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Abstract  

 

Both phase-amplitude coupling (PAC) and beta-bursts in the subthalamic nucleus have been 

significantly linked to symptom severity in Parkinson’s disease (PD) in humans and emerged 

independently as competing biomarkers for closed-loop deep brain stimulation (DBS). 

However, the underlying nature of subthalamic PAC is poorly understood and its relationship 

with transient beta burst-events has not been investigated. To address this, we studied macro- 

and micro electrode recordings of local field potentials (LFPs) and single unit activity from 15 

hemispheres in 10 PD patients undergoing DBS surgery. PAC between beta phase and high 

frequency oscillation (HFO) amplitude was compared to single unit firing rates, spike triggered 

averages, power spectral densities and phase-spike locking, and was studied in periods of beta-

bursting. We found a significant synchronisation of spiking to HFOs and correlation of mean 

firing rates with HFO-amplitude when the latter was coupled to beta phase (i.e. in the presence 

of PAC). In the presence of PAC, single unit power spectra displayed peaks in the beta and 

HFO frequency range and the HFO frequency was correlated with that in the LFP. Finally, 

PAC significantly increased with beta burst-duration. Our findings offer new insight in the 

pathology of Parkinson’s disease by providing evidence that subthalamic PAC reflects the 

locking of spiking activity to network beta oscillations and that this coupling progressively 

increases with beta-burst duration. These findings suggest that beta-bursts capture periods of 

increased subthalamic input/output synchronisation in the beta frequency range and have 

important implications for therapeutic closed-loop DBS. 

 

Significance statement 

Identifying biomarkers for closed-loop deep brain stimulation (DBS) has become an 

increasingly important issue in Parkinson’s Disease (PD) research. Two such biomarkers, 

phase –amplitude coupling (PAC) and beta-bursts, recorded from the implanted electrodes in 

subthalamic nucleus in PD patients, correlate with motor impairment. However, the 

physiological basis of PAC, and it relationship to beta bursts, is unclear. We provide multiple 

lines of evidence that PAC in the human STN reflects the locking of spiking activity to network 

beta oscillations and that this coupling progressively increases with the duration of beta-bursts. 

This suggests that beta-bursts capture increased subthalamic input/output synchronisation and 

provides new insights in PD pathology with direct implications for closed-loop DBS therapy 

strategies.  
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Introduction 

 

Deep brain stimulation (DBS) is a well-established treatment of severe Parkinson’s disease 

(PD). In recent years several putative biomarkers have emerged for closed-loop applications 

and new experimental interventions that might further improve DBS efficacy. Beta (13-35 Hz) 

power in local field potential (LFP) recordings from the subthalamic nucleus (STN) of PD 

patients correlates with akinetic/rigid motor impairment and is attenuated by DBS and 

levodopa medication (Kühn et al., 2006, 2008, 2009; Ray et al., 2008; Steiner et al., 2017). 

Changes in power of high frequency oscillations (HFOs, 100-300 Hz) have been observed 

between on and off dopaminergic treatment (Lopez-Azcarate et al., 2010) and during 

movement initiation and planning (Combrisson et al., 2017). Additionally, neuronal firing 

patterns in the STN have been linked to symptom severity in PD with intra-burst rates and beta-

oscillating unit activity positively relating to bradykinesia, rigidity and axial scores (Sharott et 

al., 2014).  

 

Phase-amplitude coupling (PAC), where the phase of a low frequency is coupled to the 

amplitude of  higher frequency oscillation, is believed to serve a role in a variety of 

physiological brain functions (Cohen et al., 2009; Colgin et al., 2009; Tort et al., 2009; 

Carracedo et al., 2013; Richardson et al., 2017). In PD, however, beta-HFO PAC in the STN 

(Lopez-Azcarate et al., 2010; van Wijk et al., 2016) and beta-gamma PAC in motor cortex 

(Shimamoto et al., 2013; de Hemptinne et al., 2015) have been shown to correlate with motor 

symptom severity in patients and to develop in non-human primates in the STN after dopamine 

depletion (Escobar et al., 2017). PAC in the STN is attenuated by dopamine replacement 

(Lopez-Azcarate et al., 2010; van Wijk et al., 2016), and PAC in the motor cortex is reduced 

by STN DBS (de Hemptinne et al., 2015), providing further evidence for PAC as a biomarker 

of PD. Whether these correlations reflect a mechanistic relationship with PD symptoms, and 

how PAC relates to other established biomarkers of PD symptoms, has not been fully 

determined.  

 

Interpreting the importance of PAC to PD pathophysiology is complicated by conflicting 

explanations for the underlying mechanism. Low frequency phase in PAC is often thought to 

reflect the synchronisation of synaptic potentials that can drive coordinated firing of local 

neurons (Canolty and Knight, 2010). This mechanism is likely to underlie the phase of beta 

oscillations in STN LFPs in PD, which have fixed timing relationships to firing of single 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 3, 2018. ; https://doi.org/10.1101/433334doi: bioRxiv preprint 

https://doi.org/10.1101/433334
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

neurons (Steigerwald et al., 2008; Shimamoto et al., 2013; Yang et al., 2014; Lipski et al., 

2017; Sharott et al., 2018). However, recent studies have emphasised the transient nature of 

beta oscillations, which occur in “bursts” of high amplitude (Tinkhauser et al., 2017a; 

Tinkhauser et al., 2017b). It is currently unclear as to whether PAC is restricted to such bursts 

or can occur independently of the amplitude of the beta oscillation.  

 

Investigations into the relationship between HFOs and spiking activity in the STN have 

produced conflicting results. Wang and colleagues (Wang et al., 2014) found that HFOs were 

independent spatiotemporal phenomena from neuronal spiking. These authors concluded that 

large pools of desynchronised neuronal clusters give rise to nonstationary HFOs in the LFP 

that are distinct from the locally-synchronised multiunit activities and are also phase locked to 

the beta oscillation (Weinberger et al., 2006; Sharott et al., 2014). However, a recent 

computational study found that synchronized single-cell bursting led to PAC that closely 

resembled that of parkinsonian mice and primates and could produce PAC resembling that seen 

in patients (Sanders, 2016).  

 

Using intraoperative macro- and microelectrode recordings in PD patients off medication, we 

demonstrate that HFO amplitude is related to the firing rate and pattern of single STN neurons 

in the presence, but not absence of PAC. In addition, PAC and HFO amplitude are higher 

during beta bursts, suggesting that PAC occurs during enhanced beta synchronisation. These 

findings suggest that STN PAC could be a proxy for the locking of neurons to network 

oscillations.  
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Methods 

 

Local field potentials and single unit recordings were captured simultaneously from 

subthalamic nuclei in 15 hemispheres in 10 patients during surgical DBS electrode placement. 

All patients (6 female, 4 male; mean ± SD age: 66.8 ± 3.4 years) suffered from advanced 

idiopathic PD and were withdrawn from anti-parkinsonian medication the night before surgery.  

For patient details see Supplemental Table 1. The surgical procedure yielded 231 local field 

potential recordings with 157 single units extracted from microelectrode recordings (14 

hemispheres in 9 patients were used for analysis of single units). All LFPs/spike train pairs 

analysed in this paper were recorded by a distance of at least 2 mm to remove spiking 

contaminations of recorded LFPs in the analysis. 

 

Surgical procedure and microrecordings. Electrophysiological data from all patients in this 

study have been reported previously (Sharott et al., 2014; Sharott et al., 2018). Operations were 

performed under local anaesthesia. Details concerning the surgical procedure are reported 

elsewhere (Hamel et al., 2003; Moll et al., 2014; Sharott et al., 2014; Sharott et al., 2018). 

Dopamine agonist treatment was stopped more than 7 days before the operation. 10-15 minutes 

prior to the start of microelectrode recordings at the level of the thalamus (usually 6-12 mm 

above the centre of the STN as delineated on MRI), systemic sedation with low dose 

remifentanyl (0.01 - 0.1 µg/kg/min) was completely stopped. No sedatives or anesthetics were 

administered during the microelectrode mapping procedure. Participation in the study extended 

the surgical procedure by approximately 15-25 minutes. 

 

Microelectrode recordings were performed along five parallel tracks arranged in a concentric 

array (MicroGuide, Alpha-Omega, Nazareth, Israel) (Supp. Fig. 1). Four outer platinum–

iridium electrodes (impedance = 0.7 ± 0.2 (range, 0.2 - 1.25) megaOhm at 1000 Hz; FHC Inc., 

Bowdoinham, ME, USA) were separated by 2 mm from a central one, which was aimed at the 

STN surgical target. Signals were amplified (x20.000), bandpass-filtered (0-300 Hz) and 

digitized (sampling rate: 24 kHz). An electrode was identified as having entered the STN 

following a clear increase in the size of the background activity (Moran et al., 2006). STN units 

were distinguished by their tonic irregular, oscillatory or bursty discharge pattern (Supp, Fig. 

1), and this was clearly different from slower bursting and single-spiking of neurons in the 

overlying thalamus and zona incerta, and from the regular, high frequency spiking of more 

ventral substantia nigra pars reticulata neurons.  
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Data selection and processing 

All data were collected as part of our routine neuronavigation process which aims to precisely 

identify the STN. Recordings were only included if they were made during sustained periods 

during which patients were awake and highly co-operative. In total, 157 STN unit recordings 

were used in this study. In some recordings, patients were engaged in a simple, brief movement 

task (flexion/extension of wrist or ankle) as part of the routine mapping procedure. Such epochs 

comprised a relatively small proportion of individual recordings and we have demonstrated 

previously that beta oscillations are present in these recordings (Sharott et al., 2014; Sharott et 

al., 2018). Spike detection was performed offline using a voltage threshold method (Offline-

Sorter, Plexon Inc., Dallas, TX, USA). The threshold value was set sufficiently high relative to 

the noise level to avoid false-positives (threshold values > 4 SD of the background level were 

used). When possible, single unit activities (SUAs) were then separated by manual cluster 

selection in 3D feature space on the basis of several parameters including signal energy, 

principal components, peak time and the presence of a central trough in the autocorrelogram. 

Over half of the unit activities were characterized as SUAs (n = 157). Any portions of injury 

discharge were discarded.  

 

Phase amplitude coupling and neuronal activity. All computation was done in Matlab (R2017a, 

The Mathworks Inc., Natick, USA). In analyses comparing measures of neuronal activity to 

PAC, PAC was computed using the General linear model (GLM) method (van Wijk et al., 

2015) to allow parametric estimation of significance. After removing 50 Hz harmonics using a 

4th order Butterworth filter the LFP signals were initially bandpass filtered around centre 

frequencies between 10-35 Hz with 1 Hz increments to obtain the beta component and between 

100-300 Hz with 4 Hz increments to extract the HFO component. Filter bandwidths were set 

at ± 1 Hz and ± 35 Hz, respectively, and the instantaneous phase was extracted for the beta 

components via  

θ𝑥 = 𝑚𝑜𝑑(𝑎𝑛𝑔𝑙𝑒(ℎ𝑖𝑙𝑏𝑒𝑟𝑡(𝑥)), 2π) 

and amplitude of HFO components via  

𝑎𝑦 = 𝑎𝑏𝑠(ℎ𝑖𝑙𝑏𝑒𝑟𝑡(𝑦)) 

with x representing the beta, and y the HFO signal components (see Supplementary figure 1). 

The general linear model: 
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𝑎𝑦 =  𝛽1 sin(𝜃𝑥) +  𝛽2 cos(𝜃𝑥)  

 

was then applied to all phase and amplitude frequency combinations. Each frequency 

combination would then yield a single PAC value from 

𝑟 =  √𝛽1
2 + 𝛽2

2
 

with beta coefficients calculated via least squares. 

 

sin(𝜃𝑥), cos(𝜃𝑥) and 𝑎𝑦 were all transformed to have zero mean and unit variance, for 

example: 𝑎𝑦 = (𝑎𝑦 − mean(𝑎𝑦)) std(𝑎𝑦)⁄ . To test for significance the time series was 

divided into non-overlapping epochs of 3 second durations to allow for parametric statistical 

testing, yielding separate GLMs and regression coefficients across epochs. The recordings had 

their edges (2*sampling rate) removed to eliminate filter artefacts. An F-test was applied to 

test for beta-coefficient consistency across epochs. PAC was defined to be significantly present 

if a cluster of at least 30 contiguous significant frequency bins of p-values < 0.01 was observed. 

Data that fell below 10 connecting significant frequency bins of p-values < 0.01 were 

categorised as non-significant (see figure 1). Data that fell in between were classified as 

intermediate and excluded from further analysis. Based on this significance testing, the 

recordings were allocated to groups of “significant” or “non-significant PAC”. 

 

Spike-amplitude coupling. The GLM was further extended by including spiking as an 

additional predictor to test for Spike-amplitude coupling: 

 

𝑎𝑦 =  𝛽1 sin(𝜃𝑥) +  𝛽2 cos(𝜃𝑥) +  𝛽3𝑠𝑥  

 

with 𝑠𝑥 representing the Z-scored spiking time series. Spike-amplitude coupling was then 

represented by SpikeAMP = 𝛽3 with values ranging from -1 to 1. For individual recordings, a t-

test was performed to test for 𝛽3 consistency across epochs for each HFO frequency, to 

determine levels of significance. For the spike-amplitude-coupling group figures, all the spike-

amplitude plots were averaged for the significant and non-significant PAC groups respectively, 

and a two-sample t-test was performed to determine levels of spike-amplitude significance.  
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Spike-triggered averages (STAs). STAs were computed by triggering the amplitude envelope 

of the band-pass filtered (4th-order Butterworth) HFO (100-300 Hz) at the time of each action 

potential from a single unit, where the unit and LFP signals were separated by at least 2 mm. 

The HFO amplitude was averaged around each single-unit spike with time zero marking spike 

onset. For averaged group data, a two-sample t-test was performed at spike onset.   

 

Comparison of firing rates and HFO amplitude within recordings. Mean firing rates and HFO 

amplitudes were calculated from single unit and LFP recordings in non-overlapping 3 second 

epochs. The HFO 180-220 Hz amplitude was chosen for comparison as this was the frequency 

range where the highest degree of significant PAC was found overall. HFO amplitude was 

extracted as described in the GLM-method section and averaged for corresponding epochs.  

 

Power spectral densities of single units were calculated by use of the Welch periodogram 

method (Matlab function pwelch.m function, using a Hanning window with 50% overlap, 

window size = 0.2*sampling frequency). 

 

Spike-phase locking. The Hilbert transform was used to extract phase from band-pass filtered 

LFP signals (beta-frequency corresponding to highest PAC value +/- 5 Hz) and the phases at 

the times of each action potential were extracted to construct phase histograms. A Rayleigh’s 

test for non-uniformity was applied to determine if the spike-phase locking was significant 

using the Circstat Matlab toolbox (Berens, 2009). Phase histograms were also made from the 

Hilbert extracted beta phase with regards to HFO, which was separated into 30 amplitude bins 

and plotted against the beta phase cycle.  

 

PAC during beta bursts 

Beta-bursts were identified in accordance with the method used by Tinkhauser and colleagues 

(Tinkhauser et al., 2017). The rectified LFP signal was filtered around the individual beta peak 

frequency as identified by wavelet frequency decomposition. The Hilbert amplitude was 

extracted from this filtered signal and used to identify periods of beta-bursts above the set 

threshold and duration criteria. As standard criteria burst thresholds were set at 75% with 

durations above 100 ms (see Supplementary figure 2). Non-bursting periods were identified as 

periods where the beta Hilbert envelope fell below a 50% threshold. To ensure sufficient data 

lengths for PAC calculation the bursting and non-bursting periods were concatenated in two 

different vectors. When comparisons were made between bursting and non-bursting episodes 
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all vector lengths were adjusted to have the same length as the shortest combined vector. The 

Hilbert phase of the beta component and the phase of Hilbert HFO amplitude were both 

extracted prior to cutting and concatenating the data to avoid jumps in the signal between 

periods. 

 

To calculate PAC during bursting and non-bursting periods we chose the phase-locking value 

(PLV) method between beta phase and the phase of HFO-filtered Hilbert transformed 

amplitude (Cohen, 2008; Seymour et al., 2017). Like the GLM method, the PLV method is 

non-susceptible to HFO amplitude levels, which we found to be progressively increased with 

increased burst thresholds and durations. However, the PLV method has been shown to be 

superior to the modulation index for short-epoch data (Penny et al., 2008) and the GLM method 

relies on longer data sets for statistical testing. For the PLV method we tested for statistical 

significance via 500 runs of surrogate data with circularly shifted permutations of the phase 

(Penny et al., 2008; Seymour et al., 2017). 

 

The PLV is defined as: 

 

𝑃𝐿𝑉 = |
1

𝑁
∑ 𝑒𝑖(𝜙𝑓𝑝(𝑛)−𝜙𝑓𝑎(𝑛)

𝑁

𝑛= 1

| 

 

𝜙𝑓𝑎  represents the phase time series of the HFO amplitude envelope and 𝜙𝑓𝑝 the beta phase 

time series. PAC assumes the value of 1 when the phase series are fully locked and 0 if they 

are completely desynchronised (Tort et al., 2010; Seymour et al., 2017). Before the 𝜙𝑓𝑎 by way 

of the Hilbert transform was extracted from the HFO-amplitude time series, the amplitude 

signal was high- and lowpass filtered as previously described using Butterworth filters to 

remove non-beta components (Penny et al., 2008). Absolute PAC values were calculated as the 

mean of the PAC values in the range of the HFO frequency for the max PAC value 16 Hz. 

 

For estimation of the mean HFO and beta amplitude during bursting and non-bursting episodes 

the signals were filtered as previously described for the respective components under the GLM 

method and, after standardizing the entire time series to have zero mean and unit variance, 

amplitudes were averaged separately for the bursts and non-bursts periods (Supp. Fig 2).   
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Results 

 

Defining the presence of STN LFP phase amplitude coupling 

We analysed 114 micro- and macroelectrode recordings to investigate phase-amplitude 

coupling of LFP signals in the subthalamic nucleus (Supp. Fig. 1). Recordings were divided 

based on whether or not significant PAC was detected using significant frequency-bin 

clustering. Significant PAC-clustering in the STN on a grand average was predominantly found 

between beta (20-35 Hz) phase and 160-220 Hz amplitude with individual maximum PAC 

values peaking on average across the HFO frequency range at either 180 or 220 Hz (Fig. 1).  

 

Previous work has suggested that the timing of beta synchronised HFOs and spiking activity 

in STN are independent (Yang et al., 2014). Our aim was to re-examine this issue and to define 

precisely how the spiking of STN units is related to PAC. As using spikes and LFPs recordings 

from the same electrode can obviously introduce contamination between spikes and any other 

signals, including HFOs, all unit/LFP pairs analysed here were recorded from different 

electrodes. The configuration of our recording system dictated that these were at least 2mm 

apart, excluding the possibility of substantial LFP signal contamination (Supp. Fig 1. Einevoll 

et al., 2013).  

 

STN firing predicts HFO amplitude only in the presence of PAC.  

We first examined whether simple correlations in the time domain between HFOs and spike 

times only occurred in recordings when PAC was present. To achieve this, spike triggered 

averages of the HFO amplitude (STA-HFO) were compared across PAC and non-PAC 

recordings (Fig. 2). In single recordings, peaks could be observed at zero lag in the presence of 

significant PAC (Fig. 2A), but not when PAC was absent (Fig. 2B). Over all recordings, HFO 

amplitude was significantly locked to spike-onset in the presence of significant PAC, but not 

in the absence thereof (p = 0.0014, two sample t-test, n(Non-PAC) = 38 n(PAC) = 39, Fig. 2C). 

In recordings with PAC, secondary peaks could be observed at latencies consistent with the 

spike-trigged HFO oscillating at beta frequencies (e.g. multiples around ~33 ms corresponding 

to ~30Hz, Fig 2C, E). Furthermore, the area under the STA-HFO around time zero was 

positively correlated to the number of connected significant PAC frequency bins (p = 0.0103, 

r = 0.42811, n = 33, F-test, Fig. 2F), demonstrating that the larger the span of significant PAC 

across frequencies, the greater the STA HFO amplitude peaks. Importantly, the lack of STA-
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HFO peaks in the absence of PAC demonstrates that the presence of spikes does not lead to 

increased HFO amplitude per se, rather that spikes and HFOs are specifically associated when 

PAC is present.  

 

In addition to averaging the HFO amplitude around individual spike-onsets, we extended the 

GLM-method to investigate how spike-amplitude coupling compared to GLM-calculated PAC 

patterns across all HFO frequencies and found a clear concordance between the significant 

spike-amplitude curves and significant PAC plots as exemplified in one recording from one 

patient in Figure 1, where significant PAC levels corresponded to spike-amplitude coupling 

peaks. This pattern was reproduced on the grand average level with significantly greater spike-

amplitude coupling in the PAC group compared to the non-PAC group for HFO frequencies 

ranging from 120-224 Hz (t-test, p < 0.05 n(Non-PAC) = 38 n(PAC) = 39) (Fig. 3C), 

mimicking the PAC peaks for HFOs in the PAC comodulograms. Interestingly, spike-HFO-

amplitude coupling peaked at the same 220 Hz frequency for which the maximal PAC values 

were found (Fig. 3 C-D). Taken together these findings suggest that, in the presence of PAC, 

HFO amplitude and the timing of single unit activity are comodulated by beta phase.  

 

Given that, in the presence of PAC, spike times predicted periods of high-amplitude HFOs 

lasting a few milliseconds, we hypothesised that increases in the number of spikes would lead 

to higher HFO amplitude over longer timescales. To this end, within individual recordings we 

assessed the relationship between the firing rate of STN neurons and HFO amplitude (180-220 

Hz) in the neighbouring LFP (Fig. 4). Firing rates when PAC was present and absent were not 

significantly different (Average mean firing rate (PAC) = 29.15 Hz, non-PAC = 26.06 Hz, p = 

0.5155, two-sided test). However, in recordings where PAC was present, we found an overall 

positive relationship between firing rate and HFO power across epochs of 3 seconds (PAC 

example Fig 4A, r = 0.6115, p < 0.0001, F-test). In the absence of significant PAC clustering, 

however, no relationship between overall between firing rate and HFO power could be found 

(Non-PAC example Fig. 4B, r = 0.0544, p = 0.6520). Across all recordings, we found r-values 

to be normally distributed around zero for the non-PAC group (Non-PAC mean-r = -0.0323, n 

= 62, Fig. 4C), but shifted to the right for recordings in which PAC was present (PAC mean r 

= 0.1906, n = 39, Fig. 4C). In line with this result, r-values in the presence of significant PAC 

were significantly greater than in its absence (p < 0.0001, two-sample t-test). Moreover, across 

recordings, we found that the span of significant PAC clustering and mean firing rate values 

were positively correlated for the PAC group (defined as clustering exceeding 30 frequency 
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bins, p = 0.018, r = 0.408, n = 33, Fig. 5) but not the non-PAC group (defined as clustering 

below ten significant frequency bins, p = 0.789, r = 0.048, n = 31, Fig. 5).  

 

Overall, increased spiking activity predicted the amplitude of HFOs only when PAC was 

present. These results suggest that spiking does not predict HFO amplitude per se, but only 

under conditions that also lead to significant PAC.  

 

Specific features of PAC are associated with the presence of synchronised beta oscillations 

in STN neurons   

 

Next, we tested whether the phase and frequency parameters of PAC could be explained by 

their association with the spiking patterns of STN neurons. First, we examined whether there 

was a correlation between the angle of phase locking of the spikes and HFOs in recordings 

with and without PAC. In recordings with both PAC and phase locked units, both the spikes 

and HFOs were mostly clustered around the peak of the LFP beta oscillation (Fig. 6A) and the 

differences in their peak phases was not significant (p = 0.1889, Watson–Williams test). In 

contrast, in recordings where no PAC or phase locking was present (Fig 6B-D), both units and 

HFOs were locked to all phases except for this peak and the differences in preferred phase were 

significant (p = 0.0124, Watson–Williams test) (Fig. 6B). This analysis further indicates that 

STN spiking underlies the time course of HFO amplitude under conditions where STN spiking 

is locked to local beta oscillations.  

 

A consistent feature of STN LFP PAC is that the HFO frequency peaks > 200Hz (Lopez-

Azcarate et al., 2010; Özkurt et al., 2011; Yang et al., 2014; van Wijk et al., 2016), considerably 

higher than in cortex (Manning et al., 2009; de Hemptinne et al., 2015). Having established a 

temporal correlation between beta-locked STN spikes and HFOs, we next investigated whether 

the spectral properties of these phase-locked neurons could explain the frequency of STN 

HFOs. To this end we compared the power spectra across single unit recordings in recordings 

with and without significant PAC (Fig. 7). The single units at sites with PAC showed both a 

clear peak between 150 and 250Hz and a peak at beta frequency (Fig. 7A). Both peaks were 

significantly greater than in the non-PAC group (p < 0.05, F-test, Fig. 7B), which did not show 

an obvious peak above 100Hz. In recordings with PAC, the peak frequency of the unit power 

spectra was significantly correlated with that of the HFO (Fig. 7C), while there was no such 

correlation when PAC was absent.  
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Increased PAC is predicted by the duration of beta bursts  

Recent studies have demonstrated that beta oscillations are not continuous, but occur in 

transient, high amplitude bursts of several cycles that are thought to reflect transient 

synchronisation of synaptic inputs to the STN (Tinkhauser et al., 2017a; Tinkhauser et al., 

2017b). We next asked whether the occurrence of PAC was independent to that of beta bursts, 

or whether the two measures could reflect the same underlying process. Here, we calculated 

PAC by the PLV-method, which is preferable for short time series. For individual recordings, 

calculation of PAC inside and outside beta bursts in the same recording led to clearly different 

comodulograms, with considerably larger PAC in the burst periods (Fig. 8A). This result was 

consistent across the data set, with significantly higher PAC during beta-bursts than outside 

bursts across hemispheres in the presence of a beta-peak (PAC during bursts = 0.2055, PAC 

outside bursts = 0.0989, p = 0.0234, paired t-test) (Fig. 8B).  

 

Moreover, we found that there was a significant increase in PAC with burst duration and when 

progressively higher thresholds were used to define the burst epochs, following a correction 

for the shortening of the data segments as the threshold and durations were increased (One-

way ANOVA, p < 0.0001, Fig. 9). Longer bursts and higher amplitude thresholds consequently 

captured higher levels of synchronisation between the beta phase and amplitude of the HFOs. 

Finally, we also found progressive increases in both HFO and beta power with increasing burst 

durations (Fig. 10). Overall correlations between different measures in the paper are 

summarised in Table 1. In summary, PAC was higher within beta bursts and increased 

progressively with the magnitude (set by threshold) and duration of the bursts.  
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Discussion 

 

In this study, we investigated how different aspects of PAC in the STN LFP related to the 

spiking activity of STN neurons. We analysed the relationship between STN beta oscillations, 

HFOs and spiking activity in the presence and absence of PAC and investigated how PAC 

differed inside and outside of beta bursts. Our results suggest that PAC reflects the oscillatory 

recruitment of STN spiking activity at the beta frequency and that this coupling is stronger 

during transient beta-burst events. These findings raise specific issues regarding the 

relationship of PAC to other biomarkers of pathophysiological activity in PD.  

 

Physiological basis of PAC in the STN  

PAC has been demonstrated in many brain areas including several cortical regions (Canolty et 

al., 2006; Canolty and Knight, 2010; Szczepanski et al., 2014; Voytek et al., 2015), basal 

ganglia (Tort et al., 2008; von Nicolai et al., 2014) and hippocampus (Tort et al., 2008; 

Scheffer-Teixeira et al., 2012; Colgin, 2015). Across this range of structures, there is 

considerable variability in the frequency of both the phase and amplitude signals. Several 

biological and nonbiological mechanisms can lead to significant PAC in a given time series. 

The first common interpretation is that there is functional coupling between neural populations 

oscillating at different frequencies. Such coupling has been convincingly demonstrated in the 

hippocampus, where the power of gamma frequencies is locked to specific phases of the 

ongoing theta oscillation, depending on the location of the recording electrodes (Buzsaki and 

Wang, 2012; Scheffer-Teixeira et al., 2012; Colgin, 2015). In this case, both carrier and 

amplitude oscillation are underpinned by the synchronised firing of the underlying neurons. A 

second common interpretation is that higher frequency gamma oscillations are generated by 

background spiking (Ray et al., 2008a; Ray et al., 2008b; Ray and Maunsell, 2011) and PAC 

is the result of the locking of this activity to a low frequency carrier oscillation. Nevertheless, 

here the two oscillations represent semi-independent processes, i.e. the carrier oscillation is 

dominated by synaptic input and the high frequency oscillation by background spiking. The 

third interpretation is that the shape of the carrier signal creates a high frequency spectral 

component that has a consistent phase (Aru et al, 2015). This was recently demonstrated for 

cortical PAC in PD patients, where the asymmetry of the beta oscillation was shown to create 

the phase locked high frequency spectral content (Cole et al., 2017; Wijk, 2017).  
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In regard to STN PAC, we provide several lines of evidence for the second interpretation; that 

beta oscillations, representing coordinated synaptic input, drive spiking activity, which 

manifests as high frequency oscillations. Firstly, only when PAC was present was spiking 

correlated with HFO amplitude. It is worth reiterating that the spike was at least 2 mm away 

from the LFP channel, eliminating the possibility of direct electrical contamination. Rather, the 

time of spikes at a distant site predicted the timing of high HFO power with millisecond 

precision. Importantly, peaks were not seen when PAC was absent, suggesting that spiking 

only leads to peaks in HFO in certain contexts. Secondly, over time windows of a few seconds, 

firing rate was positively correlated with HFO power in the presence of PAC. As these 

correlations were absent when PAC was not present, such correlations are more likely the result 

of correlated, rather than any spiking, which is caused by beta synchronisation. Moreover, there 

were no significant differences in mean firing rate between the PAC and non-PAC groups, 

highlighting that this result must be due to temporal dynamics, rather than excitability per se. 

These conclusions are supported by the finding that the phase of HFO locking to the beta carrier 

predicts that of single units. Finally, we show that the spiking of single STN neurons can 

produce spectral frequencies that match those of the HFO. This is a novel and important 

finding, as the HFO frequency is much higher in STN than in cortex. It may reflect the high 

frequency firing of STN neurons when they are recruited to beta, which correlates with motor 

symptom severity (Sharott et al., 2014). The correlation between bursting and PAC is supported 

by a recent computational study demonstrating that spike bursts with the intraburst and 

interburst intervals seen in STN neurons in PD patients can generate PAC (Sanders, 2016).  

 

Our findings are different to those of Yang and colleagues (Yang et al., 2014) who suggest, 

using similar data to our own, that spike locking to beta oscillations is independent from HFO 

locking. There could be several reasons for this discrepancy. Here we only used LFPs that were 

recorded within the STN, as defined by the characteristic spiking of STN neurons. Although 

we concur with Yang and colleagues that the LFP dorsal to the STN probably contains volume 

conducted activity from that structure, it may likely have a greater contribution from other 

sources such as thalamus and zona incerta. The GLM method and the commonly used 

modulation index (as determined by the circular mean method), are in essence the same when 

the latter is properly normalised, and similar results have been yielded by both methods (Penny 

et al., 2008). However, we used a more stringent criterion for defining significant PAC, which 

may have reduced our calculations of the HFO beta phase to those with the strongest locking, 

and thus most stable phase. Given the larger data set in Yang et al, further characterisation of 
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STN PAC, possibly in animal models where more single neurons can be recorded, would be 

highly valuable for resolving this issue.  

 

PAC during episodes of transient input synchronisation 

Synchronisation across STN synaptic inputs is thought to be indexed by beta LFP power 

(Weinberger et al., 2006; Mallet et al., 2008a; Mallet et al., 2008b; Tinkhauser et al., 2017b; 

Sharott et al., 2018). Recently, much attention has been focussed on the interpretation of 

neuronal oscillations as transient, burst-like events (van Ede et al., 2018). This has been found 

to be particularly true of oscillations in the beta range, both in the healthy (Feingold et al., 

2015; Mirzaei et al., 2017) and Parkinsonian (Tinkhauser et al., 2017a; Tinkhauser et al., 

2017b; Tinkhauser et al., 2018) cortico-basal ganglia network. The transient nature of these 

oscillatory events, suggests that these bursts are periods where synaptic inputs are most 

synchronised and that it is these sustained periods of synchronisation in PD that impairs 

movement processing. We found that beta bursts also have significantly higher PAC and that 

the PAC increases progressively with duration and amplitude (assessed by increments in burst 

threshold) of the bursts. In line with this, dopamine replacement in PD patients supresses both 

burst length (Cagnan et al., 2015; Tinkhauser et al., 2017b) and PAC (Lopez-Azcarate et al., 

2010; van Wijk et al., 2016). Overall, PAC and beta bursts may thus reflect periods of increased 

input/output synchronisation, or transfer, in the beta frequency range. Tinkhauser and 

colleagues showed that that adaptive DBS truncated longer bursts in favour of bursts of shorter 

durations and lower amplitudes (Tinkhauser et al., 2017a). As longer bursts proportionately 

capture higher levels of input/output synchronisation, as indexed by PAC, our analysis suggests 

that successful stimulation strategies will reduce burst length and PAC magnitude in parallel.  

 

PAC as a biomarker of pathophysiology  

PAC is increasingly suggested as a primary biomarker for pathophysiology in PD patients. At 

the level of STN, our results suggest that this may be due to PAC being a proxy for the locking 

of local spiking activity to beta oscillations, which is supported by computational evidence 

(Sanders, 2016). The importance of this interpretation is that beta oscillations, as measured in 

basal ganglia LFPs or EEG/ECoG, are synchronised across the entire cortical basal ganglia 

network (Mallet et al., 2008a; Mallet et al., 2008b; Brazhnik et al., 2016; Sharott et al., 2017) 

and such spike-field locking is a robust marker of the Parkinsonian state across experimental 

animals and patients. Using the timing of cortical spiking activity locked to such network 

oscillations as a biomarker for closed-loop deep brain stimulation relieves motor impairment 
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to a greater degree than conventional 130Hz stimulation (Rosin et al., 2011). PAC may thus 

serve as a useful way of detecting the locking of local spiking activity to network oscillations 

from wideband signals. In terms of its use as a biomarker for closed-loop stimulation, the main 

question is whether the HFO locking provides information that cannot be extracted from the 

beta oscillation alone, using metrics of amplitude, phase and possible cycle asymmetry. The 

possible masking of significant PAC by stimulation may also impede its use to control 

stimulation timing (Sanders, 2016). Nevertheless, given the proliferation of devices allowing 

long term recording of STN LFPs, our results suggest that PAC and beta-bursts can provide a 

useful parameter for measuring the synchronisation and/or oscillation of underlying unit 

activity in the absence of direct access to measurements of spiking.  
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Figure 1. Examples of significant and non-significant PAC-clustering. A) Example PAC 

comodulogram from one recording in one patient with significant coupling between the phase 

of beta frequencies and HFO amplitude. Frequency bins indicated in black were significant for 

p < 0.01. B) Example comodulogram in the same patient from a different recording without 

significant PAC-clustering.  
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Figure 2. Spike-trigged HFO amplitude is increased during periods of PAC. A-B) Two 

example spike-triggered averages (STA) from recordings with (A) and without (B) PAC. The 

band pass filtered LFP HFO (100-300 Hz) amplitude was averaged around each single-unit 

spike, indicated by zero on the x-axis. C) Grand mean of all spike triggered HFO amplitude 

averages for recordings with significant PAC (green) +/- standard deviation (n = 39) and 

without significant PAC (black) +/- standard deviation (n = 35). * p = 0.0014 unpaired t-test at 

time zero. D) Example recording of spike triggered HFO amplitude (upper) and its significance 

testing (lower) across epochs with black on the colour scale indicating p < 0.05 E) Grand 

average of spike triggered amplitude across HFO frequencies from all recordings containing 

significant PAC (upper) and non-significant PAC-clustering (lower) with time zero denoting 

spike onset. Notice the repeating side peak-intervals, corresponding to beta frequency of ~30 

Hz. F) The area under the spike of the spike triggered average significantly relates to the degree 

of significant PAC clustering calculated from microelectrode recordings (p = 0.0103, r = 

0.4281, n=33).  
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Figure 3. Contribution of spiking to PAC is revealed by multivariate analysis. Statistical 

coupling between single unit spiking and LFP HFO bandpass filtered amplitude - recorded at 

distance of at least 2 mm from each other – is seen to be significantly higher in the presence of 

significant PAC. Also, spike-amplitude coupling peaks at the same HFO frequency as 

maximum PAC-values. A) Example of spike-amplitude coupling plot across HFO frequencies. 

* denotes values that are significantly different from 0 (p < 0.05, t-test). B) The corresponding 

PAC comodulogram for A, PAC significance testing with p < 0.0001 (middle) and combined 

3D PAC and p-value (brown: p < 0.01) representation. Note that spike-amplitude coupling 

peaks around the same HFO frequency (220 Hz) as the maximum PAC value in the 

comodulogram. C) Group averages of statistical spike-amplitude coupling for significant PAC 

(blue, n = 39) and non-significant PAC (red, n = 38) data sets (* p value < 0.05, two-sample t-

test). The green dotted line marks the HFO frequency corresponding to the maximum PAC 

value from D) the grand averaged significant PAC comodulogram (left) with grey scaled 

frequency bins displaying percentages of significant p-values <0.01 (right) and averaged max 

PAC-values across HFO-frequencies (middle).   
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Figure 4. The time course of firing rate predicts HFO amplitude in the presence of PAC. 

A higher degree of synchronisation of STN spiking with high frequency oscillations is seen 

when the latter is modulated by the phase of beta frequencies. A) Example correlation between 

mean firing rate and HFO (180-220 Hz) amplitude correlation (p < 0.0001, r-value = 0.61152), 

each dot represents an epoch of 3 seconds. The corresponding PAC comodulogram and 

significance plot is on the right. B) As in A, but for a recording where PAC was absent. C) 

Population histogram of r-values from the correlation between mean firing rate and HFO power 

in the presence (green, n = 39, mean r = 0.1906) and absence (grey, n = 62, mean r = -0.0323) 

of significant PAC for all recordings. Note that r-values in the presence of significant PAC 

clustering are shifted to the right compared to the non-significant PAC data (p < 0.0001, two-

sample t-test).  
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Figure 5. Extent of PAC predicts firing rate across whole recordings. Extent of significant 

PAC clustering correlates with mean firing rate when clustering exceeds 30 contiguous 

frequency bins (blue dots, p = 0.018, r = 0.408). In the case of fewer than 10 contiguous 

significant PAC bins (red dots, no significant PAC) there was no relationship between mean 

firing rate and the extent of PAC clustering (red dots, p = 0.789, r = 0.048). PAC and mean 

firing rate calculated from different electrodes.  
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Figure 6. Phase-locked spiking and high HFO amplitude cluster around the same phase 

of the LFP beta oscillation. The figure is divided into columns with regards to whether PAC 

and/or spike-phase locking were significant in a pair of LFP/unit recordings. i) Significant PAC 

and significant spike phase-locking, column ii) significant PAC without significant phase-spike 

locking, column iii) no significant PAC but significant phase-spike-locking and column iv) no 

significant PAC and no significant phase locking. A) PAC comodulogram examples. B) Spike-

phase-plots for same recordings as in A. C) Beta-phase HFO-amplitude histograms for the 

same recordings. Di-iv) Mean phase of spiking plotted against the phase with the highest HFO 

amplitude for each recording meeting the criteria labelled at the top of the column. Diagonals 

mark complete phase alignments. Note that Di shows that both spikes and the highest HFO 

amplitude occur around 0 when both PAC and spike-phase locking are present.  
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Figure 7. The power spectral density features of single unit activity predict HFO 

frequency. A) Group averaged single unit spectral densities at PAC (green) or non-PAC 

(black) clustering recorded sites. Note that only single units at PAC sites demonstrate a beta 

peak and a larger gamma peak. * p < 0.05, Two-sample F test for equal variances. B) 4D 

representation of grand average microelectrode phase-amplitude coupling for the significant 

PAC group and the overlapping power spectrum summation with x-values = beta-phase 

frequency, y-values = HFO amplitude frequency, z-values = PAC-values. The single unit 

spectral power densities for the beta and HFO frequencies represented by the colour bar (c-

axis). The graph shows how the PSD intensity corresponds with PAC-values. C + D) Peak 

PAC HFO frequencies plotted against peak power HFO frequencies for microelectrode 

recordings from the significant PAC group (C, n = 11) and the non-significant PAC group (D, 

n = 18) demonstrating a higher degree of correspondence between HFO power peak 

frequencies and PAC peak HFO frequencies for the significant PAC-data. Proximity of dots to 

the blue line indicates a correspondence between peaks in PAC and power. 
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Figure 8. PAC is significantly higher during beta bursts. A) Example PAC comodulogram 

inside and outside bursting period from the same recordings, calculated by the PLV method. 

B) Average around maximum (± 16 Hz) PAC calcuated from 9 hemispheres with recordings 

that demonstrated a beta peak. PAC was found to be significantly higher during periods of beta 

bursting compared to outside periods of bursting (PAC during bursts = 0.2055, PAC outside 

bursts = 0.0989 p = 0.0234, paired t-test, n = 9) in the presence of a beta peak. 
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Figure 9. PAC increases progressively with both burst duration and thresholds 

increments. A, Bar and box plots of PAC at different burst durations. PAC significantly 

increases with burst duration with longer bursts capturing higher levels of coupling. B, Bar and 

box plots of PAC at different burst thresholds. PAC increases significantly with threshold 

increments. All concentrated burst vectors were length adjusted.  
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Figure 10 - Both normalised beta and HFO amplitude increase significantly with both burst 

duration and thresholds. A) Bar and box plots of average beta (green) and HFO (grey) 

amplitudes for different burst durations. B) Bar and box plots for average beta (red) and HFO 

(blue) amplitude for different burst thresholds.  
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Table 1: Associations between measures of PAC, spiking activity and beta bursts. Ticks 

and crosses show when two measures, denoted by the row and column labels, were/were not 

associated based on analysis of PAC vs non-PAC recordings or temporal/phase/frequency 

correlations within recordings.  

  

 Spiking Activity  Spectra/Phase Beta Bursts  

 

PAC 

Parameters 

Spike Times Mean Firing 

Rate 

Spike Phase Unit high 

frequency 

peak 

Beta-

burst 

In/out 

Beta-burst 

Amp. 

Beta-burst 

Length. 

PAC  N/A ✔ ✔ N/A ✔ ✔ ✖ 

HFO 

Amplitude 
✔ ✔ N/A N/A ✔ ✔ ✔ 

HFO 

Frequency 
N/A N/A N/A ✔ N/A N/A N/A 

HFO 

Beta Phase 
N/A N/A ✔ N/A N/A N/A N/A 
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Supplementary figure 1 – Local field potentials (LFPs) were recorded from the subthalamic 

nucleus (STN) from micro- and macro-electrode recordings during deep brain stimulation 

surgery. A) Example of micro- and macro electrode recordings of raw LFP signals in one 

patient and microelectrode multi- and single unit recordings from an anterior and central 

microelectrode, respectively. The micro electrodes were organised in a concentric array (B) 

with four outer micro electrodes distanced 2 mm from the central micro-electrode. All 

simultaneous spiking and LFP analyses were made from microelectrodes at least 2 mm apart. 

C) In order to apply the GLM-method to calculate PAC the LFP signal was bandpass filtered 

and Hilbert transformed in order to extract the instantaneous HFO (100-300 Hz) amplitude and 

broad beta phase (10-35 Hz).   
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Supplementary Figure 2. Example of occurrence of HFOs, spiking and beta bursts in 

single recordings. A) Example recording of broadband HFO (100-300 Hz) amplitude time 

series and HFO amplitude filtered around the beta peak frequency. Shaded blue areas mark 

periods of beta-bursting of more than 100 ms. The dashed line outlines the 75% burst threshold. 

B) Example of normalised HFO filtered amplitude envelope and beta phase. C) Beta amplitude 

envelope (green), beta bursts (shaded blue areas) and unit firing (orange, yellow and purple).  
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Case Age (Yrs) 

and Sex 

Disease 

Duration 

(Yrs) 

Motor 

UPDRS 

OFF 

Motor 

UPDRS ON 

Medication pre-operation/day Hoehn/ 

Yahr 

Score 

Dominant 

side 

Major Symptoms Hemispheres 

analysed 

1 

 

61F 25 50 30 Levodopa 700 mg 

Carbidopa 150 mg 

Entacapone 1000 mg 

Benserazide 25 mg 

Pramipexole 0.26 mg 

5 Left Tremor, 

Akinesia/rigidity 

Fluctuations 

Right 

2 

 

70F 26 45 24 Entacaponee 1600 mg  

Amantadin 300 mg  

Pramipexole 0.9625 mg  

Levodopa 900 mg 

Selegilin 5 mg  

4 Left Tremor, 

Akinesia/rigidity 

 

Left 

3 

 

72F 18 41 19 Levodopa 700mg 

Carbidopa 175mg 

4 Left Equivalence type 

Fluctuations, 

Dyskensia 

Left 

4 

 

70F 8 38 21 Ropinirole 8mg 

Alpha-dihydroergocryptine 40 mg 

Amantadine 600 mg  

Levodopa 250mg 

Carbidopa 150mg 

 

3 Left Bradykinesia 

Fluctuations 

Dyskinesia 

 

Both 

5 

 

66M 17 49 20 Levodopa 700 mg 

Carbidopa 50 mg 

Pramipexole 4.4 mg 

Amantadine 300 mg 

 

4 Left Dyskinesias 

Rigidity 

 

Both 

6 

 

64M 15 53 

 

39 Amantadine 300 mg 

Levodopa 550 mg 

Ropinirole 20 mg 

Entacapone 900 mg 

Carbidopa 112.5 mg 

Benserazide 25 mg 

 

4 Left Akinesia/rigidity 

Camptocormia 

Left 

7 

 

69F 9 21.5 7 Levodopa 450 mg 

Lisuride 0.9 mg 

Rotigotine 4 mg 

3 Right Fluctuations 

Dyskinesia 

Both 
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Amantadine 300 mg 

8 

 

66M 11  28 14 Amantadine 150 mg 

Levodopa 1450 mg 

Tolcapone 300mg 

Carbidopa 312.5 

Benserazide 50mg 

 

 

4 Right Akinesia/rigidity 

Fluctuations 

 

Both 

9 

 

63F 17 35 16 Rotigotine 4mg 

Ropinirole 25mg 

Levodopa 350mg 

3 Left Akinesia/rigidity 

Bradykinesia 

Fluctuations 

Dyskinesia 

 

Both 

10 

 

67,M 10 19 4  Entacapone 1200 mg 

Levodopa 700 mg 

Carbidopa 175 mg 

 

3 Right Bradykinesia  

Rigidity 

Fluctuations 

Right 

 
 
Supplemental Table 1. Patient details.
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