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Abstract

The ability to behave differently according to the situation is essential for survival in a

dynamic environment. This requires past experiences to be encoded and retrieved

alongside the contextual schemas in which they occurred. The complementary learning

systems theory suggests that these schemas are acquired through gradual learning via

the neocortex and rapid learning via the hippocampus. However, it has also been shown

that new information matching a preexisting schema can bypass the gradual learning

process and be acquired rapidly, suggesting that the separation of memories into

schemas is useful for flexible learning. While there are theories of the role of schemas in

memory consolidation, we lack a full understanding of the mechanisms underlying this

function. For this reason, we created a biologically plausible neural network model of

schema consolidation that studies several brain areas and their interactions. The model

uses a rate-coded multilayer neural network with contrastive Hebbian learning to learn

context-specific tasks. Our model suggests that the medial prefrontal cortex supports

context-dependent behaviors by learning representations of schemas. Additionally,

sparse random connections in the model from the ventral hippocampus to the hidden

layers of the network gate neuronal activity depending on their involvement within the

current schema, thus separating the representations of new and prior schemas.

Contrastive Hebbian learning may function similarly to oscillations in the hippocampus,

alternating between clamping and unclamping the output layer of the network to drive

learning. Lastly, the model shows the vital role of neuromodulation, as a

neuromodulatory area detects the certainty of whether new information is consistent

with prior schemas and modulates the speed of memory encoding accordingly. Along

with the insights that this model brings to the neurobiology of memory, it further

provides a basis for creating context-dependent memories while preventing catastrophic

forgetting in artificial neural networks.
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A Neural Model of Schemas and Memory Consolidation

Introduction

Despite the large amount of sensory information in a dynamically changing world,

humans develop a structured understanding of the environment, learning to recognize

different scenarios and apply the appropriate behaviors. A longstanding goal in

neuroscience is to understand how the brain is able to learn these structures quickly and

efficiently. The stability-plasticity dilemma asks how the brain is plastic enough to

acquire new memories quickly and yet stable enough to recall memories over a lifetime

(Abraham & Robins, 2005; Mermillod, Bugaiska, & Bonin, 2013). A related question is

how the brain avoids catastrophic forgetting, which is a common problem in

connectionist models in which a neural network forgets previously learned skills after

being trained on new skills (French, 1999; Kirkpatrick et al., 2017; Soltoggio, Stanley, &

Risi, 2017). We believe that the brain is able to avoid catastrophic forgetting and

balance stability and plasticity by storing information in schemas, or memory items

that are bound together by common contexts. In this paper, we present a neural model

that synthesizes existing knowledge of memory processes in the brain and provides a

plausible explanation of how schemas are acquired and used in tasks. We also show how

the model can be extended to networks used in machine learning applications to avoid

catastrophic forgetting in artificial neural networks.

Brain Areas and Interactions

A prevalent theory of memory consolidation is the Complementary Learning

Systems (CLS) theory, which states that memories are first acquired through rapid

associations in the hippocampus, and are then gradually stored in long-term

connections within the neocortex (Kumaran, Hassabis, & McClelland, 2016;

McClelland, McNaughton, & O’Reilly, 1995). The hippocampus replays new memories

to the neocortex, interleaving presentations of older memories to prevent catastrophic

forgetting. This aligns with hippocampal indexing theory (Teyler & DiScenna, 1986),

which states that memories in the form of neocortical activation patterns are rapidly
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stored as indices in the hippocampus, which are later used to aid recall.

In contrast to CLS, Tse et al. (2007) showed that new memories can be acquired

much more quickly if they are consistent with a preexisting schema. In their

experiment, rats were trained on a schema for 20 days. The schema layout was a spatial

arrangement of six food wells, each containing a different flavor of food. During

training, the rats were cued by flavors and released into the arena to find their

corresponding wells, which contained food rewards of the same cued flavor.

Performance was measured by observing the proportion of time spent digging in the

correct well compared to the other wells when cued with a flavor. Performance

increased steadily over the 20 days. On the 21st day, two wells were replaced by two

new wells with new flavors hidden in them. The rats, when tested on this modified

schema, achieved high performance on the memory task despite having had only one

day to consolidate. On the 22nd day, some of the rodents received extensive lesions in

the hippocampus (HPC). Both conditions of lesioned HPC and control still performed

well on the original and modified schema, demonstrating rapid consolidation without

hippocampus involvement. The rats were then trained on yet another two wells and

flavors within the same schema as before. This was to determine whether the HPC was

necessary to learn new information consistent with a prior schema. It was found that

the rats with lesioned HPC were unable to learn the new information, thus showing the

necessity of the HPC for learning. Further studies by Tse et al. (2011) show activation

of plasticity-related genes in the medial prefrontal cortex (mPFC) and related regions,

suggesting their involvement in rapid consolidation.

Studies of connectivity between the mPFC and Medial Temporal Lobe (MTL) have

yielded theories of how these two areas interact to process schemas. Van Kesteren et al.

(2013) provides a framework called SLIMM (Schema-Linked Interactions between

Medial prefrontal and Medial temporal regions) to explain how both novelty and

familiarity lead to memory encoding. When a sensory stimulus is congruent with a

group of preexisting concepts, the mPFC exhibits strong activity and inhibits the MTL,

which includes the HPC. If the stimulus is incongruent, the MTL activates. In this way,
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the two brain areas enhance memory acquisition via different pathways depending on

whether the stimulus is familiar or novel relative to prior schemas. While SLIMM

provides a general explanation for interactions between novelty and familiarity, it does

not include a neural mechanism for how memories are encoded in MTL and mPFC.

Eichenbaum (2017) noted that there are direct pathways between the mPFC and MTL,

as well as an indirect pathway that routes through the thalamic nucleus reuniens (Re).

Eichenbaum hypothesized that theta phase synchronization between the two areas is

controlled by the Re to change the directional flow of information when encoding or

retrieving. As theta oscillations control many aspects of timing and control in the HPC,

they play an important role in schema consolidation.

In addition to the HPC-mPFC pathways for memory consolidation, supporting

areas modulate the speed of this consolidation. Kitamura et al. (2017) showed that

engrams of contextual fear memories are rapidly formed in the prefrontal cortex via

afferent connections from the HPC and basolateral amygdala, suggesting that salience

can impact the speed of consolidation. The neuromodulatory system is important for

detecting such salience and making quick adaptations (Krichmar, 2008). The basal

forebrain (BF) modulates attention and cortical information processing (Baxter &

Chiba, 1999), and the locus coeruleus (LC) strongly modulates network activity in

response to environmental changes (Aston-Jones & Cohen, 2005). The BF is theorized

to represent expected uncertainty when a task is within a known context, whereas the

LC signals unexpected uncertainty when context switches occur (Yu & Dayan, 2005). It

also drives single trial learning of new information via inputs to the HPC (Wagatsuma

et al., 2018). Moreover, the activity from the LC selectively tunes oscillations in the

HPC in the theta and gamma range (Berridge & Foote, 1991; Walling, Brown, Milway,

Earle, & Harley, 2011), suggesting that this may be one of the mechanisms of

single-trial learning.

This type of processing is likely necessary for the type of fast learning that occurs

when novel stimuli are introduced within a familiar schema, as seen in Tse et al. Based

on this background, we created a neural network architecture with the simulated brain
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regions and pathways comparable to those described above.

Contrastive Hebbian Learning

To model hierarchical representations of objects and tasks, a multilayer network

can store information of increasing levels of abstraction from input to output layers.

Backpropagation is commonly used to train such networks, and has had many

successful applications in artificial neural networks (LeCun, Bengio, & Hinton, 2015;

Rumelhart, Hinton, & Williams, 1986). However, many view backpropagation as

biologically implausible, as there is no widely accepted mechanism in the brain to

account for sending error signals backwards along one-way synapses. An alternative

account for developing hierarchical representations in the brain may be contrastive

Hebbian learning (CHL) (Movellan, 1991), which uses a local Hebbian learning rule and

does not require explicit calculations of an error gradient.

Given a multilayered network with layers 0 through L, neuron activations of the

kth layer are denoted as vector xk and weight matrices from the k-1 to kth layer are

denoted as Wk. Each weight matrix Wk has a feedback matrix of γW T
k such that every

weight has a feedback weight of the same value but scaled by γ. The learning process

consists of cycling between three phases of the network. The first phase is known as the

free phase of the network, in which the input layer x0 is fixed and the following equation

is applied to update neurons in layer k from k = 1 to L at time t:

xk(t) = fk(Wkxk−1(t− 1) + γW T
k+1xk+1(t− 1)) (1)

where f is any monotonically increasing transfer function. This equation is applied for

Ts time steps, which is when network activity converges to a fixed point. The resulting

settled activity for xk is noted as x̌k, which is the final neural activity for the free phase.

The network then transitions to the clamped phase, in which the input layer is fixed as

before and the output layer is fixed to the desired target value. Again neuron activities

are updated using equation 1 for Ts time steps which allows the network activity to

converge. The settled activity for xk is noted as x̂k, which is the final neural activity for
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the clamped phase. The third phase combines an anti-Hebbian update rule for neurons

in the free phase and Hebbian update rule for neurons in the clamped phase:

∆Wk = −ηCHL(x̂kx̂
T
k−1 − x̌kx̌

T
k−1), k = 1, ..., L. (2)

In addition to the added biological plausibility of the local Hebbian learning rule, the

repeated alternation between neuron states has been likened to oscillatory patterns in

the brain (Baldi & Pineda, 1991), and may serve as a good model for theta synchrony

between the hippocampus and neocortex. The fact that preplay and replay of

experiences occurs during these times of synchrony suggests that CHL may play a role

in rehearsing and reviewing experiences (Diba & Buzsáki, 2007). The scalability of the

hierarchical network structure opens the possibility of applying the model to complex

tasks. Moreover, as contrastive Hebbian learning was proven to be equivalent to

backpropagation for sufficiently small values of γ (Xie & Seung, 2003), there is the

possibility of expanding the model to problems traditionally addressed by

backpropagation. For these reasons of plausibility and scalability, we use a network

with contrastive Hebbian learning for our model.

Methods

Our model consists of two main information streams, the Indexing Stream and the

Representation Stream, in a network that is trained on context-dependent tasks such as

the one found in Tse et al. (2007). Figure 1 shows an overview of the network.

Indexing Stream

The Indexing Stream begins with a context pattern, which can be any encoding of

context using patterns of neuron activity. In our case, we used a 2D grid with input

activations of 1 if a food well existed in that grid location or 0 otherwise. This input

projects to the mPFC for the schema to be learned from sensory input. The dynamic

mPFC neuron activity is calculated by the following synaptic input equation at time t:

xk(t) = fk(Wkxk−1(t− 1)), (3)
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where layer k is the mPFC layer, layer k-1 is the context pattern, and fk is the Rectified

Linear Unit (ReLU) transfer function:

f(x) = max(x, 0). (4)

A hard winner-take-all selection is then applied, in which all activations are set to zero

except for the one with maximum value. Weights from the context pattern to the

mPFC are then trained by the standard Hebbian learning rule:

∆Wk = ηpatternxkx
T
k−1, (5)

where xk is the mPFC layer, ηpattern is the learning rate, and xk−1 is the context pattern

layer. The weights are normalized such that the norm of weight vectors going to each

post-synaptic neuron i is 1:

wi = wi

||w||
(6)

where w is the vector of weights going to one postsynaptic neuron, and wi is an

individual weight in w. The Indexing Stream continues on to the dorsal hippocampus

(dHPC) and ventral hippocampus (vHPC). The dHPC learns an index of mPFC

activity using the same synaptic input function and learning rule described in

Equations 3-6. The dHPC learns indices in the same way as the vHPC, except that it

uses a learning rate of ηindexing and has weights from the vHPC, context pattern, and

action selection layer. The term ηindexing is a separate learning rate used for weights

that index activity from the Representation Stream. Rather than indexing context, the

dHPC indexes triplets of context, cue, and action. This agrees with how context is

encoded in the vHPC and specific experiences are encoded in the dHPC in Eichenbaum

(2017). It also aligns with the fact that selectivity of encoding increases from the

ventral to dorsal end of the HPC (Jung, Wiener, & McNaughton, 1994).

Representation Stream

The Representation Stream is a multilayered network with sensory cue input areas

and the mPFC that encodes the current schema or context. The middle layer of the

Representation Stream makes multimodal associations of the sensory input and conjoins
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context and cue information (AC). While our model only has one middle layer, more

layers could be added if the sensory input is complex. The output layer selects an action

response to the sensory cue, which in our case is a 2D grid of neurons with an activation

of 1 if it is the location of the food cue and 0 otherwise. To train the correct actions,

the multilayered network uses the update function and learning rule from contrastive

Hebbian learning as described in the background section, with the same transfer

function as Equation 4. The alternation of clamped and free phases is controlled by the

Indexing Stream. The dHPC alternates between clamping and unclamping the action

layer, fixing the action layer at the desired values during the clamped stage of

contrastive Hebbian learning. During clamping, the winning neuron in the vHPC gates

neurons in the AC. This is done via a static weight matrix of strong inhibitory weights

from the vHPC to AC layer, with sparse random excitatory weights that allow only

some neurons in the AC to be active. All weights in this matrix are first initialized by a

strong negative value of winh, then a random selection of the weights in this matrix is

set to 0. The number of weights selected to be 0 is determined by the value of P, which

is a number between 0 and 1 inclusive that defines the proportion of randomly selected

weights. This is meant to mimic the effect of hippocampal indexing. While there is little

evidence that the HPC projects widespread inhibition to the hierarchical representation

areas of the brain, the mix of inhibition and zeroed weights allows specified patterns of

neurons in the representations to be active with their usual neuronal activity levels,

which is meant to mimic an attentional sharpening effect in the model.

Taken as a whole, the Representation Stream can be viewed as a model of how the

neocortex learns hierarchical representations (Hawkins, Ahmad, & Cui, 2017), with the

Indexing Stream driving the learning process and preventing catastrophic forgetting by

allocating different sets of AC neurons for each task. By using CHL for the

Representation Stream, we emulate the oscillatory patterns found in communications

between the mPFC and HPC and form an equivalence with backpropagation methods

that allows us to expand our model to help improve traditional neural networks in the

future.
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Novelty and Schema Familiarity

In the SLIMM framework, the encoding strength is a combination of schema

familiarity and cue novelty. Novelty is defined as how infrequently a stimulus has been

experienced before, whereas schema familiarity is how frequently a context has been

experienced. Furthermore, the SLIMM framework proposes that resonance occurs in the

presence of schema familiarity. However, the SLIMM framework suggests that the

mPFC inhibits the HPC, whereas we suggest that a combination of schema familiarity

and novelty from the mPFC and dHPC, respectively, affect learning by controlling

oscillatory activity in the HPC.

In our model, a neuromodulatory area detects novelty in the presence of a familiar

schema and modulates the strength of learning that occurs within the Representation

Stream. To detect novelty, each neuron in the dHPC projects to the novelty submodule

with a starting weight of wnovelty. wnovelty represents the baseline level of surprise when

a new stimulus is presented. Whenever the activity of the dHPC is updated, the

activity of the novelty submodule is found as the rectified weighted sum of inputs from

dHPC after applying winner-take-all, as in equations 3 and 4. The weights from the

dHPC to the novelty submodule are then updated with an anti-Hebbian learning rule:

∆W = −ηindexingxnoveltyx
T
dHP C . (7)

where W is the weight matrix of weights from the dHPC to novelty submodule, ηindexing

is the learning rate, xnovelty is the activity of the novelty submodule, and xdHP C is the

activity of neurons in the dHPC. The effect is such that the weight between an active

dHPC neuron and novelty submodule will experience long term depression and decrease

the novelty score of a stimulus after many exposures. Since the dHPC uses

winner-take-all, each weight from dHPC represents an individual novelty score for each

possible triplet. The activity of the familiarity module is similarly calculated through

the weighted sum of inputs from the mPFC after winner-take-all, as in Equation 3.

However, rather than a rectified linear unit, we use a shifted sigmoidal transfer function:

f(x) = 1
1 + e−s(x−xshift) . (8)
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where −s is the sigmoidal gain and xshift is the amount of input shift. The shifted

sigmoidal transfer function ensures that the familiarity module requires a baseline

amount of training on a schema to be considered familiar with it, and that familiarity

does not continue to increase in an unbounded manner with extended exposure. The

activity of the familiarity module is thus mostly bimodal, with a very low activity if the

schema is unfamiliar and a high activity if the schema is familiar. The effect of the

sigmoidal function will be seen in the results. The weights from the mPFC start with

the same value of wfam, which is a very small value close to zero that represents low

familiarity of schemas prior to training. These weights are updated after mPFC activity

is updated, using the Hebbian learning rule from Equation 5 with a learning rate of

ηpattern. ηpattern is small to model the long-term consolidation of schemas. A final

modulation score is then set to the simple product of activity from the familiarity and

novelty modules:

neuromodulator = novelty ∗ familiarity (9)

This value determines the number of times the vHPC and dHPC will clamp and

unclamp the representation layer in a single trial and thus determine the number of

extra epochs in a trial that are added to a default number of epochs, edefault:

epochs = edefault + neuromodulator (10)

This follows the idea from the SLIMM framework suggesting that resonance occurs in

the presence of schema familiarity. However, the SLIMM framework suggests that the

mPFC inhibits the HPC, whereas we suggest that information from both areas

combines to affect learning.

When training on a task, the network runs trials of training that consist of four

phases as shown in Figure 2. Each trial consists of many epochs of training, the number

of which is determined by Equation 10. This mimics the high resonance caused by

schema familiarity, as postulated in the SLIMM framework. Each epoch consists of an

indexing phase, a free phase for CHL, and a clamped phase for CHL. During the
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Figure 1 . Overview of network. The light blue box contains the areas and projections

that make up the Indexing Stream, including the ventral hippocampus (vHPC) and

dorsal hippocampus (dHPC). The light orange box contains the areas and projections

that make up the Representation Stream of the network. The Representation Stream

includes the cue, medial prefrontal cortex (mPFC), multimodal layer (AC), and action

layer. Bidirectional weights between layers in the Representational Stream are learned

via contrastive Hebbian learning (CHL). Weights from the Indexing Stream are trained

using the standard Hebbian learning rule. Dotted lines indicate influences of the

neuromodulatory area, which contains submodules of novelty and familiarity. Weights

extend to these modules from the mPFC and dHPC. Neuromodulator activity impacts

how often the vHPC and dHPC are clamped and unclamped while learning the task via

contrastive Hebbian learning (CHL).

indexing phase, the network discovers environmental stimuli and forms indices in the

Indexing Stream. The mPFC, vHPC, and dHPC form indices using the unsupervised
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Hebbian rule and winner-take-all rule described previously. During the Free Phase

(Figure 2B) the Representation Stream runs freely, and then during the Clamped Phase

(Figure 2C), the the Representation Stream is clamped and the CHL rule is applied.

Clamping of the output layer occurs via an input from the dHPC to the action layer

using Equation 3. Also during clamping, the AC receives input from the vHPC also

using Equation 3, which effectively inhibits most of the AC neurons except for the few

that have a weight of 0 from the winning vHPC neuron. At the beginning of a trial, the

number of training epochs is undetermined, but tentatively set at esettle epochs (Figure

2A). During this time, activity levels of the neuromodulator are tracked, and the

maximum neuromodulator activity found within this period is used this to determine

the ultimate number of training epochs within the trial. After each trial, the

performance of the network is measured during the Test Phase (Figure 2D) by

presenting a cue to the network and allowing the network to settle on an action. The

network parameters used in our network can be found in Table 1.
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Population Sizes Learning Parameters

Ncue 18 Ts 5

NmP F C 10 ηindexing .1

Nmultimodal 40 ηpattern .0001

Ncontext 25 ηCHL .001

NvHP C 5 g .001

NdHP C 40 hmin .95

b 8

eboost 1000

edefault 600

esettle 20

wmin 0.3

wmax 0.8

winh -10

wfam .0001

wnovelty 1

s 200

xshift .03

P 0.3
Table 1

Parameters used in experiment.

Replication of Tse et Al. Experiments

We validated our model by simulating the experiments performed in Tse et al.

(2007). In this case, we simulated a population of 20 rats, each with randomly

initialized weights sampled from a uniform distribution in the range of wmin and wmax.

The arena was discretized into a 5x5 grid, which corresponded to 5x5 grids of neurons

for the context pattern and action layers. In our model, each trial consists of multiple

epochs to account for replays facilitated by oscillations during sleep and quiet waking
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Figure 2 . The four phases of a trial of training. A) In the Indexing Phase, the Indexing

Stream forms indices of activity. The mPFC learns an index of the context pattern, the

vHPC learns an index of the mPFC, and the dHPC learns an index from triples of

vHPC, cue, and action. Additionally, the activity of the novelty and familiarity modules

of the neuromodulator are calculated, setting the ultimate activity of the

neuromodulator to the product of these values. B) The Free Phase of CHL, in which

the input is clamped and other CHL areas run free. C) The Clamped Phase of CHL.

The clamped value at the action layer is determined by the index in dHPC. The AC

layer is gated by the indices in vHPC. The activity of the neuromodulator determines

how frequently the clamping occurs within a trial. D) The Test Phase of a network for

measuring performance during training and unrewarded probe tests. This is the same as

the CHL Free Phase, except that mPFC activity is also calculated.

periods. In Tse et al. (2007), performance was measured during training by counting

the errors in a trial, and non-rewarded probe tests were performed intermittently by
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recording the amount of time spent searching the correct well when given a food cue. In

our model, our test of performance was to present each flavor in a schema during the

Test Phase. Upon presenting the cue, the network ran in Free Phase until the activity

converged. In the action selection layer, the activity of the neuron corresponding to the

correct location of the food was divided by the sum of all of the neurons corresponding

to the wells in the arena. This value corresponds to the amount of time a rat would

spend digging in a well given a food cue. We used this value to simulate performance

during both training and unrewarded probe tests. In the Tse et al. (2007) experiment,

the unrewarded probe test was conducted with a food cue and no food reward in the

correct well, thus limiting learning for those trials. Although our experiment does not

model reward representation in the brain, we approximate unrewarded probe tests by

not updating weights after cueing and running the network.

A timeline of the three replicated experiments can be seen in Figure 3. The first

experiment was to train the network on the Schema A layout for 20 trials (Figure 3A;

PTs 1-3). On the 21st trial, two of the PAs were replaced by two new ones (Figure 3A).

The original schema with two new PAs was trained for one trial, and then a probe test

was performed (Figure 3A; PT 4). After that, the network was split into a control

network and a lesioned HPC group. The HPC group was cloned with weights from the

original network and had all connections to and from the vHPC and dHPC removed.

Another probe test was performed to see whether both groups could still recall the

original schema as well as the schema with two new PAs (Figure 3A; PT 5). Next, the

two new PAs were replaced with yet another two new PAs and trained on both groups

for one trial. Another probe test was performed after this (Figure 3A; PT 6). The

second experiment was performed on the resulting networks from the the first

experiment (Figure 3B). For 16 trials, both conditions were trained on an entirely new

schema, Schema B, and a probe test was conducted (Figure 3B; PT 7). After this, the

groups were retrained on the original schema for 7 days, with yet another probe test at

the end (Figure 3B; PT8). For the third experiment, a newly instantiated network was

trained on two schemas, one consistent and one inconsistent. We used Schema A for the
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Figure 3 . Timeline of experiments. A) Experiment 1 timeline. Schema A is trained for

20 days. Two new paired associations (PAs) are introduced on day 21. Lesioning occurs

on day 22, and yet another two PAs are introduced on day 23. Probe tests are

performed throughout. B) Experiment 2 timeline. Schema B is trained for 16 days,

then Schema A is retrained for 7 days. C) Experiment 3 timeline. Training alternates

between consistent and inconsistent schemas. For inconsistent schemas, every 3rd trial

has a scrambled version of the schema. White bars represent a consistent schema, in

which Schema A is presented every time. Black bars represent an inconsistent schema,

where every third trial is presented a scrambled version of Schema B.

consistent condition (Figure 3C). For the inconsistent condition, we trained on Schema

B, except with the locations of the flavors scrambled on every third trial. The network

was trained in an alternating schedule between consistent and inconsistent schemas.

Probe tests were performed for the consistent and inconsistent conditions. After this,

two PAs from both the consistent and inconsistent schemas were replaced by two new

PAs and trained on the rats, and another probe test was conducted.
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Results

Experiment 1

The goal of the first experiment was to show that new information matching a

schema can be quickly learned, and that the HPC is necessary for this learning. Figure

4A shows that the model was able to gradually learn Schema A over 20 trials of

training. Figure 4B confirms this with probe tests, which show the proportion of neuron

activity corresponding to the correct action given a cue. Figure 4C shows the probe test

results after training for one day on Schema A with two new PAs added. During the

Test Phase, the higher dig time in the correct well shows that the new PAs were learned

in just one trial. Then in Figures 4D and 4E, upon splitting into two conditions of

lesioned HPC and control, both groups were still able to recall the original schema and

the two new PAs. This suggests that the new information had been consolidated within

a short period and no longer required the HPC for retrieval. We believe this was due in

part to the activity of the neuromodulator, detecting when new information was present

within a familiar schema and increasing the consolidation accordingly. When training

yet another two PAs on both conditions in Figure 4F, the group with the lesioned HPC

was unable to learn at all. This was because the CHL mechanism was unable to update

the weights properly, as the HPC was responsible for driving the index-based clamping

and unclamping of the output layer.

Figure 5 shows the weights of the network after training on the first experiment.

Weights from the context pattern to mPFC show the development of a distinct schema

pattern encoded with stronger weights where the wells are located. Weights from the

mPFC to the AC show the effect of the gating, in which the mPFC neuron representing

Schema A is associated with a set of neurons in the AC. Weights from the AC to action

layer show that the actions are dependent on activity from select AC neurons,

suggesting that the AC neurons are learning specific features useful for action selection.

Weights going from the vHPC, cue, and action to the dHPC are displayed in one matrix

to show clear encodings of triplets with one neuron from each of the three areas.

Weights from mPFC to vHPC show that there is not necessarily a one-to-one mapping
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from a winning mPFC neuron to a vHPC neuron, but that the schema information is

transferred in a distributed manner.

Our results for the first experiment were able to capture most of the effects seen in

Tse et al. (2007). We were able to show that information is acquired rapidly when

consistent with a prior schema and that the HPC is necessary for acquisition.

Figure 4 . Results of replicating the first experiment of Tse et al. A) The performance

over 20 trials, showing a gradual increase. B) Probe tests of trials 2, 9, 4, and 16,

showing the proportion of activity of the correct well given a food cue compared to

activity of the incorrect wells. C) Probe test after training the new PAs for 1 day, in

which one of the new pairs is cued and the activities of the correct well, well of the

other new pair, and original Schema A wells are compared. The new PAs were learned

within one trial, as the dig time for the cued pair was significantly higher than the rest.

D) Probe tests of Schema A after splitting into HPC-lesioned and control groups. Both

conditions retained knowledge of the schema. E) Probe tests of the new PAs after

splitting into HPC-lesioned and control groups. Both groups recalled the new PAs

equally. F) Probe tests of Schema A after training another two new PAs. The HPC

group could not learn.
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Figure 5 . Weight matrices of the network of one simulated rat after simulating all of

the first experiment. Rows represent post-synaptic layers and columns represent

presynaptic layers.

Experiment 2

The purpose of the second experiment was to test whether multiple schemas could

be learned by the same network, and whether the HPC was necessary for this. Figure

6A shows that the control group was able to learn Schema B quickly. HPC was unable

to learn, staying at chance levels the entire time. This is shown again in the probe tests

in Figure 6B. When the HPC-lesioned model was retrained on Schema A in Figure 6C,

it had good performance the entire time and retained the information learned prior to

surgery, but did not increase. The control group displayed a minute decrease in

performance of Schema A at the beginning, but quickly regained prior performance.

The decrease was likely due to small overlaps in the gating patterns from vHPC. This is

confirmed again in the probe tests in Figure 6D.

Figure 7 shows the weights of the network in the control condition after training on

the third experiment. Weights from the context pattern to the mPFC now show two
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distinct schemas, with stronger patterns than seen in the first experiment. Weights

from mPFC to the AC show two sets of neurons created by gating. Weights to the

dHPC now show twice the amount of triplets as before, reflecting that triplets from two

schemas are being encoded.

The results of the second experiment show that our network is able to learn

multiple schemas in succession, without forgetting prior schemas. We were thus able to

match the effect seen in Tse et al. (2007). A small difference is that our network

retained information about Schema A much better than their experiments for both of

their HPC-lesioned and control groups.

Figure 6 . Results of replicating the second experiment of Tse et al. A) The

performance over 16 trials of training Schema B. The control group was able to learn

the new schema while the HPC group was not. B) Probe test after training Schema B,

confirming part A. C) Performance over 7 trials of retraining on Schema A. Both groups

retained Schema A, though the control group recovered from a very minimal forgetting

of the schema initially. D) Probe test after retraining on Schema A, confirming part C.
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Figure 7 . Weight matrices of the control network after simulating all of the second

experiment. Rows represent post-synaptic layers and columns represent presynaptic

layers.

Experiment 3

The aim of the third experiment was to show the necessity of the schema in

learning, as opposed to the agent simply getting better at learning with time. This was

done by showing that a consistent schema is easier to learn and maintain than an

inconsistent schema, as seen in the results in Figure 8A. This occurred in our model

because an overlapping set of AC neurons was gated in all the inconsistent condition of

Schema B and scrambled Schema B. This led to a confusion of the network weights as it

was attempting to learn two layouts. This is confirmed in the probe tests performed

after training, in Figure 8B. When adding new PAs to the consistent and inconsistent

schemas in Figure 8C, the model was able to learn the new information better in the

consistent schema.

Figure 9 shows the weights of the network after training on the third experiment.

The weights look very similar to the second experiment, as both encode two distinct
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Figure 8 . Results of replicating the third experiment of Tse et al. A) The performance

over 40 trials of training, alternating between consistent and inconsistent schemas.

While both conditions were able to learn, the inconsistent schema had worse

performance. B) Probe tests of the consistent and inconsistent schemas show better

performance of the consistent condition. C) Probe tests after one day of training two

new PAs in both the consistent and inconsistent schemas. The new PAs were learned

with greater performance in the consistent schema.

schemas. The inconsistency of Schema B is not visible in the weights, as Schema B and

scrambled Schema B have the same well locations. Only the spatial locations of the

wells, not the flavors, are input to the context pattern.

In our third experiment, we showed that learning new information within a

consistent schema has better performance than an inconsistent schema. However, a

large difference in Tse et al. (2007) was that there were almost no signs of learning in

the probe tests for the inconsistent condition, suggesting that there may be an

additional mechanism not addressed in our model that only develops schema

representations when they are seen consistently.

Neural Activity

To gain a better understanding of the network activity, we plotted the neuron

traces of the mPFC, vHPC, and dHPC before winner-take-all was applied. Figure 10A

shows the neuron activities for the first two experiments, with Schema A and new PAs

for Experiment 1, and Schema B with a retraining of Schema A for Experiment 2. Each
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Figure 9 . Weight matrices of the network after simulating all of the third experiment.

Rows represent post-synaptic layers and columns represent presynaptic layers.

colored line in the figure represents the activity of a single neuron in a single simulated

rat. The black vertical lines separate epochs into trials. The neuron traces show that

the mPFC chooses a single neuron to represent Schema A and continues to strengthen

its weights as it is trained. When new PAs are introduced, the same neuron is still

active, but decreases in activity. When Schema B is introduced at the beginning of

Experiment 1, a new neuron is chosen, and when Schema A is retrained immediately

after training Schema B, the original winning neuron returns. By viewing the spacing

between black vertical lines, we see that the large spacing for trials with new PAs

indicates that more epochs of training occur during those times. This is due to the

novelty and familiarity detection from the neuromodulator. vHPC activity in Figure

10B shows the same effect, except that the weights of all of the neurons together

increase and decrease, as they are all affected by the rising and falling activity levels of

mPFC. dHPC works similarly, as seen in Figure 10, although different winners are

chosen at every epoch. For the dHPC we display neural traces for the first 100 epochs
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in the first trial epochs, due to the frequent switching of winners. Experiment 3

generates similar activity patterns to the other experiments (Figure 11).

To show the effects of schema familiarity and novelty on neuromodulator activity,

Figure 12 displays the activities of the familiarity module, novelty module, and

neuromodulator over the first 21 trials of Experiment 1. Due to the Hebbian learning of

connections from the mPFC to the familiarity module, familiarity increases over time.

Since it uses a sigmoidal transfer function, the increase is step-like, increasing from 0 to

1 swiftly. Novelty starts high when Schema A is introduced, and quickly drops to 0 due

to the anti-Hebbian learning rule. When two new PAs are introduced, novelty returns

to a high state. Taking the product of novelty and familiarity, the activity of the

neuromodulator increases only when familiarity and novelty are high. Since the activity

of the neuromodulator is proportional to the number of training epochs in a trial, this

leads to the desired behavior of increased learning when new PAs are introduced to an

existing schema.

We also tracked the activity of the neuromodulator for all three experiments.

Figure 13A shows the number of training epochs in each trial of the first and second

experiments. As a reminder, each epoch within a trial consists of an Indexing Phase, a

Free Phase, and a Clamped Phase. The first 21 trials of the first experiment are on the

left of the black vertical line, and the remaining trials to the right of the vertical line are

for the second experiment. Each individual colored line represents the neuromodulator

activity of a single run, with 20 runs total. When new PAs were introduced on trial 21

of the first experiment, the familiarity of Schema A multiplied by the novelty of the new

stimuli caused a sharp spike in neuromodulator activity, increasing the number of epochs

for those trials. The neuromodulator activity for the second experiment remained low,

as there were no new PAs introduced. Figure 13 shows the index of the winning mPFC

neuron in each trial, with a different colored line for each individual run. Every time the

schema changes, the index of the winning neuron changes accordingly. Figures 13C and

13D show similar effects, with large increases in neuromodulator activity when there is

a new PA and switching of active schema neurons whenever the schema changes from
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Figure 10 . Neural activity for the network of a single simulated rat while performing

the first and second experiments combined. Each colored line represents the activity of

one neuron. Each vertical black line represents the separation of epochs into trials.

Activity is measured before winner-take-all is applied. A) The mPFC activities for the

first and second experiments are shown in sequence, with the training of Schema A and

two instances of new PAs for the first experiment, and the training of Schema B and

return of Schema A for the second experiment. When training on Schema A, one mPFC

neuron is consistently chosen as winner, as its weight values increase over time. When

new PAs are introduced, the winner remains the same, but decreases in activity. At the

start of Experiment 2, Schema B is introduced and a new mPFC neuron wins. The

number of epochs greatly increases due to the novelty. When Schema A is retrained, the

original winning neuron returns. B) The neurons in vHPC follow the same general

trend as the mPFC neurons. However, all neurons increase and decrease together, as

they all take input from the winning mPFC neuron. C) Activity of the dHPC neurons

for the first 100 epochs of the first trial is shown. As the density of switching of dHPC

winners occurs at every epoch rather than at every trial, it is necessary to display the

activity at the epoch level. At each epoch, a different dHPC neuron is selected to have

its weights increase, as a different triplet is present each time. The activities of winning

neurons gradually increase for 40 epochs, remaining stable afterwards.
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Figure 11 . Neural activity for a single network while performing the third experiment.

A) mPFC activity shows that one neuron’s weights increased in the consistent condition

and that another neuron’s weights increased for the inconsistent condition. B) vHPC

activity behaves similarly to Experiments 1 and 2. C) dHPC activity behaves similarly

to Experiments 1 and 2.

consistent to inconsistent and vice versa. The white regions represent consistent schema

trials while the gray shaded regions represent inconsistent schema trials.

Effects of neuromodulation

To study how the neuromodulator influences learning, we removed connections to

and from the novelty and familiarity modules in the network. Rather than boosting the

number of epochs using neuromodulator activity, we used a constant number of epochs

for each trial. We repeated the first part of Experiment 1 with the same number of

epochs for every trial, trying different values for the constant number of epochs. As

before, the network was trained on Schema A for 20 trials and training a new PA was

introduced on the 21st trial. As seen in Figure 14, training on more epochs per trial

leads to faster learning and better performance on the new PA. It is therefore not

required to have a neuromodulator for rapid learning of new information. However, the

number of total epochs over all trials can be greatly reduced if the model is able to

detect novelty within the schema and adjust the learning accordingly. Compared to the
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Figure 12 . Combining familiarity and novelty for neuromodulation. A) Familiarity

increases as the network is trained on a schema. Due to the sigmoidal transfer function,

familiarity activity is step-like, going from unfamiliar to familiar over some training. B)

Novelty starts at a high value whenever there are new PAs, which occurs on the first

trial when the schema is introduced, and on the 21st trial when two PAs are replaced.

C) At each trial, the product of familiarity and novelty lead to an increase of activity

when schema familiarity is high and novelty is high.

conditions with a flat number of epochs per trial, we found that our original network

with the neuromodulator had better performance on the new PAs than the other

successful conditions, despite having fewer total epochs. It was therefore able to

conserve network training time overall.

Sparsity

An idea following from Tse et al. (2007) is that separation of information into

schemas can be used to prevent catastrophic forgetting. In our network, this is highly

dependent on the effects of the sparsity of the weight matrix between the vHPC and the

AC layer. To test sparsity, we trained two schemas, A and B, in succession. During

training, we varied the parameter P, which was the proportion of weights from vHPC to

the AC layer that were set to zero. The results can be seen in Figure 15. For small
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Figure 13 . Neuromodulator activity and winning schemas. Each colored line represents

the activity of the neuromodulator from an individual network out of 20. A)

Neuromodulator activity expressed by the number of epochs trained per trial. The

vertical black line separates experiments 1 and 2. On trial 21, the number of epochs

rises sharply due to the combination of familiar schema and novel stimulus. B) Index of

winning mPFC neuron in each trial of experiments 1 and 2. The index switches clearly

each time the schema switches. C) Neuromodulator activity expressed by the number of

epochs per trial for Experiment 3. Each time a new PA is introduced within a familiar

schema, the number of epochs increases sharply. D) Index of winning mPFC neuron in

each trial of Experiment 3.

values of P, the weights are so sparse that there are too few AC neurons to learn the

task. For large values of P, the multimodal neurons selected for each schema overlaps

such that Schema A is forgotten when Schema B is introduced. At an intermediate

value of P, an adequate number of AC neurons is assigned to each schema, with little

overlap such that catastrophic forgetting is prevented.

Since some of our results depended on the arrangement of the weight matrix for

gating, it would be useful to see if there are different methods of sparsification that

would yield better or worse results. While we sparsified the matrix through random
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Figure 14 . A) Performances of each condition. The blue line represents the original

network and the remaining lines use a flat number of epochs as indicated in the legend.

All conditions are able to learn the schema, but with different learning rates. B) Probe

tests of each condition after introducing a new PA. The average number of epochs for

each trial is displayed in parentheses. The performance of the probe test increases as

more epochs are trained per trial. However, the original network can get a performance

equivalent to the other conditions, but with far fewer epochs of training.

patterns of positive weights, the matrix could be more structured so as to guarantee the

avoidance of overlaps, or to coordinate with gating of other AC layers to support a

hierarchical structure. As the sparsity level greatly impacted the performance of our

network, this suggests that real nervous system connectivity makes a similar tradeoff

between high sparsity, which leads to clean pattern separation, and low sparsity, which

is required to adequately represent the features necessary for learning.

Discussion

By replicating experiments from Tse et al. (2007), we showed that our biologically

plausible neural network was able to learn schemas over time and quickly assimilate

new information if it was consistent with a prior schema. The network was also able to

learn multiple schemas without catastrophic forgetting, by maintaining separate sets of

AC neurons for tasks within different schemas. Moreover, the consistency of the

presentation of the schema affected how well new information could be assimilated into
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Figure 15 . Performance of training Schema A for 10 trials and Schema B for 10 trials,

each with a different P sparsity value. At low P values, no learning occurs. At high

values, learning occurs but there is a steep drop in performance of Schema A when

Schema B is introduced. At an intermediate level of sparsity, both schemas can be

learned with an acceptably small amount of forgetting.

it.

The network highlights diverse roles of indexing by the HPC. Experimental

literature shows that the spatial selectivity of place cells decreases along the

dorsal-ventral axis of the HPC (Jung et al., 1994). Eichenbaum (2017) also proposes

that specific memories are represented in the dHPC whereas contextual information is

represented in the vHPC. Combined with indexing theory, our model shows that

indexing may occur in hierarchical levels. For intermediate levels, the indexing

separates representations of objects and tasks by the contexts in which they belong.

This modularity makes it less likely that learning new information in new contexts will

overwrite previously learned information in old contexts. The indexing of the dorsal

HPC is necessary for driving the consolidation processes that transfer information to

long term storage.

Our work is comparable to a recent approach to avoiding catastrophic forgetting by
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Nakano and Hattori (2017), in which the intermediate layers of a deep neural network

are gated by patterns that differ by context. A paper by Masse, Grant, and Freedman

(2018) has the similar idea of using CHL as a plausible deep representation of

information, and applying "pseudopatterns" alongside their regular training patterns for

better separation. Our experiments explain in more depth how these patterns are

formed and employed throughout different stages of the learning process. The central

location of the hippocampus makes it a likely candidate for effecting context-dependent

gating within the network. Its connections to the mPFC allow the formation of

context-dependent indices, and its wide connectivity to the whole neocortex gives it the

ability to gate information at many levels of the hierarchy.

There are differing opinions on how interaction between the mPFC and HPC is

involved in context-dependent tasks. The SLIMM model suggests a competitive

relationship, with activation of the mPFC inhibiting the HPC when a stimulus is

congruent with a prior schema. On the other hand, Preston and Eichenbaum (2013)

suggest a more cooperative interaction, with the mPFC drawing specific memories from

the vHPC, and in turn influencing the dHPC via entorhinal inputs. As the mPFC is

also known to mediate attention shifting in context-dependent tasks (Birrell & Brown,

2000), it is likely that shifts in schemas cause the mPFC to change the activity of the

HPC. In our experiment, the presence of new PAs within an existing schema should

require both the mPFC and HPC to express the familiarity of the schema and novelty

of the new PAs. Our model shows that a top down control of the HPC by the mPFC is

able to change which specific neurons were active in the HPC and effectively separate

tasks by schema.

Moreover, the gating patterns are not employed evenly at all times, but depend

heavily on external factors such as novelty, uncertainty, and reward, therefore, our

model predicts that gating of context information is controlled by neuromodulatory

areas. This could explain how the brain controls phases of learning in such a flexible

manner. Our model suggests that schema familiarity could be detected by the mPFC

and novelty could be detected by the hippocampus. We propose that neuromodulation
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monitors these signals and amplifies learning and consolidation of new (i.e. novel or

unfamiliar) information while sparing old information. Our simulated neuromodulator

may have biological correlates in the LC, as it reacts to sudden changes in schemas and

causes changes in theta oscillations within the HPC. However, the combination of

novelty and familiarity is also reminiscent of the BF functionality suggested by Yu and

Dayan (2005), in that the level of uncertainty is framed within a specific context. Other

areas such as the dopaminergic ventral tegmental area (VTA) may be involved in

neuromodulatory gating as well, as it has inbound and outbound connections with the

hippocampus that control learning according to reward and novelty (Otmakhova, Duzel,

Deutch, & Lisman, 2013).

We predict that the outcomes of our model could be tested experimentally by

deactivating the LC or BF and testing whether this impairs the time it takes to learn

the Tse et al. (2007) task. We would also expect that severing connections from the

mPFC to the HPC would cause catastrophic forgetting, as intermediate representations

would not be properly gated. It may also be possible to lesion the HPC and artificially

gate on brain areas storing intermediate representations to see if this prevents

catastrophic forgetting.

In addition to the neurobiological implications of our model, our work could have

practical applications to a range of tasks in Artificial Intelligence and robotics. In the

future, we hope to test our model on a variety of other datasets, particularly those used

in machine learning and robotics applications. For instance, rather than learning the

locations of food, our model can also learn the general layout of objects in a household.

Different schemas formed would then correspond to different rooms, which can aid

various robotic behaviors such as retrieving objects and interacting with people. The

increased complexity of the environment may require the addition of more multimodal

association layers in the network, which would test the scalability of context-based

gating. Rather than having just a vHPC and dHPC, the model would include multiple

HPC layers along the dorsal-ventral axis, one for each of the layers in the representation

stream. These layers would then index at different levels of spatial, temporal, or
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conceptual hierarchies, depending on the task at hand. The use of more layers presents

the possibility of starting from raw visual input as opposed to labeled objects, for an

entirely end-to-end approach to context-based task learning.
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