible SNPs). The

fitness of a large number of the created recombinant variants — upwards of 4 · 103 in [4]

— were assayed in a variety of environments. The resulting fitness measurements in each

environment were combined with genotyping information to estimate the fraction of fitness

variation between types that is explained by additive fitness effects: the unexplained variance

is then a statistical estimate of the total epistatic contribution to the fitness landscape in

that environment. The findings vary across environments; some have > 90% of the variance

explained by an additive model, while others have closer to 50%.
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Unfortunately, even from the very large number of yeast-crosses studied, and the very high-

dimensional sub-space spanned by the set of mutations by which the parents differ, extracting

information about the important statistical properties of the fitness landscape is problematic.

One issue is that the distribution of pairwise genetic distances between variants tends to

be narrow. In [3] the distribution of distances was peaked at 50% of the genomic distance

between the ancestors with a standard deviation of ∼ 5%. Thus the data provide information

primarily about the overall scale of the fitness landscape at one, particular, long distance.

The crucial distance dependence is thus not explored. Another issue is parametrizing the

distribution of the fitness landscape by a few simple summary statistics — here decomposing

into additive and “unexplained” variance. While the models we have analyzed were, for

tractability, assumed Gaussian, that is certainly not expected in nature and more information

on distributions of fitness differences, rather than just covariances, is needed. (Indeed, we

found this already in our analysis of mixed models with Gaussian epistatic parts and non-

Gaussian additive parts for which the tail of the distribution was particularly important.)

Regardless of the difficulties of extraction of the most useful information, experiments that

combine substantial numbers of mutations to make large numbers of combinations have the

potential to tell us much about the statistics of genomic-scale — rather than protein scale —

fitness landscapes. An advantage of using crosses of well-adapted strains to produce the sub-

set of mutations to explore, is that effort is not wasted on large numbers of unconditionally

deleterious mutations. Another approach would be to take a set of mutations that arose in-

dividually in evolution experiments and make many recombinants of these, either engineered

or by crosses of evolved mutants that already differ by a substantial — but far less than

the strain-cross experiments — number of mutations. Explorations of the distributions of

fitness differences as a function of genetic distance could be explored with either approach,

as well as, crucially, how these vary with small changes of environment. As datasets become

more sophisticated, one can start to develop better caricatures of fitness landscapes and

seascapes using the data to guide development of models and insights from theory to guide

experimental design. The time is ripe for more detailed back and forth between theory and

experiment.

8.3 Theory beyond Gaussian landscapes

Studying adaptive walks on landscapes with distance-dependent correlations has given us

considerable insight into the interplay between evolution and epistasis; however we are lim-

ited by the simplifying assumptions of the family of models, especially by the Gaussian

assumption which is what enabled us to generate landscapes on the fly and analyze the ef-

fects of past history via the response-kernel framework. Real fitness landscapes are surely not
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Gaussian [29]; and in the future one needs to study caricatures that include non-Gaussian

statistics, especially the potential for anomalously large effect mutations that can arise even

after much evolution has already occurred in the same environment, as seen during experi-

mental microbial evolution [5]. In addition, to gain better understanding of the conditioning

on past history, one needs to study different forms of time dependent seascapes than the

very simple exponential decay of temporal-correlations that we analyzed.

One way to go beyond the Gaussian simplification while keeping the desirable distance-

dependent structure of correlations, would be to define the elements of the amplitude spec-

trum using other distributions. This is equivalent to transforming to the Fourier basis,

then generating independent distributions for each Fourier mode. A natural extension of

the Gaussian model would be Levy distributions; these would give a family of self similar

random variables which are broadly distributed with power-law tails.

Seascapes can similarly be generated in the Fourier basis with each mode a stochastic process

in time instead of a static random variable. Even within the Gaussian-correlated models,

one can have a broad range of time scales with longer distance correlations of the landscape

changing more slowly. The response-kernel framework we have developed should enable

progress to made on such models. More generally, one could consider dynamics that have

more complex temporal structure than simple random walks, for example, having periods

of relative tranquility punctuated by large, abrupt changes — loosely, a temporal analog of

Levy distributions. This sort of model can be implemented within the framework described

in Appendix 7.3.

Unfortunately, as soon as one goes beyond Gaussian randomness, one loses the ability to effi-

ciently sample landscapes (or seascapes) on the fly as the evolution proceeds. In general, one

needs to define 2L Fourier coefficients — intractable for numerical explorations. We propose

that further progress can be made by defining sparsified models of fitness landscapes which

keep only a small number of interactions while matching some of the believed-to-be impor-

tant statistical structure of the landscapes. By analogy with sparse random matrices, where

O(N log(N)) non-zero elements in an N × N matrix are sufficient to give the same eigen-

value spectrum as with all elements random, preliminary calculations suggest that at least

the pair correlation structure of a Gaussian landscape, in particular a power-law correlated

one, can be preserved with a number of Fourier coefficients polynomial in L. With this, our

analytical framework could not be used, but numerical simulation would be computationally

inexpensive to perform as with such a sparsified representation one could cheaply evaluate

the landscape at any point in (genotype) space and time. An important question is what

features of the sparsified landscapes determine the long-term evolution: even with Gaussian

random coefficients, the rare regions into which evolution takes the population may be very

different in a sparisifed than a fully Gaussian landscape with the same amplitude spectrum.
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It is worth noting that sparsified representations can also provide a way to capture ap-

proximately the features of low-dimensional empirical landscapes, without assuming any

particular form.

With non-Gaussian statistics, many of the statistical features of adaptive walks will change,

some quite dramatically. We have already seen that a broadly distributed additive piece

greatly aids evolution. Non-Gaussian walks will have different relationships between the

past evolution and the distribution of available steps, as well as different dependences on

how they get stuck for large but finite L.

8.4 Beyond weak-mutation strong-selection dynamics

We have in this paper considered only the simplest evolutionary process: a population

that is small enough that mutations arise only infrequently, but large enough that drift

is unimportant, especially that deleterious mutations cannot fix. Such a population takes a

simple uphill adaptive walk. We end by discussing several important effects that are ignored

in this simplified caricature.

Small populations do not need to evolve solely uphill because weakly deleterious mutations

can drift to fixation with probability of order e−Nδ for a deleterious mutation of selective

disadvantage δ in a population of size N . This means that the population never gets com-

pletely stuck. Its dynamics is essentially identical to stochastic motion on the landscape

with a “temperature” of 1/N . There is a rich literature analyzing stochastic thermal dy-

namics on random landscapes [7, 8, 27] which would be instructive to extend to power-law

correlated landscapes such as those we have studied. In spite of never getting fully stuck,

the dynamics is likely to continue to slow down (at least at low temperatures), but how it

does so is worth exploring. Long-tailed distributions of magnitudes of fitness steps would

add another interesting feature.

Large populations are much more interesting. They can also escape local maxima but instead

by “tunneling” through intermediate lower fitness points to reach a higher fitness one. This

process involves only part of the population and its rate is a complicated function of the

population size and fitness differences especially when the move to a higher fitness involves

more than one intermediate lower-fitness step [51]. But the overall effect can be crudely

approximated by allowing double (or triple, etc.) steps to find points of higher fitness. As

the number of double net-uphill steps is much larger than single uphill steps when the mean

available fitness, µ, is strongly negative, the effects of tunneling processes on the evolution

can be large even before a local fitness maximum is reached.

But this is only one of the complexities of large population caused by the diversity engendered
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by multiple independent mutations occurring each generation with competition between

these — clonal interference — and several mutations occurring on the same lineage before any

can fix. Large populations explore many directions in the landscape in parallel. Tunneling

via a deleterious intermediary is a mutation-limited example of this. But even with only

uphill steps, which will dominate when there are still many available beneficial mutations,

the population will explore many directions simultaneously. The rate of evolution is then

limited primarily by selection rather than mutation. The competition that will make one of

the directions eventually win is played out over a longer time scale — extensively studied

for additive models [12, 14, 34] — and involves luck in both when and which several steps

of further beneficial mutations occur.

Naively, being able to explore multiple directions in the fitness landscape before committing

to any would suggest that, even if only beneficial mutations are allowed, large populations

will increase their fitness more before getting stuck than small populations will. But there

is another effect that goes in the opposite direction. Large populations are much greedier:

the mutations that are likely to fix are much more heavily weighted toward larger effect —

exponentially so – than in small populations [14, 17]. We have shown that greedier adaptive

walks get stuck at lower fitness local-maxima. Which of the two competing effects dominates

in determining when large populations get stuck is certainly a key question. More generally,

understanding the evolution on epistatic landscapes of large populations that are continually

diversifying and pruning, is an important avenue for further research which should be enabled

by the progress we have made thus far.

Beyond their interest for natural evolution, questions about how fast and how far evolution

proceeds and how these depend on the nature of the evolutionary process, including strength

of competition, sizes of population or multiple partially separated sub-populations, etc are

also of practical interest as evolution is being used in both bioengineering [33, 46] as well as

machine learning [43] in order to optimize a wide spectrum of systems.
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Selection of Naturally Occurring Extended-Spectrum TEM β-Lactamase Variants by

Fluctuating β-Lactam Pressure. Antimicrobial Agents and Chemotherapy, 44(8):2182–

2184, January 2000. ISSN 0066-4804, 1098-6596. doi: 10.1128/AAC.44.8.2182-2184.

2000.

[3] Joshua S. Bloom, Ian M. Ehrenreich, Wesley T. Loo, Thúy-Lan Võ Lite, and Leonid
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A distance-dependent correlations

A.1 Correlation function derivatives

Suppose that we have a fitness function F on a high dimensional hypercube, with distance

dependent correlation C given by

C(|g − g′|) = E[(F (g)− F (g′))2] (63)

where |g − g′| is the number of sites where g and g′ differ. We define F to be covariate

Gaussian with 0 mean so C completely determines the ensemble.

Consider the pair of fitness differences F (a) − F (b) and F (c) − F (d), oriented so that the

shortest path a→ b runs in the same direction as c→ d. Then we have

E[(F (a)− F (b))(F (c)− F (d))] = E[F (a)F (c)] + E[F (b)F (d)]− E[F (a)F (d)]− E[F (b)F (c)]

(64)

Since all the E[F 2
a ] are the same, and there are 2 positive and 2 negative terms in each, we

can rewrite each term as C(x) for the appropriate x. Then we have

E[(F (a)−F (b))(F (c)−F (d))] =
1

2
(C(|a− d|) + C(|b− c|)− C(|a− c|)− C(|b− d|)) (65)

One case of interest is when c and d are adjacent, and the edge c → d is contained inside

the line between a and b. Let `f = |a− b| and `0 = |c− a|. Then we have

E[(F (a)− F (b))(F (c)− F (d))] =
1

2
(C(|`0 + 1|) + C(|`f − `0|)− C(|`0|)− C(|`f − `0 − 1|))

(66)

Which in a continuous approximation gives us

E[(F (a)− F (b))(F (c)− F (d))] =
1

2

(
dC

dx

∣∣∣∣
x=`0

+
dC

dx

∣∣∣∣
x=`f−`0

)
(67)

This tells us that the total fitness gain on a path is correlated with the fitness effect of a

single mutation by dC
dx

for a random path. For power law walks, we have

1

2

(
dC

dx

∣∣∣∣
x=`0

+
dC

dx

∣∣∣∣
x=`f−`0

)
≈ α

2

[
(`0)α−1 + (`f − `0)α−1] (68)

That is, for a random path the total fitness gain is most correlated with the fitness gains at

the end, and least correlated with the fitness gains in the middle.
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Now consider the case where a is adjacent to b, and c is adjacent to d. Let us also suppose

that the shortest path from a to d runs through c. This gives us |a − b| = |c − d| = 1,

|a− c| = |b− d| and |a− d| = |a− c|+ 1. Let ` = |a− c|. Then we have

E[(F (a)− F (b))(F (c)− F (d))] =
1

2
[C(`+ 1)− 2C(|`|) + C(`− 1)] (69)

We can approximate as

E[(F (a)− F (b))(F (c)− F (d))] =
1

2

d2C

dx2

∣∣∣∣
x=`

(70)

This approximation is good when C changes slowly with genetic distance. For sublinear C,
dC
dx

> 0 but d2C
dx2

< 0 - giving negative correlations between mutational steps on the same

path.

A.2 Fourier transform and amplitude spectrum

To diagonalize the covariance given by C, we pass to the Fourier basis on the hypercube.

This is due to the fact that the covariance respects the symmetries of the hypercube; the

theory of Pontryagin duality guarantees us that the Fourier basis is the eigenbasis of any

correlation function that respects the discrete symmetries of the hypercube.

The Fourier coefficients can be written as

fk =
1

2L

∑
g

eiπk·gF (g) (71)

Here with a slight abuse of notation, k is a vector with k ones and L−k zeros. The coefficient

fk represents the interaction of those k sites with ki = 1. We can reconstruct the fitness

from the Fourier coefficients by

F (g) =
∑
k

fk
∏
i:ki=1

gi (72)

where gi is the ith site labeled with values ±1 (instead of {0, 1}), and the sum is over all

possible k ∈ {0, 1}L.

Since the sites are symmetric under permutation for any distance-dependent correlation

function, the statistical properties of fk only depend on k (the number of interacting sites.

We can therefore define the amplitude spectrum Ak by

Ak ≡ 〈f 2
k〉 (73)
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where the average is taken over the ensemble, for all k with k ones.

The collection of all possible non-negative combinations of spectra Ak determines all possible

distance-dependent correlation functions. In other words, we can generate the set of allowable

C(x) by defining different distributions of Fourier coefficients. The amplitude spectrum has

been previously used and defined as a metric for epistasis [35]. Ak gives us a measure of

the magnitude of epistasis at order k. In the case of our Gaussian models, the amplitude

spectrum is exactly analogous to the power spectrum for stationary Gaussian signals.

One undesirable feature of the amplitude spectrum is that it depends on the total genome

size L. We would like to be able to write the spectrum in a scale-invariant way so that

we can understand what models look like in the large L limit. Accordingly, we define the

rescaled amplitude spectrum ρA by

ρA(z) = L

(
L

Lz

)
ALz (74)

where Lz is rounded to the nearest integer. This normalization is chosen so that weighted

sums over the amplitude spectrum can be converted to an integral. For example, consider a

function f : [0, 1]→ R. The amplitude weighted average can be computed as

L∑
k=0

∑
Iγk

Akf(k/L) =
L∑
k=0

(
L

k

)
Akf(k/L) ≈

∫ 1

0

f(z)ρA(z)dz (75)

For simple models we can compute the Ak easily and therefore the ρA as well. For the

additive model, only terms at order 1 contribute; we have

ρA(z) = δ(z − L−1) (76)

For independent fitnesses, each mode has equal weight (since it is a graded sum of indepen-

dent random variables). The combinatorics of terms at each order sets the distribution; we

have

ρA(z) =
L

2
2−L
(
L

Lz

)
≈ δ(z − 1/2) (77)

In order to have correlations with super-exponential long range structure, ρA(z) needs to

have a divergence at 0. As an example, consider power law correlations. In general, going

from correlations to amplitude spectra is difficult; it requires inversion of the matrix M

whose elements are given by

Mij =

∫ 1

0

(1− 2z)i+jdz =
1

i+ j + 1
· [(i+ j + 1) mod 2] (78)
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However, we can guess at a form of ρA which corresponds to power law scaling in C. We

want a ρA(z) such that ∫ 1

0

(
(1− (1− 2z)`

)
ρA(z)dz ∝ `α (79)

Differentiating with respect to ` gives us the condition

−
∫ 1

0

(1− 2z)` log(1− 2z)ρA(z)dz ∝ `α−1 (80)

For large `, we expect the integral to be dominated by small z. The integrand, sans ρA,

peaks around z = O(`−1), and has significant value over a range that is O(`−1) as well. The

value it takes on is O(`−1) as well. This suggests that O(`−2)ρA(`−1) = O(`α−1) or

ρA(z) ∝ z−1−α (81)

for small z. This is peaked at z = 0, and is consistent with the approximation that the

integrand in Equation 80 is peaked around `−1. Note that the exponent of ρA(z) is less

than -1. Therefore, power law distance-dependent correlations have a power law distributed

power spectrum, with most of the weight at low orders.

Note that though ρA(z) is weighted towards z = 0, for large L we can still have a significant

weight at higher order (k > 1) Fourier modes. This suggests quantitatively that higher order

epistasis matters increasingly for increasing genetic distances, at least in models that have

a consistent large L limit (as all distance-dependent correlation models do). We also again

come to the lesson that there is some flexibility in the exact form of ρA(z) with regards to

its effect on C(x); the form of the divergence at 0 sets the long tail behavior.

A.3 Computing correlations from amplitude spectra

The amplitude spectrum has been described previously, but the rescaled limit — crucial

for giving landscapes whose structure is well behaved in the large L limit — has, to our

knowledge, not been studied previously.

Suppose we wish to calculate the correlation E[F (g)F (g′)] between two genomes g and g′

such that |g − g′| = `, given the amplitude spectra. Then we have

E[F (g)F (g′)] =
∑
k

S(k, g, g′)Ak (82)

where

S(k, g, g′) =

{
1 if g and g′ differ at an even number of sites where ki = 1

−1 otherwise
(83)
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The sum over the k can be rewritten as

∑
k

S(k, g, g′) =

min(k,`)∑
d=0

(−1)d
(
`

d

)(
L− `
k − d

)
(84)

This sum cannot be evaluated exactly, but can be evaluated approximately in two cases.

First, for L, `� k — low order epistasis but macroscopic distances — we have

∑
Iγk

S(k, g, g′) =
k∑
d=0

(−1)d
(
`

d

)(
L− `
k − d

)
(85)

Use of Stirling’s approximation gives

∑
Iγk

S(k, g, g′) ≈ 1

k!

k∑
d=0

(−1)d`d(L− `)k−d
(
k

d

)
(86)

which can then be evaluated via generating functions as

∑
Iγk

S(k, g, g′) ≈
(
L

k

)(
1− 2

`

L

)k
(87)

To evaluate the full sum with this approximation, we use the rescaled amplitude spectrum:

E[F (g)F (g′)] ≈
∫ 1

0

(
1− 2

`

L

)Lz
ρA(z)dz for L, `� Lz (88)

This approximation is useful if most of the weight of ρA is at low orders. If terms of

some particular lower order dominate, the correlations drop off polynomially, with fitnesses

becoming uncorrelated at ` = L/2 and anti-correlated at ` = L.

The second and more useful case is when L, k � ` — short-distances (compared to L, but

arbitrarily high order epistasis. Then we have

∑
Iγk

S(k, g, g′) =
∑̀
d=0

(−1)d
(
`

d

)(
L− `
k − d

)
(89)

Stirling’s approximation then gives

∑
Iγk

S(k, g, g′) ≈
(
L

k

)∑̀
d=0

(−1)d
(
`

d

)
(L− `)!
L!

k!

(k − d)!

(L− k)!

(L− `− (k − d))!
(90)
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which simplifies to∑
Iγk

S(k, g, g′) ≈
(
L

k

)∑̀
d=0

(−1)d
(
`

d

)(
k

L

)d(
L− k
L

)`−d
(91)

and a similar generating function computation gives∑
Iγk

S(k, g, g′) ≈
(
L

k

)(
1− 2

k

L

)
(92)

In terms of the rescaled amplitude spectrum we have

E[F (g)F (g′)] ≈
∫ 1

0

(1− 2z)` ρA(z)dz for Lz � ` (93)

Here we arrive at a nice intuition for how terms of different order affect the correlation

structure. Epistasis of order Lz contributes a term with exponential decay of correlations

with lengthscale log(|1 − 2z|)−1. Terms of order less than L/2 contribute positively to

correlations, while higher order terms contribute alternating signs on average.

Arbitrary combinations of different orders of epistasis can be represent in the large L limit,

with ` � L – the regime of interest for almost all we study in this paper — by the general

scaled linear combinations of Equation 93 .

A.4 Time-dependent covariance

We can use the Fourier decomposition to come up with simple characterizations of time-

dependent fitness correlations. If we have a time-translationally invariant covariance of the

form

Mf (x, t, y, s) = f(|x− y|, |t− s|) (94)

then the covariance matrixMf is diagonalized in the space-time Fourier basis. In other words,

with both spatial diagonalization and time diagonalization factors. For each wavevector ~k

and frequency ω, we can write

Mf (x, t, y, s) =
∑
~k,ω

M̂f (~k, ω)ei
~k·(~x−~y) cos(ω|t− s|) (95)

where M̂f (~k, ω) are the Fourier coefficients. This is the normal space-time Fourier transform,

where the positivity condition on the Fourier coefficients forces the time part to be cosines

only.

Another way to think about it is that each spatial mode ~k has its own (time-)translation

invariant temporal correlations. The fact that each “mode” can vary independently in time

makes analytical and computational work on time-dependent models more complicated.
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B Response kernel approach

B.1 Dependence of DFE on past evolutionary history

A key property needed to understand evolutionary processes is the distribution of fitness

effects (DFE) of all single mutants away from a given genotype. Consider a genome g on

a distant-dependent correlated landscape, and let si be the fitness gain from a mutation at

site i. The si are distributed as a covariate Gaussian, with zero mean, variance C(1) and

correlation C(1)− 1
2
C(2).

We can write each difference s(y) as a sum of two Gaussian random variables:

si = Zc + Zi (96)

Here Zc is the “shared” part of the variability - a random variable with variance C(1)− 1
2
C(2)

identical across all the sites. The Zi give the “private” part of the variability - Gaussian

random variables with variance 1
2
C(2), independent for all sites. This type of decomposition

is always possible with identically correlated Gaussian random variables.

In the limit of large L, we can approximate Zc with the average available fitness step, µ(g) ≡
1
L

∑
i si. We have:

si = µ(g) + Zi +O(L−1/2) (97)

In this limit, the (empirical) DFE is approximately Gaussian with mean µ(g) and variance
1
2
C(2). Since C(2) is a constant set by the landscape, once µ(g) is known, the entire DFE is

known as well.

This gives us the following strategy for constructing adaptive walks:

• Draw the value of µ(x) from its distribution.

• Use the resulting DFE to take an evolutionary step.

• Define x+ 1 as shorthand for the genome after the step is taken.

• Draw the next µ(x+ 1) conditioned on past evolution and repeat

where x labels the number of steps taken. Note that the DFE conditioned on µ(x) (and the

previous evolution) is still Gaussian, even though the actual step taken s(x) is not. This

simplifies the dynamics considerably, as each step in the evolution involves first evaluating a

conditional Gaussian random variable, and then drawing from a simple distribution — the

positive s part of the Gaussian DFE.
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This suggests that in order to understand the dynamics along a single adaptive walk, in the

limit of large L all we need to understand the DFE at any point is its conditional mean µ(x)

at that point. This approximation starts to break down when we ask about events which

have probability O(L−1) in the Gaussian distribution; in particular, extremal values of the

empirical distribution are no longer in the large number regime and need to be treated with

care. But the continuous Gaussian approximation for the DFE holds so long as the number

of possible adaptive mutations is large.

B.2 Deriving response kernels on power-law correlated landscapes

We now analyze how the DFE around the current genome is conditioned on the past history

of the adaptive walk to that genome. Assume the walk has taken a sequence of steps,

y = 1, 2, ...x − 1 leading to the current point labelled x with these steps having fitness

changes s(y), each taken from the local DFE of average available fitness steps, with average

µ(y). In this section we will describe how to compute the response kernels J and K such

that

µ(x) =
x−1∑
y=0

K(x, y)µ(y) + J(x, y)s(y) + η(x) (98)

where η(x) is the additional random part of the DFE average: η(x) has mean zero and

variance, Vη(x). We make the continuous approximation for the sums:

µ(x) =

∫ x

0

J(x, y)µ(y) +K(x, y)s(y)dy + η(x) (99)

Note that the J and K are non-zero only for x > y.

For most cases it will suffice to use this continuum approximation; but there are a few

special cases of landscapes with particular correlation function, C(`) which are more easily

understood with the discrete equations.

It is useful to define and use the following correlation functions in order to obtain self-

consistent equations for J and K:

A(x, y) = E[µ(x)µ(y)] (100)

B(x, y) = E[µ(x)η(y)] (101)

G(x, y) = E[µ(x)s(y)] (102)

D(x, y) = E[s(x)s(y)] (103)
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In addition, we define the convolution operator ∗ by

A ∗B (x, y) ≡
∫ x

0

A(x, z)B(z, y)dz, (104)

and the transpose, T, by

A(x, y)T ≡ A(y, x). (105)

(In terms of the discrete sums, these are simply matrix multiplication and transpose.)

By explicitly computing A, B, and G using Equation 99 multiplied by on of µ, s, or η at a

different point on the path, and averaging, we get:

A = BT +K ∗ A+ J ∗GT (106)

G = BT +K ∗G+ J ∗D (107)

B = Vηδ(x− y) +K ∗B + J ∗B (108)

Note that K shows up once in each equation, convolved with the quantity on the left hand

side. With some foresight, we rewrite K = δ + P to cancel the left hand sides. In terms of

P we are left with:

0 = BT + P ∗ A+ J ∗GT (109)

0 = BT + P ∗G+ J ∗D (110)

0 = Vηδ(x− y) + P ∗B + J ∗B (111)

Up until now, the equations are exact (and also for the discrete sums). We now take the

large x limit keeping terms to leading order in powers of 1/x and similarly for y and x− y.

We now define a useful quantity related to the second derivative of C(`) in the large ` regime:

M ≡ m sign(x− y)P [1/(x− y)2−α] (112)

with m a positive coefficient given by the normalization of C, and the principal part, P ,

ensuring that
∫
dyM(x, y) = 0. Then in the large x limit, from the definitions we have:

D ≈ −M −MT (113)

A ≈ σ2δ(x− y) +M +MT (114)

G ≈ −M +MT +O(dδ/dy) (115)

with σ2 proportional to Vη. Corrections to all of these correlations are smaller by one power

of 1/x except for A: the symmetry under the transpose means that there is only a second

derivative of δ(x− y) correction to the δ function part of A (like a correction of O(1/x2)).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/435669doi: bioRxiv preprint 

https://doi.org/10.1101/435669
http://creativecommons.org/licenses/by-nc-nd/4.0/


B RESPONSE KERNEL APPROACH 75

We now make the ansatz (readily shown to be correct) that J scales as xν−1, with 0 ≤ ν ≤ 1
2
,

and that P is much smaller for large x. Then from Equation 111 we have

B ≈ −VηJ−1 (116)

with inversion taken over ∗ (like matrix inversion). In Equation 110, the P ∗ G term is

negligible and in Equation 109, P ∗A ≈ σ2P plus smaller corrections. Writing an expression

for BT and substituting, we get

BT ≈ J ∗ (M +MT) ≈ −σ2P + J ∗ (MT −M) (117)

which can thus determine J and P = −2J ∗M/σ2, subject to conditions that they are only

non-zero for x > y, as is B – the latter not automatic. Counting powers of x we see that

B ∼ P ∼ x−1−ν and, from the form of M , that must have

ν =
1− α

2
. (118)

One can directly get the scaling behavior and this result for ν by considering the behavior

for (x − y) � x. This can be obtained straightforwardly by approximating the kernels as

functions of only x − y, taking x → ∞ and then Fourier transforming and decomposing

functions into sums of parts that are analytic in upper and lower half-planes corresponding

to being zero for either x < y or x > y. Armed with these forms (and some knowledge of

such singular integral equations), exact solutions can be guessed:

J(x, y) ≈ −cJ sign(x− y)
yν

(x− y)1−νxν
, (119)

K(x, y) ≈ δ(x− y) + cK sign(x− y)
xν

yν
P(1/(x− y)1+ν) , (120)

and

B ∝ −sign(x− y)
yν

xν
P(1/(x− y)1+ν) (121)

with cJ and cK positive coefficients that can be written in terms of Beta functions and

combinations of Vη and σ2 to set the scales. Note that with the correct value of ν — indeed

only with that value of ν — the x > y part of J ∗ (M +MT ) = BT vanishes as it must.

The sign of P is rather misleading due to the principal part. If the convolution integral is

done by parts, we have that∫ x

0

dyK(x, y)µ(y) = µ(x)− cq
xν
µ(x)−

∫ x

0

dyQ(x, y)
dµ

dy
(122)
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with the kernel for dµ
dy

,

Q(x, y) ≡
∫ y

0

dzP (x, z) (123)

and Q and the coefficient cq both positive. Thus the effects of K are: δ(x − y), a negative

— but needed — correction to this, and a negative convolution with dµ/dy, the latter two

being the same order for large x.

In order to show that the solutions to the integral equations are of the form given, two

integrals need to be done. To show that B is proportional to the inverse of J — i.e. that

J ∗ B =
∫ x

0
dzJ(x, z)B(z, y) = −V δ(x− y) — one only needs to note that the z dependent

parts of the zν/xν and yν/zν factors from J and B cancel. To do the integrals J ∗M and

J ∗MT , the substitution z = xy/(x + y − ζ) changes the integral over z from 0 to x to an

integral over ζ from −∞ to x, eliminates the zν part from J , brings out (combining with

the x−ν from J) an overall factor of xν/yν , replaces x − z and y − z with x − ζ and y − ζ,

and cancels all factors of x+ y − ζ thereby making the integrand the simple standard form

(x − ζ)ν−1(ζ − y)−1−2ν and the integrals over the different parts of the range of ζ and for

x > y and x < y all simply expressible in terms of Beta functions. The structure is now

exactly the same as it would be if the limit |x− y| � x were taken initially and Fourier and

Weiner-Hopf analysis used. Note, however, that for µ(y) and s(y) powers of y, as we find,

the contributions from the kernels are dominated by intermediate range of y/x and thus the

approximation x − y � x is incorrect by multiplicative constants, butt gives the correct

scalings with x.

B.3 Adaptive walks on exponentially correlated landscapes

Here we analyze adaptive walks on landscapes with correlations

C(`) =
1

b
(1− e−`/ξ) (124)

where b = 1− e−1/ξ normalizes so that C(1) = 1 for all ξ. That is, the fitness of genomes at

a distance `� ξ are highly correlated, and the fitness of genomes at long-distance `� ξ are

close to statistically independent. In particular we are interested in the case where ξ � 1,

which arises from the NK model.

The exponential-correlations give the advantage that the response functions can be computed

exactly. We want to know the conditional distribution of the fitness at a distance x along

the walk. It is easiest to compute in terms of F (x) along the path, where F is the absolute

fitness function (well-defined since C(`) is bounded). For arbitrary genomes g and g′ we have

E[F (g)F (g′)] = e−|g−g
′|/ξ (125)
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where for convenience we have normalized the landscape so that the absolute fitness at any

point has 0 mean and variance 1
2

(instead of with C(1) = 1 as in the main text). On any

path, we can compute the conditional mean of the fitness at the end of the path F (x) in

terms of the previously observed fitnesses as:

E[F (x)|F (y), y < x] =
x−1∑
y=0

KF (x, y)F (y) (126)

where KF (x) obeys the equation

x−1∑
y=0

KF (x, y)E[F (y)F (z)] = E[F (x)F (z)] (127)

for all y on the path. We can solve for KF directly. Subsitution gives

x−1∑
y=0

KF (x, y)e−|y−z|/ξ = e−|x−z|/ξ (128)

Solving for KF (x, y) for all z < x we get

KF (x, y) = e−1/ξδ1y (129)

That is, the final fitness F (x) is correlated directly only with the previous fitness F (x − 1)

with correlation e−1/ξ.

Evolution in an exponentially correlated landscape is in some sense a Markov process; only

the last fitness value reached contributes to the statistics of the current neighborhood. The

correlation coefficient e−1/ξ has the right limits; when ξ � 1, the landscape is effectively

additive on short distances and the correlations vanish. When ξ � 1 the landscape is of the

independent type and the average step available is exactly −F (x).

Though we have computed correlations in terns of the absolute fitnesses F (x), in exponen-

tially correlated landscapes this gives complete information about µ(x). We can see this by

computing the simple conditional variance Var[F (x)|µ(x)]:

Var[F (x)|µ(x)] = Var[F (x)]− cov(F (x), µ(x))2/Var[µ(x)] (130)

We can compute Var[F (x)] = 1
2
C(∞) (since long range correlations vanish), Var[µ(x)] =

C(1)− 1
2
C(2), and cov(F (x), µ(x)) = −1

2
C(1). Combining, we have

Var[F (x)|µ(x)] = 0 (131)

Therefore we have:

F (x) = −µ(x)/(1− e−1/ξ) (132)
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One can think of this as an extension of the situation in the independent fitnesses case. There,

since µ(x) = 1
L

∑
x′ F (x′) − F (x), where x′ are all one-step neighbors of x, independence

and the central limit theorem gives 1
L

∑
x′ F (x′) ∼ O(L−1/2), and we have, for large L,

µ(x) = −F (x).

The combination of Equation 132 as well as s(x) = F (x) − F (x − 1) cause knowledge of

the F (x) to be equivalent to knowledge of the s(x) and µ(x). Therefore Equation 129

can be used to compute the response functions J and K. However, there is an additional

complication: there are 2x total s and µ for a walk of length x, but only x total values of

F . This redundancy leads to zero-modes in the s − µ covariance matrix, and a degeneracy

of degree x in the response function.

Using this degeneracy, we can write the response function in a variety of ways. The two

most interpretable are:

E[µ(x)| past] = −b
x−1∑
y=0

s(y) + µ(0) (133)

and

E[µ(x)| past] = −bs(x− 1) + µ(x− 1) (134)

where b = 1− e−1/ξ, and we normalize so that C(1) = 1 as in the main text. The first form

suggests a flat weighting over past s(x) with an additional dependence on µ(0) — likely not

important for long walks for which the first term continues to grow. The second form shows

dependent only on the immediately preceding properties of the adaptive walk. The factor

b accounts for the fact that the landscape is somewhere between additive and independent.

For ξ � 1 (so that have almost additive effects of fitness steps), b→ 0 and the dependence

is only on µ(x), which is also 0 in that limit, giving E[µ(x)| past] = 0 as expected. For

ξ � 1 (effectively independent fitnesses), b→ 1 and we recover the response function of the

behavior of the independent landscape.

C Statistics of random and evolution-conditioned max-

ima

C.1 Local maxima

The expected number of maxima on a random fitness function on the hypercube depends

on the local correlation properties only. We can compute this expectation in the following

manner. Suppose that the fitnesses in some neighborhood of a genotype (ie that genotype
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and all single mutations away) are covariate Gaussian. Let si be the fitness benefit of a

mutant at site i. We assume that the si have 0 mean, variance 1, and identical correlation

r. In the limit of large L, the {si} are independent given their mean µ(g). The distribution

of µ(g) is a Gaussian random variable with mean 0 and variance r.

In the limit of large L the empirical distribution of the {si} is given by a Gaussian with

mean µ and variance 1− r. Note that g is a local max if all si are negative, which happens

with probability

Ploc−max =

∫
1√
2πr

e−µ
2/2rΦL

(
− µ√

1− r

)
dµ (135)

with Φ the error function. We use a saddle-point approximation to compute P . The log of

the integrand φ(µ)

φ(µ) = −µ
2

2r
+ L log

[
Φ

(
− µ√

1− r

)]
(136)

Differentiating gives

φ′(µ) = −µ
r
− L

[
Φ

(
− µ√

1− r

)]−1
e−µ

2/2(1−r)√
2π(1− r)

(137)

The peak is at µ = µ∗ determined by:

− µ∗

rL
Φ

(
− µ∗√

1− r

)
=
e−(µ∗)2/2(1−r)√

2π(1− r)
(138)

Clearly, µ∗ < 0. If |µ∗| �
√

1− r, then Φ
(
− µ∗√

1−r

)
≈ 1 (leading correction O(e−(µ∗)2/2(1−r))).

In this approximation, we have

− µ∗

rL
=
e−(µ∗)2/2(1−r)√

2π(1− r)
(139)

And then, approximately

µ∗ ≈ −
√

2(1− r)(log(L)− log log(L)) (140)

We can use this approximation to calculate Φ
(
− µ∗√

1−r

)
. We need this calculation to be

accurate to o
(

log(L)
L

)
in order to compute P to logarithmic accuracy in large L. Error

function asymptotics give

Φ

(
− µ∗√

1− r

)
≈ 1− e−(µ∗)2/2(1−r)

√
2π(−µ∗/

√
1− r)

(141)
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Substitution gives

Φ

(
− µ∗√

1− r

)
≈ 1− 1

rL

√
2π(1− r)µ∗√

2π(µ∗/
√

1− r)
= 1− 1− r

r

1

L
(142)

The second derivative of the log integrand φ is

φ′′(µ) = −1

c
+ L

µ

1− c

[
Φ

(
− µ√

1− c

)]−1
e−µ

2/2(1−c)√
2π(1− c)

− L
[
Φ

(
− µ√

1− c

)]−2
e−µ

2/(1−c)

2π(1− c)
(143)

The value at µ∗ is

φ′′(µ∗) = −
(

1

r
+

(µ∗)2

r(1− r)
+

(µ∗)2

r2L

)
(144)

which is dominated by the middle term and is approximately

φ′′(µ∗) ≈ −2(log(L))

r
(145)

where we drop the log log(L) term as it doesn’t contribute to leading order in log(L).

The saddle point approximation then gives us

Ploc−max ≈

√
2π

−φ′′(µ∗)
eφ(µ∗) (146)

We can evaluate this to get

Ploc−max ≈

√
1

2r log(L)
e−(µ∗)2/2r

(
1− 1− r

rL

)L
(147)

For large L, substituting in µ∗ gives us

Ploc−max ≈
√

1

2r
L−(1−r)/re−(1−r)/r (148)

up to poly-log factors. Note that for the independent fitnesses model, r = 1
2
, and Ploc−max =

1
L+1

, matching the approximate calculation.

The result for P implies that for most landscapes, the probability of a single genome being

at a local max is some power of L. The total number of maxima thus scales roughly like

L(1−r)/r2L. As the correlation between step sizes decreases, the number of maxima does as

well; the limit r → 0 corresponds to independent steps and there is a single local max on

the whole fitness landscape (so P = 2−L).
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Note that for power-law correlated fitness landscapes, r does not determine the long-distance

dynamics of uphill random walks. There are fitness landscapes with very different local

structures which nonetheless have similar long-term evolutionary dynamics. In the limit of

large genome size, L, the dynamics is dominated by the long-distance behavior of C(`), which

gives rise to the tails of the response kernels. Classifying the “ruggedness” of landscapes via

expected properties of maxima is therefore not very useful for understanding evolution on

epistatic landscapes.

C.2 Maxima reached by uphill walks

We can estimate the max fitness increase reached by uphill walks. First consider the inde-

pendent fitnesses landscape. The cumulative distribution function, CDF, of an uphill walk

of length X is given by Φ(F )X . Let the number of uphill paths of length X be given by

NU(X). If the uphill paths are statistically independent, the maximum fitness, fmax, couol

be approximated by solving

1− Φ(fmax)
X = NU(X)−1 (149)

Correlations due to shared subpaths will cause this approximation to overestimate fmax. On

the hypercube, we have NU(X) = [1−Φ(F (0))]X

X!

(
L
X

)
. Solving for the CDF approximately, we

get

1− Φ(fmax) ≈ [1− Φ(F (0))]−X
X!

X

(
L

X

)−1

(150)

The maximum is dominated by the combinatorics of the number of paths, rather than the

structure of the paths themselves. If Φ(F (0)) is not too close to 1, the right hand side is

minimized at X ≈
√
L, giving us the optimal CDF value ∼ −

√
L, which and gives a max

fitness gain of

fmax,up ∝ L1/4 (151)

in the independent Gaussian case, compared to the global max of O(L1/2). Uphill paths

have trouble reaching the global max, and random adaptive walks do not go nearly as high.

The only way to go higher would be to allow some deleterious mutations as well (which we

will not analyze here).

Performing calculations as above for correlated landscapes is more difficult and we will not

attempt it here. However, we expect interpolation between the independent fitnesses and

additive cases. The maximum absolute fitness F ∗ ≡ max
g
F (g) on the landscape can be

crudely estimated as

F ∗ ≈ L(1+α)/2 (152)
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using the observation that the fitness difference between any pair of points at a distance x

is ∼ xα/2, and there are roughly exp(cL) “independent” pairs of points we can choose. We

expect something similar to the independent fitnesses case, where fmax,up scales as a power

of L, but not as much as F ∗. As before, to reach the global maximum one must have an

extremely fortuitous choice of starting location. However we will see in the next section that

small perturbations of the long range statistics can drastically increase chances of reaching

points near the global maximum fitness.

C.3 Mixed landscapes with narrowly distributed additive piece

A small additive piece of the fitness function can have large effects on the global dynamics of

evolution. The net effect on the dynamics is also sensitive to the distribution of the additive

part. To show this concretely, we work with mixtures of a power law and an additive piece

and consider different tails for the additive piece.

Let sC be the steps in the correlated part of the landscape, and let sA be the steps in the

additive part so the total fitness gain is s = sA + sC . We first consider an the additive part

normally distributed with variance σ2
A. The distribution of sC and sA is jointly Gaussian.

The conditional means can be computed directly:

E[sC |µC , s > 0] =
σ2
A

σ2 + σ2
A

µC +
σ2

|µC |
, E[s|µC ] ≈ σ2

A + σ2

|µC |
(153)

for |µC | �
√
σ2 + σ2

A. For µC < 0, E[sC |s > 0] is reduced compared to what it would be in

the absence of the additive piece. This change in the relationship between s and µC changes

the dynamics, making it easier to find uphill steps.

We can use the above equations to compute the dynamics on a power law plus additive

landscape. From Equation 28 we have, schematically

dE[µC(x)]

dx
=

∫ x

0

−a(x− y)−(3−α)/2µC(y)− b(x− y)−(1+α)/2

(
σ2
A

σ2 + σ2
A

µC(y)− σ2

µC(y)

)
dy

(154)

where the expectation is taken over the ensemble.

If µC(x) and sC(x) saturate, then we know s(x) must saturate to 0 (since J(x) has a divergent

integral). We solve for the equilibrium µ∗C by setting the 2nd and 3rd terms equal to each

other. If E[µC(x)] is constant for all x, those two terms will be much larger than the

(x−y)−(3−α)/2 term. Define pA ≡
σ2
A

σ2+σ2
A

be the fraction of the landscape that is additive. This

gives us the saturating value µ∗C = − σ√
pA

. We can find the approximate length X at which
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saturation occurs for small values of pA by using the relationship E[µC(x)] ∝ −σx(1−α)/2 for

the power law walk. We have

X ∝ p
−1/(1−α)
A (155)

After the walk reaches saturation, we have E[s] = 0 and the saturated total step ssat goes as

σ
√
p

1−p . Thus E[F (x))] goes like a power law for roughly p
−1/(1−α)
A steps, after which it goes

roughly linearly at a rate σ
√
pA

1−pA
per step.

We can also compute how far up the walk is expected to go for finite L. We can find

the minimal value of pA for which the walk length is O(L) for fixed L. This occurs when

µ∗C/
√
σ2 + σ2

A = O([log(L)]1/2), which occurs when

pA = O([log(L)]−1) (156)

For large enough p the population gain fitness linearly with step size; for pA smaller than the

critical value, the power law correlations perform better as they still have E[F (x)] ∝ x(1+α)/2.

This critical value goes to zero as L increases (albeit slowly). The dynamics goes similarly

for more narrowly distributed sA as well.

For Gaussian and sub-Gaussian distributions, the primary effect of the additive piece is

to let s relax to 0. The adaptive walk “chooses” to use the additive component of the

landscape as the primary source of its adaptive steps, while not moving much in the correlated

landscape. A balance can be found where µC does not change; this means that in the

correlated landscape, the trajectory goes along a path of constant curvature. This small

additive piece can have a large global effect on evolutionary dynamics.

The transition to O(L) fitness gains due to the additive piece has been previously seen in

the case of RMF models (additive mixture with α = 0). Previous work has shown phase

transitions from linear to sublinear fitness gains of random adaptive walks as the amount of

additive piece is changed in the limit of infinite L. [36, 41] The phase transition occurs at

p = 0 for sub-exponential tails of the random piece if the additive piece is constant. These

new results explicitly show the crossover for finite but large L, showing the scale of the

amount of additive piece needed to go long distances decays slowly with L if sA is narrowly

distributed.

Even in cases where the additive component does not change the “typical” dynamics, it may

change extremal ones. Consider the case of an additive, narrowly distributed component

plus a correlated component. Now suppose we wished to find the “best” uphill path starting

at a particular node. If we had full knowledge of the landscape, one simple strategy would

be the following: for every step, find a direction where s ≈ 0 and sA ≈ σA. If we can easily

find such a step, is has s > 0 and also ensures that µC will not increase. Then, at the next

step we should be able to easily find such a step again.
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So long as σA � L−1, we should be able to find a step in the correlated landscape such that

s < 0 and |s| < σA. This means that the critical p for the existence of at least one path

which gets close to the global maximum is at most L−1, as opposed to the [log(L)]−1

C.4 Mixed landscapes with broadly distributed additive piece

Consider the case of a mixed landscape where the additive piece goes as

P (s > 0|s) =

(
|s|
σA

)−β+1

(157)

In the main text, we considered the case where large steps were relatively plentiful; however

the regime where the probability of a large step is O(L−1) has some additional structure as

well.

Consider a simplified model of a correlated plus additive landscape, where with probability

padd any single uphill direction has an arbitrarily large uphill part. When padd = naddL
−1 for

some nadd = O(1), there is some waiting time to find the uphill direction. If the probability

of any uphill step on the correlated landscape alone is pcor, then an uphill step using the

additive piece occurs with probability padd
pcor+padd

, or every pcorL+nadd
nadd

steps.

The dynamics then proceeds as follows: the population follows its normal trajectory on the

correlated landscape until it finds and picks a large uphill direction. It then takes the large

uphill direction, and takes a step µ in the correlated landscape. On average then, this leads

to the following equilibrium equation for µ:

0 =

∫
a(x− x′)−(3−α)/2µc + b(x− x′)−(1+α)/2

(
padd

pcor + padd
µc +

pcor
pcor + padd

σ2

|µc|

)
dx′ (158)

where pcor ≈ σ
|µc|e

−µ2c/2σ2
. The equilibrium condition is given when the second and 3rd terms

cancel; we have
σ3

|µc|3
e−µ

2
c/2σ

2

= padd (159)

which gives us µc ≈ −σ
√

2| log(padd)|, or pcor = 2| log(padd)|padd. For small padd (as we expect

in the crossover regime), pcor � padd.

The walks are of extensive (linear in L) length when Lpcor = O(1) (more accurately, when

1 − Lpcor = o(L−1)). Therefore, to have dynamics of this type that nonetheless go a long-

distance, we need | log(padd)| = O(1) - guaranteed when padd = O(L−1). A necessary condi-

tion for this ansatz to hold is that the additive piece gets used before the correlated piece
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would normally get stuck; that is we need `cor � `add where

`cor ≈
1

1− Lpcorr
, `add ≈

pcorr + padd
padd

= 2| log(padd)| (160)

which means that walks in the correlated bit must go at least length log(L) for this method

of equilibration to work.

This again shows us that the global and sometimes extremal statistics of the landscape

matter far more than the local ones. Different extremal statistics lead not only to different

crossovers in behavior, but potentially to different phases as well.

D Dynamics on static and time-varying landscapes

D.1 Time dependence of power law walks

We assume a model where mutations arise from a Poisson process, with characteristic time

τM = 1 between mutations. Deleterious mutations are purged instantly; adaptive mutations

fix instantly.

Under this model, the time τU(x) to take the x+ 1 th step is distributed exponentially with

mean time 1/pU(x), where pU(x) is the probability of any given step being uphill. Note

that in the large L limit, pU(x) only depends on the current average available fitness gain

µ(x), as the variance of available steps (given µ(x) is constant. For |µ|/σ � 1, we have

approximately

pU(x) ∝ σ

|µ(x)|
e−µ(x)2/2σ2

(161)

This means that t(x) is superexponential in µ(x) — the adaptive walk is very slow. Addi-

tionally, τU(x) is very broadly distributed. In fact, log(τU(x)) is roughly normal. We can

decompose its variance as

Var[log(τU(x))] = E[Var[log(τU(x))|pU(x)]] + Var[E[log(τU(x))|pU(x)]] (162)

From the convexity of log, we have approximately

Var[log(τU(x))] ≤ E[Var[log(τU(x))|pU(x)]] + Var
[
µ(x)2/σ2

]
(163)

for large µ(x). Since τU(x)|pU(x) is exponentially distributed, for large µ(x) the width of

the distribution is narrow relative to the mean and the first term negligible relative to the

second. We expect, then, that log(τU(x)) is distributed similarly to µ(x)2; its mean and

variance should both scale as x1−α.
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Figure 13 shows the exponents of power law fits to the mean and standard deviations of

E[log(t(x))]. These exponents show good agreement for low α where the approximate argu-

ments above are expected to hold. They deviate at high α where µ(x) grows slowly enough

that neglected terms matter more (at least for the range of x explored).
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Figure 13: Average log derivatives of mean and standard devation of log(τU(x)). For low α,

mean and variance scale like µ(x)2.

This suggests then that the time taken to reach fitness gain f(x) is dominated by the last

step. We can write log(τU(f)) as

log(τU(f)) ∝ f 2(1−α)/(1+α) (164)

for the time taken to reach a fitness f . As we will discuss later, this is clearly too slow to

be a reasonable model of evolution in most scenarios. Bu this result is very sensitive to the

Gaussian tails of our random fitness functions. It may be possible to find distributions with

alternate extremal statistics that give similar f(x) but faster τU : we leave this for future

research.

D.2 Exponential time correlation

In this section we develop the results needed to analyze the exponentially time-correlated

landscapes. Consider random variables F (x, t), each with mean zero and covariance structure
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given by

E[F (x, t)F (y, s)] = C(x, y)e−|t−s|/T (165)

for some correlation function C. Here t and s denote time, while x and y denote some other

type of coordinate (spatial coordinate for physical systems, genotypes for the case of fitness

landscapes).

Conditional draws from this distribution simplify in two cases. The first is drawing the

current conditional values at some set of spatial coordinates, given a joint observation in

the past. More precisely, consider a set of locations {x}, with each x having some set of

observation times {tx,i|i > 0} sorted from most recent to furthest in the past (tx,i > tx,j for

i < j). Suppose we wish to draw the conditional variables {F (x, tx,0)} for some later times

{tx,0}. If all the latest observations happened at the same time (that is, tx,1 = t1 for all

x, x′), then the response function K(x, tx,0;x′, tx,i) (contribution of F (x′, tx,i) to conditional

expectation of F (x, tx,0)) is given by

K(x, tx,0;x′, tx,i) = δ1iδxx′e
−|tx,0−t1|/T (166)

In other words, the expectation only depends on the latest observed value at the same

location. If the newly observed time tx,0 is also the same value t0 for all x, the conditional

covariance C̃t0(x, x
′) at t0 can also be written simply as

C̃t0(x, x
′) = (1− e−2(t0−t1)/T )C(x, x′) (167)

Therefore the conditional distribution is a weighted sum of the last observed function values

and an independent draw from the time-independent ensemble.

The second important case is where the x previously observed have the same structure, but

there are some new location z being observed at time t0. In this case, if the {F (x, t0)} are

drawn first, then the response function is given by

K(z, t0;x, tx,i) = δi0K(z, x) (168)

That is, only the values F (x, t0) contribute to the conditional distribution, with the same

weighting they would without time dependence. Likewise, the conditional covariance is given

by C̃t0(z, z
′) = C̃(z, z′), or more simply the conditional covariance without time dependence.

This means that the new x can be drawn using only the values F (x, t0), with the same

statistics as the case without time dependence.

Therefore we can generate exponentially time-correlated functions as follows:

1. Pick a set of points {x} for which the most recent values of F were all generated at

the same timepoint t1.
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2. Pick a new time t0 in the future.

3. Generate a new draw of a set of random variables F ′ on x with correlation structure

C.

4. Add the values
√

1− e−2|tx,0−tx,1|/TF ′ to e−|tx,0−tx,1|/TF (t1).

5. Generate any new values F (y, t0) on unexplored y as desired, conditioning only on

previously observed F (x, t0).

6. Go back to 1.

In order to simulate evolution on time-dependent landscapes, we chose a time interval small

compared to the correlation time of the landscape (∆t � τE), and carried out steps 1 − 4

above. We then computed the probability that an uphill step would occur in the window

of size ∆t given the current µ(x, t). With that probability, we drew an uphill step as we

would in the time-independent case, and drew the new conditional DFE mean µ(x + 1, t).

Otherwise, we went back to step 1 and updated all values to time t+ ∆t.

Every uphill step with exponential time correlations is just as efficient as it is without time

dependence. The additional cost is the updates to the landscape when uphill steps are not

taken. For average time τ̄U for an uphill step, this introduces a cost of O( τ̄U
∆t
X4) to simulate

an evolution with X uphill steps.

D.3 Power law landscapes with exponential time correlations

After a transient period, dynamics in a landscape with exponentially time-decaying corre-

lations leads to an equilibration of the DFE mean µ around some critical value µc. If the

landscape has power law correlations, we must solve an integral equation to find µc.

For slowly varying landscapes, |µc/σ| � 1 and the average values of s and µ will control

the overall dynamics. We also assume that the time for each uphill step is not too broadly

distributed near the steady state. Using the response function asymptotics, we have the

approximate differential equation

dµ

dx
≈
∫ x

0

e−|x−y|/ξD
(
−a|x− y|−(3−α)/2µ(y)− b|x− y|−(α+1)/2s(y)

)
dy (169)

for ξD = τE
τ̄U

. Here we average over the new random part of the landscape we get from the

time dependence of the landscape. The derivative vanishes at steady state. If we replace µ(y)
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with µc and s(y) with −σ2

µc
, and take the limit of large x, the integrals are well approximated

by Γ functions and we get

µ2
c ≈ σ2a

b
cαξ

(1−α)/2
D (170)

for some constant cα.

D.4 Distribution of uphill steps with exponential temporal corre-

lations

We now analyze the steady state stochastic dynamics for large τE, and show that the ap-

proximations of Appendix D.3 hold in this limit. The important quantities are µ(x), defined

more precisely to be the average-available-fitness-step just after the previous step, its scaled

minus-average, m ≡ −µc/σ � 1 and its scaled variance W ≡ Var[µ(x)]/σ2, so that the

quantity h(x) ≡ (µc − µ(x))/σ has mean zero and variance W . (Note that h is not exactly

Gaussian due to the distributions of the earlier s’s, but the deviations will not change the

overall conclusions.) The probability per time, r(t), of a beneficial mutation occurring a time

t after the previous mutation, is increased by the exponential decay of the average available

fitness step, E[µ(x, t)|µ(x)] = e−t/τEµ(x) so that µ(x, t)2 ≈ µ(x)2(1−2t/τE) for t� τE, with

the stochastic part of the change (of order
√
t/τE) negligible, and hence

r(t) ≈ R(h)ebt (171)

with R ∼ exp(−[m+h]2/2) and b ≈ m2/τE � 1. The first beneficial mutation will typically

occur at a time τU at which
∫ τU

0
r(t)dt ∼ 1 so that τU ≈ log(1 + b/R)/b. For not too large

−µ(x), specifically when h < H where R(H) ≈ b, we have simply τU ≈ 1/R(h) and the time

dependence of the landscape does not matter: the next mutation is very likely to occur before

the environment changes by enough to make a difference. But for anomalously large −µ(x),

specifically for h(x) > H, a beneficial mutation is likely to occur only after the environment

has started to change enough to matter although still still well before it is decorrelated: here,

the waiting time is proportional to how much −µ(x, t) has to decrease for the mutation to

occur. It is likely after a waiting time near

τU ≈ log(b/R)/b ≈ m(h−H)/b (172)

(the −h2/2 in log(R) can be neglected). We will see that this waiting only occurs for a

very small fraction of cases, i.e., that, with h approximately Gaussian with variance W ,

H �
√
W . This means that the distribution of h is decaying approximately exponentially

for h just above H. The average waiting time, τ̄U , is dominated by the rare slightly-stuck

situations with h−H ∼ W/H, yielding

τ̄U ∼
mW 3/2

bH2
e−H

2/2W . (173)
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For power-law correlated landscapes, we found that the effects of the past history implied

that τ̄U/τE ∼ 1/m2/(1−α) thus for consistency we must have H ≈
√

2WκH log(m) with

κH = 2
1−α − 1 + 1

2
log(W/m) > 0 since W scales as a non-negative power of m. Now H is

given by exp[(m+H)2/2] = b = m2/τE so the typical τU(x), while broadly distributed with

τU(x)typical ∼ em
2±O(m) (174)

is much less than τE by a factor of

e−mH−H
2/2 ∼ e−m

√
W
√

2κH log(m) . (175)

Moreover, even the rare τU(x) that dominate the average τ̄U , are smaller

τdominant

τE
∼

√
W

m
√

log(m)
� 1 (176)

because the standard deviation of µ(x)/σ is much less than its mean, i.e.
√
W � m. This

means that in one landscape decorrelation time τE, the total number of steps taken is well

approximated by ξD ≡ τE/τ̄U with smaller variations around this. Thus the dynamics is

quire smooth on time scales of τE and length scales, ξD. This makes the analysis in Appendix

D.3 that assumed such smoothness is justified. But, importantly, for all but a small fraction

— ∼ 1/mκH — of the steps, the effects of the time dependence of the landscape are negligible.

The dynamics is thus very heterogeneous with many relatively rapid steps as if in a static

landscape, and occasional steps that “waited” for small changes in the environment. Of

course, as for most quantities in these Gaussian landscapes, the small parameter is only

logarithmic, in this case since m ≈
√

2 log τE.
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