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Abstract 
Personalised medicine has predominantly focused on genetically-altered cancer genes that 
stratify drug responses, but there is a need to objectively evaluate differential pharmacology 
patterns at a subpopulation level. Here, we introduce an approach based on unsupervised 
machine learning to compare the pharmacological response relationships between 344 pairs 
of cancer therapies. This approach integrated multiple measures of response to identify 
subpopulations that react differently to inhibitors of the same or different targets to understand 
mechanisms of resistance and pathway cross-talk. MEK, BRAF, and PI3K inhibitors were 
shown to be effective as combination therapies for particular BRAF mutant subpopulations. A 
systematic analysis of the preclinical data for a failed phase III trial of selumetinib combined 
with docetaxel in lung cancer suggests potential indications in urogenital and colorectal 
cancers with KRAS mutation. This data-driven study exemplifies a method for stratified 
medicine to identify novel cancer subpopulations, their genetic biomarkers, and effective drug 
combinations. 
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Introduction 
 
Drug developers face a conundrum in predicting the efficacy of their investigational 
compound compared to existing drugs used as the standard of care treatment. Systematic 
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screening of drug compounds across a variety of genomic backgrounds in cancer cell lines 
has improved clinical trial design and personalized treatments 1. Following the pioneering 
NCI-60 screen comprised of 59 unique cell lines 2, modern high-throughput screens such as 
the Genomics of Drug Sensitivity in Cancer (GDSC) 3,4, the Cancer Cell Line Encyclopedia 
(CCLE) 5 and the Cancer Therapeutics Response Portal (CTRP) 6–8 have characterised 
>1,000 cancer cell lines with the goal of establishing the genetic landscape of cancer. The 
deep molecular characterisation of these large cell line panels is complemented with high-
throughput drug screens, which enables the discovery of drug response biomarkers. For 
example, analysis of the generic BRAF inhibitors PLX4720, SB590885 and CI-1040 
reproduced drug sensitivity association with the BRAF mutation in melanoma, or afatinib 
sensitivity with with ERBB2 amplifications in breast cancer 3,4,9. These associations between 
genetic variants and treatment response have helped identify specific patient subpopulations 
who are most likely to benefit from treatment. In Phase III clinical trials, however, for new 
drugs to be successful, they must demonstrate a significant improvement over the existing 
standard of care. Accurately defining in which subpopulations a new drug demonstrates 
improved differential efficacy over other drugs targeting the same disease could lead to both 
better clinical outcomes as well as new targeted therapies.   
 
While several methods have been proposed to identify drug response biomarkers in cell 
lines for precision medicine and drug repositioning 4,5,10,11, there is a need for more objective 
and unsupervised approaches for identifying subpopulations with differences in drug 
response (differential drug response), and consequently systematically gain mechanistic 
insights from biomarkers. Most approaches capable of comparing multiple drugs measure 
the overall similarity (or correlation) based on a single response summary metric 7,12, which 
permits drug repositioning based on subpopulations with similar behavior, but neglects ones 
that behave differently (Figure S1A). Here, we used a technique based on unsupervised 
machine learning, which identifies differentially sensitive or resistant subpopulations and 
may be applied generally to evaluate any pair (or n-tuple) of targets using any number of 
drug response summary metrics (e.g. IC50 or AUC) to stratify the pharmacology response. 
Segmentation of the overall population occurs top-down and along globally-optimal contours 
that are derived explicitly and maximize the differences between the two resulting 
subpopulations. The segmentation continues recursively and is modulated by multiple user-
defined criteria such as the size or separability of the resulting subpopulations. Higher 
threshold values for both result in less granular subpopulations but increase certainty that 
the subpopulations and the quantities estimated from them are both distinct and accurate. 
 
  
We present results from our platform, SEABED (SEgmentation And Biomarker Enrichment 
of Differential treatment response), to demonstrate how unsupervised machine learning can 
discover intrinsic partitions in the drug response measurements of two or more drugs that 
directly correspond to distinct pharmacological patterns of response with therapeutic 
biomarkers.  Addressing the challenges in comparing the response of two drugs, SEABED 
initially assesses two gold standards with established clinical biomarkers, namely the 
differential response of a BRAF inhibitor and MEK inhibitor with anticipated BRAF and KRAS 
mutations 13–16, and an EGFR inhibitor and MEK inhibitor with expected biomarkers of 
EGFR, ERBB2 and KRAS mutations 17–20. Next, we systematically compare how different 
drugs targeting the MAPK and PI3K-AKT pathway yield different patterns of response within 
subpopulations. We show how differential drug response may indicate benefit for drug 
combinations explained through independent action rather than probable synergy by 
examining subpopulations uniquely sensitive to a single drug 21, which may be precisely 
targeted by identified biomarkers. Finally, we demonstrate how the analysis of differential 
response can guide the design of clinical trials by revealing specific indications where an 
investigational therapy may be more effective than the standard treatment. 
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Results 
 
We applied our technique to discover subpopulations of cell lines in which two or more 
compounds, possibly addressing the same disease state or even targeting the same genetic 
alteration, have a common pharmacological pattern of response. By further associating 
enriched genetic alterations in subpopulations with specific patterns of response, we shed 
light into molecular mechanisms responsible for patient subpopulations that respond 
differently to two drugs.  
 
Identifying subpopulations of differential drug response 
We first considered the specific circumstance in which two drugs engage different targets 
within the same signalling pathway, namely agents targeting MAPK signaling. SEABED used 
nearly 1,000 cancer cells derived from the GDSC database, and we evaluated two 
established drug response measures: the drug concentration required to reduce cell viability 
by half (IC50) and the area under the dose-response curve (AUC; Figure 1A). SEABED 
employed a multivariate similarity measure to compare the vector patterns of response for 
each distinct pair of cell lines without requiring a priori assumptions on the number or 
distribution of the subpopulations. The result is a diverse cell line population segmented into 
distinct subpopulations having homogeneous patterns of drug response (Figure 1B). Here 
exemplified, we show that the drug response of 802 cell lines treated with either SB590885 
(BRAF inhibitor) or CI-1040 (MEK inhibitor) could be segmented into 7 distinct 
subpopulations with a median size of 40 cell lines by integrating the two metrics of drug 
response, AUC and IC50 (Figure 1C; see Figures S1B and S1C for individual cell lines 
segmented by IC50 and AUC respectively). The subpopulation sensitive to both inhibitors 
was significantly enriched for BRAF mutants (P=3.87e-14, hypergeometric test), while 
another subpopulation was exclusively sensitive to the MEK inhibitor and significantly 
enriched for KRAS mutations (P=0.00589, hypergeometric test).    
 
In another example we examined a case where one inhibitor might overcome resistance to 
another inhibitor targeting the same pathway; AZD6244/ARRY-142886 selumetinib (MEK 
inhibitor) with afatinib (EGFR and ERBB2 dual inhibitor) across 812 cell lines (Figure 1D). 
Strong markers of sensitivity for selumetinib are subpopulations carrying known associated 
KRAS, NRAS and BRAF mutations (Figures 1D and 1E). A less anticipated association is 
APC loss-of-function sensitivity to selumetinib, albeit this was also found with trametinib 
(another MEK inhibitor) in APC deficient mice 22. We reproduced the well-established 
associations of afatinib with either EGFR and ERBB2 amplifications 4,23, and surprisingly our 
unsupervised segmentation returned two subpopulations enriched for EGFR amplifications. 
The more sensitive subpopulation is solely enriched for EGFR amplifications, whilst the less 
sensitive subpopulation additionally includes activating PIK3CA mutations. In concordance 
with recent literature, PI3K-AKT signaling drives acquired drug resistance to EGFR inhibitors 
in lung cancer 24. 
 
Drug response segmentation resulted in 14 subpopulations with a median size of 38 (Figure 
1D). The subpopulation enriched for EGFR, ERBB2 and PI3KCA variants, has an average 
log(IC50) of 0.9486µM for selumetinib and -0.596µM for afatinib. In contrast, the BRAF 
mutation was enriched in a subpopulation where the average log(IC50) for selumetinib was -
1.061µM and 0.593µM for afatinib. The difference in response between afatinib and 
selumetinib was significantly greater (t-test P<0.01) between the subpopulations identified 
and the total population of PIK3CA or BRAF mutant cell lines (Figures 1F and 1G). 
 
Cross-comparison of multiple drugs redefines best-in-class drugs for specific 
subpopulations 
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Although there is a larger portfolio of clinical drugs with identical putative targets, their 
responses may differ substantially in subpopulations as a consequence of multiple factors, 
for example mode-of-action, different off-target effects and binding properties. The ability to 
discover cell line subpopulations with distinct pharmacological patterns of response 
characterised by genetic mutations re-defines best-in-class drugs by their differential 
response to other drugs in a specific subpopulation, rather than their absolute response 
across an entire population.  
 
In order to demonstrate this approach for drug discovery, we applied SEABED to 745 cell 
lines across cancer types to evaluate the differential response in those cell lines to five 
inhibitors (CI-1040, PD0325901, RDEA119, selumetinib, and trametinib) which all target the 
MEK protein (Figure 2A). The segmentation of cell lines revealed 13 subpopulations with 
different patterns of response and three having enriched biomarkers (Figure S2A). Two 
subpopulations were sensitive to all MEK inhibitors, with trametinib achieving the greatest 
sensitivity. In one subpopulation the KRAS mutation was enriched (Fisher exact p-value = 
1.12e-4 and 40.8% of the cell lines) while another had the BRAF mutation enriched (Fisher 
exact p-value = 1.39e-7 and 50% of the cell lines). In contrast, another subpopulation was 
enriched with the RB1 mutation (Fisher exact p-value = 3.84e-2 and 21.6% of cell lines), 
within which the cell lines were almost uniformly resistant to all MEK inhibitors.  
 
Distribution of subpopulations highlight distinct pharmacological relationships 
between PI3K-AKT and MAPK signaling 
Next, we used SEABED to investigate the cross-talk between two frequently active cancer 
pathways, MAPK and PI3K-AKT signalling, by systematically comparing pairs of drugs 
targeting different genes of each pathway (Figure 2A, B). In total, SEABED performed 342 
pairwise comparisons of 18 PI3K-AKT and 19 MAPK pathway inhibitors. Each drug pair was 
classified into five categories based on the distribution of subpopulation drug responses: (i) 
no differential response, (ii) sensitive to both MAPK and PI3K-AKT pathway inhibitors (i.e. 
correlated response) (Figure S2B), (iii) preferential MAPK pathway sensitivity (Figure S2C), 
(iv) preferential PI3K-AKT pathway sensitivity (Figure S2D), (v) sensitive to either a MAPK 
pathway or a PI3K-AKT pathway inhibitor, i.e. divergent response (Figure S2E).  
 
We found 28 drug pairs with higher than expected number of subpopulations with sensitivity 
to both PI3K-AKT and MAPK pathway inhibition. This association between subpopulation 
size and sensitive response was significant when comparing a CRAF inhibitor (TL-2-105) to 
PI3K-AKT signaling inhibitors (P=1.832e-5). The same trend was observed for inhibiting 
ERK (FR-180204) or RSK (FMK) compared to inhibiting any PI3K-AKT signaling gene 
(P=0.000197 and P=7.231e-8, respectively), but interestingly there was no mutual sensitivity 
when comparing to either BRAF or MEK inhibitors. 
 
There were 68 drug pairs with a significantly high proportion of subpopulations (P < 0.05) 
exhibiting preferential sensitivity to MAPK pathway inhibition. This phenotype is strongly 
pronounced in pairs with BRAF, ERK (FR-180204) and RSK (FMK) inhibitors (P=0.000195, 
P=0.0133 and P=0.00315, respectively; hypergeometric test). In contrast, 29 drug pairs were 
found with significantly high proportions of preferential PI3K-AKT pathway inhibition. In total, 
29 drug pairs showed this phenotype, with an enrichment of 19 MEK inhibitors 
(hypergeometric test P=0.00102). MEK inhibitors were particularly enriched when paired 
with PI3K or PDK1 inhibitor (hypergeometric test P=0.00529). 
 
In 54 cases, we observed drug pairs with sensitivity to either a MAPK pathway or a PI3K-
AKT pathway inhibitor, i.e. divergent response. This response type was enriched for pairs of 
any PI3K-AKT pathway inhibitors and EGFR (erlotinib), BRAF (PLX4720-1 and PLX4720-2), 
or MEK inhibitors (P=7.826e-6, P=0.000308 and P=0.0437, respectively; hypergeometric 
test), while even more significant for AKT inhibitors in comparison with either the EGFR, 
BRAF, or MEK inhibitors (P=0.0133, P=0.000262 and P=0.000311; hypergeometric test). 
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Response patterns for all drug pairs can be explored in our portal (Website S1; 
https://szen95.github.io/SEABED). 
 
Subpopulations of differential response identifies drug combination efficacy 
Previous studies have hypothesised that the efficacy of many approved drug combinations 
can be explained by the independent action of single agents on different patient 
subpopulations with cancers driven by multiple pathways 21. We hypothesised that SEABED 
comparisons of drug pairs would highlight subpopulations of differential response that would 
exhibit synergistic or independent action effects when the drugs are tested in combination. 
Systematic comparison of responses between two drugs highlighted subpopulations of cell 
lines in which there was sensitivity to either drug but not both (divergent response). We 
observed this phenomenon in 50 drug pair comparisons, including a MEK inhibitor 
(RDEA119-2) which showed divergent responses to four PI3K inhibitors (PI-103, 
GSK2126458, ZSTK474, and PIK-93; Figures S3A-D). Drug pairs with divergent response 
were also observed in cell lines treated with PLX4720-1 (BRAF inhibitor) and three MEK 
inhibitors (PI-103, GSK2126458, and ZSTK474; (Figures 3A; Figures S3E-G). Two 
subpopulations with a high proportion of a BRAF mutation were identified with greater 
sensitivity to the PI3K inhibitor (Figure 3B).  
 
We next examined the drug pairs as combination therapies in cell lines 25 and patient-
derived tumor xenograft models (PDXs) 26 to investigate whether the drug pairs with 
divergent response and subpopulations with preferential sensitivity to one drug would be 
associated with efficacy of their combination treatment (Figure 3C). SEABED first compared 
the single drug responses of BRAF, MEK and PI3K inhibitors as before to identify BRAF 
mutant subpopulations with differential response. When the drugs were tested as 
combinations in BRAF mutant cell lines, the MEK/PI3K inhibitor combination had a similar 
level of synergy as BRAF/MEK combinations, which was recently a clinically approved 
combination 27,28. These two combinations had significantly higher synergistic effect when 
used on BRAF mutant cell lines compared to all cell lines (t-test P=0.0204), and compared to 
all drug combinations tested (t-test P=1.46 e-5; Figure 3D; Figure S3H). In terms of overall 
efficacy in PDXs, we observed a similar level of inhibition to tumour volume for the 
BRAF/PI3K inhibitor combination on BRAF mutant cells when compared to the clinically 
approved BRAF/MEK combination and a significantly greater  (t-test P=0.0418) inhibition of 
tumour growth compared to all combinations (Figure 3E; Figure S3I).  
 
Lack of subpopulations of differential response may explain clinical failure 
Sometimes, despite strong preclinical evidence, some drugs do not succeed in clinical trials 
29. One such trial was SELECT-1 (Table S1) which compared the efficacy of combining 
selumetinib and docetaxel to docetaxel alone in patients with advanced KRAS-mutant non–
small cell lung cancer (NSCLC) 30. Although there were KRAS mutant cell lines sensitive to 
selumetinib in preclinical testing 31, we re-examined the pharmacological data with SEABED 
to assess whether there were distinct subpopulations that justified the patient selection 
criteria for KRAS mutation.  
 
In this analysis, instead of only inspecting the subpopulation identified by SEABED when the 
segmentation algorithm terminated, we thoroughly examined all possible subpopulations. 
SEABED identified a total of 61 possible subpopulations from 840 cell lines across tissue 
types tested with selumetinib and docetaxel (Figure 4A). 12 subpopulations were more 
sensitive to selumetinib than docetaxel (Figure 4B), and 5 of those subpopulations were 
enriched for KRAS mutation. However, those subpopulations enriched for NSCLC KRAS 
mutants were small in size and mostly exhibited less sensitivity to selumetinib compared to 
docetaxel (Figures S4A and S4B). The distribution of different KRAS mutations (p.G12C vs 
p.G12V) was also no different in selumetinib sensitive subpopulations compared to resistant 
subpopulations (Figures S4C and S4D). Independent of mutation status, only 8.7% of 
NSCLC cell lines were found in selumetinib sensitive subpopulations, whereas 25.4% cell 
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lines originating from aerodigestive cancer types (eg. esophageal) were found in these 
subpopulations (Figures S4E and S4F).  
 
Next, we focused on subpopulation_60, which had the greatest difference in sensitivity (IC50 
and AUC) to selumetinib compared to docetaxel (Figure 4C). This subpopulation of 122 cell 
lines was enriched in KRAS mutations (28.8%, P=3.061e-4) found across multiple tissue 
types. NSCLC cell lines accounted for only 8% of this subpopulation, with 50% of those cell 
lines being KRAS mutants. Colorectal and pancreatic cell lines accounted for 15% and 8% 
respectively of the subpopulation, and they both had a higher proportion of KRAS mutations 
(56% and 100% respectively; Figure 4D).  
  

Discussion 

 
The ability to identify distinct subpopulations based on multiple measures of drug response 
(eg. IC50 and AUC) and extract their biomarkers is the basis for personalised therapeutics, 
which may ultimately increase the likelihood of successful clinical trials 32,33. Using a 
network-based segmentation algorithm coupled with biomarker detection (SEABED), we 
investigated well-established pharmacological targets and clinical biomarkers by comparing 
the response patterns for BRAF (SB590885) and MEK (CI-1040) inhibition, which expectedly 
reproduced subpopulations sensitive to both enriched for BRAF mutants 34–36. In another 
example, SEABED compared EGFR/ERBB2 (afatinib) and MEK (selumetinib) inhibition to 
reveal expected biomarkers such as BRAF, KRAS and NRAS mutations for selumetinib 13–16, 
and afatinib associated with EGFR and ERBB2 amplifications 37,38. Interestingly, the more 
afatinib-resistant subpopulation was enriched for PI3KCA-activating mutation, which may 
cause acquired resistance 24. When we systematically compared inhibitors of the MAPK and 
PI3K-AKT signaling pathways, we observed subpopulations sensitive to both CRAF, ERK or 
RSK targeted drugs and other drugs targeting the PI3K-AKT pathway, however, there were 
few instances of these subpopulations for inhibitors targeting other genes in the MAPK 
signalling  39. We found many more subpopulations that were more sensitive to BRAF 
inhibitors than other PI3K-AKT inhibitors, and as expected, many contained BRAF mutations 
34. In contrast, there were not significantly more subpopulations sensitive to MEK inhibition 
compared to inhibition of PI3K-AKT signalling targets, but BRAF mutant subpopulations may 
have greater differential response 14. Divergent response was observed when comparing 
EGFR, BRAF and MEK inhibitors to drugs targeting the PI3K-AKT pathway. Our results 
comparing the MAPK and PI3K-AKT pathways based on drug response profiles highlights 
how intertwined those two pathways are in pharmacology space 39.  
 
Arguably, the divergent response type is the most exciting for personalised treatment, since 
it may identify cases where independent drug action and synergy may guide effective drug 
combinations 21. Here exemplified, we showed that PI3K inhibitors combined with either 
BRAF or MEK inhibitors increase in vitro synergy and reduce tumour volume of in-vivo 
models. Furthermore, we were able to show that synergistic and overall effect can be further 
enhanced by the correct biomarker indication, in this instance, BRAF mutant subpopulations 
40,41. The BRAF mutant subpopulation with high efficacy for the BRAF inhibitor and not the 
other inhibitor could be cases where independent drug action explains drug combination 
efficacy, whereas, the subpopulation with lower efficacy for single treatments of either drug 
may be cases for synergistic effects when the drugs are combined.  
 
In examining the preclinical evidence for trial testing combination treatment of NSCLC in 
which the KRAS mutation was the biomarker 42, SEABED revealed a high proportion of 
NSCLC subpopulations having the KRAS mutation that are resistant to both selumetinib and 
docetaxel, suggesting a smaller likelihood of efficacy for the drug combination. Alternately, 
we identified a subpopulation with differential response to selumetinib for a small proportion 
of KRAS NSCLC cell lines, but this subpopulation contained a higher proportion of colorectal 
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and pancreatic cancer cells with KRAS mutations. Previous studies have shown the 
plausibility in treating colorectal cancer using MEK inhibitor combinations 43,44. With 
consideration of KRAS mutations in subpopulations having greater sensitivity to selumetinib, 
SEABED suggests that while the correct biomarker was used for the clinical trial, there may 
be other potential indications for selumetinib. Although response in cell lines may not always 
correspond to response clinically, the use of data-driven approaches to examine large 
populations of cells may reveal clinically relevant drug response patterns. Future studies 
may need to account for differences between in vitro and in vivo responses.   
 
SEABED depends on a segmentation framework that builds upon previous work using 
network models in biomedical contexts 45,46 that partition a population of cell lines described 
by multiple variables into distinct subpopulations using a “top-down” approach of recursively 
identifying optimal cuts for graph bisection. Traditional approaches to segmentation, such as 
agglomerative, “bottoms-up” hierarchical clustering and iterative K-Means clustering are 
greedy algorithms that are inherently sub-optimal in constructing clusters and consequently 
may not identify the most distinct subpopulations. Moreover, these approaches frequently 
require a priori estimates of the number of sub-populations for which many heuristics exist 
but in practice is commonly estimated using trial and error. Hierarchical clustering has been 
utilized routinely to attribute molecular markers to differences in subpopulation drug 
response and outcomes 47,48. Because of their success in other industries 49,50 and their 
natural amenability to matrix decomposition techniques, network-based approaches have 
emerged as viable alternatives for discovering distinct subpopulations 45,46,51. Similarly, while 
our segmentation capitalizes on past progress made in spectral clustering 52,53, our effort 
distinguishes itself from past attempts by integrating all variables into a single network model 
using a multivariate similarity measure that utilizes local and global network statistics.  
Deeper interpretations of matrix subspaces in network models may provide further insight 
into the linkage between subpopulations of cancer cell lines and drugs. 
 
As a whole, this study demonstrates several important insights about the pharmacological 
pattern of response for different cancer drugs by applying an unsupervised machine learning 
platform to segment a large pan-cancer in vitro pharmacology data set. By organizing cell 
lines along similar pharmacological patterns of response, we identified distinct, intrinsic 
subpopulations sensitive to one drug but resistant to others, and in some cases identified 
genetic alterations that can be used as biomarkers for those subpopulations. In the context 
of analytical frameworks for increasing drug R&D productivity by sharpening the focus of 
drugs 54, our work demonstrates the value of advanced analytical approaches in translational 
medicine to enable decision making that is more data-driven and less ambiguous. Moreover, 
by analyzing different pharmacological responses and interpreting its outputs in the context 
of the underlying genetics and molecular pathways, we have created a multi-faceted 
landscape for developing and assessing new drug therapies.   
 
 

Methods 

 
CONTACT FOR REAGENT AND RESOURCE SHARING 
 
All code for the pipeline is open source and available at: https://github.com/szen95/SEABED. 
Further information and requests should be directed to and will be fulfilled by the Lead 
Contact, Dennis Wang (dennis.wang@sheffield.ac.uk). 
 
METHOD DETAILS 
 
Pharmacology data 
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The discovery pharmacology dataset was extracted from the The Genomics of Drug 
Sensitivity in Cancer (GDSC) database 3,4, while leads from the analysis were validated with 
the Cancer Cell Line Encyclopedia (CCLE) 5 and the Cancer Therapeutics Response Portal 
(CTRP) 6–8. Furthermore, suggested drug combinations were validated with cell line 
responses from the AstraZeneca-DREAM challenge dataset 25 and patient derived xenograft 
(PDX) models from Gao et al. 26. 
 
For a given cell line in GDSC, the drug response was fitted with a sigmoid curve 55 and 
consecutively quantified as area under the curve (AUC) or the concentration required to 
reduce cell viability by half (IC50). GDSC contains 265 compounds tested in 990 cell lines, 
whilst we focus on a subset of 38 drugs targeting either the PI3K-AKT or MAPK signalling, 
which leads to 344 experiments considered for evaluation.  
 
Deep molecular characterisation of the cancer cell lines 
The GDSC resource provides the characterisation of >1,000 cell lines including whole 
exome sequencing and SNP6.0 arrays, which enabled to quantify gene-level mutational and 
copy number variation status. Additional, 10 key fusion genes were included in this analysis, 
which is summarized in the binary event matrix (BEM) from Iorio et al. 4. 
 
Processing drug response measures (AUC/IC50 values) 
We build network models for a set of 𝑁cell lines, 𝐶 = {𝐶1, . . , 𝐶𝑁}, that are separately exposed 
to two distinct drugs, 𝐷1 and 𝐷2  , which results in two sets of 𝑀 measurement variables, 𝑋𝑖 =
 [𝑥1, . . , 𝑥𝑀], 𝑖 = 1,2, describing the response to each compound: 
 

                             𝑋𝑖,𝑗 = 𝐷𝑖(𝐶𝑗𝑖),  𝑖 = 1,2;  𝑗 = 1, . . . , 𝑁  (Equation 1) 

 
We use a network model that is an undirected graph, 𝐺, consisting of 𝑁vertices, 𝑉𝑖 , 𝑖 =
1, . . . , 𝑁, (one for each cell line in 𝐶) with weighted edges, 𝑊𝑖,𝑗(𝑉𝑖 , 𝑉𝑗) , 𝑖, 𝑗 = 1, . . . , 𝑁, 𝑖 ≠ 𝑗, 

between every distinct pair of vertices. Our approach  
uses a single multivariate similarity measure (Equation 2), to construct one network model, 
with the advantage that the subspace properties of the resulting adjacency and Laplacian 
matrices are fully embedded with the complete characteristics of 𝐶. The weight is the 

similarity, wi,j, between 𝑖-th and 𝑗-th composite 2𝑀 𝑥 1 dose response profile (DRP), 𝑋𝑖 =
 [𝑋1,𝑖 , 𝑋2,𝑖], for 𝐶𝑖  and 𝐶𝑗 .    

 
We characterize drug response by two important continuous-valued measurements 
extrapolated from the cell line pharmacology screens: the IC50 value and the AUC of the 
dose-response curve (Table S2) observed when one compound is applied in vitro to a single 
cell line sample at successively greater concentrations. Since every cell line possesses a 
length-4 DRP for a given pair of drugs, the similarity, 𝑤, between any two cell lines resides 

on (0,1] and is calculated by a multivariate quasi-Gaussian comparison that differences the 
elements of the DRPs but also weighs the differences by a combination of local and global 
network statistics. Similarity between the response vectors, 𝑋𝑖  and 𝑋𝑗 , is given by: 

 

𝑤(𝑋𝑖 , 𝑋𝑗) = 𝑒−𝑑(𝑋𝑖,𝑋𝑗)(Equation 2) 

 

𝑑(𝑋𝑖 , 𝑋𝑗)  =  (𝛥𝑋
𝑖,𝑗

𝑇
 𝛴 𝑖,𝑗

−1 𝛥𝑋𝑖,𝑗) 𝛽  (Equation 3) 

 
The similarity between two cell lines equals one when both have identical covariate values, 
and approaches zero as their covariates increasingly differ. Additionally, 𝑤(𝑋𝑖 , 𝑋𝑗)=𝑤(𝑋𝑗 , 𝑋𝑖). 
𝛥𝑋𝑖,𝑗 is a 4 𝑥 1 vector whose entries are the difference of the DRP values in 𝑋𝑖and 𝑋𝑗and 𝛽 

modulates the similarity between two patients. we selected 𝛽 = 0.5 for our experiments 

based on experimentation and the observations of previous efforts. 
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𝛴𝑖,𝑗 is a 4 x 4 covariance-like matrix that is estimated for every distinct (𝑖, 𝑗)-pair and captures 

the variability of individual variables as well as their inter-relationships. While 𝛴𝑖,𝑗 is an 

explicit function of the two patients being compared, it also captures network-wide 

characteristics. For diagonal elements, 𝛴𝑖,𝑗(𝑎, 𝑎), 𝑎 =  1, . .4, the entries are: 

 

𝛴𝑖,𝑗(𝑎, 𝑎) =
(𝛥𝑋𝑖,𝑗(𝑎) + 𝑁𝑔𝑏𝑑(𝛥𝑋𝐼(𝑎) ) + + 𝑁𝑔𝑏𝑑(𝛥𝑋𝐽(𝑎) )) 2

9
, a = 1,2,3,4 (Equation 4) 

 
where 𝑁𝑔𝑏𝑑 (𝛥𝑋𝐼(𝑎))corresponds to all edges neighboring vertex-i, and the overbar is the 

averaging operator. The off-diagonal elements, 𝛴𝑖,𝑗(𝑎, 𝑏), 𝑎, 𝑏 =  1, . .4, 𝑎 ≠ 𝑏are: 

 

𝛴𝑖,𝑗(𝑎, 𝑏) =

(𝛥𝑋𝑖,𝑗(𝑎) + 𝑁𝑔𝑏𝑑(𝛥𝑋𝐼(𝑎) ) + + 𝑁𝑔𝑏𝑑(𝛥𝑋𝐽(𝑎) )) (𝛥𝑋𝑖,𝑗(𝑏) + 𝑁𝑔𝑏𝑑(𝛥𝑋𝐼(𝑏) ) + + 𝑁𝑔𝑏𝑑(𝛥𝑋𝐽(𝑏) ))

9

, a = 1,2,3,4 (Equation 5) 
 
The Moore-Penrose pseudo-inverse was used to avoid problems with low-rank during matrix 

inversion. The framework is generalizable to include more variables and different measures 

of similarity. The symmeric, positive semi-definite, 𝑁 𝑥 𝑁 weighted adjacency matrix, 𝑊, 

holds the pairwise similarities. 

 
Segmentation 
The set of cell lines, 𝐶, is segmented recursively into distinct subpopulations using the 

Fiedler eigenvector derived from the eigendecomposition of 𝑊56. Each subpopulation of cell 
lines is successively segmented into two subpopulations until the size of either 
subpopulation falls below a user-defined threshold, or when previously observed significant 
enrichment of genetic biomarkers (see below) is no longer observed in all current 
subpopulations. In our experiments, we required both resulting subpopulations to have 20 or 
more members in order to be retained. Criteria and thresholds can be modified and adapted 
to emphasize relevant factors in a particular problem. The whole process yields 𝐾 mutually 

exclusive subpopulations𝑃𝑘, 𝑘 = 1, . . . , 𝐾 ,where 𝐶 = ∪𝑘=1 𝑃𝑘. Successive segmentation 

results in sub-populations with increasingly similar DRPs.  
 
QUANTIFICATION AND STATISTICAL ANALYSIS   
 
Enrichment of features to nominate biomarkers  
Because genetic alterations in each cell lines are known, each subpopulation can be 
evaluated by non-parametric statistical tests to identify enriched alterations that may be 
attributed to patterns of sensitivity or resistance in the DRP across both drugs. For each 
subpopulation, we measured the number of cell lines in the subpopulation with a particular 
gene mutation, and the number of cell lines outside of the subpopulation with the mutation. A 
2X2 contingency table was generated from the cell line counts of with/without mutation and 
inside/outside of subpopulation. Significance of observed enrichment of mutations within 
subpopulations were calculated using the Fisher’s exact test. The resulting p-values were 
corrected for multiple testing using the Benjamini and Hochberg (BH) procedure (Table S3). 
 
Classification of pair-wise drug responses 
We made 342 pairwise comparisons of drugs targeting the MAPK and PI3K-AKT pathways. 
Based on the distribution of log(IC50) values across all cell lines tested with both drugs, we 
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determined the 20th-percentile of log(IC50) values for each drug. The 20th percentile cutoffs 
P20 for drugs A and B was used to categorise the average log(IC50) y of each subpopulation i 
into four categories: 
 yi < P20, A   and yi < P20, B  = sensitive to drugs A and B 
 yi < P20, A   and yi ≥ P20, B  = more sensitive to drug A 

 yi ≥ P20, A   and yi < P20, B  = more sensitive to drug B 
 yi ≥ P20, A   and yi ≥ P20, B  = resistant to drugs A and B 

The number of subpopulations in each category were recorded in a 2X2 contingency matrix 
and normalised by the number of cell lines in each subpopulation. For each drug pair, a 
binomial test was performed to test whether the number of subpopulations in each category 
is greater than what would be expected. 
 
After classification of pair-wise drug responses, we assessed whether a drug was 
significantly enriched for one category in comparisons with all other drugs. Testing was 
carried out using the hypergeometric test (phyper R package).  
 
2-D visualization of drug response profiles 
To visualize DRPs across cell lines and drug comparisons, we calculated the average 
log(IC50) values for each drug in subpopulations generated based on their response to the 
tested drug pairs (Table S3). We then plotted the mean log(IC50)  values as circles on a 2-D 
scatter plot using the Matplotlib Python library. Dashed lines indicative of 20th percentile of 
log(IC50) values for each drug were also plotted on the scatter plot. The radii of the circles is 
proportional to subpopulation size. 
 
Tree visualization of subpopulations 
We utilized tree diagrams to visualize the data generated. The tree diagrams illustrate how 
the the cancer cell lines are segmented into different subpopulations, based on whether they 
are sensitive or resistant to the drugs that are being tested. The tree diagrams were 
generated through an open-source Python library called Graphviz. The style of each 
component of the tree diagram was first initialized through a class. This included the colours, 
shapes, and fonts of the edges and nodes of the tree diagram. A method to create tree 
diagrams was developed to accept the number of vertices and leaves, the labels for the 
leaves, and the tree diagram filename. The tree diagram is finally generated and saved by 
calling the method.  
 
DATA AND SOFTWARE AVAILABILITY 
 
All code for the pipeline is open source and available at: https://github.com/szen95/SEABED. 
All data used in the paper are published previously and publicly available at the GDSC, 
CCLE, and CTRP databases. Datasets used are listed in Table S2, Table S3, and the Key 
Resources Table. 
 
ADDITIONAL RESOURCES 
 
Response patterns of 342 pair-wise comparisons of 18 PI3K-AKT and 19 MAPK pathway 
inhibitors: https://szen95.github.io/SEABED/ 
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2. Table S2.xlsx 

Table S2. Input Data for Segmentation, Related to Figures 1-4, S1-S4, and Website 
S1 
Input data: log(IC50) and AUC values for 1074 cancer cell lines treated with 265 anti-
cancer drugs. 
 

3. Table S3.xlsx 
Table S3. Output Data and Enriched Biomarkers After Segmentation, Related to 
Figures 1-4, S2-S4, and Website S1 
Output data: IC50 20% cutoff, minimum and maximum IC50 concentration, and 
average IC50 response of each subpopulation towards each drug (344 cancer drug 
pairs) tested on the cancer cell lines. The subpopulation number and the number of 
cell lines in each subpopulation are recorded. Each individual cell line in every 
subpopulation together with individual cell line tissue types are also shown. Enriched 
biomarkers: Biomarkers found within subpopulations (adjusted p-value and/or p-
value < 0.05), together with the subpopulation number, the number of cell lines in 
each subpopulation, percentage of the biomarkers found within each subpopulation, 
the number of cell lines in the subpopulation with the biomarker, the p-value, and 
adjusted p-value.  
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Figure 1: Segmentation of a population based on pharmacological patterns of 
response discovers subpopulations with differential response. (A) Dose 
response curves of two or more drugs are measured across a population of up to 
1,000 cancer cell lines. (B) The population is segmented into distinct and 
homogeneous subpopulations based on their response to multiple drugs. When 
comparing two drugs, subpopulations can be categorised based on their mean 
log(IC50s): sensitive to both drugs (orange), sensitive to drug A but not drug B 
(green), sensitive to drug B but not drug A (blue), resistant to both drugs (grey). (C) 
Segmentation results for a BRAF inhibitor (SB590885) and a MEK inhibitor (CI-
1040). Tree nodes contain the number of cell lines and are colored based upon their 
category of response. Significance testing reveals subpopulations enriched for BRAF 
and KRAS mutations. (D) Scatter plot showing derived subpopulations based on their 
pharmacological responses for afatinib and selumetinib. Dashed lines indicate 20th 
percentile of log(IC50) values for each drug. PIK3CA, EGFR, ERBB2, KRAS, NRAS, 
BRAF, APC, TCF4 and RB1 mutations were found enriched in the associated 
subpopulations. (E) OncoPrint visualizing the percentage of mutations of selected 
genes in cell line panel treated with either afatinib (EGFR inhibitor) or selumetinib 
(MEK inhibitor). The waterfall plots compare response of the cell lines to afatinib and 
to selumetinib. (F) Boxplot of difference in log(IC50) values between afatinib and 
selumetinib response for wild-type cell lines, all cell lines with PI3KCA mutation and 
cell lines in derived subpopulations with enriched PI3KCA mutation. (G) Same as 
panel (F), but for BRAF mutations. 
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Figure 2: Distinct drug response types after unsupervised segmentation of 
pharmacological response pattern for targeting MAPK or PI3K-AKT signaling. 
(A) MAPK and PI3K-AKT pathways illustrating drugs in purple boxes which were 
assessed, and their different gene targets in the pathway. Genes in the green boxes 
are involved in the PI3K-AKT pathway while genes in the blue boxes are involved in 
the MAPK pathway. (B) Heatmap illustrating pairwise comparison of responses for 
19 different inhibitors targeting the MAPK pathway and 18 different inhibitors 
targeting the PI3K-AKT pathway. It illustrates five possible classes of differential 
response when comparing two drugs: (i) no differential response (black), (ii) 
subpopulations sensitive to both MAPK and PI3K-AKT pathway inhibitors (pink), (iii) 
preferential MAPK pathway sensitivity (yellow), (iv) preferential PI3K-AKT pathway 
sensitivity (green) or (v) sensitive to either a MAPK pathway inhibitor or a PI3K-AKT 
pathway inhibitor and vice versa (divergent response, blue). 
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Figure 3: Divergent response exemplified with PI3K inhibition in comparison to 
MEK and BRAF inhibitors. (A) Scatter plot showing subpopulations that exhibit 
divergent pharmacological response to PLX4720-1 (BRAF inhibitor) and PI-103 (PI3K 
inhibitor). Dashed lines indicate 20th percentile of log(IC50) values for each drug. 
BRAF mutations were found enriched in the associated subpopulations. (B) Same as 
panel (A), but showing individual cell lines and those in gold are cell lines with the 
BRAF mutation. (C) Workflow illustrating cell lines being tested with individual 
inhibitors and their joint pharmacological patterns of response. Drug pairs with 
divergent response and BRAF mutant subpopulations suggest a target for drug 
combination therapies, which are validated in cell lines 25 and patient-derived tumor 
xenograft (PDX) models 26. (D) In vitro synergistic effect of combining MEK inhibitors 
with PI3K or BRAF inhibitors in all cell lines and just those with BRAF mutations. This 
also compared to measured synergy for all combinations tested in cell lines. (E) In 
vivo effect of combining BRAF inhibitors with PI3K or MEK inhibitors. Measured 
response is the change in tumor volume following treatment. BRAF and MEK inhibitor 
combinations have also been shown to be effective in the patients 28. 
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Figure 4: Subpopulations of cell lines indicating differential response between 
docetaxel and selumetinib. (A) Tree diagram illustrating the segmentation process 
of 840 cell lines across cancer types into subpopulations based on their response to 
docetaxel and selumetinib. Branch colours distinguish subsets of subpopulations with 
darker colours indicating increasing number of cell lines in the subpopulation. (B) 
Scatter plot of subpopulations discovered through progressive segmentation based 
on average log(IC50) values. Dashed lines indicate 20th percentile of log(IC50) values 
for each drug. The KRAS mutation is enriched in 5 subpopulations exhibiting 
sensitivity to selumetinib and resistance to docetaxel, including subpopulation 60. 
The colours of the subpopulations correspond to the location of the subpopulation in 
the tree diagram. (C) Bar plot illustrating the difference in AUC values for each cell 
line. The orange bars highlight the cell lines within subpopulation 60. (D) Heatmap 
showing the percentage of each cancer type enriched within the cell lines in 
subpopulation 60. The bar plot illustrates the KRAS mutations within the cell lines 
that are highlighted in green.  
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