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Abstract 

Background：Bovine mastitis is a key disease restricting developing global dairy 

industry. Genomic wide association studies (GWAS) provided a convenient way to 

understand the biological basis of mastitis and better prevent or treat the disease. 

2b-RADseq is a reduced-representation sequencing that offered a powerful method 

for genome-wide genetic marker development and genotyping. This study, GWAS 

using two-stage association analysis identified mastitis important genes’ single 

nucleotide polymorphisms (SNP) in Chinese Holstein cows. 

Results: In the selected Chinese Holstein cows’ population, we identified 10,058 

SNPs and predicted their allele frequencies. In stage I, 42 significant SNPs screened 

out in Chinese Holstein cows via Bayesian (P<0.001), while logistic regression model 

identified 51 SNPs (P<0.01). Twenty-seven significant SNPs appeared simultaneously 

in both analytical models, which of them only three significant SNPs (rs75762330, 

C>T, PIC=0.2999; rs88640083, A>G, PIC=0.1676; rs20438858, G>A, PIC=0.3366) 

located in non-coding region (introns and intergenic) screened out associated with 
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inflammation or immune response. GO enrichment analysis showed that they 

annotated to three genes (PTK2B, SYK and TNFRSF21), respectively. Stage II， 

case-control study used to verify three important SNPs associated with dairy cows 

mastitis traits in independent population. Data suggested that the correlation between 

these three SNPs (rs75762330, P<0.025; rs88640083, P<0.005; rs20438858, P<0.001) 

and mastitis traits in dairy cows were consistent with stage I.  

Conclusion: Two-stage association analysis approved that three significant SNPs 

associated with mastitis traits in Chinese Holstein cows. Gene function analysis 

indicated that three genes (PTK2B, SYK and TNFRSF21) involved in inflammation 

and immune response of dairy cows. Suggesting that they as new candidate genes 

have an impact on mastitis susceptibility (PTK2B and SYK, OR>1) or resistance 

(TNFRSF21, OR<1) in Chinese Holstein cows. 

Keywords: single nucleotide polymorphisms, Bayesian, Logistic regression analysis, 

Mastitis, Chinese Holstein 

 

Background   

Bovine mastitis is the most complex and costly disease with high incidence, 

which seriously affects developing dairy industry worldwide (MAUNSELL et al. 1998; 

SCHUKKEN et al. 2009; WELDERUFAEL et al. 2017). Infection with mastitis causes 

direct economic losses in several ways, including dramatically discount in milk yield, 

treatment costs, condemnation of milk because of antibiotic or bacterial 

contamination. Also, higher than spontaneous elimination rates as well as, 

occasionally death of milk producer cows(SWINKELS et al. 2005; HALASA et al. 2007; 

HALASA et al. 2009; HOGEVEEN et al. 2011). Therefore, despite improvements in the 

breeding of disease-resistant cows, mastitis continues to be a notable challenge and 

the major profitable issue for dairy farmers. Previous studies reported that cow 

mastitis was a complex quantitative trait affected by multiple reasons, including 

genetic features, pathogen infections (HERTL et al. 2014; MOOSAVI et al. 2014; 

USMAN et al. 2015; POKORSKA et al. 2016; KIKU et al. 2017). It’s confirmed that 

bovine milk somatic cell count (SCC) or log-transformed SCC (somatic cell score, 

SCS) are the primary trait for detection of mastitis and have high hereditary capacity 

(WANG et al. 2015). Thus, Screening and identifying susceptibility or resistance genes 

associated with mastitis traits will improve the properties of dairy cow populations 

and is worthwhile to reduce the incidence of mastitis (SAHANA et al. 2014; KADRI et 

al. 2015; WANG et al. 2015). Different research strategies successfully used to identify 

significant genes associated with the mastitis traits, including SNP in a candidate gene, 

quantitative trait loci (QTL) and GWAS (BRONDUM et al. 2015; POKORSKA et al. 

2016; ZHANG et al. 2016). 

GWAS provides a convenient way to understand the biological basis of disease 

and better prevention or treatment (VISSCHER et al. 2017). In the past decade, it has 

been extensively in screen candidate gene mutagenesis to improve population 

productivity and disease resistance traits (DAETWYLER et al. 2014; CRISPIM et al. 

2015; SAOWAPHAK et al. 2017; SELIMOVIC-HAMZA et al. 2017; VARSHNEY et al. 

2017). It also widely regarded as a potential molecular marker assisted selection 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 3, 2018. ; https://doi.org/10.1101/434340doi: bioRxiv preprint 

https://doi.org/10.1101/434340
http://creativecommons.org/licenses/by-nc-nd/4.0/


method based on SNPs in dairy cattle mastitis traits (WIGGANS et al. 2009; WANG et 

al. 2015). At chromosome level, GWAS data showed that Bos Taurus autosome 2, 4, 6, 

10, 14, 18, and 20 associated with clinical mastitis significantly correlated with 

somatic cell scores in cows (SODELAND et al. 2011; MEREDITH et al. 2012; WIJGA et 

al. 2012). Besides, GWAS has arisen as one of the primary strategies in finding 

genetic variations associated with the traits. And many genetic associations have 

determined for a wide variety of prevalent, complex diseases as described in the 

GWAS list (HINDORFF et al. 2009). Sahana and his colleagues reported two clinical 

mastitis candidate genes (vitamin D-binding protein precursor, GC and neuropeptide 

FF receptor 2, NPFFR2) using high-density single nucleotide polymorphic array and 

WGAS (SAHANA et al. 2014). These two candidate genes detected to associate with 

mastitis traits in dairy cows through genomic sequencing in 2016 (ZHANG et al. 2016). 

In 2015, Wang et al. identified another two mastitis susceptibility genes (TRAPPC9 

and ARHGAP39) in Chinese Holstein (WANG et al. 2015). However, Wu et al. 

detected five mastitis susceptibility genes (NPFFR2, SLC4A4, DCK, LIFR and EDN3) 

in Danish Holsteins (WU et al. 2015). Genetic variations in immune response, specific 

pathogen (LY75, DPP4, ITGB6 and NR4A2) and lymphocyte antigen-6 complex 

genes (LY6K, LY6D, LYNX1, LYPD2, SLURP1 and PSCA) might lead to clinical 

mastitis in American Holstein cows (TIEZZI et al. 2015). Additionally, single gene 

polymorphisms (CXCR1, MAP4K4) and their signaling pathways (TLR4/NF-κB) 

served as genetic markers for mastitis in different cow populations (POKORSKA et al. 

2016; BHATTARAI et al. 2017). These results suggested that genetic variations or 

polymorphisms associated with mastitis traits are inconsistent, should screen and 

validated in different populations. 

2b-RADseq, considered as a simplified and flexible restriction site-associated 

DNA (RAD) genotyping method based on IIB restriction endonuclease, provides a 

powerful method for identifying gene SNP in the population genome. It has strong 

technical repeatability, uniform depth of sequencing, high cost-effectiveness and 

genome coverage (WANG et al. 2012; GUO et al. 2014). Furthermore, the 2b-RADseq 

technique successfully predicted multilocus sequence typing (MLST) as well as 

provide more detailed on the population information than MLST technique. Therefore, 

the cost-effective and timesaving analysis strategy provided for large-scale studies on 

molecular epidemiology, public hygiene, systematic bacterial genetics, population 

genetics and bio-safety (PAULETTO et al. 2016; HERNANDEZ-CASTRO et al. 2017). 

Also, this method also suitable for erecting high-density genetic or linkage maps of 

genomic region or locus markers and revealing the regions associated with related 

traits by QTL mapping and association analysis (JIAO et al. 2014; ZHAO et al. 2017). 

More importantly, 2b-RAD can gain many SNPs through deep sequencing with fewer 

samples, and then identify the candidate genes related to traits (LUO et al. 2017). 

Therefore, 2b-RAD may be an ideal genotyping platform for screening mastitis 

resistance or susceptibility genes in dairy cattle. 

In this study，in order to identify mastitis susceptibility or resistance SNPs in 

Chinese Holstein and better understand the genetic and biological pathway of mastitis. 

We carried out: 1) 2b-RAD sequencing technique to sequence the whole genome for 
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dairy cattle. 2) Identified and RADtyping SNPs. 3) GWAS analyzed the significant 

SNPs associated with mastitis traits via logistic regression analysis models. 4) 

Case-control study validated significant SNPs in independent dairy population. Then 

identified mastitis susceptibility or resistance SNPs, and evaluated the potential value 

of their associated genes in traits of Chinese Holstein cows. 

     

Methods 

Sample libraries and preparation 

The experimental Chinese Holstein cows were from two different pastures of the 

same Dairy Company (Nanjing Weigang Dairy Co., Ltd.). Forty dairy cows selected 

from 596 lactating Chinese Holstein cows, which divided into two subgroups 

according to their clinical mastitis phenotypes: case group (20 cows) and control 

group (20 cows). 383 cows screened from 886 lactating cows in another pasture, with 

73 in case group and 310 in control group. In their respective pastures, all animals 

have the same growth and feeding environment, similar production levels, the 

equivalent parity and lactation period.  

Blood sampling performed using the tail vein blood sampling minimizes damage 

to cows (Firstly, the cows fixed in the column holders and the tails exposed outside 

the frame. Secondly, the blood collectors grasped the cow's tails and lifted it upwards; 

they sterilized by alcohol cotton balls at the depressions at the midpoint of the 4th and 

5th tail vertebrae. Then the tube blood collector penetrated the tail vein vertically to 

draw blood. Finally, after the blood drawn, the needle’s eye area pressed with a cotton 

ball for 30 seconds to fix the hemostasis and release the cows). Genomic DNA 

extracted from whole blood using TIANamp Genomic DNA Kit. The quality of 

genomic DNA detected by NanoDrop and Agraros Gel methods (extracted 3 

microliters of genomic DNA, loaded on 1% agarose gel, 100 V CV 25 Minutes, 

viewed under ultraviolet light and photographed.). 

 

2b-RAD library and sequencing 

Forty sample libraries set up met a protocol developed by 2b-RAD sequencing 

needs with a little change and five-label tandem technique (RUBIN et al. 2010; WANG 

et al. 2012). The Bos Taurus genomes 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/003/055/GCF_000003055.6_Bos_ta

urus_UMD_3.1.1/GCF_000003055.6_Bos_taurus_UMD_3.1.1_genomic.fna.gz) used 

as the reference for predicting electronic-enzyme-cut digestion of genomic DNA. 

Finally, Bael enzyme selected to digest genomic DNA. The restriction enzyme 

digested DNA fragment tags of each sample linked by standard 5’-NNN-3’ connector. 

Paired-end sequencing carried out on the Illumina Hiseq Xten 

(https://support.illumina.com/downloads/sequencing-analysis-viewer-software-v2-18.html) 

platform after the quality control of the library was up to standard. Constructed the 

library followed WANG et al. (WANG et al. 2016a)(Figure S1) and the steps of the 

modeling included: (1) enzymatic digestion: ≥ 200ng genomic DNA digested by IIB 

restriction endonuclease; (2) Adding connectors: 5 different sets of connectors added 

to the digestion products respectively, with T4 DNA Ligase connection; (3) 
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Amplification: T4 DNA Ligase connection products amplified by PCR; (4) Series: 

according to the information of 5 sets of connectors, the five labels connected in 

series; (5) Pooling: Barcode sequence added to the connection products and mixed 

library; (6) Sequencing: high-quality library that qualified, then on-machine 

sequencing.  

Raw Reads quality control 

The original sequencing (Raw Data or Raw Reads) gained using the Illumina 

HiSeq sequencing platform. The Phred value was a role of sequence base error rate 

(Figure S2). It gained by calculating the probability model of prediction base 

recognition error base recognition. The calculation formula was: QPhred = 

-10log10(𝑃ℎ𝑟𝑒𝑑)（Table S1）. Then deleted the reads contained the junction sequence 

and N base ratio ≥8% reads，got Clean Reads, then spliced by Pear (Version 0.9.6) 

software (http://pear.php.net/package/HTTP_WebDAV_Client/download/0.9.6/). Based on 

locating each sample, high-quality Enzyme Reads containing cleavage recognition 

sites extracted. SOAP (version 2.21) (http://soap.genomics.org.cn/soapaligner.html#down2) 

(Short Oligonucleotide Analysis Package) software used to align Enzyme Reads with 

the reference sequence (-r0 denotes unique comparison; -M4 represents optimal 

comparison; -v2 index comparisons allow two mismatched). Unique tags gained by 

the same Reads clustering showed the sequencing depth of the tags. 

 

SNPs genotyping and Linkage Disequilibrium (LD) analysis 

SNP marker typing (RAD typing) performed on Enzyme Reads using the 

maximum likelihood (ML) method in SOAP software. The statistic SNP typing results, 

using R Package cluster analysis of the differences between sample SNPs. SNP 

annotated using SnpEff software (Version: 4.1g) (http://snpeff.sourceforge.net/) to 

determine located the SNPs in the gene and affected amino acid changes. 

Plink software used to calculate the r
2
 value of the pairwise SNPs, with the main 

parameters set to: --r
2
-Id-window-kb 1000-Id-window 50-Id-window-r

2
 0.2. 

According to the median of the software, the work F(x) = 1/ (log10 ((x+10
(7-C)

)/10
7
) + 

C) used to fit, and mapping by chromosome/grouping. To find the LD block in the 

case-control group, we add the parameters “block output GAB-pair wise Tagging’ to 

R package runner. Based on the 2b-RAD sequencing results, determined the optimal 

maximum distance for each LD block.  

 

Population structure and genetic diversity 

After the 2b-RAD sequencing technology processed the samples, the PC analysis 

method used to evaluate the population. Then a correlation test performed for each 

subgroup, including the first five PC selected as covariate analysis signs for 

population division adjustment. The PC detailed data showed in Table S3. As far as 

we know, the first two influential feature vectors selected to draw the correlation 

between the samples. As shown in Figure S5 (a), case-control overlaps in two groups, 

no outliers detected, and it conformed to the rule of sample collection. To assess 

experimental samples’ genetic diversity, polymorphic information content (PIC), 

observed heterozygosity (Ho) and expected heterozygosity (He) values also calculated 
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for each SNP site. In addition, the genetic differentiation coefficient between the 

subgroups was statistical. 

 

SNPs and mastitis traits association analysis 

We considered a GWAS for the quality traits of dairy cow mastitis, and 2b-RAD 

markers genotype for each individual SNP locus. To ensure the accuracy of the 

analysis, we used multi-stage GWAS identified important SNPs associated with 

mastitis traits. Stage 1: we selected clinical mastitis and normal control Chinese 

Holstein cows for GWAS. We assumed that there is a true SNP tag associated with 

mastitis for each genotype in the genomic region. And calculated the correlation 

statistic for each SNP site and selected the strongest associated SNPs as the causal 

SNPs. If the region contains a single SNPs, then the most significant related SNPs is 

most likely a causal SNPs. Calculated the associated statistics of the SNP and 

identified significant SNPs. GWAS analysis performed using Bayesian and Logistic 

regression analysis model to compare important SNPs between case-controls. 

Quantile-Quantile Plot (QQ-plot) evaluated the rationality of the two analysis models. 

GO enrichment analysis performed on all genes with SNPs, and their functions 

described in conjunction with GO annotations. Hypergeometric Distribution Test 

(Cytoscape software) used to calculate significant gene enrichment in each GO entry. 

Stage 2: in another independent Chinese Holstein dairy population, validated these 

important SNPs screened in stage 1.  

 

Statistical model 

Principal analysis method (PCA) 

PCA is a method that uses for dimensionality reduction on data to study how to 

condense many original into a few factors with minimal information loss (LI et al. 

2017). In this experiment, let F1 denote the main sub-index formed by the first linear 

combination of the original, F1=a11X1+ a12X1+ …… +a1mXm, (m stands for the mth 

index). Information obtained by each principal component can measure by its 

variance. The larger the variance, the more information the F contains. If the first 

principal component is not enough to represent the initial m indicators, then consider 

selecting the second index F2. The existing data of F1 does not need to appear in F2 

again. That is, F2 and F1 should be independent, irrelevant, and expressed by their 

covariance. And so on to build F1, F2… Fn, as equation (1). 

{

F1 = a11𝑋1 + a12𝑋2 +  … … + a1𝑚𝑋𝑚

F2 = a21𝑋1 + a22𝑋2 +  … … + a2𝑚𝑋𝑚

… …
F𝑛 = a𝑛1𝑋1 +  a𝑛2𝑋2 + … … + a𝑛𝑚𝑋𝑚

          (1) 

Bayesian and Logistic regression model association Analysis 

Linear models are a common method for correlation analysis of phenotypes and 

genotypes. Strict quality control used to remove poorly performing SNP marker loci 

in RAD typing. Bayesian and Logistic regression model introduced for GWAS 

detected SNPs associated with clinical mastitis in dairy cows. First, built the 

following linear regression equation based on phenotype (GUO et al. 2018): 
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yi =μ+∑ 𝑋𝑖𝑘𝛼𝑘
𝑀
𝑘=1 +e          (2) 

Where yi is a vector of phenotype for individual i; M is the number of SNPs; μ is 

a vector of the overall mean of traits phenotypes; αk is a vector of additive correlation 

effect of the kth SNPs; Xik is a vector of the genotype (0, 1, or 2) of the kth SNPs 

observed on the ith individual; and e is a vector of residual effect.  

The Bayesian model assumed the SNPs effect was a prior normal distribution. 

Firstly, we consider the possibility that each SNP locus truly associated with the 

mastitis phenotype in GWAS. Select a value п for the prior probability H1. The 

correlation between SNPs and dairy mastitis traits quantified using п values. A 

pre-estimation of the SNPs truly associated with cow mastitis trait performed by a 

specific п value (10
-4

-10
-6

). While the probability of H0 considered to be (1-п). 

Secondly, calculated the Bayes factor for each SNPs. The Bayesian factor (BF) is the 

ratio between the probability of data at H1 and H0. Null assumption is H0 (𝜃ℎ𝑒𝑡 =

𝜃ℎ𝑜𝑚 = 0). H1, at least one 𝜃ℎ𝑒𝑡=t1 and 𝜃ℎ𝑜𝑚=t2 value is non-zero (WELLCOME 

TRUST CASE CONTROL et al. 2012). 

BF=
𝑃(𝑑𝑎𝑡𝑎│𝜃ℎ𝑒𝑡=𝑡1,𝜃ℎ𝑜𝑚=𝑡2)

𝑃(𝑑𝑎𝑡𝑎│𝜃ℎ𝑒𝑡=0,𝜃ℎ𝑜𝑚=0)
          (3) 

 

Where, 𝜃ℎ𝑒𝑡 is odds ratios (ORs) logarithm between the heterozygote and the 

common homozygote. 𝜃ℎ𝑜𝑚  is the ORs logarithm between rare and common 

homozygotes. Then counted the posterior odds (PO) under the H1 condition: PO= 

BF×п/ (1-п). And posterior probability of association (PPA= PO/ (1+PO)) can be 

regarded as a Bayesian simulation of P value. 

The SNPs effects variances were independent of each other, and each of which 

followed the same independent distribution (IID) as the inverse chi-square prior 

normal distribution where v is a parameter of the degree of freedom and S
2
 the 

parameter of scale: 

P (𝜎𝑘
2) = χ−2(𝜎𝑘

2│v, S
2
)         (4) 

A prior distribution of the criticality of each SNP effect was a t-distribution 

(MEUWISSEN et al. 2001; GUO et al. 2018): 

P (αk│v, S
2
) = ∫ 𝑁(α𝑘│0, 𝜎𝑘

2) χ−2(𝜎𝑘
2│𝑣, 𝑆2)d𝜎𝑘

2          (5) 

The prior for ak depends on the variance of each SNPs, and each variance has an 

inverse Chi-square. SNP has null effect with probability п or is a normal distribution 

with probability (1-п), N (0,𝜎𝑎
2) (GIANOLA 2013): 

ak│п,  𝜎𝑎
2=  {

N (0, 𝜎𝑎
2) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − п)

0        𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦      п
          (6) 

Where 𝜎𝑎
2 is represents the common variance of all non-zero SNPs effects, and 

it prorated prior distribution of the chis-square, χ−2(va,𝑆𝑎
2). The unknown п value in 

the model predicted from its prior distribution (considered as uniform between 0 and 

1) or п– uniform (0, 1). 

va is designated as 4, S𝑎
2 is calculated by additive variance. 
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S𝑎
2 =

�̃�𝑎
2(𝑣𝑎−2)

𝑣𝑎
          (7)  

and �̃�𝑎
2 = 

�̃�𝑆
2

(1−𝜋) ∑ 2𝑃𝑘(1−𝑃𝑘)𝐾
𝑘=1

          (8) 

Where the allele frequency of the kth SNP is𝑃𝑘, the variance of a given tag is�̃�𝑎
2, 

and the additive genetic variance �̃�𝑆
2 is elucidated by SNPs. 

Then assuming that SNPs affects the mastitis phenotypic traits, we constructed 

logistic regression equation to predict SNPs associated with clinical mastitis in dairy 

cows. And we established a fitted logistic regression equation (BISCARINI et al. 2016; 

WANG et al. 2016b): 

log(P𝑗 /(1 − P𝑗 )) = μ + ∑ 𝑋𝑖𝑗𝛽𝑗
𝑀
𝑗=1           (9) 

Where, Pj is the probability of occurrence of clinical phenotype under a condition 

Xij; (1-pj) is the probability that phenotype does not occur; Xij = (X1j, X2j, X3j…… Xmj) 

is the genotype of individual i at position j (0, 1, or 2); βj is the effect of jth SNPs; and 

m is the number of samples; μ is the overall mean of traits phenotypes.  

In the logistic regression model, Y= (μ+βiXi) or (log 𝑃/(1 − 𝑃)), the equation 

can transform into another equation form: 

P = 
exp (Y)

1+exp (Y)
          or 

Log (P) = β0+β1X1+…… +βiXi         (10) 

Where P is clinical mastitis phenotype, Xi is the genotype of individual i, βi is the 

odds ratio (OR). The equation of expression between P and variable Xi can derive by 

equation transformation: 

P= 
exp (μ+βiXi)

1+exp (μ+βiXi)
          (11) 

1-P= 
1

exp (μ+βiXi)
          (12) 

OR= exp (βi) = 
𝑝1/(1−𝑝1)

𝑝0/(1−𝑝0)
          (13) 

The greater the value of βi, the greater the influence of Y. 95% confidence 

interval: CI= exp (βi±1.96SE（βi）). 

Case-control population verification analysis 

We determined the number of validation samples using a matching design and 

case-control unequal (case/control=1/h). 

 

n= 
(𝑧√(1+1 ℎ⁄ )�̅�(1−�̅�)+𝑧𝛽√𝑝1(1−𝑝1) ℎ⁄ +𝑝0(1−𝑝0))2

(𝑝1−𝑝0)2           (14) 

p1= 
𝑝0𝑂𝑅

1+𝑝0(𝑂𝑅−1)
          (15) 

p̅= 
(p1+hp0)

(1+h)
          (16)  

OR=ad/bc          (17) 

OR 95% CI= 𝑂𝑅(1±1.96/√χ2)          (18) 
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χ
2
= 

(𝑎𝑑−𝑏𝑐)2𝑁

(𝑎+𝑏)(𝑐+𝑑)(𝑎+𝑐)(𝑏+𝑑)
          (19) 

     

Where, n is the number of cows in clinical mastitis. N is the total number of cows 

in verification population. P0 is the exposure rate of SNPs in the control group. P1 is 

the exposure rate of SNPs in the case group. OR is the exposure ratio (Odds ratio).  

is the probability of hypothesis testing type I errors. β is the probability of hypothesis 

type II errors and (1- β) is the expected test assurance. OR 95% CI is 95% confidence 

interval. 

The Attributable Fraction reflects the probability that a case will be randomly 

selected from the population due to the SNPs. 

AFe = 
𝐼𝑒−𝐼0

𝐼𝑒
 ≈ 

𝑂𝑅−1

𝑂𝑅
          (20) 

Where, Ie is the incidence of the site mutation group; I0 is incidence of the site 

non-mutation group. Incidence is generally not available in case-control studies and 

only OR obtained. AFe refers to the proportion of mastitis caused by the SNPs to all 

mastitis.  

 

AFp = 
𝐼𝑝−𝐼0

𝐼𝑝
 ≈ 

𝑝𝑒(𝑂𝑅−1)

1+𝑝𝑒(𝑂𝑅−1)
          (21) 

 

Where, AFp indicates the proportion of mastitis caused by the SNPs in all 

mastitis. Ip is the total incidence of mastitis in Chinese Holstein cows. I0 is the 

incidence of mastitis with non-mutation at the SNP locus. Pe is the mutation rate of 

SNP locus in control group. 

 

Results  

Restriction endonuclease digestion and unique tags statistics 

In this project, Bael restriction endonuclease used to digest genomic DNA of 

Chinese Holstein cows. Cluster analysis performed on the same read to gain a unique 

tag for each sample, and calculated the depth of sequencing for each tag. Removing 

the tag with a sequencing depth of less than 3×, the average number of tags each 

sample was 198,948 and the average sequencing depth was 17.43× (Figure 1, Third 

Ring). The average tag spacing between tags was about 9589 bp (Figure S3) and the 

unique tags alignment ratio for all samples was 59.69% ~ 72.71%.  

SNPs RADtyping and genotype 

After RADtyping and filtering, 10,058 SNPs (Figure 1, Second Ring) screened 

out for all samples. The distribution of SNPs on the chromosomes of each sample was 

based on sliding window statistics (Figure S4). Then we counted all the SNP locus 

allele frequencies. Cochran-Armitage test analyze association between single SNPs 

genotypes and case-control status showed in Figure S5(b). Here, since heterozygote 

risk assessment intermediated between two homozygotes, this line fit the data 

reasonably which matched to additive genotype risk. In this case there was no 

deviation, and the test was convincing. And details gave in Table S2. At the same time, 

we counted the genetic differentiation coefficient (Fst= 0.01869) between two groups. 
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The range of Fst value between groups was 0-1. Fst value was close to 0, which 

indicated that the genetic differentiation between the two groups was smaller. 

Genome Wide Association Analysis 

The SNPs associated statistic obeys the multivariate normal distribution. We also 

calculated the likelihood of possible causal states of the SNP. Each SNP has two 

potential causal: effect or no effect of the SNP. Therefore, for a possible subset of 

each, we need to consider the 2
n
 likelihood of the SNP. For each of these states, a 

multivariate normal distribution used to calculate the probability of the data for a 

given causal state. Thus, to identify the best SNPs set, a large amount of computations 

must be performed. The data showed that analysis of the two models was a slightly 

different in quality traits for all SNPs. Bayesian analysis screened 42 significant SNPs 

when P<0.001 (Table S4), while logistic regression analysis model identified 51 SNPs 

under P<0.01 condition (Table S5). Under the above P-value conditions, 27 

significant SNP sites appeared simultaneously in the two analytical models (Table 1). 

As expected, significant SNPs screened in the two analytical models under their 

P-value conditions will vary, respectively. The QQ-plot (Quantile-Quantile Plot) 

evaluated the rationality of the two statistical models. Figure 2 showed that P value 

observations consistent with expected values at all SNP site, indicated that the two 

analysis models were reasonable. In the upper-right corner of Figure 2(a), candidate 

sites with high significance and potential associated with mastitis traits. However, in 

Figure 2(b), SNPs that significantly associated with mastitis traits were not apparent. 

This might be related to the fact that cow mastitis controlled by micro-multiple genes; 

gene effects too weak, or the sequencing population size we selected was insufficient. 

In Bayesian analysis model (Table S4), The OR and 95% CI values of the SNPs 

rs21068792 were all “Na”, there was a missing value. The U95 of the 6 SNPs 

(rs98302192, rs49124945, rs57070376, rs13685463, rs57506421 and rs58979699) 

were “Nan”, which means meaningless number. The OR value of these 11 SNPs 

(rs114843903, rs38937721, rs5881560, rs17514753, rs17518215, rs22015301, 

rs77887746, rs9704351, rs20438858, rs26414259 and rs50888452) less than 1 

indicated that these SNPs were protective reasons for the related phenotypes. The 

other 24 SNPs’ OR values greater than 1 indicated that these SNPs were risk for 

related phenotypes. With regard to logistic regression model, 51 SNPs marked when 

P<0.01(Table S5). A total of 22 SNPs’ OR value less than 1, and other 29 SNPs were 

greater than 1. We noticed that 8 (rs114843903, rs5881560, rs17514753, rs17518215, 

rs22015301, rs9704351, rs20438858 and rs5088452) SNPs’ OR values<1, while for 

Bayesian model as well. Table 1 also showed that 19 SNPs’ OR values in the two 

models were great than 1. 

SNPs GO annotations  

We annotated all 27 significant SNPs to determine their location in the 

chromosomal genome. Table 2 showed that 14 SNPs located in the intergenic region, 

10 in intron, and 1 in 3’-UTR, upstream and downstream, respectively. Except for the 

rs33866959 (A>T, transition) site, all other sites are transversion. The PIC value of 

rs86640083 less than 0.25 (low polymorphism), while the others all in 0.25 to 0.5 

(moderate polymorphism). Go enrichment for 27 significant SNPs revealed that only 
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3 SNPs (rs75762330 (C>T, PIC= 0.2999), rs88640083 (A>G, PIC= 0.1676) and 

rs20438858 (G>A, PIC= 0.3366)) associated with immune role (Table 3, Figure 3). 

SNPs rs75762330 (C>T, OR>1, PIC= 0.2999> 0.25) in PTK2B gene located on BTA 

8, and belonged to moderate polymorphism. PTK2B, also called Pyk2, regulates 

humeral and homeostatic cell homeostasis (RACIOPPI et al. 2012; KREMER et al. 2014; 

RHEE et al. 2014; LLEWELLYN et al. 2017). And rs88640083 (A>G, OR>1, PIC= 

0.1676<0.25) in intergenic nearby SYK gene located on BTA 8 and was low 

polymorphism. SYK is a non-receptor tyrosine kinase and considered as an important 

regulator factor for adaptive immunity and played a vital role in TLR4 signaling 

pathway (CHOI et al. 2015; SCHWEIGHOFFER et al. 2017). SNPs rs20438858 (G>A, 

OR<1, PIC= 0.3366>0.25) in TNFRSF21 located on BTA 23 and was moderate 

polymorphism. TNFRSF21, also known as Death receptor 6 (DR6), is a member of 

the TNF/TNFR family and played a critical role in immune response and 

inflammation (LOCKSLEY et al. 2001; STRILIC et al. 2016; FUJIKURA et al. 2017). 

Other 24 SNPs were statistically significant in both analytical models, but GO 

annotations showed that they did not have the function of inflammation or immune 

response Combining the two models provided support for comprehensive data from 

all SNPs, suggested that association between the 3 significant SNPs and the risk of 

mastitis in dairy cows based on conventionally accepted genome-wide statistical 

significance thresholds. 

Correlation between SNPs 

Calculated LD coefficients between two pairs of SNP markers in the genome, 

and then LD coefficients classified according to the distance between the markers 

(Figure 4). Finally, the average LD coefficients between molecular markers at a 

certain distance counted. The average LD coefficient of 100kb on the genome of 

case-control two Chinese Holstein cows was about 0.5. However, the corresponding 

LD coefficient was still above 0.3 when the distance was 1000 kb. Moreover, we 

could also observe from the figure that the LD decay speed and C value were same 

between case-control groups. Of course, we also noticed that LD decayed very slowly. 

2b-RAD data shows that our SNP markers are sparse (9589 bp). Therefore, a suitable 

LD block map gained when the classification interval size was set to 10Mb.  

Figure 3(c) showed that rs75762330 associated with rs77816736, however, the 

latter P-value was >0.05 in both analytical models (Table S6). SNPs rs88640083 

associated with rs85927029 and rs85635916 (Figure 3(d)), yet the latter two were 

statistically meaningless. SNPs rs19736020 and rs16711445 associated with 

rs20438858 (Figure 3(e)), and Table S6 shown that the first two were not statistically 

significant. We also calculated the linkage disequilibrium (LD) between three 

significant SNPs. Genetic linkage analysis showed that SNPs rs75762330 not 

correlated with rs88640083 (r
2
= 0.0022) and rs20438858 (r

2
= 0.043). However, 

rs20438858 weakly correlated with rs88640083 (r
2
= 0.22).  

Three significant SNPs population verification 

Correlation analysis performed on three important SNPs in another larger 

independent Chinese Holstein dairy population via direct sequencing (Figure 5, Table 

4). We successfully performed PCR cloning near three important SNPs, then direct 
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sequencing. Data shown that the three locus’ P-value was <0.05, indicated that they 

were statistically significant associations between Chinese Holstein cow mastitis. The 

correlation between rs20438858 and risk of mastitis was still statistically significant, 

with the adjustment allele OR= 0.359（OR <1）. While, the other two significant SNPs 

(rs75762330 and rs88640083) located on BTA 8, with the adjustment allele OR = 

2.416 and 1.879 (OR >1), respectively. Table 4 also shown that base G in rs88640083 

had higher occupancy rate in case group than control group. And in rs75762330 base 

T as well. However, in rs20438858, the probability of base T in case group was less 

than control group. We also noted that AFe value for rs75762330 and rs88640083 was 

0.2489 and 0.2426 >0, respectively; while rs20438858 AFe value was -1.786<0. 

Three significant SNPs annotated to three candidate genes   

GO enrichment analysis indicated that three important genes associated with 

adaptive and innate immune response in Chinese Holstein cows (Figure S6). Figure 6 

also showed that these three candidate genes directly or indirectly affected the 

function of AKT1 and promoted the expression of pro-inflammatory cytokines in 

mammary epithelial cells and macrophages of dairy cows, suggested that these three 

genes are involved in mammary epithelial cells and macrophages the 

polarization-related biological functional activities. AKT1 (protein kinase B), As a 

key Jak2/STAT5 pathway protein, plays an important role in the regulation of 

differentiation, secretion, survival and proliferation of mammary epithelial cells and 

also plays a key role in mammary remodeling and lactation sustainability in dairy 

cows (MAROULAKOU et al. 2008; CHEN et al. 2010; CREAMER et al. 2010; ARRANZ et 

al. 2012; HOU et al. 2016), which is bound to play a key role in mediating the immune 

response to mastitis in dairy cattle. 

 

Discussion  

Genetic analysis of GWAS had a considerable impact on the study of complex 

genetics (LOH et al. 2015). GWAS has also achieved unprecedented success in 

identifying gene regions and candidate gene variants closely related to clinical 

phenotypes and disease susceptibility (chromosome and gene level, in term of the 

association between SNPs and traits) (YANG et al. 2011; LEE et al. 2012; 

CROSS-DISORDER GROUP OF THE PSYCHIATRIC GENOMICS et al. 2013). GWAS 

develops new functional studies and provides therapeutic strategies by comparing 

multiple gene regions or candidate genes, identifying new candidate genes for causal 

pathways (DEELEN et al. 2013). Moreover, identifying associated gene mutations 

could help reveal the pathogenesis of disease and provided cut-in points for treatment, 

and analysis of common genetic variations identified many risk loci for multiple 

complex diseases (XU et al. 2012; BERNDT et al. 2013). However, knowledge of 

disease biology and treatment remains limited. Gene’s functional changes caused by 

mutations associated with cow mastitis, which are also subtle and difficult to explain. 

Two-stage correlation analysis for three mastitis significant SNPs  

Genomic prediction methods of genetic values might show different results for 

different phenotypes, and the results might be different due to different genetic 

structures among traits (MOSER et al. 2009; RESENDE et al. 2012). To improve 
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accuracy, we used two-stage association analysis to reduce false positives. We 

reduced the dimensions when processing data, considering only the SNPs associated 

with inflammation and immune response. In stage I, considering that case-control 

state in the present study was not in a normal distribution, and to obtain accurate 

mastitis significant SNPs and genes information in Chinese Holstein, we tried to use 

two analysis models (Bayesian model and logical regression model) to carry out 

GWAS of 2b-RAD sequencing results. Several genetic background analyses have 

been found related to mastitis traits in dairy cattle populations, although to our 

knowledge no study has been conducted in Chinese Holstein dairy population to date 

using two GWAS analysis models at the same time. Comparison between the two 

models showed that although there were differences in SNP tagged under the same P 

value (P<0.05), the general trend of the association with mastitis was similar. The 

results suggested that Bayesian screen out more accurate significant SNPs (42, 

P<0.001, Table S4) in dairy cows, while logical regression analysis identified more 

SNPs (51, P<0.01, Table S5). Importantly, we identified three (rs75762330, 

rs88640083 and rs20438858) novel dairy cows mastitis traits significant SNPs in 

Chinese Holstein cows. SNPs rs75762330 within PTK2B and SNPs rs88640083 in 

intergenic nearby SYK located on BTA 8 were risk factors (OR>1), and the SNPs 

rs20438858 (OR<1) in TNFRSF21 located on BTA 23 was a protective factor for 

dairy cows mastitis.  

With regarding to stage II, we used a case-control study to verify the association 

of three important SNP markers with cow mastitis. It compared the exposure ratios of 

important SNPs in case and control groups (BAGHERI et al. 2016; WEISSBROD et al. 

2018; ZHOU et al. 2018). After statistical test, if there is significant difference between 

two groups, it can be considered that the SNPs associated to cow mastitis. When 

comparing the two groups, excluded the interference from external matching factors 

and only considered the relationship between SNPs and mastitis. According to the 

Pitman efficiency increment formula (2R/(R+1)), determined the appropriate sample 

size and gained higher test efficiency. Here，we validated the association of three 

important SNPs with cows mastitis. SNPs rs75762330 and rs88640083 were 

correcting factors (AFe>0) for cows’ mastitis, which associated with mastitis 

susceptibility. SNPs rs20438858 as a negative regulator (AFe<0) for cows’ mastitis 

and associated with mastitis resistance. 

Three significant SNPs are located in genomic non-coding sequences 

Previous studies found that conserved non-coding regions (CNCs) in introns and 

near genes show large allelic frequency shifts, similar in magnitude to missense 

variations, suggesting that CNCs are critical for gene function regulation and 

evolution in many species, including yeast, fruit flies and vertebrates (HAUDRY et al. 

2013; VISSER et al. 2014; PETIBON et al. 2016; DICKEL et al. 2018). However, The 

CNCs variation, which does not directly change the amino acid sequence, is the key to 

the regulation of gene genetic information expression and affects biological functions 

and diseases in mammalian (PATRUSHEV and KOVALENKO 2014). Our GWAS data 

provided a statistical list of SNPs associated with mastitis traits in dairy cows, where 

the associated significant SNPs are located in non-coding regions (intron and 
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intergenic) of the genome. Functional annotations showed that the three SNPs 

(rs75762330, rs88640083 and rs20438858) were associated with immune and 

inflammatory responses in dairy cows, implicating them as key SNPs for mastitis in 

dairy cows. But the biological function behind this statistical association is still not 

known, because this association may stem from hindering another biological function, 

such as regulating function, or being affected by other functional SNPs, and this can 

only be illustrated by subsequent experimental studies.  

Significant SNPs are at low or moderate genetic polymorphisms  

Pathogen-specific mastitis traits are a direct indicator of cow mastitis infection. 

GWAS studies showed that the mastitis trait is a low genetic polygenic trait that is 

controlled by multiple sites distributed in the genome, and the genetic effect of each 

locus is relatively small (WU et al. 2015). Our data results were basically consistent 

with previous studies. Stage I data showed that rs88640083 (PIC=0.1676<0.25) was 

low polymorphism, while rs75762330 (0.25<PIC=0.2999<0.5) and rs20438858 

(0.25<PIC=0.3366<0.5) were moderately. Three SNPs associated with mastitis also 

demonstrates that cow mastitis has multiple genetic effects.  

Three important candidate genes biological function  

Innate immune system is a key protective mechanism of bovine mammary gland 

against exogenous pathogen infection. GO function analysis annotated three 

significant SNPs into three important genes (PTK2B, SYK and TNFRSF21), which 

suggested that these three genes are novel candidate genes associated with mastitis 

traits in Chinese Holstein cows. PTK2B involved in regulating the LPS-TLR4 cascade 

in macrophages and affected the migration of dendritic cells (DCs) (RACIOPPI et al. 

2012; RHEE et al. 2014). It was also an important homeostasis regulator in natural 

immune cells such as bone marrow mononuclear cells (RACIOPPI et al. 2012; RHEE et 

al. 2014; LLEWELLYN et al. 2017). As for SYK, it played an essential role in signal 

transduction of adaptive immune receptors and participated in the regulation of innate 

immune recognition, vascular development, platelet activation and cell adhesion 

(MOCSAI et al. 2010). Studies reported that the SYK was also involved in regulating 

the proliferation of dairy mammary epithelial cells, affected milking cycles and milk 

production (HOU et al. 2016). TNFRSF21 might play an important role in regulating 

the degeneration of the mammary gland and providing protection against infection 

(KHALIL et al. 2011). We also noted that SYK and TNFRSF21 involved in “Toll-like” 

and “TNF/TNFR” signaling pathways, respectively, which are the key pathways to 

identify exogenous pathogens and induce inflammation and immune response.  

Conclusions  

In this study, we committed to improve understanding biogenetic variation of 

mastitis in Chinese Holstein cows, and to guide the construction of ant-mastitis 

populations and improve the populations’ anti-mastitis characteristic in dairy cows. 

Therefore, reduced-representation sequencing (2b-RAD) used to systematical study 

the conventional genetic variation (direct genotyping) of Chinese Holstein cows. And 

then rely on two-stage correlation analysis to find significant SNPs associated with 

risk of mastitis. Finally, we screened out three significant SNPs (rs75762330, 

rs88640083 and rs20438858) associated with immune response and inflammation, 
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which suggested that these three genes (PTK2B, SYK and TNFRSF21) are novel 

candidate genes associated with mastitis traits in Chinese Holstein cows.  

 

Abbreviations: 2b-RAD, type IIB endonucleases restriction-site associated DNA; 

GWAS, Genomic wide association studies; SNPs, single nucleotide polymorphisms; 

PTK2B, protein tyrosine kinase 2; SYK, spleen tyrosine kinase; TNFRSF21, tumor 

necrosis factor superfamily member 21; TLR4, Toll-like receptor 4; NF-κB, nuclear 

factor-kappa B; PCA, principal component analysis; PC, principal component; Q-Q 

plots, Quantile-Quantile plots; OR, Estimated odds ratio; PIC, Polymorphism 

Information Content; He, Heterozygosity Expectation; Ho, Heterozygosity 

Observation. 
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Figure and Table legends 

Figure 1 Schematic diagrams of all SNPs at chromosomal location cricos distribution 

and sequencing depth summary (a): Bayesian model analysis of SNPs quality traits in 

all samples (from outer to inner). The outmost circle was the chromosome scale; the 

second was the differential SNPs for all samples; the third was the average 

sequencing depth for each of the 40 samples at each locus (pink, if the depth over 50, 

count by 50) and the average depth of sequencing within 1 M window (black line, 

depth exceeds 50, count by 50); the fourth ring was the SNPs of the quality traits Chi 

square P< 0.05. (b): Logistic regression analysis of SNPs quality traits in all samples. 

The first to third rings were the same as (a). The fourth loop was the result of logistic 

regression analysis of differences in SNPs (P< 0.05). 

Figure 2 Q-Q plots (Quantile-Quantile plots) diagram for consistency of the observed 

and predicted values of SNPs P-value. (a) and (b) represented the consistency of 

Bayesian and logistic regression analysis for SNPs observed and expected value –

log10 (P), respectively. (a) There were SNPs P values exceeded expected, which 

suggested that these locus might be significantly associated with dairy cows’ mastitis 

traits. (b) The P value observation is almost the same as the expected, indicated that 

the analysis model was reasonable. 

Figure 3 Three Significant SNPs associated with genes chromosome mapping for 

Chinese Holstein. Manhattan plots (a) and (b) showed the SNPs associated with 

mastitis in Chinese Holstein screened by two models, respectively. (a) was the result 

of Bayesian analysis, while (b) represented the related genes labeled by logistic 

analysis model. Red dots represented the chromosome location of the associated 

genes. (c-e) were partial LD block of three significant SNPs, respectively, with a 

distance interval of 1Mb, the more reddish the LD block color is, the stronger the 

correlation the dots. SNPs rs75762330 and rs77816736; rs88640083, rs85927029 and 

8563916; and rs20438858, 19736020 and rs16711445 were in the same LD block 

(black circle), respectively, suggesting that their corresponding genes potential 

association with each other, respectively. 

Figure 4 The Linkage Disequilibrium attenuation curve of case-control SNPs. The 

lines of different colors represented different populations/chromosomes, horizontal 

coordinates were the physical distances between the SNPs pairs, and vertical 

coordinates were the average r2 values of the same physical distance marker pairs. As 

the distance between sites increases, r2 usually showed a decreasing trend. The larger 

the C value, the lower the probability of recombination between SNPs and LD 
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attenuation distance; the smaller the C value, the higher the probability of 

recombination between SNPs and LD attenuation distance. 

Figure 5 Three SNPs were directly sequenced in an independent validation population 

of Chinese Holstein cows. (a) Gel electrophoresis pattern PCR amplified fragments 

near three significant SNPs, A-C were PCR amplified fragments of SNPs rs88640083, 

rs75762330 and rs20438858 regions, respectively. (b-d) Directing sequencing results 

of PCR amplification products near above three important SNPs, and their alignment 

with reference sequences (ref: reference sequences; 1: heterozygous sequences; 2: 

variant sequences). The purple boxes were where the three SNPs located. X, M and N 

represented the heterozygous types of the three SNPs, respectively. 

Figure 6 Candidate genes interaction network Diagram based on KEGG Database. 

The network map was constructed with the three candidate genes as the core. The 

interaction between genes was represented by a line. 

 

Table 1 Significant SNPs screened by the Bayesian Model and Logical regression 

analysis model 

Note: * indicated the P-value calculated by Chi-square (<0.001); ** is the t-statistic 

P-value of the logical regression model (<0.01);  

CHISQ is Chi-square under Chi-square test. STAT is the t-statistic coefficient under 

the logistic regression model. 

OR: Estimated odds ratio. L95: Lower bound of 95% confidence interval for odds 

ratio. U95: Upper bound of 95% confidence interval for odds ratio. Nan: meaningless 

number. Na: missing value or Not available. 

Table 2 Significant SNPs genetic diversity and their Go enrichment annotations 

Note: He: Heterozygosity Expectation. Ho: Heterozygosity Observation. PIC: 

Polymorphism Information Content. 

Table 3 GO enrichment items and genes of three significant SNPs. 

Table 4 Case-control study analyzed three significant SNPs in independent validation 

population. 

 

 

Additional files 

Additional file 1:  

Figure S1. A 2b-RAD sequencing Diagram for Chinese Hesitant cows.  

Figure S2. Base distribution map (a) and base mass distribution map (b). (a): the base 

position of Reads is represented by the horizontal coordinate, and the ordinate is the 

proportion of the base; different colors represent different base types, and the 

unrecognized base in sequencing was N; the base distribution of reads at the R1 end 

were located at the left of the dotted line at 150bp; the right 150bp was the base 

distribution of R2 terminal reads. b: the lateral coordinates represented the base 

position of reads, and the ordinate was the mass value of the base at the corresponding 

position; the base mass value of Double terminal sequencing reads at the R1 end were 

located at the left of the dotted line at 150bp; the right 150bp were the distribution of 

base mass value of reads at R2 terminal; the darker the blue color, the higher the base 
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ratio of the mass value in the data.  

Figure S3. Label distance distribution histogram. The horizontal axis represented the 

distance between the two adjacent labels; the vertical axis represented the number of 

the labels corresponding to the distance; the upper right was the box line diagram of 

the adjacent labels of the labels, and the horizontal line in the middle of the box line 

chart was the median, that is, the average spacing between the labels.  

Figure S4. The Distribution of SNPs on Chromosomes in Chinese Holstein dairy 

cows. The horizontal axis indicated the coordinates of the physical position of the 

chromosomes; the vertical axis represented the number of the corresponding SNPs 

(window size, 20Kbp; Step length, 10Kbp). 

Figure S5 Principal Component Analysis and RAD typing of SNPs. (a) Abscissa 

represented principal component 1 (PC1); ordinate represented principal component 2 

(PC2); each point was a sample with different shapes and colors representing different 

groups. (b) Genotyping and genotype score of 10058 SNPs. Abscissa: 0 (two bases of 

the type were different from the reference genome); 1 (two bases of typing were the 

same as one of the reference genomes); 2 (two bases of typing were the same as those 

of the reference genome). 

Figure S6 Hierarchical Network of candidate Gene function based on go enrichment 

Analysis. Each circle represented a Go entry; the color indicated the enrichment 

degree, the deeper the color (yellow), the more genes enriched in the Go entry; the 

direction of the arrow indicated hierarchic relationship. 

 

 

 

 

Additional file 2:  

Table S1. Illumina base recognition and mass value correspondence table 

Table S2. The top 5 principal component data of all SNPs for each sample 

Table S3. Three genotypic risk estimation data of case-control by Armitage-test 

Table S4. Forty two important SNPs screened out via Bayesian Analysis Model. 

Table S5. The logistic regression model screened out 51 important SNPs. 

Table S6. Five SNPs screened by the Bayesian Model and Logical regression analysis 

model. 
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