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ABSTRACT 23 

West Nile virus (WNV) is a neurotropic mosquito-borne flavivirus of global importance. 24 

Neuroinvasive WNV infection results in encephalitis and can lead to prolonged 25 

neurological impairment or death. Type I interferon (IFN-I) is crucial for promoting 26 

antiviral defenses through the induction of antiviral effectors, which function to restrict 27 

viral replication and spread. However, our understanding of the antiviral response to 28 

WNV infection is mostly derived from analysis of bulk cell populations. It is becoming 29 

increasingly apparent that substantial heterogeneity in cellular processes exists among 30 

individual cells, even within a seemingly homogenous cell population. Here, we present 31 

WNV-inclusive single-cell RNA sequencing (scRNA-seq), an approach to examine the 32 

transcriptional variation and viral RNA burden across single cells. We observed that 33 

only a few cells within the bulk population displayed robust transcription of IFN-β mRNA, 34 

and this did not appear to depend on viral RNA abundance within the same cell. 35 

Furthermore, we observed considerable transcriptional heterogeneity in the IFN-I 36 

response, with genes displaying high unimodal and bimodal expression patterns. 37 

Broadly, IFN-stimulated genes negatively correlated with viral RNA abundance, 38 

corresponding with a precipitous decline in expression in cells with high viral RNA levels. 39 

Altogether, we demonstrated the feasibility and utility of WNV-inclusive scRNA-seq as a 40 

high-throughput technique for single-cell transcriptomics and WNV RNA detection. This 41 

approach can be implemented in other models to provide insights into the cellular 42 

features of protective immunity and identify novel therapeutic targets. 43 

 44 
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IMPORTANCE 46 

West Nile virus (WNV) is a clinically relevant pathogen responsible for recurrent 47 

epidemics of neuroinvasive disease. Type I interferon is essential for promoting an 48 

antiviral response against WNV infection; however, it is unclear how heterogeneity in 49 

the antiviral response at the single-cell level impacts viral control. Specifically, 50 

conventional approaches lack the ability to distinguish differences across cells with 51 

varying viral abundance. The significance of our research is to demonstrate a new 52 

technique for studying WNV infection at the single-cell level. We discovered extensive 53 

variation in antiviral gene expression and viral abundance across cells. This protocol 54 

can be applied to primary cells or in vivo models to better understand the underlying 55 

cellular heterogeneity following WNV infection for the development of targeted 56 

therapeutic strategies.  57 

 58 

 59 
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INTRODUCTION 61 

Mosquito-borne flaviviruses represent a significant public health burden, annually 62 

accounting for millions of infections worldwide that, in certain cases, can culminate in 63 

severe systemic or neuropathological outcomes (1-4). West Nile virus (WNV), a 64 

member of the Flaviviridae family, causes yearly epidemics of encephalitis and virus-65 

induced myelitis on a global scale with nearly 50,000 reported cases of WNV disease 66 

and over 21,000 cases of neuroinvasive disease from 1999 to 2016 in the United States 67 

alone (1-4). Currently, there are no licensed vaccines or approved targeted therapeutics 68 

to prevent or treat WNV-infected patients, underscoring the need to better understand 69 

the cellular response to WNV infection (1-4).  70 

Type I IFN (IFN-α/β or IFN-I) is the first line of defense against viral infection and 71 

coordinates the early antiviral programs to restrict viral replication, as well as shape the 72 

adaptive immune response (5-14). Loss of IFN-I signaling in WNV-infected mice results 73 

in uncontrolled viral replication and rapid mortality, demonstrating that the IFN-I 74 

response is required for protective immunity (9, 11, 14, 15). Pattern recognition 75 

receptors, including toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-76 

like receptors (RLRs), detect broad viral signatures, such as 5’-triphosphate ssRNA or 77 

dsRNA, in the cytosolic and endosomal compartments (9, 11, 12, 14). For flavivirus 78 

infection, RLRs are critical for inducing IFN-I and binding to cytosolic viral RNA signals 79 

through adaptor proteins, such as mitochondrial antiviral signaling protein (MAVS), to 80 

activate transcription factors and induce interferon regulatory factor (IRF)-mediated 81 

transcription of IFN-β (Ifnb1) and a subset of IFN-stimulated genes (ISGs) (9, 11, 12, 14, 82 

16-22). Signaling in both an autocrine and paracrine manner, secreted IFN-β binds IFN-83 
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I receptor (IFNAR1/2 heterodimer) to activate Janus kinases, Jak1 and Tyk2, which 84 

phosphorylate signal transducer and activator of transcription 1 (STAT1) and STAT2 (7, 85 

9, 10, 12, 18-21, 23-27).  Phosphorylated STAT1 and STAT2 form a heterodimer and 86 

recruit IRF9 to form the ISG factor 3 (ISGF3) complex. The ISGF3 complex then 87 

translocates to the nucleus and induces IFN-stimulated response element (ISRE)-88 

regulated genes, thereby reshaping the cellular landscape to an antiviral state (5, 7, 9, 89 

12, 18-21, 23-28). 90 

 The induction of IFN-I and ISGs within a bulk population of infected cells has 91 

been well characterized. However, mean values obtained via conventional bulk assays 92 

mask transcriptional differences between infected and bystander cells and obscure any 93 

heterogeneity present within the infected population. Recently, single-cell studies have 94 

examined the heterogeneity across virally infected cells. Findings with influenza virus, 95 

poliovirus, dengue virus (DENV) and Zika virus (ZIKV) have revealed extensive 96 

variation in viral RNA abundance within single cells (29-31). Using high dimensional 97 

mass cytometry by time-of-flight (CyTOF) analysis, others have described differences in 98 

IFN-induced and pro-inflammatory cytokine production in infected and bystander human 99 

dendritic cells following DENV infection (32). Studies examining IFN-I induction at the 100 

single-cell level have used fluorescently-tagged cells, single-mRNA molecule in situ 101 

hybridization, single-cell quantitative PCR (qPCR), and single-cell RNA sequencing 102 

(scRNA-seq) (16-19, 27, 33). Previous studies have found that only a small fraction of 103 

infected cells express Ifnb1 mRNA (17-19, 27). This is thought to be attributable to 104 

stochasticity in signaling components and downstream signaling cascades leading to 105 

transcription factor activation or variability in the processes of Ifnb1 expression, perhaps 106 
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at the level of chromatin organization (16-19, 34-36). Using PRR agonists or 107 

nonproductive viral infection, others have demonstrated that IFN-I-dependent paracrine 108 

signaling is pivotal in amplifying the host antiviral response (16-19, 26, 27). Lastly, 109 

single-cell transcriptomic studies have also been used to globally investigate virus-host 110 

interactions and identify novel candidate genes for host-targeted therapeutics (31). 111 

Knockdown screens or knockout studies can only probe a subset of nonessential host 112 

genes, limiting their scope (37-42). However, virus-inclusive scRNA-seq is a powerful 113 

platform for the discovery of novel proviral and antiviral candidate genes in an unbiased 114 

manner as recently highlighted by Zanini and colleagues with DENV and ZIKV (31). 115 

Altogether, these studies have shed considerable light on the transcriptional 116 

differences present in single cells, and specifically with Ifnb1 expression and viral RNA 117 

abundance. However, we still lack a thorough understanding of the cellular 118 

heterogeneity in the IFN-I response following WNV infection. Population-level 119 

transcriptional analyses are valuable and widely used approaches, but in certain cases 120 

can belie gene expression patterns, such as bimodal variation, which can only be 121 

observed at single-cell resolution (18, 27, 33). To better understand the underlying 122 

transcriptional differences across cells with varying viral abundance, we developed 123 

WNV-inclusive scRNA-seq, a modified SMART-Seq protocol that incorporates a virus-124 

specific primer for parallel recovery of host messenger RNA (mRNA) and viral RNA 125 

from single cells. We found that only a small fraction of cells exhibited robust Ifnb1 126 

expression, and this did not significantly correlate with high viral RNA. We observed 127 

considerable transcriptional heterogeneity in ISG expression and viral RNA abundance 128 

across cells. ISGs exhibited both unimodal and bimodal variation and were negatively 129 
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correlated with intracellular viral RNA, displaying a steep decline in gene expression 130 

with increasing viral abundance. Combining single-cell mRNA sequencing with 131 

quantification of non-polyadenylated viral RNA, we present WNV-inclusive scRNA-seq 132 

as a high-throughput technique for single-cell transcriptome analysis of WNV-infected 133 

cells. 134 

 135 

 136 

137 
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RESULTS 138 

Population-level analysis of WNV infection in murine fibroblast L929 cells. We first 139 

modeled WNV infection kinetics in murine fibroblast L929 cells, an IFN-competent cell 140 

line extensively used to study IFN-I-dependent signaling (19, 43). Cells were infected at 141 

a multiplicity of infection (MOI) of 0.1, 1 or 10, as determined on BHK-21 cells, and 142 

intracellular viral envelope (E) protein immunostaining was performed at 6, 12, 24 and 143 

48 hr post-infection. Infected cells were labeled with WNV E16 antibody (Ab), which 144 

recognizes a domain III (DIII) neutralizing epitope within the E protein (44). For all three 145 

MOIs, nearly 100% of cells stained positive for intracellular viral E protein by 48 hr post-146 

infection (Fig. 1A). At a MOI of 10, intracellular viral E protein was detected in nearly 147 

100% of cells as early as 24 hr post-infection, suggesting that the majority of these cells 148 

were likely infected during primary virus adsorption (Fig. 1A). For cells infected at a MOI 149 

of 1, intracellular viral E protein was detected in approximately 60% of cells at 24 hr 150 

post-infection (Fig. 1A).  151 

To diminish asynchronous second-round infection, cells were infected with WNV 152 

(MOI of 1) and incubated in the presence of WNV E16 neutralizing Ab. Inoculation with 153 

UV-inactivated WNV served as a non-replicating input control for internalized viral RNA, 154 

and no expression of viral E protein was detected (Fig. 1B, 1C). Notably, limiting in vitro 155 

spread resulted in a 5.5-fold decrease in the percentage of viral E protein-positive cells 156 

(10.6%) at 24 hr post-infection, corresponding with a comparable 5.2-fold reduction in 157 

viral RNA levels (Fig. 1B, 1C). Collectively, these two conditions, WNV and WNV (+Ab), 158 

provide a cell population with a range of viral abundance and another of predominantly 159 
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bystander cells with which to survey the IFN-I response at the population and single-cell 160 

level in all subsequent analyses. 161 

Before pursuing a single-cell approach, we next sought to evaluate 162 

transcriptional changes following WNV infection at the population level by bulk RNA-seq. 163 

As expected, numerous genes associated with the innate immune response and 164 

antiviral defense response were up-regulated following infection (Fig. 1D, 1E). 165 

Furthermore, the majority of these genes were expressed at similar levels independent 166 

of reduced asynchronous second-round infection (Fig. 1D, 1E). ISGs and PRR genes 167 

exhibited a more consistent level of mean gene expression across these two conditions 168 

(Fig. 1E). Conversely, IFN-I and cytokine genes displayed the most variability in 169 

expression between genes within their respective categories (Fig. 1E). Most notably, 170 

Ifna2 and Ifna5 displayed around two-fold higher levels of expression when allowing for 171 

in vitro spread, although Ifna2 dropped outside of the pre-selected significance cutoff (p 172 

< 0.01; Fig. 1E, 1F). This population-level analysis provides a contextual fundamental 173 

framework from which to build as we examine the transcriptional differences observed 174 

across single cells. Leveraging single-cell sequencing techniques complemented with 175 

viral RNA detection, we next extended the resolution of our analysis to single cells to 176 

better understand the underlying transcriptional heterogeneity present following WNV 177 

infection. 178 

 179 

WNV-inclusive scRNA-seq captures mRNA and viral RNA from single cells. WNV-180 

inclusive scRNA-seq is adapted from the well-established Smart-seq2 protocol (45) and 181 

the commercially available SMART-Seq v4 Ultra Low Input RNA Kit (Takara) used for 182 
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scRNA-seq. The SMART-Seq v4 protocol is modified to include a virus-specific primer 183 

(WNV SC primer) during the reverse transcription (RT) step. For scRNA-seq analysis, 184 

L929 cells are inoculated with virus for 1 hr at a MOI of 1 and then incubated in the 185 

presence or absence of WNV E16 neutralizing Ab (44) for 24 hr (Fig. 2A). Viable single 186 

cells are sorted by conventional flow cytometry into 96-well plates containing 10 µL lysis 187 

buffer per well (Fig. 2B). In the RT reaction, 3’ SMART-Seq CDS Primer II A (30-188 

nucleotide poly-dT sequence with a 5’ 25-nucleotide ISPCR universal anchor sequence 189 

(45)) and WNV SC primer (21-nucleotide sequence complementary to positive-strand 190 

viral RNA with a 5’ 25-nucleotide ISPCR universal anchor sequence (45)) are added to 191 

capture host transcripts and viral RNA, respectively (Fig. 2C). Following template 192 

switching, PCR Primer II A served as the primer for parallel downstream amplification of 193 

both host and viral complementary DNA (cDNA) (Fig. 2C). Samples underwent Nextera 194 

tagmentation and were sequenced on an Illumina HiSeq at a depth of approximately 1 195 

million reads per cell (27, 46). Altogether, we successfully captured and profiled a total 196 

of 127 cells across three conditions: Mock, WNV, and WNV (+Ab). The outlined 197 

approach delivers exceptional coverage and sequencing depth allowing for accurate 198 

quantification of host transcripts and non-polyadenylated viral RNA. 199 

Viral RNA was successfully recovered from single cells following WNV infection, 200 

and the majority of WNV reads were aligned with the targeted region of the WNV 201 

genome (Fig. 2D). To ensure that the addition of WNV SC primer did not adversely 202 

affect the recovery of host mRNAs, the concentration of WNV SC primer was carefully 203 

titrated and cDNA quality was evaluated on an Agilent 2100 Bioanalyzer 204 

(Supplementary Fig. 1). Furthermore, we examined the levels of housekeeping genes 205 
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(Gapdh, Rpl5, Arf1 and Pgk1) across cells in all three conditions: Mock, WNV, and 206 

WNV (+Ab). Unsurprisingly, expression of housekeeping genes was not significantly 207 

different between mock and infected conditions, demonstrating that amplification of viral 208 

RNA does not impair recovery of host mRNA (Fig. 2E). 209 

 210 

Heterogeneity in viral RNA abundance and ISG induction at single-cell resolution. 211 

At the single-cell level, we observed large differences in viral RNA abundance in the 212 

presence and absence of limited in vitro spread (Fig. 2D). In the absence of neutralizing 213 

antibody, we detected a wide range of intracellular viral RNA levels, with the majority of 214 

cells having greater than 210 viral RNA counts per million transcripts (Fig. 2D). 215 

Interestingly, only 24% of cells had greater than 210 viral RNA counts per million 216 

transcripts when limiting asynchronous secondary infection (Fig. 2D). Furthermore, the 217 

heterogeneity of viral RNA abundance in the presence of neutralizing antibody suggests 218 

that there is variability in WNV replication during the primary round of infection (Fig. 2D). 219 

Notably, the percentage of single cells positive for viral RNA (Fig. 2D) is significantly 220 

higher than the percentage predicted by flow cytometry-based viral E protein 221 

immunostaining for both infection conditions (Fig. 1B). 222 

 When examining transcriptional dynamics across single cells, we noticed some 223 

interesting trends. Only a small fraction of WNV-infected cells produced greater than 25 224 

Ifnb1 counts per million transcripts (Fig. 3A). Intriguingly, we observed a similar 225 

expression signature for Ifna4 and Ifna2 despite high levels of Irf7, a transcription factor 226 

that drives IFN-α production (47-49), in the majority of cells (Fig. 3A).  Furthermore, we 227 

identified three chemokine genes (Ccl5, Ccl4 and Cxcl11) that displayed comparable 228 
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cellular distributions to IFN-I genes. Other pro-inflammatory cytokine genes, Cxcl10, Tnf, 229 

Il6 and Il23a, exhibited cellular heterogeneity but still maintained a portion of cells with 230 

no detectable transcript. Genes Ddx58 and Dhx58, which respectively encode the RLRs 231 

RIG-I and LGP2 (Laboratory of Genetics and Physiology 2), were highly expressed with 232 

most cells containing greater than 25 counts per million transcripts (Fig. 3B). 233 

Interestingly, Tlr3 and Ifih1, another important RLR gene that encodes MDA5 234 

(melanoma differentiation-associated gene 5), displayed greater variation in expression 235 

across cells, including a fraction with no detectable transcript (Fig. 3B). Components of 236 

the ISGF3 complex (Irf9, Stat1 and Stat2) are critical for IFN-I signaling and are induced 237 

to greater than 25 counts per million transcripts in the majority of cells (Fig. 3B). Next, 238 

we sought to examine the expression patterns for a panel of experimentally validated 239 

WNV-targeting antiviral effector genes (Rsad2, Tnfsf10, Ifi44l, Oas1b, Oas3, Ifitm3, 240 

Eif2ak2 and Mov10) and two well-established ISGs (Ifit3 and Mx1) (26, 42, 50-58). 241 

Antiviral effector genes feature both unimodal (Tnfsf10, Ifi44l, Ifitm3, Eif2ak2, Mov10 242 

and Mx1) and bimodal (Rsad2, Oas1b, Oas3 and Ifit3) variation across single cells (Fig. 243 

4). Notably, several genes (Ddx58, Tlr3, Stat1, Tnfsf10, Eif2ak2, Ifit3 and Mx1) revealed 244 

significantly different transcriptional signatures across cells with and without limited in 245 

vitro spread (Fig. 3B, 4). Strikingly, most cells have no detectable reads for Tnfsf10 and 246 

Mx1 when allowing for in vitro spread; however, in the presence of neutralizing Ab, the 247 

inverse is true (Fig. 4).  248 

 249 

Correlation between host gene expression and viral RNA abundance for single 250 

cells. Building upon our ability to assess viral RNA abundance in singe cells, we 251 
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calculated Spearman’s correlation coefficients for host gene expression and viral RNA 252 

burden across all WNV cells, which spanned a range of viral RNA levels. To 253 

comprehensively identify pathways that might be linked to viral RNA abundance, we 254 

performed gene ontology (GO) enrichment analysis using the online bioinformatics tool 255 

DAVID (59, 60), wherein we independently evaluated all positively correlated (ρ > 0.35) 256 

and negatively correlated (ρ < -0.35) genes of significance (p < 0.001). The top 257 

pathways extracted from the GO enrichment analysis for negatively correlated genes 258 

were the antiviral defense response, cellular response to IFN-β, response to virus, 259 

negative regulation of viral replication, innate immune response and antigen processing 260 

and presentation via MHC I (class I major histocompatibility complex molecule)  (Fig. 261 

5A). For the positively correlated gene set, the top pathways included transcriptional 262 

regulation, amino acid transport, ribosomal RNA (rRNA) processing, regulation of 263 

protein ubiquitination and ER stress response, providing a broad description of viral 264 

RNA-correlated genes (Fig. 5A). Next using curated gene lists from published large-265 

scale ISG screen and single-cell transcriptomic studies (26, 61, 62), we examined the 266 

distribution of correlation coefficients for ISGs and cell cycle-associated genes 267 

subdivided by phase (G1/S, S, G2/M, M and M/G1). Predictably, the majority of genes 268 

do not correlate with viral RNA abundance, and the distribution of coefficients skews 269 

heavily towards zero (Fig. 5B). When assessing viral RNA correlations for cell cycle-270 

associated genes, most genes were not significantly positively or negatively correlated, 271 

although minor shifts were observed for S, M and M/G1 phase genes (Fig. 5B). 272 

Interestingly, 124 out of 294 ISGs were negatively correlated with viral RNA 273 

corresponding with a dramatic shift in the coefficient distribution (Fig. 5B). As predicted 274 
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by the GO enrichment analysis, numerous genes associated with the ER stress 275 

response (Gadd45a, Ppp1r15a, Selenos, Ddit3, Atf4 and others) were strongly 276 

positively correlated with viral abundance (Fig. 5B). A subset of correlated ISGs and 277 

panel of non-correlated cytokine genes are represented in a correlation matrix (Fig. 5C). 278 

Negatively correlated ISGs strongly clustered together with high correlation coefficients 279 

approaching 1 (Fig. 5C). Conversely, ISGs positively correlated with viral RNA only 280 

weakly correlated with other positively correlated ISGs (Fig. 5C). Many cells expressing 281 

high levels of IFN-I and pro-inflammatory cytokines also featured elevated viral 282 

abundance, but not to the extent of reaching significant positive correlation (Fig. 5C). 283 

Scatter plots were generated for a subset of viral RNA-correlated genes and collated in 284 

order of increasing correlation coefficients (Fig. 6). Trends associated with negatively 285 

correlated ISGs mostly featured a precipitous decline in gene expression as viral RNA 286 

levels in single cells exceeded around 215 counts per million transcripts (Fig. 6). 287 

Alternatively, positively correlated genes often were characterized by slopes near or 288 

less than 1 (Fig. 6). For WNV-validated antiviral effector genes (Rsad2, Tnfsf10, Ifi44l, 289 

Oas1b, Oas3, Ifitm3, Eif2ak2 and Mov10), all genes are negatively correlated with viral 290 

RNA as expected (Fig. 6). Interestingly, Tnfsf10, Ifi44l and Mx1 present unique 291 

correlation trends with viral RNA in that the cells with the highest viral abundance have 292 

no detectable transcripts for these genes (Fig. 6). 293 

 294 

295 
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DISCUSSION 296 

Standard scRNA-seq protocols with oligo-dT-based priming have been used to examine 297 

transcriptional dynamics during viral infection, but the unique genomic structure of 298 

flaviviruses, and other non-polyadenylated viruses that are clinically important 299 

pathogens, represents a distinct hurdle for such studies (29). We have independently 300 

developed and demonstrated the feasibility of WNV-inclusive scRNA-seq as an 301 

attractive approach for the quantification of host transcripts and viral RNA within single 302 

cells. This protocol, in combination with previously published work by Zanini and 303 

colleagues (31), establishes virus-inclusive scRNA-seq as a viable and tractable system 304 

for other non-polyadenylated RNA viruses. 305 

 WNV-inclusive scRNA-seq revealed extensive transcriptional heterogeneity in 306 

viral RNA abundance and the IFN-I response across single cells (Fig. 2D, 3, 4). The 307 

majority of WNV reads mapped to the targeted region of the WNV genome (Fig. 2D). 308 

However, minimal non-random background was observed in Mock cells with a median 309 

value of 45 WNV CPM for Mock cells, as compared to 37246 WNV CPM for WNV cells. 310 

This background may result from index hopping (63), and could be accounted for in 311 

subsequent iterations by using unique indexes. In support of published findings (17-19, 312 

27), we found that few cells produce IFN-β transcript following viral infection (Fig. 3A). 313 

However, we observed a strong induction of numerous ISGs (Irf7, Ddx58, Dhx58, Irf9, 314 

Stat1 and Stat2) with high unimodal expression signatures (Fig. 3), highlighting the well-315 

established importance of IFN-I-dependent paracrine signaling (16-19, 26, 27). 316 

Interestingly, we saw a bifurcation in ISG correlations with viral RNA, wherein 124 out of 317 

294 ISGs were negatively correlated with intracellular viral abundance (Fig. 5B). 318 
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Furthermore, a considerable fraction of ISGs featured a precipitous downward trend in 319 

expression with increasing viral RNA, dissimilar to the gradual upward trend exhibited 320 

by positively correlated genes (Fig. 6). Collectively, these findings are reflective of the 321 

dynamic balance and interplay between host and viral factors within a single cell. This 322 

represents the first single-cell transcriptomics study of flavivirus infection to examine the 323 

correlation of ISGs with intracellular viral RNA. To extend this arm of our analysis, we 324 

examined WNV-targeting antiviral effector genes that have been previously validated 325 

through short hairpin RNA (shRNA) and small interfering RNA (siRNA) knockdown 326 

screens, cell-based overexpression assays and in vivo knockout models (26, 42, 50-58). 327 

These validated antiviral effector genes exhibited both unimodal (Tnfsf10, Ifi44l, Ifitm3, 328 

Eif2ak2 and Mov10) and bimodal (Rsad2, Oas1b and Oas3) expression patterns and all 329 

negatively correlated with viral RNA (Fig. 4, 6), demonstrating the technical capacity of 330 

WNV-inclusive scRNA-seq to probe virus-host interactions and identify novel antiviral 331 

candidate genes. 332 

 The discovery that bimodal variation in IFN-stimulated genes (ISGs) correlates 333 

with viral RNA abundance (Fig. 4, 6) bears notable relevance to previous work 334 

examining WNV antagonism of IFN-I signaling. WNV, among other flaviviruses, directly 335 

or indirectly antagonizes IFN-I signaling and the JAK-STAT pathway to counter cellular 336 

antiviral defenses (64-68). The WNV nonstructural protein NS5 blocks Jak1 and Tyk2 337 

activation by interacting with prolidase to inhibit surface expression of IFNAR1 (10, 64). 338 

Additionally, WNV recruits plasma membrane-derived cholesterol to replication sites in 339 

the ER, and NS4A and NS4B contribute to membrane rearrangement and associated 340 

ER stress, which are all thought to interfere with JAK-STAT signaling (64, 69-71). 341 
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Bimodal ISG expression patterns correlated with viral abundance (Fig. 4, 6) may result 342 

from viral antagonism in primary infected cells allowing for higher replication. This is 343 

supported by the almost uniformly high expression observed for ISGs when limiting in 344 

vitro spread (Fig. 4), a cell population with a predominantly low-level of WNV replication 345 

(Fig. 2D). Alternatively, bimodality may arise from preexisting cell-intrinsic differences, 346 

such as the level of critical signaling components, specifically at the initial stage of 347 

infection.  348 

 WNV-inclusive scRNA-seq provides a single-cell transcriptomics protocol to 349 

probe cellular heterogeneity in the host response and quantify viral RNA. The outlined 350 

approach can potentially serve as a valuable tool for in vivo studies to examine cell-351 

intrinsic responses to viral infection, extending the resolution to infected single cells. 352 

Such studies can also leverage the added ability with this approach to screen for 353 

infected cells by qPCR and cherry pick cDNA for sequencing to mitigate cost. Our study 354 

demonstrates the feasibility and utility of WNV-inclusive scRNA-seq as a high-355 

throughput technique for single-cell transcriptomics and viral RNA detection, which can 356 

be used to provide insights into the cellular features of protective immunity. 357 

 358 

359 
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MATERIALS AND METHODS 360 

Cells and viruses. Murine fibroblast L929 cells were obtained from ATCC and grown at 361 

37°C with 5% CO2 in DMEM (Corning) supplemented with 10% heat-inactivated FBS, 362 

2mM L-glutamine (Corning), 25 mM HEPES buffer (Corning), 1mM sodium pyruvate 363 

(Corning), MEM nonessential amino acids (Corning) and antibiotics/antimycotics 364 

(Corning). WNV isolate Texas 2002-HC (WNV-TX) has been previously described (3, 365 

72, 73), and its titer was determined by standard plaque assay on BHK-21 cells. 366 

Working stocks were generated by passaging WNV-TX twice on Vero cells (ATCC 367 

CCL81) and used for in vitro experiments. WNV was incubated directly under ultraviolet 368 

(UV) light for 1 hr to generate UV-inactivated WNV, which was confirmed by plaque 369 

assay prior to use. 370 

 371 

Infection and antibody treatment. L929 cells were plated to 70-80% confluent and 372 

infected with WNV-TX at different MOIs (0.1, 1 or 10). Following a 1 hr virus adsorption 373 

period at 37°C, cells were washed once with complete DMEM (cDMEM) and 374 

subsequently incubated for 6-48 hr with cDMEM or cDMEM supplemented with WNV 375 

E16 neutralizing antibody (5 µg/mL), a gift from Michael Diamond (Washington 376 

University, St. Louis, Missouri) (44). Cells were trypsinized for flow staining or lysed for 377 

RNA at 6, 12, 24 or 48 hr post-infection. Antibody titration in supplemental media was 378 

performed at multiple MOIs (0.1, 1 or 10) for 48 hr post-infection to determine the 379 

optimal concentration to considerably reduce in vitro spread prior to use. 380 

 381 
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Flow cytometry. Conditions were run in biological triplicate samples. Cells were treated 382 

with 0.125% trypsin in PBS for 5 min at 37°C. All centrifugation steps were performed at 383 

1250 rotations per minute for 5 min at 4°C. Cells were pelleted, resuspended in FACS 384 

buffer (1x PBS, 1% FBS, 1 mM EDTA), and blocked for 10 min on ice with anti-mouse 385 

Fc Shield (TONBO Biosciences) at 0.5 µL per sample in FACS buffer. Subsequently, 386 

samples were stained for 20 min on ice with Ghost 780 viability dye (TONBO 387 

Biosciences) at 0.1 µL per sample in PBS. Samples were washed and resuspended in 388 

FACS buffer. For WNV E protein staining, samples were fixed following viability staining 389 

with 1x Transcription Factor Fix/Perm (diluted in Transcription Factor Fix/Perm Diluent; 390 

TONBO Biosciences) for 20 min on ice and washed twice with 1x Flow Cytometry Perm 391 

Buffer (diluted in ddH2O; TONBO Biosciences). WNV E16 antibody was conjugated to 392 

Allophycocyanin (APC) using the Lightning-Link APC Antibody Labeling Kit (Novus 393 

Biologicals). Samples were stained with APC-conjugated WNV E16 antibody at 0.25 µg 394 

per sample in Flow Cytometry Perm Buffer for 30 min on ice. Samples were washed, 395 

resuspended in FACS buffer, and run on a BD LSR II flow cytometer.  396 

 397 

Single-cell sorting. Cells were stained with Ghost 780 viability dye (TONBO 398 

Biosciences) as stated above and filtered through a 35 µm strainer into a 5 mL FACS 399 

tube. Single viable cells were sorted into skirted 96-well PCR plates containing 10 µL 400 

RLT buffer (Qiagen) with 2-betamercaptoethanol (1:100) per well using a BSL-3 level 401 

BD Aria II flow cytometer.  402 

 403 
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Quantitative RT-PCR (qPCR). Time-matched mock and WNV-infected L929 cells (1 × 404 

105 cells per condition; in triplicate) were lysed in RNA Lysis Buffer. Total RNA was 405 

isolated from cells using the Quick-RNA MiniPrep Kit (Zymo Research). Purified RNA 406 

was reverse transcribed using random primers with the High-Capacity cDNA Reverse 407 

Transcription Kit (Applied Biosystems). WNV RNA levels were quantified by qPCR 408 

using PrimeTime Gene Expression Master Mix (Integrated DNA Technologies), WNV-409 

specific primers and probe set, and TaqMan gene expression assay (ThermoFisher) for 410 

the host gene Gapdh (Mm99999915_g1). WNV-specific primer and probe sequences 411 

(Forward primer: 5’ – TCAGCGATCTCTCCACCAAAG – 3’; Reverse primer: 5’ – 412 

GGGTCAGCACGTTTGTCATTG – 3’; and Probe: 5’ – 6FAM-TGCCCGACC-413 

ATGGGAGAAGCTC-MGB – 3’) were adapted from Lanciotti and colleagues (73) and 414 

correspond to WNV isolate Texas 2002-HC (GenBank accession number: DQ176637.1). 415 

CT values were normalized to the reference gene Gapdh and represented as fold 416 

change over time-matched mock values using the formula 2-∆∆CT. All primers and probes 417 

were purchased from Integrated DNA Technologies (IDT). qPCR was performed in 384-418 

well plates and run on an Applied Biosystems 7900 HT Real-Time PCR System. 419 

 420 

Bulk mRNA sequencing (RNA-seq). L929 cells were infected with WNV (MOI of 1) 421 

and incubated in the absence or presence (+Ab) of WNV E16 neutralizing Ab. In 422 

biological triplicate (n = 3), 50,000 viable cells were sorted into 100 µL RLT buffer 423 

(Qiagen) with 2-betamercaptoethanol (1:100) at 24 hr post-infection for each condition: 424 

time-matched mock, WNV and WNV (+Ab). mRNA sequencing libraries were prepared 425 

at Yerkes Genomics Core (http://www.yerkes.emory.edu/nhp_genomics_core/), and the 426 
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quality of the libraries was verified using DNA-1000 Kits (Agilent Bioanalyzer) and 427 

quantified using the Qubit 2.0 Fluorometer (LifeTechnologies). Libraries were clustered 428 

and sequenced on an Illumina HiSeq (100 bp single-end reads). Sequencing reads 429 

were mapped to the GENCODE mouse reference genome (GRCm38.p5 Release M16). 430 

Reads were normalized and differential expression analysis performed using DESeq2 431 

(74). Normalized reads were expressed as fold change over time-matched mock values. 432 

 433 

Single-cell RNA sequencing (scRNA-seq). SMART-Seq v4 Ultra Low Input RNA Kit 434 

(Takara) was used for cDNA preparation. The protocol was modified to include a WNV-435 

specific viral primer during the RT step. WNV SC primer (5’ – 436 

AAGCAGTGGTATCAACGCAGAGTACGGGTCAGCACGTTTGTCATTG – 3’) targets 437 

the positive-sense envelope protein (E) gene (73) and contains the 5' 25-nucleotide 438 

ISPCR universal anchor sequence (underlined) from the Smart-seq2 protocol published 439 

by Picelli and colleagues (45) for downstream amplification alongside 3’ SMART-Seq 440 

CDS Primer II A-primed transcripts. Similar to 3’ SMART-Seq CDS Primer II A, 1 µL of 441 

WNV SC primer (12 µM) was added to the RT reaction for all samples. Other WNV-442 

specific primer sequences and concentrations were evaluated. The scRNA-seq protocol 443 

was optimized to ensure high sensitivity for WNV RNA detection and to mitigate the 444 

formation of primer dimers or template-switching oligo (TSO) concatemers observed at 445 

high concentrations or with other primer sequences. During template switching, the RT 446 

product is extended with a sequence complementary to the TSO due to the addition of 447 

2-5 untemplated nucleotides and the capacity of the RT enzyme to switch templates just 448 

as described in Smart-seq2 (45). PCR is performed using PCR Primer II A (the ISPCR 449 
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universal anchor sequence) for concurrent amplification of both host and viral cDNA. 450 

Following PCR amplification, cDNA quantification is performed for each sample, and 451 

cDNA quality assessment is accomplished using an Agilent 2100 Bioanalyzer. For 452 

library preparation, amplified cDNA is fragmented and appended with dual-indexed 453 

barcodes using Illumina Nextera XT DNA Library Prep kits. Sequencing was performed 454 

using 101-bp single end reads at Yerkes Genomics Core 455 

(http://www.yerkes.emory.edu/nhp_genomics_core/) as previously described (75) on an 456 

Illumina HiSeq 3000 at a depth of ~1,000,000 reads per cell. In total, 127 cells were 457 

successfully captured and profiled for single-cell transcriptomic analysis: 25 Mock cells, 458 

68 WNV cells, and 34 WNV (+Ab) cells. 459 

 460 

Bioinformatics pipeline. Libraries were sequenced on an Illumina HiSeq 3000 461 

generating 101-bp single end reads. FastQC (76) was used to check the quality of fastq 462 

files. The primary assembly of GENCODE mouse reference genome (GRCm38.p5 463 

Release M16) (77) and the complete genome of WNV isolate Texas 2002-HC 464 

(GenBank accession number: DQ176637.1) from ViPR (78) were used for mapping 465 

reads. The genome index was built by combining both the genomes, and alignments 466 

were carried out for the combined genomes. STAR v2.5.2b (79) was used with default 467 

parameters to map reads and obtain reads per gene counts (–quantMode Gene 468 

Counts). The counts obtained with STAR were used for downstream analysis in R. The 469 

counts were used to create a SingleCellExperiment v1.0.0 (80) object. The scater v1.6.3 470 

(81) library was used for quality control of cells. Genes that were not expressed in any 471 

cell were filtered out. The isOutlier function from scran was used to remove cells that 472 
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had a library size and number of detected genes greater than 3 median absolute 473 

deviations lower than the median values or those with percentage of mitochondrial 474 

genes that were 3 median absolute deviations higher than the median value (82). The 475 

cell cycle phase was predicted using the cyclone function in scran package v1.6.3 (80, 476 

82). The normalized expression values were obtained using the calculateCPM function 477 

in the scater library. 478 

 479 

Statistical analysis and software. Prism 6 (GraphPad), ggplot2 R package, ggridges 480 

R package, corrplot R package and Hmisc R package were used for statistical analyses 481 

and graphical presentation of data. Spearman’s rank correlation coefficients (ρ) and 482 

associated p values were computed for each gene pairing using the rcorr function in 483 

Hmisc R package. Two-way ANOVA with Tukey’s multiple comparison correction was 484 

used to evaluate significant differences between conditions for percentage of WNV E-485 

positive cells and relative viral RNA. Wilcoxon rank-sum test with continuity correction 486 

was performed to assess significant differences between single-cell distributions for 487 

host mRNA and viral RNA counts per million transcripts (CPM).  488 

 489 

 490 

491 
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FIGURE LEGENDS 492 

Figure 1. Population-level analysis of WNV infection in L929 cells. 493 

(A) L929 cells were infected with WNV at a MOI of 0.1, 1, or 10 and incubated for 6, 12, 494 

24, or 48 hr (n = 3). (A-B) Intracellular viral E protein staining was performed by flow 495 

cytometry using WNV E16 antibody. (B-C) L929 cells were inoculated with UV-496 

inactivated WNV (UV) or WNV at a MOI of 1 and incubated for 12 or 24 hr in the 497 

presence (+Ab) or absence of WNV E16 neutralizing antibody (5 µg/mL) to reduce in 498 

vitro spread (n = 3). (C) Viral RNA quantification was measured by qPCR, and CT 499 

values were normalized to the reference gene Gapdh and represented as fold change 500 

over time-matched mock values. (A-C) Two-way ANOVA with multiple comparison 501 

correction was used to test for significance (*p < 0.05). (D-F) Cells were infected as in 502 

(B) and examined by bulk RNA-seq analysis at 24 hr post-infection (n = 3). (D-E) Heat 503 

map showing mean gene expression values normalized and represented as fold change 504 

over time-matched mock values. Expression fold change values correspond to the color 505 

gradient (bottom). (D) Gene cluster description can be found on the left. (E) Expression 506 

fold change displayed for a panel of select genes. (F) Scatter plot for comparison of up-507 

regulated and down-regulated genes in WNV and WNV (+Ab) conditions. Cut-off values 508 

were as follows: 1.5 fold change and p < 0.01. 509 

 510 

Figure 2. WNV-inclusive single-cell RNA sequencing. 511 

(A) L929 cells were infected with WNV (MOI of 1) and incubated in the presence of the 512 

WNV E16 neutralizing Ab (5 µg/mL) to limit in vitro spread. (B) Single cells were sorted 513 

into 96-well PCR plates containing 10 µL lysis buffer per well. (C) During reverse 514 
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transcription (RT), 3’ SMART-Seq CDS Primer II A (30-nucleotide poly-dT sequence 515 

with a 5’ 25-nucleotide ISPCR universal anchor sequence) and a WNV-specific viral 516 

primer (21-nucleotide sequence complementary to positive-strand viral RNA with a 5’ 517 

25-nucleotide ISPCR universal anchor sequence) are added to capture host transcripts 518 

and viral RNA, respectively. When the reverse transcriptase reaches the 5’ end of both 519 

host mRNA and viral RNA, its terminal transferase activity adds 2-5 untemplated 520 

nucleotides that serve as an anchor for the template-switching oligo (TSO), which 521 

allows extension of the RT product with sequence complementary to the universal 522 

anchor sequence. PCR Primer II A binds this sequence for concurrent amplification of 523 

both host and viral cDNA. In the final library preparation step, transposase 5 (Tn5)-524 

based Nextera tagmentation adds sequencing indexes. Illumina sequencing is 525 

performed using 101-bp single end reads, thereby quantifying host mRNA and viral 526 

RNA from single cells. (B-C) In total, 127 cells were successfully captured and profiled: 527 

25 Mock cells, 68 WNV cells, and 34 WNV (+Ab) cells. (D) Coverage and alignment of 528 

WNV reads are shown with reference to the WNV genome and WNV SC primer (viral 529 

primer) location, and y-axes are in log10 scale. The cells representing the median value 530 

for WNV and Mock conditions are shown. Violin plot showing expression as counts per 531 

million transcripts (CPM) in log2 scale for WNV RNA in all three conditions described in 532 

2A. Wilcoxon rank-sum test with continuity correction was performed to test significance 533 

(**p < 10-9). (E) Violin plots showing expression as CPM in log2 scale for housekeeping 534 

genes. Wilcoxon rank-sum test with continuity correction was performed to test 535 

significance (ns = not significant; *p < 10-3; **p < 10-6). 536 

 537 
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Figure 3. Cellular heterogeneity in IFN-stimulated gene induction following WNV 538 

infection. 539 

Violin plots showing single-cell distributions for host gene expression as counts per 540 

million transcripts (CPM) in log2 scale. Genes are grouped by categories: (A) IFN-I 541 

production and other cytokines; and (B) PRR and IFN-I signaling. Conditions are 542 

described in Fig. 2A. Wilcoxon rank-sum test with continuity correction was performed 543 

to test significance (ns = not significant; *p < 10-3; **p < 10-6). 544 

 545 

Figure 4. Unimodal and bimodal variation in antiviral effector gene expression at 546 

single-cell following WNV infection. 547 

Violin plots showing single-cell distributions for antiviral effector gene expression as 548 

counts per million transcripts (CPM) in log2 scale. Conditions are described in Fig. 2A. 549 

Wilcoxon rank-sum test with continuity correction was performed to test significance (ns 550 

= not significant; *p < 10-3; **p < 10-6). 551 

 552 

Figure 5. ISGs negatively correlate with WNV RNA abundance. 553 

(A) Gene ontology (GO) enrichment analysis for genes significantly (p < 0.001) 554 

positively correlated (ρ > 0.35) and negatively correlated (ρ < -0.35) with viral RNA. 555 

Enrichment scores (ES) calculated for each pathway by the formula: –log10(p value). 556 

Dotted line indicates significance cutoff (p = 0.05; ES = 1.3). (B) Density plots of host 557 

gene expression correlated viral RNA across all WNV cells. Spearman’s correlation 558 

coefficients (ρ) calculated for each host gene by viral RNA. Gene set labels (left) and 559 

totals (right) are shown. Cell cycle-associated genes are additionally subdivided by 560 
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phase. Select genes were marked and labeled. Dotted lines indicate correlation 561 

coefficients (ρ) equal to -0.35 and 0.35. (C) Correlation matrix for 57 of 124 negatively 562 

correlated ISGs, all positively correlated ISGs, 9 non-correlated cytokine genes and 563 

WNV RNA. Correlation coefficients (ρ) calculated for each gene pairing are indicated by 564 

the color gradient (bottom). White boxes represent comparisons for which the 565 

correlation did not meet the significance cutoff (p < 0.001). 566 

 567 

Figure 6. Sharp downward trend for ISGs negatively correlated with viral RNA. 568 

Scatter plots showing expression as counts per million transcripts (CPM) in log2 scale 569 

of positively and negatively correlated host genes by WNV RNA. Each cell is 570 

represented by a single dot with minimal transparency so areas of high density are 571 

easily discernable. Correlation coefficients (ρ) are indicated for each gene and 572 

correspond to the color gradient (top). Scatter plots have been collated from lowest to 573 

highest correlation coefficient. All genes shown here meet the following criteria: |ρ| > 0.4 574 

and p < 0.0005. 575 

 576 
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