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ABSTRACT (150 words max) 

The functional connectome reflects a network architecture enabling adaptive behavior that 

becomes vulnerable in advanced age.  The cellular mechanisms that contribute to altered 

functional connectivity in old age, however, are not known. Here we used a multi-scale imaging 

approach to link age-related changes in the functional connectome to altered expression of the 

activity-dependent immediate-early gene Arc as a function of training to multi-task.  Aged 

behaviorally-impaired, but not young, rats had a subnetwork of increased connectivity between 

the anterior cingulate cortex and dorsal striatum.  Moreover, the old rats had less stable rich 

club participation that increased with cognitive training.  The altered functional connectome of 

aged rats was associated with a greater engagement of neurons in the dorsal striatum during 

cognitive multi-tasking.  These findings point to aberrant large-scale functional connectivity in 

aged animals that is associated with altered cellular activity patterns within individual brain 

regions.  

 

Key words: anterior cingulate cortex, functional connectivity, graph theory, prefrontal cortex, 

working memory  
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  Advancing age is associated with cognitive impairments that can erode one’s quality of 

life, even in the absence of pathology (Burke and Barnes, 2006; Samson and Barnes, 2013; 

Lockhart and DeCarli, 2014).  Behaviors that rely on largescale interactions across brain 

networks, such as episodic memory or cognitive multitasking, appear to be particularly 

vulnerable to decline in older humans (Dennis et al., 2008; Chadick et al., 2014; Fandakova et 

al., 2014; Salami et al., 2014) and animal models of cognitive aging (Hernandez et al., 2015).  A 

possible reason for these cognitive impairments in older adults could be aberrant connectome 

connectivity and organization with advancing age (Ash and Rapp, 2014; Ash et al., 2016).  A 

powerful tool for evaluating the integrity of network organization is to quantify resting state 

functional connectivity and connectomics (Sala-Llonch et al., 2015a; Nyberg, 2017).  In fact, 

several studies have reported that older adults have decreased functional connectivity within the 

default mode network (Sala-Llonch et al., 2015a; Grady et al., 2016), as well as increased 

functional connectivity within the hippocampal network (Salami et al., 2014), the frontoparietal 

control and the dorsal attentional networks (Grady et al., 2016), as well as between the anterior 

cingulate cortex and other cortical structures (Cao et al., 2014b) that relate to cognitive 

performance.  Importantly, altered network functional connectivity has also been reported for old 

rats (Ash et al., 2016), indicating that there is a cross-species consensus regarding the 

vulnerability of these networks to advancing age.  

  While altered network connectivity in older adults is thought to reflect neural inefficiency 

or a dedifferentiation process that is associated with cognitive decline (Salami et al., 2014; Sala-

Llonch et al., 2015b; Grady et al., 2016; Nyberg, 2017), it remains unclear how network 

parameters used to quantify the large-scale functional connectome organization relate to age-

associated neurobiological alterations at the cellular level.  Recent behavioral models for 

probing the integrity of inter-regional communication (Hernandez et al., 2015; Hernandez et al., 

2017), along with advances in small animal functional MRI (Ash et al., 2016; Colon-Perez et al., 

2016) offer a unique opportunity to study the brain’s connectome organization using functional 
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connectivity in conjunction with quantification of the neurobiological variables enabling scales 

from large networks to individual neurons to be bridged within the same animals.  Critically, 

altered functional connectivity in rat models is also predictive of cognitive decline in advanced 

age (Ash et al., 2016), indicating that this experimental system can be used to link large-scale 

network decline to specific neurobiological alterations.   

  An additional advantage to working with animal models is the ability to longitudinally 

measure resting state metrics of network architecture as a function of cognitive training in 

populations with highly controlled dietary and behavioral experiences across age groups.  

Previous longitudinal studies have shown that resting state brain networks are stable over time 

(Iordan et al., 2017). Importantly, however, working memory training in young adults can elicit 

plasticity in network architecture (Takeuchi et al., 2017). Little is known, however, regarding the 

ability of cognitive training to alter functional network architecture in aged populations, and if this 

is comparable to what is observed in younger study participants.  

  The current study aimed to examine how cognitive training on a cognitive dual task, 

which required rats to perform a spatial working memory and a biconditional association task 

(WM/BAT) simultaneously, altered resting-state functional connectivity in young and aged rats.  

This behavioral paradigm is known to require interactions between prefrontal, medial temporal 

and subcortical structures (Jo and Lee, 2010; Hernandez et al., 2017), and is vulnerable to 

decline in old age prior to the emergence of deficits on the hippocampus-dependent Morris 

water maze (Hernandez et al., 2015). Rats were scanned at three distinct time points enabling 

the determination of longitudinal changes in brain connectivity prior to and during learning. 

Following the last resting state scan, rats were retrained on a novel WM/BAT problem set to 

allow for the assessment of expression of the activity-dependent immediate-early gene Arc 

(Cole et al., 1989; Guzowski et al., 1999) to relate direct neuronal activity during the task to 

network connectivity patterns obtained from fMRI resting state data.  Thus, the current 

experiments used a multi-scale imaging approach that spanned cells to global networks, 
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integrating connectomics, Arc expression patterns, and behavior to explore the changes in brain 

connectivity in young and old rats during cognitive training.    

 

Results 

Working memory/biconditional association task (WM/BAT) performance. Rats were 

placed on food restriction, and then initially shaped to traverse a digital-8-shaped maze for 

‘Froot Loop’ rewards (The Kellogg Company, Battle Creek, MI, USA). The working 

memory/biconditional association task (WM/BAT; Figure 1a) required animals to alternate 

between making left and right turns on a digital-8-shaped maze.  A choice platform with 2 food 

wells was located on each side of the maze.  When an animal reached the choice platform, after 

correctly alternating, they were presented with two objects (e.g., a dog and an owl figurine) 

placed over each food well.  On the left choice platform, the dog was the rewarded object and 

animals received a foot loop piece for displacing it.  On the right choice platform, the owl was 

the correct object selection.  Thus, animals had to multi-task by acquiring an object-in-place rule 

while simultaneously performing continuous spatial alternations.  Resting state functional MRI 

scans were obtained following food restriction and 1 week of pretraining to run on the maze. 

This baseline scan was acquired within 2 days of the last pre-training session and prior to the 

initiation of WM/BAT training.  A second and third resting scan was obtained after 11 (scan 2) 

and 27 days (scan 3) of training, respectively.  Starting the pretraining maze exposure and food 

restriction prior to imaging ensured that changes in functional connectivity were not induced by 

introducing these behavioral conditioning procedures between imaging sessions.  Following the 

third scan, rats were trained on a new WM/BAT problem set with a unique pair of objects for the 

Arc experiment.   

Figure 1b-d summarizes the mean performances of young (black) and aged (grey) rats 

across testing days for the first (Figure 1b/c) and the second (Figure 1d) WM/BAT problem sets.  

Between the first and second scan, there was not a significant main effect of testing day (F[10,80] 
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= 0.74, p = 0.68), age (F[1,8] = 1.71, p = 0.27), or an age by test day interaction (F[10,80] = 0.45, p 

= 0.92).  In contrast, between the second and third scan, there was a significant main effect of 

testing day (F[13,91] = 3.84, p = 0.019). Orthogonal contrasts comparing each day of testing to 

performance on the day following the second scan (Day 12) indicated that the percentages of 

correct responses were significantly greater by day 17 compared to day 12 (p = 0.038).  There 

was also a trend for an age effect (F[1,8] = 4.30, p = 0.07), but no significant interaction between 

age and test day (F[13,91] = 1.09, p = 0.38).   Another way to evaluate the performances of young 

and aged rats is to compare the total number of incorrect trials during training (Figure 1c).  

Across all days of testing, the aged rats made significantly more errors than the young rats (F[1,8] 

= 10.02, p = 0.013).  Importantly, there was a significant interaction effect between age and 

phase of testing (Days 1-11 versus Days 12-27; F[1,8] = 5.54, p = 0.046).  Specifically, post hoc 

analysis indicated that young and aged rats made a similar number of errors prior to the second 

scan (Days 1-11; T[8] = 0.55, p = 0.60), but aged rats made significantly more errors prior to the 

third scan (Days 12-27; T[8] = 3.50, p = 0.008, corrected α = 0.025).   

After the third scan, rats were retrained on WM/BAT with different objects for 13 days 

before performing the task a final time, followed by immediate sacrifice to label the mRNA 

products of the activity-dependent immediate-early gene Arc (Guzowski et al., 1999).  During re-

training, there was a significant main effect of testing day (F[13,91] = 2.91, p < 0.01), with rats 

showing improvements across days.  There was also a significant interaction effect between 

age and test day (F[13,91] = 2.14, p < 0.02), with aged rats performing similar to young on the first 

two test days, but significantly worse on the final day (F[1,7] = 5.29, p < 0.05).  

Previous studies have reported that before animals learn an object discrimination 

problem, they show a significant response bias by selecting an object over a food well on a 

particular side (left versus right) regardless of object identity (Lee and Byeon, 2014; Hernandez 

et al., 2015; Johnson et al., 2017a).  This innate response bias must be overcome before 

animals will learn the biconditional rule (Lee and Byeon, 2014).  The response bias was 
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calculated for young and aged rats on the days before scans 2 and 3 and on the day of the Arc 

experiment (Figure 1e).  There was not a significant effect of day on the response bias (F[2,14] = 

1.42, p = 0.27), but aged rats had a significantly larger response bias relative to the young 

animals (F[1,7] = 124.19, p = 0.0001), consistent with previous reports (Hernandez et al., 2015; 

Johnson et al., 2017a).  The interaction effect between age and day was not significant (F[2,14] = 

1.32, p = 0.30), indicating that the elevated response bias of the aged rats persisted throughout 

testing.  

Resting state connectivity. Over the past decade, graph theoretical approaches have 

been widely used to quantify functional brain networks (Bullmore and Sporns, 2009, 2012; Ash 

and Rapp, 2014).  This analytical approach models the brain as a complex network composed 

of nodes (i.e., brain regions) and edges (i.e.,functional correlations) connecting the nodes 

(Bullmore and Sporns, 2009).  Figure 2a/b shows the 3D brain networks with functional edges 

with z scores larger than 0.3 in young and aged rats across scanning sessions.  Metrics for 

global network connectivity (e.g., node strength, degree, weighted and binary path lengths and 

clustering coefficients) were not significantly affected by scanning session, age, nor did the 

scanning session by age interaction reach significance (see Table 1 for statistical summary).  

These findings are consistent with previous data that resting state networks are consistent over 

time (Iordan et al., 2017).  

Table 1: Quantification of global inter-node connectivity patterns 

Variable Scanning Session Age Scanning Session x 
Age Interaction 

Node degree F[2,29] = 0.50, p = 0.61 F[1,29] = 2.00, p = 0.17 F[2,29] = 0.50, p = 0.61 

Node strength F[2,29] = 1.06, p = 0.36 F[1,29] = 0.52, p = 0.47 F[2,29] = 0.21, p = 0.81 

Path length F[2,29] = 0.86, p = 0.44 F[1,29] = 0.59, p = 0.45 F[2,29] = 0.10, p = 0.90 

Clustering coefficient F[2,29] = 0.54, p = 0.59 F[1,29] = 0.11, p = 0.73 F[2,29] = 0.41, p = 0.67 

  

The node strength and node degree distributions, however, displayed a local increase of 

nodes with high strengths (s > 15; Figure 2c) and degree (k > 40; Figure 2d) in the aged cohort 
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between the baseline and subsequent scan sessions (blue arrows; Figure 2c/d).  From this 

distribution, we identified the nodes with strength values larger than 15 during the second scan 

session in the aged rats, 16 nodes in total.  Figure 3 shows the connectivity between these 

nodes in young (Figure 3a) and aged (Figure 3b) rats across scanning session, as well as the 

associated brain regions (Figure 3c).  Network parameters for this subnetwork showing 

increased connectivity following cognitive training was compared between young and aged rats 

with a factorial ANOVA with scan session used as a within-subject factor.  There was a 

significant main effect of scan session on the q parameter of modularity (F[2,29] = 4.42, p = 0.02), 

indicating increased modularity after cognitive training.  Modularity did not significantly change 

as a function of age (F[1,29] = 0.01, p = 0.94), nor was the interaction between age and scan 

session significant (F[2,29] = 0.17, p = 0.20).  Similar to modularity, there was a main effect of 

scan session on the clustering coefficient (F[2,29] = 3.39, p = 0.05), but no effect of age (F[1,29] = 

0.05, p = 0.82) or a scan session x age interaction (F[2,29] = 0.39, p = 0.68).  Finally, the node 

strength showed a significant main effect of scanning session (F[2,29] = 3.85, p = 0.04), but not of 

age (F[1,29] = 0.02, p = 0.90) or a scan session x age interaction (F[2,29] = 0.30, p = 0.74).  These 

data indicate that while the global network parameters did not change with scan session, the 

high degree nodes become more modular and nodal interactions are stronger in both the aged 

and young rats.  

Because the anterior cingulate cortex (ACC) was identified as a node with 

higherstrength values in both hemispheres, and there are known age-related physiological 

changes within this region (Insel et al., 2012; Insel and Barnes, 2015), and morphological 

differences in this structure are implicated in successful aging (Rogalski et al., 2012), we used 

the ACC as a seed to quantify functional connectivity between this region and other nodes as a 

function of scan session (Figure 4a). Using this approach, we observed that functional 

connectivity between ACC and dorsal striatum (DS) changed as a function of scan session and 

age (Figure 4b).  Although the main effect of age (F[1,8] = 0.72; p = 0.42) and scan session (F[2,16] 
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= 0.56; p = 0.58) did not reach statistical significance, the interaction between age and scan 

session was significant (F[2,16] = 6.75; p = 0.008).  Post hoc analysis indicated that there were no 

significant age differences between ACC-DS connectivity during the baseline scan (95% 

confidence interval: -0.25 to 0.67, p = 0.57), and scan 2 (95% confidence interval: -0.49 to 0.43, 

p = 0.99), but the aged rats had significantly higher connectivity relative to young during the 

third scan (95% confidence interval: -0.99 to -0.07, p = 0.02). These data are interesting in the 

context of the behavioral results showing that aged rats have a significantly larger response bias 

across training relative to the young (Figure 1e).  It is well established that the DS is involved in 

response-based learning strategies (Packard and McGaugh, 1992; Gold, 2004), and aged rats 

may default to more response-based strategies as spatial learning becomes impaired (Tomas 

Pereira et al., 2015). Thus, the increased ACC-DS connectivity observed here may be a 

network signature of the enhanced response bias seen at the behavioral level.  

  Because of the potential presence of a subnetwork of ‘hub’ nodes driving the highly 

interconnected and modular network patterns in older rats, we next assessed the “rich club” 

index.  The rich club refers to a set of densely and highly inter-connected nodes known as hub 

regions in the brain.  Rich-club organization is an expensive network structure (i.e., extensive 

connectivity and metabolic cost) that allows complex network dynamics to increase brain 

function efficiency (Kaiser and Hilgetag, 2006; van den Heuvel et al., 2012).  The structural rich 

club (brain regions connected by white matter tracts) is described as a connectivity backbone 

allowing an efficient information transfer between distant brain regions (van den Heuvel et al., 

2012).  In the context of functional networks (brain regions connected by correlations derived 

from fMRI), the rich club describes an increase in participation and activation of certain active 

nodes into members of a functional rich club of otherwise structurally weakly connected nodes 

(Liang et al., 2018).  Thus, rich club indices were calculated for young and aged rats as a 

function of scanning session.  Figure 5 shows the rich club organization in young and aged rats 

at baseline (Figure 5a) and after cognitive training as a function of scan session (Figures 5 b/c). 
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Similar to previous reports from human study participants (Cao et al., 2014a), the functional rich 

club architecture at the baseline scan was significantly reduced in aged rats relative to young for 

rich club indices (k-level) > 27 (p < 0.05).  The young rats had stable functional rich club 

architecture across all scans (Figure 5b), which has previously been reported (Liang et al., 

2018). Interestingly, in the aged rats there was a significant increase in rich club participation 

after the baseline scan (Figure 5c). Starting after the first training period (11 days), rich club for 

indices larger than 20 displayed a significant main effect of scanning session (F[2,29]  > 3.4, p < 

0.05), but not of age (F[1,29] < 0.55, p > 0.5). The interaction term of the rich club displayed an 

interaction term for large k levels (k > 28) (F[2,29] > 3.80, p < 0.05). As evident in Figures 5b/c, the 

significant interaction between scan session and rich club participation was due to the aged rats 

having greater rich club indices after cognitive training, while the young rats did not show a 

change. These changes were specific to rich club participation since no global changes in 

topological indices of small-worldness, and modularity indices were observed (see supplemental 

data).   

Behaviorally-induced expression of the immediate-early gene Arc.  The resting state 

data identified age-related differences in global connectivity patterns as a function of cognitive 

training. These data, however, cannot provide information regarding cellular activity patterns 

during behavior. Thus, to examine potential age-related differences in neuron activity during 

WM/BAT performance, we trained young and aged rats on a new problem set for 13 days. On 

the 14th day of testing, rats performed either the WM/BAT or a control spatial alternation task in 

which a food reward was randomly placed in a food well on the choice platform. The reward was 

not covered and rats did not have to perform an object discrimination in this control task. After 

this first epoch of behavior, rats were placed in their home cages for a 20-min rest. Following 

the rest, rats performed a second epoch of behavior for 5 min. All rats performed one epoch of 

WM/BAT and one epoch of spatial alternation in counterbalanced order. The performances of 

young and aged rats on WM/BAT is shown in Figures 1d/e. No rats made errors on the control 
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alternation task.  

Immediately, after the second epoch, rats were heavily sedated in an anesthesia 

chamber with concentrated isoflurane and decapitated.  Brains were rapidly extracted, and 

tissue was processed to label the mRNA products of the immediate-early gene Arc for cellular 

compartment analysis of temporal activity with fluorescence in situ hybridization (catFISH). The 

subcellular localization of Arc mRNA can be used to determine which neuronal ensembles 

across the brain were active during 2 distinct episodes of behavior. Arc is first transcribed within 

the nucleus of neurons 1-2 minutes after cell firing.  Importantly, Arc mRNA translocate to the 

cytoplasm approximately 15-20 minutes after cell firing, which allows for cellular activity during 2 

epochs of behavior, separated by a 20-min rest to be represented within a single neural 

population (Guzowski et al., 1999). 

 Due to the elevated response bias of aged rats (Figure 1e), and the observation that the 

old animals showed an increase in ACC-DS connectivity as a function of cognitive training, we 

focused our Arc catFISH analysis on the ACC and DS. On the day of the catFISH experiment, 

repeated-measures ANOVA with the within subject factor of task and the between subjects 

factor of age group did not show a significant difference in the number of WM/BAT and spatial 

alternation trials completed (F[1,7] = 2.31, p = 0.11). Moreover, the main effect of age did not 

reach statistical significance (F[1,7] = 3.31, p = 0.11), nor was the interaction between age and 

task significant (F[1,7] = 0.61, p = 0.46). Thus, any differences in neuron activation could not be 

explained by animals performing a different number of trials.   

Figure 6a shows the region of ACC that was imaged and representative examples of Arc 

labeling in a young and an aged rat. The percentage of ACC neurons activation during the 

WM/BAT and spatial alternation task are shown for young and aged rats in Figure 6b.  

Repeated-measures ANOVA with the within subject factor of task and the between subjects 

factors of age group, hemisphere and cortical layer did not detect a significant difference in the 

proportion of cells activated during WM/BAT versus spatial alternation (F[1,28] = 1.53, p = 0.23). 
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Additionally, none of the other between subjects factors reached statistical significance (F[2,28] < 

3.01, p > 0.09, for all comparisons), nor were any of the interaction terms significant (F[1,28] < 

2.99, p > 0.1, for all comparisons).  

Figure 6c shows the areas of the DS that images were collected from, as well as 

representative examples of Arc labeling in young and aged rats.  Samples were taken from both 

the medial and lateral DS.  Figure 5d shows the percentages of neurons that were positive for 

Arc during the different tasks in young and aged rats.  Repeated-measures ANOVA with the 

within subject factor of task and the between subjects factors of age group, hemisphere and 

subregion (medial versus lateral DS) indicated that there was not a significant main effect of 

task on the percentage of cells positive for Arc (F[1,28] = 1.24, p = 0.28). The aged rats, however, 

had significantly more cells that were positive for Arc compared to the young animals (F[1,28] = 

5.58, p < 0.03).  This age difference was observed in both the medial and lateral DS, as 

indicated by lack of a main effect of subregion (F[1,28] = 0.85, p = 0.37).  The interaction effect 

between age and task was also significant (F[1,28] = 13.64, p < 0.001), such that aged rats had 

more cells than young rats that transcribed Arc during WM/BAT (p < 0.001), but this same 

difference was not observed during the alternation task (p = 0.43). These data indicate that the 

enhanced DS activation in aged rats was specific to the behavioral in task in which the old 

animals demonstrated a deleterious response bias associated with worse performance. No 

other interaction effects reached statistical significance (F[1,28] < 1.81, p > 0.18, for all 

comparisons).  

 To examine the extent that the active neuronal ensemble changed between the different 

tasks, a similarity score was calculated.  As population overlap can be affected by differences in 

overall activity levels, similarity scores can be calculated to control for differences in activity 

between regions (Vazdarjanova and Guzowski, 2004).  The similarity scores were compared 

between the ACC and DS (within subjects factor of region), and the between subjects variables 

of age and hemisphere.  `Since layer, subregion and hemisphere did not have a significant 
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effect activation within the ACC and DS, these factors were left out of the similarity score 

analysis. Figure 7 shows the average similarity scores for young and aged rats.  The main effect 

of region was not significant (F[1,34] = 0.01, p = 0.92), indicating that the ACC and DS updated 

activity patterns similarly in response to performing a different task within the same 

environment. Interestingly, there was a significant main effect of age on similarity score (F[1,34] = 

6.70, p < 0.02), but the interaction effect between region and age did not reach statistical 

significance (F[1,34] = 0.11, p = 0.74).  Together these data indicate that the aged rats had less 

population overlap across tasks compared to the young rats in both the ACC and DS.  The 

reduced overlap in aged rats would reflect the difference between using a response-based 

strategy during WM/BAT that was not utilized during the spatial alternation task.   

 

Discussion 

The current study used a multi-scale imaging approach, integrating resting state fMRI 

data with single-cell imaging of neuron activity, to determine the global network changes and 

cellular activity patterns in young and aged rats in relation to cognitive training.  Critically, the 

resting state data were acquired longitudinally as a function of training on a working memory/bi-

conditional association task (WM/BAT).  Similar to a previous report, the aged rats were 

impaired on the WM/BAT relative to the young animals (Hernandez et al., 2015).  Additionally, 

the aged rats showed an aberrant response bias during testing such that they often selected an 

object on one side of the choice platform, regardless of their location on the maze (left versus 

right platform), or the object identity (Figure 1e).  This response bias in aged rats has been 

reported in other behavioral experiments (Hernandez et al., 2015; Johnson et al., 2017b).  

Importantly, the ability to inhibit this response-driven strategy is dependent on the medial 

prefrontal cortex and is associated with performance improvements (Lee and Byeon, 2014).  

 Several novel findings were found in this study.  First, aged rats displayed an increase 

in brain connectivity among high degree nodes between the first baseline scan session and the 
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subsequent sessions after training.  This increase in connectivity among the high degree nodes, 

occurred independent of any significant increases in cognitive performance (Figures 2 and 3).  

The increase in connectivity was evident in the anterior cingulate cortex (ACC) in both 

hemispheres, which is a brain region vulnerable in old age (Vaidya et al., 2007; Insel et al., 

2012).  Moreover, anatomical variations in ACC morphology have been implicated in successful 

aging (Gefen et al., 2015).  Interestingly, increased connectivity with the ACC node was largely 

associated with enhanced functional connectivity between the ACC and DS in aged rats.  ACC-

DS functional connectivity increased as a function of cognitive training in the aged rats, while 

the young animals showed declining ACC-DS functional connectivity following the baseline 

scan.  In fact, declining ACC-DS connectivity was associated with improved behavioral 

performance, and the ability of young rats to suppress a response bias and correctly perform 

the WM/BAT.  The ACC directly projects to the DS (Gabbott et al., 2005; Fillinger et al., 2018), 

and both structures are also indirectly connected through the central medial nucleus of the 

thalamus (Vertes et al., 2012).  Given the prominent role of cholinergic and monoaminergic 

inputs in both regions, these data suggest that there is a dissociation between the impact of 

ACC activity on target neurons in the DS with age that could arise from alterations in cholinergic 

(Nieves-Martinez et al., 2012) and dopaminergic (Stark and Pakkenberg, 2004; Darbin, 2012) 

neuromodulation of the frontostriatal network.  In young animals, ACC activation may serve to 

suppress response-based behavioral strategies leading to reduced resting state functional 

connectivity.  In aged rats, when ACC-DS connectivity increases with training, there is no 

suppression of response-based strategies and behavioral performance on the WM/BAT does 

not improve.  This idea is consistent with multiple lines of evidence.  First, it is widely reported 

that aged animals with hippocampal-dependent spatial memory impairments tend to over utilize 

response-based strategies (Barnes et al., 1980; Tomas Pereira et al., 2015), that are supported 

by the DS (Packard and McGaugh, 1992; Graybiel, 1998; Pych et al., 2005).  Second, 

successful performance on the WM/BAT requires animals to flexibly update their behavior 
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based on their position in the maze.  Set-shifting is compromised in aged rats (Barense et al., 

2002; Beas et al., 2013; Beas et al., 2016), and this deficit has been linked to age-associated 

neurobiological alterations in the ACC and DS (Nicolle and Baxter, 2003; Nieves-Martinez et al., 

2012).  Finally, it is striking that the aged rats with less flexible and more response-driven 

behavior had high cellular Arc activity levels in the DS during performance of the WM/BAT, but 

not during the control spatial alternation task.  It is known that neurons in DS that express Arc 

are GABAergic principal cells that are also positive for CaMKII (Vazdarjanova et al., 2006).  A 

previous study showed that during spatial exploration, which does not evoke response-driven 

repetitive behavior, induces ~5% of DS neurons to express Arc in young rats (Vazdarjanova et 

al., 2006).  The current study adds to our understanding of Arc in DS by showing that when 

animals employ response-driven behaviors, as the aged rats did during WM/BAT performance, 

there is an increased engagement of DS neurons.  Taken together these multi-scale imaging 

data therefore suggest that engagement of the ACC during cognitive training in aged rats drives 

the DS to be overactive. This aberrant activity, in turn contributes to perseverative behavior and 

response biases that impede the ability to learn to successfully perform the WM/BAT.  

An additional novel finding from the current data is the observation that rich club 

participation interacted with age and cognitive training.  Baseline rich club participation was 

lower in aged compared to young rats (Figure 5a).  This observation is consistent with data from 

human study participants that have reported less functional rich club participation in older 

compared to younger adults (Cao et al., 2014a).  As in previous studies (Liang et al., 2018), the 

young rats did not show a change in rich club participation across cognitive training (Figure 5b).  

In contrast, the aged rats had a large increase in rich club participation between baseline and 

the second scan.  This increase persisted in the third scan even though the aged rats displayed 

little to no improvements across the 27 days of cognitive testing (Figure 1c).  These data are 

consistent with reports of network connectivity measures in humans.  A previous longitudinal 

study showed that older adults had less network stability over time compared to young study 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/434191doi: bioRxiv preprint 

https://doi.org/10.1101/434191
http://creativecommons.org/licenses/by/4.0/


participants (Iordan et al., 2017).  It is hypothesized that rich club organization and the strength 

and proportion of long-distance connections plays a central role in optimizing global brain 

communication efficiency for normal cognition (Bullmore and Sporns, 2009, 2012; van den 

Heuvel et al., 2012).  Presumably, at the foundation of the functional rich club are hub neurons 

that have long-rage projections.  Interestingly, recent data have suggested that these neurons 

may be particularly vulnerable in advanced age with subsets of them being overrecruited during 

behavior in aged rats (Hernandez et al., 2018b).  This over recruitment in aged animals during 

behavior could manifest as enhanced resting state rich club participation that ultimately reflect 

less adaptive networks and a reduced ability to recruit additional resources during behavior.  

The notion that aged animals and older adults are less able to recruit additional 

resources as cognitive load increases has been formalized by the Compensation-Related 

Utilization of Neural Circuits hypothesis (CRUNCH). CRUNCH postulates that more neural 

resources are recruited by older adults during tasks with minimal cognitive load.  This increased 

activation, could serve to compensate for a network that is compromised.  As tasks become 

more difficult, the limits of network capacity may be reached in older adults and these 

compensatory mechanisms are no longer effective, leading to equivalent or less activation in 

older adults relative to young (Reuter-Lorenz and Cappell, 2008; Grady, 2012).  The current 

data are consistent with CRUNCH, as the older rats showed a quick increase in rich club 

participation even when they were unable to correctly multi-task, suggesting that network limits 

in older rats are reached faster.  In fact, these data along with a recent cellular imaging study 

showing elevated Arc expression in the medial prefrontal cortices of aged rats at rest 

(Hernandez et al., 2018b) indicate that baseline brain connectivity of older animals may be close 

to maximum capacity even at rest.  If the capacity of a network to respond to increasing 

cognitive load is constrained by increased rich club participation, then aged rats may be less 

able to recruit additional resources while performing a difficult cognitive multi-task.  Ultimately, 

this elevated rich club participation in old animals could contribute to the reduced dynamic range 
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of neural activity that has been reported for older adults (Kennedy et al., 2017). 

An important impact of higher rich club participation in aged rats could be to tax brain 

energy reserves that may already compromised in advanced age (Yoshizawa et al., 2014; 

Goyal et al., 2017; Hernandez et al., 2018a).  Densely connected, long distance projections are 

metabolically costly (Bullmore and Sporns, 2012).  The higher costs associated with functional 

connections across multiple hubs makes them particularly vulnerable to metabolic deficiencies 

and cellular dysfunction contributing to instability in older animals.  Thus, an enticing hypothesis 

is that improving the metabolic capacity of older animals could restore the dynamic range and 

functional rich club architecture.  In the future, large-scale assessment of network connectivity in 

conjunction with single neuron activity dynamics and metabolic function could elucidate 

productive therapeutic avenues for treating cognitive aging.  

 

Materials and Methods 

Subjects and behavioral testing. A total of 6 young (4 months old) and 6 aged (24 

months old) male Fischer 344 x Brown Norway F1 (FBN) hybrid rats from the National Institute 

on Aging colony at Taconic Farms were used in this study. Notably, the lifespan of the FBN is 

greater than inbred Fisher 344 rats (Turturro et al., 1999), and many of the physical issues 

experienced by Fischer 344 rats are not evident in the FBN rats until they are older than 28 

months (McQuail and Nicolle, 2015). Therefore, changes in performance are likely due to 

cognitive decline and not age-related physical impairment.  Five rats in each age group were 

trained and scanned for the network analysis.  One aged rat reached a humane endpoint prior 

to the Arc catFISH experiment and was therefore not included in this study, but this animal’s 

data were included in the resting state analysis. An additional young (n = 1) and aged (n = 1) rat 

were sacrificed directly from the home cages as a negative control to ensure that nothing 

unexpected occurred in the colony room on the day of the experiment to increase Arc 

expression. Expression levels in these rats was low (<5%; data not shown). Each rat was 
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housed individually in a temperature and humidity-controlled vivarium and maintained on a 

reverse 12-hour light/dark cycle.  All behavioral testing was performed in the dark phase.  

All rats were allowed 1 week to acclimate to the housing facility prior to food restriction 

and initial behavioral shaping.  One week after arrival, all rats were placed on restricted feeding 

in which 20.5 g (1.9 kcal/g) of moist chow was provided daily, and drinking water was provided 

ad libitum. Shaping began once rats reached approximately 85% of their baseline weights. 

Baseline weight was considered the weight at which an animal had an optimal body condition 

score of 3. Throughout the period of restricted feeding, rats were weighed daily, and body 

condition was assessed and recorded weekly to ensure a range of 2.5-3. The body condition 

score was assigned based on the presence of palpable fat deposits over the lumbar vertebrae 

and pelvic bones. Rats with a score under 2.5 were given additional food to promote weight 

gain. All procedures were in accordance with the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals and approved by the Institutional Animal Care and Use 

Committee at the University of Florida. 

Once rats reached their 85% of baseline weight, after ~1 week of restriction, they began 

shaping on the digital-8-shaped maze. Rats were first habituated to the testing apparatus for 10 

minutes a day for 2 consecutive days, with Froot Loop pieces (Kellogg’s Company, Battle 

Creek, MI) scattered throughout the maze to encourage exploration.  Following habituation, 

once rats were comfortable on the testing apparatus, they were trained to alternate between the 

left and right turns for 32 trials per day or 30 min. This proceeded for 1 week, then rats 

underwent the first baseline fMRI scan.  

After the baseline scan, rats began testing on the working memory/bi-conditional 

association task of cognitive multi-tasking (WM/ABT; Figure 1a).  During this task, rats perform 

continuous spatial alternations.  Before returning to the center section of the maze, however, 

rats are ‘interrupted’ with an object discrimination problem on the choice platform in which a 

target object can be displaced and the animal received a Froot Loop piece.  While the same 
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object pair is presented in both the left and right choice platforms, different objects are rewarded 

on platform.  Thus, animals must integrate information about where in the maze they are with 

the object information to form the correct bi-conditional association between an object and a 

place.  On the first day of testing, objects were only partially covering the food reward for the 

first four trails per object (8 trials total) to encourage learning. Rats could begin with a trial 

turning in either the left or right direction, but on all subsequent trials, rats had to alternate 

turning directions. Should a rat mistakenly make a wrong turn, the trial was recorded as a 

working memory error and rats were not presented with the object discrimination problem. Rats 

were tested on this paradigm for eleven consecutive days and then given 2 days off during 

which the second scanning session occurred.  After the scans were completed, rats testing for 

another 14 days and were scanned for a third and final time.  After the last scan, rats were 

retrained on the WM/BAT with a new set of objects for the Arc catFISH experiment.  

Functional magnetic resonance imaging.  Rats were imaged under isoflurane (1.5%) sedation 

(delivered in 70%N2/30%O2 at 0.1L/min).  Inhalation anesthetics (e.g., isoflurane) are preferred 

for longitudinal fMRI experiments over intravenous injectable anesthetics due to better control 

over blood levels of the sedative, fast recovery and lower mortality rates in rats. Important to the 

present study, several studies have confirmed BOLD activation patterns at low levels of 

anesthesia in rats (Masamoto et al., 2007; Kannurpatti et al., 2008; Kim et al., 2010; Williams et 

al., 2010).  Isoflurane induces dose-dependent vasodilation; thus, functional experiments must 

be ideally performed under doses lower than 2% (i.e., a fixed concentration between 1 and 

1.5%) as was done in the current study (fixed at 1.5%). Even in human neuroimaging studies, 

general anesthesia (sevoflurane) did not prevent the measurement of BOLD activity and general 

connectivity (Riehl et al., 2018). Spontaneous breathing was monitored during MRI acquisition 

(SA Instruments, Stony Brook, NY).  Body temperature was maintained at 37-38°C using a 

warm water recirculation system.  A resting state fMRI dataset was collected in an 11.1 Tesla 

Bruker system (Magnex Scientific).  The system is a Bruker AV3 HD console/Paravision 6.01 
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with a volume transmit (85mm inner diameter quadrature coil), and a 4-channel phase-array 

receive coil (Rapid Rat Phase Array).  All ten rats were scanned over the span of two months in 

three scanning sessions: before cognitive training (first session; nyoung = 5, nold = 5), following 11 

days of training (second session), and after an additional two weeks of training (third session).  

A 1-shot spin echo EPI sequence was acquired with acquisition parameters: TR/TE = 2000/15 

ms, and 300 repetitions for a total acquisition time of 10 mins (an image was acquired every 2s), 

FOV = 25.6 x 25.6 mm2, 20 slices 1.0mm thick, and data matrix = 64 x 64.  Anatomical scans for 

image overlay and reference-to-atlas registration were collected using a fast spin echo 

sequence, with the following parameters: TR/TEeff = 4500/48 ms, RARE factor = 16, and 

number of averages = 6, FOV = 25.6 x 25.6 mm2, 20 slices 1.0mm thick, and data matrix = 256 

x 256. 

Image processing.  Brain masks were drawn manually over high-resolution anatomical 

scans using segmentation tools in itkSNAP (www.itksnap.org).  The masks were used to crop 

images and remove non-brain voxels.  The cropped brain images were aligned with a rat brain 

template using the FMRIB Software Library linear registration program flirt (Jenkinson et al., 

2002), using previously published parameters (Colon-Perez et al., 2016).  Registration matrices 

were saved and used to subsequently transform functional datasets into atlas space for 

preprocessing and analysis.  Slight displacements in individual images over the series of 300 

images and slice timing delays were corrected, and time series spikes were removed using 

Analysis of Functional NeuroImages (AFNI)(Cox, 1996).  Linear and quadratic detrending, 

spatial blurring, and intensity normalization were also performed.  Six head motion parameters 

and cerebroventricular and white matter signals were removed from all datasets.  A voxelwise 

temporal band-pass filter (between 0.01 Hz and 0.1 Hz) was applied to remove brain signals 

that contain cardiac and respiratory frequencies. 

  Time series fMRI signals were extracted from each region of interest (ROI) based on the 

atlas-guided seed location (150 total areas, equally divided in left and right representations of 
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each region).  Signals were averaged from voxels in each ROI (Colon-Perez et al., 2016).  

Voxel-wise cross-correlations were carried out to create correlation coefficient (Pearson r) 

maps.  The first 9 images in each functional time series were not used in the cross-correlation 

step.  Pearson r maps were subjected to a voxelwise z-transformation.  The two correlation 

maps were averaged per subject to generate a single correlation map subsequently used for 

statistical mapping.  AFNI’s 3dClustSim program was used to determine the adequate cluster 

size for a given uncorrected p-value.  The resultant voxel cluster size at p ≤ 0.05 was used to 

control the level of false positive rates in the final composite statistical maps.  

  Network analysis.  Brain connectivity networks were analyzed using the Brain 

Connectivity Toolbox for Matlab (Rubinov and Sporns, 2010) and as previously reported (Colon-

Perez et al., 2018; Orsini et al., 2018). Symmetrical connectivity graphs with a total 11,175 

matrix entries were first organized in Matlab [graph size = n(n-1)/2, where n is the number of 

nodes represented in the graph or 150 ROI].  The z score values of the graphs were 

thresholded for each subject to create matrices with equal densities (e.g., z values in the top 

15% of all possible correlation coefficients).  Matrix z values were normalized by the highest z-

score, such that all matrices had edge weight values ranging from 0 to 1.  Node strength (sum 

of edge weights), clustering coefficient (the degree to which nodes cluster together in groups), 

average shortest path length (the potential for communication between pairs of structures), and 

small-worldness (the degree to which rat functional brain networks under study deviate from 

randomly connected networks) were calculated for these weighted graphs (Newman, 2003; 

Boccaletti et al., 2006; Saramaki et al., 2007).  Brain networks were visualized using BrainNet 

(Xia et al., 2013).  The 3D networks were generated with undirected edges weights Eundir ≥ 0.3.  

In these brain networks (or rat brain connectomes), the node size and color is scaled by the 

node strength and edges are scaled by z-scores.  

 Tissue collection and Arc catFISH.  After behavioral testing, rats were sacrificed, and 

tissue was collected to evaluate immediate-early gene activity during the WM/BAT and 
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alternation tasks.  Rats were placed into a bell jar containing isoflurane-saturated cotton (Abbott 

Laboratories, Chicago, IL, USA), separated from the animal by a wire mesh shield.  Animals 

lost righting reflex within 30 seconds of being placed within the jar and immediately euthanized 

by rapid decapitation.  Tissue was extracted and flash frozen in 2-methyl butane (Acros 

Organics, NJ, USA) chilled in a bath of dry ice with 100% ethanol (~-70ºC).  One additional rat 

in each age group were sacrificed directly from the home cage as a negative control during the 

experiment to ensure that disruptions within the colony room do not lead to robust 

nonexperimental behaviorally induced Arc expression.  Tissue was stored at -80ºC until 

cryosectioning and processing for fluorescence in situ hybridization. 

Tissue was sliced at 20-µm thickness on a cryostat (Microm HM550) and thaw-mounted 

on Superfrost Plus slides (Fisher Scientific).  Fluorescence in situ hybridization (FISH) for the 

immediate-early gene Arc was performed as previously described (Guzowski et al., 1999).  

Briefly, a commercial transcription kit and RNA labeling mix (Ambion REF #: 11277073910, Lot 

#: 10030660; Austin, TX) were used to generate a digoxigenin-labeled riboprobe using a 

plasmid template containing a 3.0 kb Arc cDNA (Steward et al., 1998). Tissue was incubated 

with the probe overnight, and Arc-positive cells were detected with antiedigoxigenin-HRP 

conjugate (Roche Applied Science Ref #: 11207733910, Lot #: 10520200; Penzberg, Germany).  

Cy3 (Cy3 Direct FISH; PerkinElmer Life Sciences, Waltham, MA) was used to visualize labeled 

cells, and nuclei were counterstained with DAPI (Thermo Scientific).   

Z-stack images were collected by fluorescence microscopy (Keyence; Osaka, Osaka 

Prefecture, Japan) in increments of 1 µm.  Four images (2 from superficial layers and 2 from 

deep layers; Figure 6a) were taken from the ACC of both the left and right hemispheres from 3 

different tissue sections for a total of 24 images for each rat.  Six images (3 from medial and 3 

from lateral) were taken from both hemispheres of the DS for a total of 36 images per rat.  The 

percentage and subcellular location of Arc-positive cells was determined by experimenters blind 

to age and order of behavioral tasks using ImageJ software with a custom written plugin for 
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identifying and classifying cells.  Nuclei that were not cutoff by the edges of the tissue and only 

those cells that were visible within the median 20% of the optical planes were included for 

counting.  All nuclei were identified with the Arc channel off, as to not bias the counter. When 

the total number of cells in the z-stack were identified, the Arc channel was turned on to classify 

cells as positive for nuclear Arc, cytoplasmic Arc, both nuclear and cytoplasmic Arc, or negative 

for Arc.  A cell was counted as Arc nuclear positive if 1 or 2 fluorescently labeled foci could be 

detected above threshold anywhere within the nucleus on at least 4 consecutive planes.  A cell 

was counted as Arc cytoplasmic positive if fluorescent labeling could be detected above 

background surrounding at least 1/3 of the nucleus on 2 adjacent planes.  Cells meeting both of 

these criteria were counted as Arc nuclear and cytoplasmic positive.  

Neural activation during the WM/BAT and spatial alternation tasks was examined using 

the percentage of cells positive for cytoplasmic and/or nuclear Arc expression.  A mean 

percentage of cells was calculated for each rat for each brain region and condition, so that 

all statistics were based on the number of animals for sample size, rather than images or cells. 

This avoids the caveat of inflating statistical power and having different dependent variables 

correlate with each other, which can be the case in nested experimental designs (Aarts et al., 

2014).  Critically, the order of behavior was counterbalanced across rats, with equal numbers in 

both age groups, such that cytoplasmic staining corresponded to OPPA task behavior and 

nuclear staining corresponded with alternation behavior for half of the rats and vice versa for the 

others. Thus, all plots showing mean percentage of Arc-positive cells are in reference to the 

task and not the epoch.  Notably, as in previous studies with similar behaviors (Hernandez et 

al., 2018b), task order did not have a significant impact on neuron activity levels.   

Potential effects of age and brain region on the percentage of cells expressing Arc 

during the different behaviors (WM/BAT versus spatial alternation) were examined with factorial 

ANOVAs.  All analyses were performed using Statistical Package for the Social Sciences 

(SPSS), v.25, software. Statistical significance was considered at p values less than 0.05.   

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/434191doi: bioRxiv preprint 

https://doi.org/10.1101/434191
http://creativecommons.org/licenses/by/4.0/


Figure Legends 

Figure 1: Working memory/biconditional association task (WM/BAT) performance. 
(a) Schematic of the WM/BAT. Rats traversed a figure-8-shaped maze alternating 
between left and right turns. After turning, before returning to the central stem, rats 
solved an object discrimination problem in which the correct choice (green check) was 
contingent on side of the maze. On the left, the owl is rewarded and on the right the dog 
is rewarded. (b) Performance on WM/BAT over days of testing task in young (black) 
and aged (grey) rats between resting state scans. (c) The total number of incorrect trials 
made between scans 1 and 2 (Days 1-11) and scans 2 and 3 (Days 12-27). Aged rats 
made significantly more errors across testing days 12-27. (d) After the third scan, rats 
were re-trained on WM/BAT with different objects for 13 days before performing the task 
a final time, followed by immediate sacrifice to label the mRNA products of the activity-
dependent immediate-early gene Arc. (e) The response bias of young and aged rats on 
the days prior to scans 2 and 3 and on the day of the Arc experiment. Aged rats had a 
significantly greater response bias compared to young rats across all time points. Error 
bars are ± 1 SEM, *p < 0.05.  
 
Figure 2: Connectivity patterns by scanning session and age group.  Connected 
modules with edges z > 0.3 for young (a) and aged (b) rats across scan sessions. 
Connectivity indices indicate larger network engagement between baseline and the 
second and third scanning sessions in aged (blue arrow), but not young rats. This is 
indicated by more nodes with node strength > 15 (c) and degree > 40 (d).  
 
Figure 3: Nodes with increased strength. 16 nodes with strength > 15 during scan 2 
in aged rats were identified from the distribution shown in Figure 1. Connectivity 
patterns of these nodes for the young (a) and aged (b) groups. The table in (c) lists the 
regions by hemisphere that correspond to these nodes.  
 
Figure 4: Seed analysis of ACC connectivity. (a) Connectivity with ACC in young 
(left) and aged (right) rats as a function of scan session. (b) Connectivity between the 
ACC and DS as a function of scan session in young (black) and aged (grey) rats. The 
main effect of age (F[1,8] = 0.72; p = 0.42) and scan session (F[2,16] = 0.56; p = 0.58) did 
not reach statistical significance.  The interaction effect between age and scan session 
was significant, however (F[2,16] = 6.75; p = 0.008).  Post hoc analysis indicated that 
there were no significant age differences between ACC-DS connectivity during the 
baseline scan (p = 0.57), and scan 2 (p = 0.99), but the aged rats had significantly 
higher connectivity relative to young during the third scan (p = 0.02). 
 
Figure 5. Rich club organization increases with cognitive training in aged rats. (a) 
Top figure, rich club participation index between young and aged rats, at the baseline 
scan (shaded area K > 27 and p < 0.05), bottom figure shows the overall difference 
increase for between aged and young rats. (b) Top figure, young rats rich club 
participation index, and bottom is the difference between scanning sessions. No 
changes in any of the sessions or any K-level was observed. (c) Top figure, aged rats 
rich club participation in aged group increase following cognitive training for large K-
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levels (shaded area K > 21 and p < 0.05), bottom figure shows the overall difference 
increase for both sessions.  
 
Figure 6: Neuronal activation during WM/BAT and spatial alternation in young and 
aged rats. (a) A DAPI stained section showing regions that were sampled (white 
squares) within the anterior cingulate cortex (ACC). Bottom panels show representative 
Arc labeling in a young (left) and an aged  B. Representative images labeled for Arc 
mRNA (red) and DAPI (cell bodies; blue) from a young (top) and an aged (bottom) rat. 
C. Percentage of Arc positive cells corresponding to transcription during the bi-
conditional association task, or the alternation task in young (black) and ages (grey) 
rats. There was not a significant main effect of task (F[1,28] = 1.53, p = 0.22), or age 
(F[1,28] = 0.68, p = 0.42) on the percentage of cells positive for Arc. Moreover, none of 
the interaction effects reached statistical significance (p > 0.1 for all comparisons).  
 
Figure 7: Population overlap in ACC and DS. The average similarity score for young 
(black) and aged (grey) rats in the ACC and the DS. The main effect of region was not 
significant (F[1,34] = 0.01, p = 0.92). There was a significant main effect of age on 
similarity score (F[1,34] = 6.70, p < 0.02), but the interaction effect between region and 
age did not reach statistical significance (F[1,34] = 0.11, p = 0.74).   
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