bioRxiv preprint doi: https://doi.org/10.1101/432930; this version posted October 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

USP15 participates in HCV propagation through the regulation of viral RNA translation and lipid droplet formation

3

4	Shinji Kusakabe ¹ , Tatsuya Suzuki ¹ , Yukari Sugiyama ¹ , Saori Haga ¹ , Kanako Horike ¹ , Makoto Tokunaga ¹ ,
5	Junki Hirano ¹ , Zhang He ¹ , David Virya Chen ¹ , Hanako Ishiga ¹ , Yasumasa Komoda ¹ , Chikako Ono ¹ , Takasuke
6	Fukuhara ¹ , Masahiro Yamamoto ² , Masahito Ikawa ³ , Takashi Satoh ⁴ , Shizuo Akira ⁴ , Tomohisa Tanaka ⁵ , Kohji
7	Moriishi ⁵ , Moto Fukai ⁶ , Akinobu Taketomi ⁶ , Sachiyo Yoshio ⁷ , Tatsuya Kanto ⁷ , Tetsuro Suzuki ⁸ , Toru
8	Okamoto ¹ * and Yoshiharu Matsuura ¹ *
9	
10	¹ Department of Molecular Virology, ² Department of Immunoparasitology, ³ Department of Experimental
11	Genome Research, and ⁴ Department of Host Defense, Research Institute for Microbial Diseases, Osaka
12	University, Osaka, ⁵ Department of Microbiology, Faculty of Medicine, University of Yamanashi, Yamanashi,
13	⁶ Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo,
14	⁷ The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba,
15	and ⁸ Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu,
16	Japan
17	
18	
19	*Corresponding authors
20	Toru Okamoto, PhD

- 21 Department of Molecular Virology
- 22 Research Institute for Microbial Diseases, Osaka University
- 3-1, Yamada-oka, Suita, Osaka 565-0871, Japan
- 24 E-mail: toru@biken.osaka-u.ac.jp
- 25 Tel: 81-6-6879-8343
- 26 Fax: 81-6-6879-8269
- 27
- 28 Yoshiharu Matsuura, DVM, PhD
- 29 Department of Molecular Virology
- 30 Research Institute for Microbial Diseases, Osaka University
- 31 3-1, Yamada-oka, Suita, Osaka 565-0871, Japan
- 32 E-mail: matsuura@biken.osaka-u.ac.jp
- 33 Tel: 81-6-6879-8340
- 34 Fax: 81-6-6879-8269
- 35
- 36 Running title: USP15 regulates HCV propagation
- 37 Keywords: Deubiquitination, HCV, lipid, innate immunity
- 38
- 39 Abstract

40	Hepatitis C virus (HCV) utilizes cellular factors for an efficient propagation. Ubiquitin is covalently
41	conjugated to the substrate to alter its stability or to modulate signal transduction. In this study, we examined
42	the importance of ubiquitination for HCV propagation. We found that inhibition of de-ubiquitinating enzymes
43	(DUBs) or overexpression of non-specific DUBs impaired HCV replication, suggesting that ubiquitination
44	regulates HCV replication. To identify specific DUBs involved in HCV propagation, we set up an RNAi
45	screening against DUBs and successfully identified ubiquitin-specific protease 15 (USP15) as a novel host
46	factor for HCV propagation. Our studies showed that USP15 is involved in translation of HCV RNA and
47	production of infectious HCV particles. In addition, deficiency of USP15 in human hepatic cell lines (Huh7
48	and Hep3B/miR122 cells) but not in a non-hepatic cell line (293T cells) impaired HCV propagation,
49	suggesting that USP15 participates in HCV propagation through the regulation of hepatocyte-specific
50	functions. Moreover, we showed that loss of USP15 had no effect on innate immune responses in vitro and in
51	vivo. We also found that USP15-deficient Huh7 cells showed reductions in the sizes and numbers of lipid
52	droplets (LDs), and addition of palmitic acids restored the production of infectious HCV particles. Taken
53	together, these data suggest that USP15 participates in HCV propagation by regulating the translation of HCV
54	RNA and formation of LDs.
55	

56 Importance

Although ubiquitination has been shown to play important roles in the HCV life cycle, the roles of
 de-ubiquitinating enzymes (DUBs), which cleave ubiquitin chains from their substrates, in HCV propagation
 have not been investigated. Here, we identified USP15 as a DUB regulating HCV propagation. USP15

60	showed no interaction with viral proteins and no participation in innate immune responses. Deficiency of
61	USP15 in Huh7 cells resulted in suppression of the translation of HCV RNA and reduction in the sizes and
62	amounts of lipid droplets, and addition of fatty acids partially restored the production of infectious HCV
63	particles. These data suggest that USP15 participates in HCV propagation in hepatic cells through the
64	regulation of viral RNA translation and lipid metabolism.
65	
66	Introduction
67	Hepatitis C virus (HCV) belongs to the Flaviviridae family and possesses a single-stranded positive-sense
68	RNA as a genome (1). Viral RNA is translated to a precursor polyprotein which is cleaved into 10 viral
69	proteins by host and viral proteases. Among the HCV proteins, core, E1 and E2 proteins form viral particles,
70	and non-structural (NS) 3, 4A, 4B, 5A and 5B proteins are responsible for HCV RNA replication. NS2 protein
71	cleaves the junction between NS2 and NS3, and p7 has been shown to exhibit ion channel activity (1). HCV
72	infection leads to chronic infection and eventually induces steatosis, cirrhosis and hepatocellular carcinoma (2).
73	HCV core protein localizes with many cellular components, such as nucleus, endoplasmic reticulum (ER),
74	lipid droplets (LDs), lipid rafts and mitochondria (3-7). On the other hand, HCV infection epidemiologically
75	correlates with extra-hepatic manifestations (EHMs) such as type 2 diabetes, mixed cryoglobulinemia and
76	non-Hodgkin lymphoma (8). Liver-specific HCV core transgenic (CoreTG) mice develop insulin resistance,
77	steatosis and hepatocellular carcinoma (9, 10), suggesting that HCV core protein plays a role in liver diseases
78	and EHMs.

79	Efficient propagation of HCV requires several cellular factors, such as miR-122, a liver-specific microRNA
80	that binds to two sites of HCV RNA to facilitate HCV replication (11, 12), and protein complexes of molecular
81	chaperones and co-chaperones such as heat shock proteins, cyclophilin A, FK506-binding protein (FKBP) 8
82	and FKBP6 (13-15). In addition, phosphatidylinositol-4-kinase alpha/beta-mediated
83	phosphatidylinositol-4-phosphate is required to construct appropriate membrane structure for HCV replication
84	(16-18), and components of lipoproteins such as apolipoprotein (APO) E and APOB play important roles in
85	the maturation of HCV particles (19-21). Lipid rafts, LDs and their associated proteins are also involved in
86	HCV replication (22-24). Therefore, HCV utilizes various cellular organelles and host factors to facilitate an
87	efficient propagation.
88	Ubiquitination is a post-translational modification that regulates cellular homeostasis. The HCV core
89	protein was reported to be ubiquitinated by E6-associated protein (E6AP) to suppress viral particle formation
90	(25). Blockage of the cleavage of core protein by signal peptide peptidase (SPP) has been shown to induce
91	ubiquitination of core protein by translocation in renal carcinoma on chromosome 8 (TRC8) to suppress
92	induction of ER stress in culture cells (26). Zinc mesoporphyrin (ZnMP) has been reported to induce
93	degradation of NA5A via ubiquitination (27). It was also reported that interferon-stimulated gene (ISG)-12a
94	(ISG12) induced by HCV infection ubiquitinates and degrades NS5A by S-phase kinase-associated protein 2
95	(SKP2) (28). NS5B was shown to interact with human homolog 1 of protein linking integrin-associated
96	protein and cytoskeleton (hPLICs) to promote proteasomal degradation (29). In addition, HCV infection has
97	been shown to induce ubiquitination of Parkin to promote mitophagy (30, 31) and regulate the ubiquitination

98	of retinoic acid-inducible gene-I (RIG-I) through the ISG15/PKR pathway (32). These data suggest that
99	ubiquitination participates in various steps of the HCV lifecycle.
100	In this study, we found that treatment with an inhibitor of de-ubiquitinating enzymes (DUBs) or
101	overexpression of non-specific DUBs impaired HCV replication, suggesting that ubiquitination is important
102	for HCV propagation. An RNAi-mediated screening targeting DUB genes identified ubiquitin-specific
103	protease 15 (USP15) as a novel host factor that participates in HCV replication. Translation of HCV RNA was
104	significantly impaired in USP15-deficient Huh7 cells (USP15KOHuh7). Deficiency of USP15 in hepatic but
105	not in non-hepatic cell lines significantly reduced the propagation of HCV. Unlike in previous reports, we
106	found that USP15 was not involved in RIG-I-mediated innate immune responses in vitro and in vivo. In
107	addition, we found that the expression of sterol regulatory element-binding protein (SREBP)-1c, a master
108	regulator of fatty acid synthesis and LDs, was suppressed in USP15KOHuh7 cells. USP15 was localized on
109	LDs, and the addition of fatty acids restored the production of infectious HCV particles in USP15KOHuh7
110	cells. Taken together, these data suggest that USP15 is a crucial host factor for HCV propagation in hepatic
111	cells through the regulation of viral RNA translation and lipid metabolism.
112	
113	Results

114 Ubiquitination is required for HCV propagation.

To examine the importance of ubiquitination during HCV replication, HCV replicon cells were treated with
 PR-619, a non-specific DUB inhibitor. Intracellular HCV RNA was significantly reduced by the treatment
 with PR-619 without obvious cytotoxicity (Fig. 1A), suggesting that inhibition of DUBs impaired HCV

118	replication. OTUD7B, OTUB1 and OTUD1 are DUBs which specifically cleave the K11-, K48- and
119	K63-linked ubiquitin chains from non-specific target proteins, respectively (33-35). Immunofluorescence
120	microscopic observation of Huh7 cells overexpressing OTUD7B, OTUB1 and OTUD1 revealed the
121	cytoplasmic localization of these DUBs, which suggested that all DUBs cleave ubiquitin chains of the target
122	proteins in the cytoplasm (Fig. 1B and 1C). To examine which types of ubiquitination are involved in HCV
123	replication, Huh7 cells overexpressing DUBs were infected with HCV. Overexpression of all DUBs in Huh7
124	cells impaired HCV propagation (Fig. 1D), suggesting that the K11-, K48- and K63-linked of ubiquitination
125	are required for HCV propagation.
126	RNAi screening to determine DUBs involved in HCV propagation.
127	Because treatment with a DUB inhibitor and overexpression of non-specific DUBs suppressed HCV
128	replication, we next tried to identify specific DUBs involved in HCV replication by RNAi-based screening
129	(Fig. 2A). The family of DUBs consists of approximately 100 genes. We established 61 stable Huh7.5.1 cell
130	lines, each of which expressed an shRNA against one of the DUBs (Fig. 2A, Step 1) and selected 30 of the cell
131	lines that exhibited an at least 40% reduction of DUBs expression (Fig. 2A, Step 2). We then inoculated HCV
132	into the 30 cell lines and quantified the intracellular HCV RNA levels after 4 days (Fig. 2A, Step 3). We found
133	that the cell lines harboring an shRNA against USP15 exhibited the most efficient reduction of HCV RNA in
134	our screening (Fig. 2B). Next, we confirmed that USP15 expression was reduced in Huh7.5.1 cells expressing
135	shRNA to USP15 (shUSP15) compared in Huh7.5.1 cells expressing control shRNA to LacZ (shLacZ) (Fig.
136	2C). In addition, the level of intracellular HCV RNA in Huh7.5.1 cells expressing shUSP15 upon infection

- with HCV was significantly lower than that in the Huh7.5.1 cells expressing shLacZ (Fig. 2D). These data
- suggest that USP15 is involved in the propagation of HCV.
- 139 **Deficiency of USP15 impairs HCV propagation.**

140	To further confirm the effect of USP15 on HCV propagation, we established two USP15-knockout Huh7 cell
141	lines (USP15KOHuh7 #8 and #22; Fig. 3A) using the CRISPR/Cas9 system. The cell growth (Fig. 3B) and
142	expression of miR-122, a determinant of HCV propagation in hepatocytes (Fig. 3C), of the USP15KOHuh7
143	cell lines were comparable to those of parental Huh7 cells. To evaluate the effect of USP15 deficiency on
144	HCV propagation, Huh7 and USP15KOHuh7 cells were infected with HCV. Intracellular HCV RNA (Fig.
145	3D), an infectious titer in the culture supernatants (Fig. 3E) and the ratio of extra- and intracellular HCV RNA
146	(Fig. 3F) at 4 days post-infection were decreased in USP15KOHuh7 cells. Exogenous expression of USP15 in
147	USP15KOHuh7 cells restored the production of infectious HCV particles (Fig. 3G, H). These data suggest that
148	USP15 is involved in HCV propagation. In addition, Huh7 and USP15KOHuh7 cells were transfected with an
149	HCV subgenomic replicon RNA by electroporation, and colony formation was determined. Deficiency of
150	USP15 decreased the numbers of colonies compared to those in Huh7 cells (Fig. 3I). To further examine the
151	roles of USP15 in translation of HCV RNA, in vitro transcribed HCV subgenomic RNA possessing mutation
152	in the active sites of RNA-dependent RNA polymerase of NS5B and a secreted form of NanoLuc (NLuc) as a
153	reporter (pSGR-NLuc-JFH1GND) was transduced into Huh7 and USP15KOHuh7 cells by electroporation.
154	NLuc activities were significantly suppressed in the USP15KOHuh7 cell lines (#8 and #22) compared with
155	those in parental Huh7 cells (Fig. 3J). On the other hand, the activity of cap-dependent translation exhibited no
156	significant difference between Huh7 and USP15KOHuh7 cells (Fig. 3K). Collectively, these results suggest

- that USP15 participates in HCV propagation through at least two distinct pathways, production of infectious
- 158 particles and translation of viral RNA.

159	USP15 supports HCV propagation in a hepatocyte-specific manner.
160	Not only Huh7 cells but also Hep3B cells expressing miR-122 (Hep3B/miR-122), HepG2 cells expressing
161	CD81 (HepG2/CD81) and 293T cells expressing miR-122, Claudin 1 (CLDN1) and APOE
162	(293T/miR-122/CLDN1/APOE) have been shown to permit HCV propagation (36-38). To examine the
163	effects of USP15 on HCV propagation in these cell lines, we established USP15KO cell lines in
164	Hep3B/miR122 and 293T/miR-122/CLDN1/APOE cells (Fig. 4A and 4B). We could not obtain
165	USP15-knockout HepG2/CD81 cells (data not shown). USP15KO and parental Hep3B/miR-122 cells were
166	infected with HCV and intracellular HCV RNA was determined at 4 h and 4 days post-infection. Although
167	intracellular HCV RNA levels were comparable in USP15KO and parental Hep3B/miR-122 cells at 4 h
168	post-infection, they were significantly reduced in USP15KO cells at 4 days post-infection (Fig. 4C). Infectious
169	titers in the culture supernatant at 4 days post-infection were also reduced in USP15KO cells (Fig. 4E). In
170	contrast, intracellular HCV RNA in USP15KO and parental 293T/miR-122/CLDN1/APOE cells at 12 h and 2
171	days post-infection (Fig. 4D) and infectious titers in the culture supernatant at 2 days post-infection (Fig. 4F)
172	were comparable. To examine the effect of USP15 in 293T cells on translation of viral RNA, subgenomic
173	HCV RNA of SGR-Nluc-JFH1GND was electroporated into USP15KO and parental 293T cells expressing
174	miR-122. Although the expression of miR-122 in parental 293T cells significantly enhanced the translation
175	efficiency of HCV RNA, Nluc activities were comparable among USP15KO and parental 293T cells

- expressing miR-122 (Fig. 4G), suggesting that USP15 participates in HCV propagation in an
- miR-122-independent and hepatocyte-specific manner.
- 178 USP15 is not involved in innate immune responses.

USP15 has been reported as a DUB targeting tripartite motif-containing protein 25 (TRIM25) and positively

- regulated RIG-I-mediated innate immune responses (39). TRIM25 has been shown to conjugate the
- 181 K63-linked ubiquitin chains to RIG-I to facilitate downstream signaling pathways (39). USP15 has reported to
- remove the K48-linked ubiquitin chains of TRIM25 mediated by the linear ubiquitin assembly complex
- 183 (LUBAC) to protect TRIM25 from proteasomal degradation (39). On the other hand, USP15 has been shown
- to target RIG-I and to remove the K63-linked ubiquitin chains from RIG-I (40). RIG-I senses viral RNAs such
- as Japanese encephalitis virus (JEV) and vascular stomatitis virus (VSV) and activates downstream molecules
- to activate innate immune responses (41). In contrast, encephalomyocarditis virus (EMCV) is recognized by
- melanoma differentiation-associated gene 5 (MDA5) rather than RIG-I (41). To investigate the involvement of
- USP15 in RNA virus infection, parental and USP15KOHuh7 cells were infected with JEV, VSV and EMCV.
- Although intracellular JEV RNA levels were comparable between parental and USP15KO cells (Fig. 5A),
- ¹⁹⁰ infectious titers in the culture supernatants at 2 days post-infection were slightly decreased in USP15KO cells
- 191 (Fig. 5B). In contrast, viral titers of VSV and EMCV were comparable between parental and USP15KO cells
- (Fig. 5C and 5D). These data suggest that USP15 plays a small role in the propagation of JEV but is not
- involved in the propagation of VSV and EMCV.
- To further assess the involvement of USP15 in RIG-I-mediated antiviral effects *in vivo*, we generated
 USP15^{-/-} mice possessing deletion of 223 base pairs in the *Usp15* genomic locus by using the CRISPR/Cas9

196	system (Fig. 6A). The USP15 ^{-/-} mice were fertile and visually normal as reported previously (42). We
197	intranasally challenged the USP15 ^{-/-} , USP15 ^{+/+} and IFN $\alpha/\beta R^{-/-}$ mice with a lethal dose of VSV and monitored
198	the survival rates and body weights. Deficiency of USP15 had no significant effect on the survival of mice
199	against VSV infection, while IFN $\alpha/\beta R^{-/-}$ mice showed high sensitivity to VSV challenge (Fig. 6B) and the
200	change of body weight was comparable between USP15 ^{+/+} and USP15 ^{-/-} mice (Fig. 6C), suggesting that
201	USP15 does not participate in survival after VSV challenge. In addition, mouse embryonic fibroblasts (MEFs)
202	prepared from USP15 ^{+/+} and USP15 ^{-/-} mice were infected with VSV and induction of ISGs was monitored.
203	The inductions of Ifna, Cxcl10 and Il6 were comparable between the two MEFs (Fig. 6E to 6G). These results
204	suggest that innate immune responses do not participate in the USP15-mediated enhancement of HCV
205	propagation.
206	USP15 participates in lipid metabolism to facilitate HCV propagation.
206 207	USP15 participates in lipid metabolism to facilitate HCV propagation. Due to a lack of information about the function of USP15 in hepatocytes, we investigated the roles of USP15
207	Due to a lack of information about the function of USP15 in hepatocytes, we investigated the roles of USP15
207 208	Due to a lack of information about the function of USP15 in hepatocytes, we investigated the roles of USP15 during HCV infection. First, we investigated the possibility that USP15 interacts with viral proteins.
207 208 209	Due to a lack of information about the function of USP15 in hepatocytes, we investigated the roles of USP15 during HCV infection. First, we investigated the possibility that USP15 interacts with viral proteins. Immunoprecipitation analysis revealed no interaction of USP15 with viral proteins (Fig. 7A). Confocal
207 208 209 210	Due to a lack of information about the function of USP15 in hepatocytes, we investigated the roles of USP15 during HCV infection. First, we investigated the possibility that USP15 interacts with viral proteins. Immunoprecipitation analysis revealed no interaction of USP15 with viral proteins (Fig. 7A). Confocal microscopic observation showed that USP15 co-localized with LDs (Fig. 7B). Previous reports suggest that
207 208 209 210 211	Due to a lack of information about the function of USP15 in hepatocytes, we investigated the roles of USP15 during HCV infection. First, we investigated the possibility that USP15 interacts with viral proteins. Immunoprecipitation analysis revealed no interaction of USP15 with viral proteins (Fig. 7A). Confocal microscopic observation showed that USP15 co-localized with LDs (Fig. 7B). Previous reports suggest that LDs and lipid metabolism are important for HCV replication and infectious particle formation (19, 24, 43).
207 208 209 210 211 212	Due to a lack of information about the function of USP15 in hepatocytes, we investigated the roles of USP15 during HCV infection. First, we investigated the possibility that USP15 interacts with viral proteins. Immunoprecipitation analysis revealed no interaction of USP15 with viral proteins (Fig. 7A). Confocal microscopic observation showed that USP15 co-localized with LDs (Fig. 7B). Previous reports suggest that LDs and lipid metabolism are important for HCV replication and infectious particle formation (19, 24, 43). Therefore, we investigated the roles of USP15 on formation of LDs. LDs in parental and USP15KOHuh7 cells

216	of ADRP was significantly impaired in the USP15KOHuh7 cell lines (Fig. 7E). LDs consist of neutral lipids
217	such as cholesterol esters and triglycerides (TGs) and function as storage sites for fatty acids (45). SREBP-1c
218	and SREBP-2 are master transcriptional factors that regulate fatty acid synthesis and cholesterol synthesis,
219	respectively (46, 47). Next, we examined the expression of these transcriptional factors in USP15KOHuh7
220	cells. Expression of SREBP-1c but not SREBP-2 was significantly reduced in USP15KOHuh7 cells (Fig. 7F
221	and 7G), suggesting that reduction of fatty acids production participates in the suppression of HCV
222	propagation in USP15KOHuh7 cells. To verify this possibility, palmitic acid (PA) and oleic acid (OA) were
223	added to the culture media in parental and USP15KOHuh7 cells, and intracellular HCV RNA was determined
224	at 4 days post-infection with HCV. Although intracellular HCV RNA levels in both parental and
225	USP15KOHuh7 cells exhibited no significant change by the addition of fatty acids (Fig. 7H and 7I), infectious
226	titers in the culture supernatants of USP15KO but not those of parental Huh7 cells were significantly enhanced
227	by the addition of PA, but not of OA (Fig. 7J and 7K). Taken together, these results suggest that USP15
228	participates in the regulation of lipid metabolism and facilitates production of infectious HCV particles.
229	
230	Discussion
231	In this study, we identified USP15 as a novel host factor for HCV propagation. This is the first report to
232	identify a specific DUB involved in HCV propagation. Our data suggest that USP15 participates in at least two
233	steps in the HCV life cycle: translation of viral RNA and production of infectious particles. HCV RNA is

- translated to viral proteins through the internal ribosomal entry site (IRES) (48). Deficiency of USP15
- significantly impaired the translation of viral RNA specific to HCV-IRES. In addition, lack of USP15 showed

236	no effect on HCV propagation in non-hepatic cells such as 293T cells, suggesting that USP15 targets
237	hepatocyte-specific factors to regulate translation of HCV RNA. Liver-specific miR-122 binds to the two sites
238	of HCV RNA to facilitate HCV replication (11, 49) and many reports suggest that binding of miR-122 to
239	HCV RNA promotes translation of HCV RNA (50, 51). Because DUB is unlikely to directly interact with
240	miR-122, USP15 may interact with components of the miR-122/AGO2 complex. Although activity of HCV
241	IRES-mediated RNA translation was significantly enhanced by the expression of miR-122 as previously
242	reported, deficiency of USP15 did not affect the enhancement of HCV IRES-mediated translation by the
243	expression of miR-122 (Fig 4G), suggesting that USP15 participates in HCV IRES-mediated translation
244	through an miR-122 independent pathway. Various host factors, such as heterogeneous nuclear
245	ribonucleoprotein L (hnRNP L), nuclear factor (NF) 90, NF45, poly-C binding protein 2 (PCBP2), and
246	insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), have been shown to participate in
247	IRES-mediated translation and replication of HCV through the interaction between 5'- and 3'-UTR of HCV
248	(52-55). Further studies are needed to understand the roles of USP15 in HCV RNA translation through the
249	interaction with these host factors.
250	LDs are cellular organelles for the storage of TGs and have a single membrane (56). Once cells require
251	energy, stored TGs undergo hydrolysis to produce fatty acids through the activation of lipolytic pathways. A
252	number of LD-associated proteins have been identified. The perilipin family-which includes perilipin, ADRP,
253	tail-interacting protein of 47 kilodaltons (TIP47), and S3-12 and myocardial lipid droplet protein
254	(MLDP)/oxidative tissues-enriched PAT protein (OXPAT)/lipid storage droplet protein 5 (LSDP5)-are
255	major regulators of LD homeostasis (57, 58). Among them, HCV NS5A interacts with TIP47 to facilitate

256	HCV replication (59). In addition, HCV core protein has been shown to displace ADRP from the LD surface
257	(60) and to contribute to efficient virus assembly through interaction with LDs (61). In this study, we showed
258	that USP15 co-localizes with LDs in Huh7 cells without any interaction with HCV proteins, suggesting that
259	USP15 interacts with LD-associated proteins to regulate LD formation and is involved in viral assembly. We
260	showed that lack of USP15 reduces the amounts of LDs in Huh7 cells. It is known that non-hepatic cells such
261	as 293T cells possess small amounts of LDs, and in 293T cells LDs and LD-related fatty acids are not involved
262	in the propagation of HCV. This might be one of the reasons that HCV propagation in USP15KO293T cells is
263	comparable to that in parental cells. We also showed that expression of SREBP-1c was impaired in
264	USP15KOHuh7 cells. It was demonstrated that HCV core protein enhances the binding of liver X receptor α
265	(LXR α) and retinoid X receptor α (RXR α) to LXR-response element during HCV infection (62, 63). These
266	reports indicate that HCV core protein plays crucial roles in the modulation of lipid metabolism during HCV
267	infection. However, immunoprecipitation analyses showed that USP15 does not interact with HCV core
268	protein, suggesting that USP15 regulates lipid metabolism independent of the interaction with HCV core
269	protein.
270	USP15 is expressed in various tissues and has been shown to be involved in various cellular events. USP15
271	targets receptor-activated SMADs (R-SMADs) to regulate TGF- β signaling (64). In addition, USP15 interacts
272	with SMAD7 and SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) and de-ubiquitinates type I TGF- β
273	receptor (65). USP15 has been reported to de-ubiquitinate Kelch-like ECH-associated protein 1 (Keap1),
274	which regulates NF-E2-related factor (Nrf) 2-dependent antioxidant responses (66), murine double minute 2
275	(MDM2) (42), histone H2B (H2B) (67), Nrf1 (68) and p62 (69). USP15 is also suggested to cleave ubiquitin

276	chains of viral proteins such as Nef of HIV-1 (70), HBx of HBV (71) and E6 protein of human papillomavirus
277	(72). These reports indicate that USP15 participates in the development of many types of cancers, cellular
278	homeostasis and virus infection. However, the substrates and function of USP15 in hepatocytes have not been
279	clarified. We showed that the birth of USP15 ^{-/-} mice followed Mendelian ratios, and the mouse pups developed
280	normally and exhibited no obvious abnormalities, as reported previously (42). The phenotypes of USP15 ^{-/-}
281	mice and our data suggest that there are unknown substrates of USP15 which regulate lipid metabolism.
282	Recently, USP15 has been shown to be a DUB for TRIM25 (39) and RIG-I (40) and to be involved in type I
283	IFN response in cells infected with RNA viruses. Upon infection of HCV, viral RNA is sensed by RIG-I and
284	type I IFN and ISG are induced (73). We examined the involvement of USP15 in innate immune responses
285	and propagation of various RNA viruses and revealed that USP15 does not participate in either the survival of
286	mice or innate immune responses in MEFs. These data suggest that USP15 is dispensable for the induction of
287	innate immune responses upon infection with RNA viruses. Further characterization of USP15 ^{-/-} mice is
288	needed in order to elucidate the physiological function of USP15, especially in hepatocytes.
289	Fatty acids have been shown to support HCV replication in replicon cells (74, 75). On the other hand,
290	several recent papers showed that fatty acids inhibit HCV replication (74, 76-78). In the present study, we
291	found that deficiency of USP15 in Huh7 cells reduced the size and number of LDs, and addition of PA-but
292	not of OA-partially restored the production of infectious HCV particles. We do not have any data indicating
293	why OA did not support the production of infectious HCV. However, our data do suggest that PA and its
294	metabolites support the production of infectious HCV particles. On the other hand, we could not observe the
295	enhancement of HCV particle production by the treatment with PA in naive Huh7 cells due to the abundance

296	of LDs. Taken together	, our data suggest that	USP15 mainly	contributes to replicat	ion of HCV RNA and
-----	------------------------	-------------------------	--------------	-------------------------	--------------------

297 partially supports HCV assembly.

298	In summary, we identified USP15 as a novel host protein involved in HCV propagation. USP15
299	participates in HCV translation and plays a role in the production of infectious particles. Our data suggest that
300	USP15 participates in the formation of LDs through the regulation of hepatic lipid metabolism to facilitate
301	HCV propagation. Because USP15 possesses the enzymatic activity of de-ubiquitinatinase, and thus removes
302	ubiquitin from substrates, in a future study it would be of interest to identify the substrates of USP15 in
303	hepatocytes. The hepatocyte-specific substrates of USP15 that are crucial for HCV propagation might be novel
304	drug targets for chronic hepatitis C.
305	
306	Materials and Methods
307	Cell lines and viruses. Huh7, Huh7.5.1, Hep3B/miR122, Vero, 293T, Plat-E and BHK-21 cells were obtained
308	from the National Institute of Infectious Diseases and were cultured in Dulbecco's Modified Eagle's medium
309	(DMEM) supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin and 10 μ g/ml streptomycin.
310	HCV replicon cells (9-13) (79) were maintained in DMEM supplemented with 10% FBS, 1 mg/ml G418, 100
311	U/ml penicillin and 10 μ g/ml streptomycin. HCV derived from the genotype 2a JFH-1 strain mutated in E2, p7
312	and NS2 was prepared by serial passages in Huh7.5.1 cells as mentioned previously (80). JEV (AT31 strain)
313	was propagated in C6/36 cells. VSV and EMCV were propagated in BHK-21 cells.
314	Antibodies and reagents. The following antibodies were used: anti-JEV NS3 monoclonal antibody (#578)
315	(81), anti-HCV NS5A monoclonal antibody (5A27) (82), anti-ACTIN mouse monoclonal antibody (A2228,

316	Sigma-Aldrich), horseradish peroxidase-conjugated anti-FLAG mouse monoclonal antibody (A8592,
317	Sigma-Aldrich), anti-USP15 monoclonal antibody (ab56900, abcam), anti-FLAG mouse monoclonal antibody
318	(F1804, Sigma-Aldrich), anti-HA monoclonal antibody (clone 16B12, MMS-101P, Biolegend) and
319	anti-Glu-Glu antibody (MMS-115P, Biolegend). Oleic acid (O1008) and Palmitic acid (P0500) were obtained
320	from Sigma-Aldrich. PR-619 (SI9619) was purchased from Lifesensor. HCS LipidTOX TM Red neutral lipid
321	stain was obtained from Thermo Fisher Scientific.
322	Plasmids. The shRNAs against each DUB were obtained from the Human shRNA library (Takara Bio). The
323	pRSV-Rev (#12253), pMDLg/pRRE (#12251), pCMV-VSV-G (#8454), pX330 (#42230), and pCAG
324	EGxxFP (#50716) were obtained from Addgene. Reporter plasmid, pGL3-Basic SREBP1c and pRL-TK were
325	previously used (62). Lentiviral vectors expressing miR-122, APOE and Claudin 1 (CLDN1) were also used
326	as described previously (19). The cDNAs of USP15, OTUB1, OTUD1 and OTUD7B obtained from Dr.
327	Wade Harper (Addgene; #22570, #22551, #22553 and #22550) were amplified by PCR and cloned into pEF
328	FLAG pGK puro (83) or FUIPW (26) by using an In-Fusion HD cloning kit (Takara Bio). HCV core, NS2,
329	NS3, NS4B, NS5A and NS5B were amplified by PCR and cloned into pCAGGS (84). The sgRNAs of human
330	USP15 (5'-CACCGCGACTATCGACTAGGTACC-3') and mouse USP15
331	(5'-CACCGGTGTCCCCTTTCCGGAGCG-3') were cloned into pX330 by Ligation high Ver. 2 (Toyobo).
332	Genomic DNAs of Huh7 cells or mouse tails were extracted by DirectPCR Lysis Reagents (Viagen Biotech),
333	and amplified by PCR using the following primers sets: human USP15 (forward,
334	5'-CAACCACTGAGGATCCGCTCCCGGTGTCTTTTGGTTTCGA-3'; reverse, 5'-
335	TGCCGATATCGAATTCCCTATCATTCGGGAAGGCCTGAGGT-3') and mouse USP15 (forward,

336 5'-CAACCACTGAGGATCCATTTGGTACAGACCTGCCGG-3'; rev

337	5'-TGCCGATATCGAATTCTCGGAATAATGGGGAACTTGGG-3'). They were then cloned into pCAG
338	EGxxFP by using an In-Fusion HD cloning kit. The pSGR-JFH1 was mutated in the GDD motif of NS5B to
339	GND to generate an inactive form of RNA-dependent RNA polymerase. In addition, the cDNA of NanoLuc
340	was replaced with the neo gene to generate pSGR-NLuc-JFH1GND. The cDNA of firefly luciferase (FLuc)
341	was amplified and cloned into pCMVTNT vector (Promega) designed as pCMVTNT Fluc. All plasmids used
342	in this study were confirmed by sequencing with an ABI Prism 3130 genetic analyzer (Thermo Fisher
343	Scientific).
344	RNAi screening. Retroviruses expressing shRNAs against human DUBs were generated in Plat-E cells.
345	Briefly, Plat-E cells (2 × 10 ⁶ cells) were seeded on a 10 cm dish and incubated at 37°C for 24 h. 5 μ g of
346	retroviral transfer vector and 1 μ g of pCMV-VSV-G were mixed with 500 μ l of Opti-MEM and 40 μ l of
347	polyethylenimine (1 mg/ml; Polysciences) and incubated for 15 min. The DNA complex was inoculated into
348	Plat-E cells, and the culture medium was changed at 4 h post-transfection. The culture supernatants were
349	collected at 3 days post-transfection. Huh7.5.1 cells (2×10^5 cells per well) were seeded on six-well plates and
350	were incubated for 24 h. The virus-containing culture supernatants (2 ml) and 8 μ l of Polybrene (4 mg/ml;
351	Sigma-Aldrich) were inoculated into Huh7.5.1 cells and centrifuged at $1,220 \times g$ for 45 min at 32 °C. Stable
352	cell lines were selected by puromycin at 2 days post-infection. To determine the efficiency of RNAi, the
353	expression of each DUB was analyzed by using real-time PCR (qPCR) as described below. Huh7.5.1 cells
354	expressing shRNA were seeded on 24-well plates (3×10^4 cells per well), incubated for 24 h and inoculated

355	with HCV at a multiplicity of infection (moi) of 0.5. After 2 h, the culture medium was changed and the
356	infected cells were incubated for 4 days. Intracellular HCV RNA was quantified by qPCR.
357	qRT-PCR. Total RNA was extracted by using ISOGEN II (Nippon Gene). Real-time PCR for HCV or JEV
358	RNA was performed by using a TaqMan RNA-to-Ct 1-Step Kit and a ViiA7 real-time PCR system
359	(ThermoFisher Scientific). The following primers were used: HCV, 5'-GAGTGTCGTGCAGCCTCCA-3'
360	and 5'-CACTCGCAAGCACCCTATCA-3'; JEV, 5'-GGGTCAAAGTCATTTCTGGTCCATA-3' and
361	5'-TCCACGCTGCTCGAA-3'; GAPDH, 5'-TGTAGTTGAGGTCAATGAAGGG-3' and 5'-
362	ACATCGCTCAGACACCATG-3'. The following probes were used: HCV, 5'-6-FAM/
363	CTGCGGAAC/ZEN/CGGTGAGTACAC/-3'IABkFQ; JEV,
364	5'-6-FAM/ATGACCTCG/ZEN/CTCTCCC/-3'IABkFQ; GAPDH, 5'-6-FAM/AAGGTCGG-
365	A/ZEN/GTCAACGGATTTGGTC/-3'IABkFQ. Relative amounts of HCV or JEV RNA were determined by
366	the $\Delta\Delta$ Ct method using GAPDH as an internal control. For gene expression analysis, qPCR was performed by
367	using a Power SYBR Green RNA-to Ct 1-step Kit (Thermo Fisher Scientific). The primers used in this study
368	are summarized in Table 1.
369	Cell viability assay. Huh7 (9-13) cells were seeded on 24-well plates (5×10^4 cells per well) and incubated at
370	37° C for 24 h. PR-619 (0.5 μ M) was added and the cells were incubated for an additional 24 h. Supernatants
371	containing cells and adherent cells were collected and stained with 5 μ g/ml of propidium iodide (PI, P4170;
372	Sigma-Aldrich). Cell viability was determined by flow cytometry analyses (BD) using FlowJo software
373	(FlowJo).

374	Generation of USP15-knockout Huh7, Hep3B and 293T cells. Gene-knockout Huh7, Hep3B/miR122 and
375	293T cells were generated by using the CRISPR/Cas9 system as previously described (85). Briefly, cells were
376	transfected with pX330 and pCAG EGxxFP and incubated for 1 week. GFP-positive cells were sorted by
377	FACS and formed single colonies. Gene deficiency was confirmed by sequencing and western blotting.
378	In vitro transcription, RNA transfection and colony formation. The plasmid pSGR-JFH1 was linearized
379	with XbaI and transcribed in vitro by using a MEGAscript T7 kit (ThermoFisher Scientific) according to the
380	manufacturer's protocol. The pCMVTNT Fluc was linearized with BamHI and transcribed in vitro by using an
381	mMESSAGE mMACHINE T7 ULTRA Transcription Kit (ThermoFisher Scientific) according to the
382	manufacturer's protocol. The <i>in vitro</i> transcribed RNA (10 μ g) was electroporated into Huh7 cells (5 × 10 ⁶
383	cells) under conditions of 270 V and 950 μF using a Gene Pulser apparatus (Bio-Rad). For the transient
384	experiments, cells were added into 10 ml of culture medium and plated on 12-well plates. For long-term
385	colony formation, electroporated cells were plated in DMEM containing 10% FBS. The medium was replaced
386	with fresh DMEM containing 10% FBS and 1 mg/ml G418 at 24 h post-electroporation. Colonies were
387	visualized by staining with Giemsa (Merck) at 3 weeks post-electroporation.
388	Immunofluorescence staining. Huh7 cells were fixed with 4% paraformaldehyde in phosphate-buffered
389	saline (PBS) for 2 h. Cells were washed by PBS and permeabilized by 0.2% TritonX-100 in PBS for 15 min.
390	After washing with PBS, the fixed cells were incubated with anti-NS5A mouse monoclonal antibody or
391	anti-USP15 mouse monoclonal antibody at room temperature for 1 h. After washing, cells were incubated with
392	Alexa Fluor (AF) 488-conjugated anti-mouse antibody and HCS LipidTOX TM Red neutral lipid stain diluted
393	by 2% FBS in PBS at room temperature for 1 h. The stained cells were covered with Prolong Gold AntiFade

Reagent with DAPI (Thermo Fisher Scientific) and observed by FluoView FV1000 confocal microscopy
 (Olympus).

396	Immunoprecipitation and immunoblotting. Cells were lysed with lysis buffer consisting of 20 mM
397	Tris-HCl (pH 7.4), 135 mM NaCl, 1% Triton X-100, 1% glycerol, and protease inhibitor cocktail tablets
398	(Roche), incubated for 30 min at 4°C, and subjected to centrifugation at 14,000 g for 15 min at 4°C. The
399	supernatants were boiled at 95°C for 5 min and then incubated with anti-FLAG, HA or Glu-Glu antibodies at
400	4°C for 90 min. After incubation with protein G-Sepharose 4B (GE Healthcare) at 4°C for 90 min, the beads
401	were washed five times by lysis buffer and boiled at 95°C for 5 min. The proteins were resolved by
402	SDS-PAGE (Novex gels; Invitrogen), transferred onto nitrocellulose membranes (iBlot; Life Technologies),
403	blocked with PBS containing 0.05% Tween 20 and 5% skim milk, incubated with primary antibody at 4°C for
404	12 h, and then incubated with horseradish peroxidase (HRP)-conjugated secondary antibody at room
405	temperature for 1 h. The immune complexes were visualized with Super Signal West Femto substrate (Pierce)
406	and detected by an LAS-3000 image analyzer system (Fujifilm).
407	Virus titration. Viral titers of HCV and JEV were determined by a focus forming assay as described
408	previously (26). Viral titers of VSV and EMCV were quantified by a plaque forming assay using BHK-21
409	cells.
410	Generation of USP15 ^{-/-} mice. USP15 ^{-/-} mice were generated as previously described using a C57BL/6N
411	genetic background (41). The pX330 containing an sgRNA against the mouse Usp15 gene was injected into
412	mouse zygotes and transplanted into pseudopregnant female mice. The obtained mice (F1) were crossed with

413	wild type mice and F2 mice and their DNA sequences were analyzed using the primers
414	5'-ATTTGGTACAGACCTGCCGG-3' (forward) and 5'-TCGGAATAATGGGGAACTTGGG-3' (reverse).
415	Ethics Statement. All animal experiments were approved by the Institutional Committee of Laboratory
416	Animal Experimentation (Research Institute for Microbial Diseases, Osaka University; project number:
417	H27-06-0).
418	VSV infection <i>in vivo</i> . USP15 ^{+/+} , USP15 ^{-/-} and IFNα/BR ^{-/-} mice (16-17 weeks old) were intranasally infected
419	with VSV (4 \times 10 ⁶ pfu). Their survivals and body weights were monitored.
420	Reporter assay. Huh7 cells, USP15KOHuh7 and USP15KOHuh7 cells expressing USP15 were transfected
421	with pGL3-Basic SREBP-1c and pRL-TK and incubated for 2 days. Luciferase activity was determined by
422	using a Dual-Luciferase Reporter Assay System (Promega).
423	Treatment with palmitic acid and Oleic acid. Palmitic acid (PA) and oleic acid (OA) were dissolved in
424	ethanol. Dissolved fatty acids were mixed with 10% fatty acid-free BSA (Sigma-Aldrich) to make a complex
425	of fatty acid and BSA. Huh7 or USP15KOHuh7 cells were infected with HCV and treated with PA or OA for
426	4 days.
427	Statistical analysis. All experiments were performed in triplicate with at least 3 independent experiments. All
428	data represent the means \pm SD of the independent experiments. The statistical analyses were performed using
429	GraphPad Prism (GraphPad Prism Software). Significant differences were determined using Student's t-test
430	and are indicated with asterisks (*P<0.05) and double asterisks (**P<0.01) in each figure. Significant
431	differences of in vivo survival data were determined using a log-rank test and are indicated with asterisks
432	(*P<0.05) and double asterisks (**P<0.01) in each figure.

434 Acknowledgements

- 435 The authors are grateful to M. Tomiyama for secretarial work, and M. Ishibashi for technical assistance. We
- 436 also thank D.C.S. Huang, R. Bartenschlager, F. Chisari, and T. Wakita for providing experimental materials.
- ⁴³⁷ The Core Instrumentation Facility of Osaka University conducted the FACS sorting.
- ⁴³⁸ This work was supported by the Program for Basic and Clinical Research on Hepatitis from the Japan Agency
- 439 for Medical Research and Development (AMED) (JP18fk0210006h0003, JP17fk0210305h0003,
- 440 JP18fk0210010h0003, JP18fk0210009h0503, JP17fk0210304h0003, JP18fk0210040h0001,
- and JP18fk0108036h0002), by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 442 of Japan (JP16H06432, JP16H06429, JP16K21723, JP15H04736, JP16K19139) and by the Research Program
- 443 on Emerging and Re-emerging Infectious Diseases (17fk0108109h0001).
- 444

445 Author contributions

- 446 T.O. and Y.M. designed the research; S.K., T.O. and Tatsuya Suzuki performed most of the experiments. Y.S.,
- 447 S.H., K.H., M.T., J.H., Z.H., D.V.C., H.I., P.D.N., Y.K., C.O. and T.F. assisted with the experiments; M.Y.
- provided the RNAi library; M.I. generated USP15^{-/-} mice; T.T., K.M., M.F., A.T. and Tetsuro Suzuki provided
- valuable materials; T. Satoh and S.A. provided IFN $\alpha/\beta R^{-/-}$ mice and assisted with the experiments; T.O. and
- 450 Y.M. obtained research grants and wrote the manuscript.
- 451
- 452 Figure legends

453 Figure 1. Ubiquitination is important for HCV replication.

454	(A) HCV replicon (9-13) cells were treated with PR-619, a non-selective DUB inhibitor, or DMSO for 24 h,
455	and cell viability and intracellular HCV RNA were determined by PI staining and qPCR, respectively. (B)
456	Expression of FLAG-tagged OTUD7B, OTUB1 and OTUD1 in Huh7 cells was detected by Western blotting
457	using anti-FLAG antibody. (C) Subcellular localization of OTUD7B, OTUB1 or OTUD1 overexpression in
458	Huh7 cells was observed by confocal microscopy. Each DUB (green) or nucleus (blue) was stained with
459	anti-FLAG antibody and DAPI, respectively. (D) HCV was infected into Huh7 cells expressing the indicated
460	DUBs at an moi of 3. After 4 days post-infection, the culture supernatants were collected and infectious HCV
461	titers in the culture supernatants were determined by a focus forming assay.
462	Figure 2. RNAi screening to identify specific DUBs involved in HCV propagation.
463	(A) A schematic representation of the experimental procedure for our RNAi screening is shown. Huh7.5.1
464	cells were infected with retroviruses expressing shRNA targeting DUBs (shDUBs). The expression of the
465	DUB gene was confirmed in each of the Huh7.5.1 cell lines expressing shDUBs. The shDUB Huh7.5.1 cell
466	lines that exhibited a more than 40% reduction in the expression of their specific DUB were selected for
467	further screening. DUB-knockdown Huh7.5.1 cells were infected with HCV at an moi of 0.5, and intracellular
468	HCV RNAs were quantified after 4 days. (B) The levels of intracellular HCV RNAs at 4 days post-infection
469	were determined by qPCR as a relative value against GAPDH mRNA in cells. Data are presented as the
470	relative values compared to those in Huh7.5.1 cells expressing shRNA against the LacZ gene. (C) The
471	expression of USP15 in Huh7.5.1 cells expressing shRNA targeting LacZ (shLacZ) or USP15 (shUSP15) was

quantified by qPCR. (D) Huh7.5.1 cells expressing shRNA targeting LacZ or USP15 were infected with HCV

472

at an moi of 0.5. The levels of intracellular HCV RNAs were determined by qPCR at the indicated time points. 473 Figure 3. Deficiency of USP15 impaired HCV propagation. 474 (A) USP15-deficient Huh7 (USP15KOHuh7) cells were generated using a CRISPR/Cas9 system. The 475 expression of USP15 was confirmed by immunoblotting. We successfully established two independent 476 USP15KOHuh7 clones. (B) WT and USP15KOHuh7 cells were seeded onto 24-well plates and incubated for 477 4 days. The cell growth of each cell line was analyzed by using an MTT assay kit (Nacalai Tesque, Kyoto, 478 Japan) according to the manufacturer's protocol. (C) The expression of miR-122 in WT and USP15KOHuh7 479 cells was quantified by qPCR. U6 RNA was used as the internal control. (D) HCV was infected into WT and 480 USP15KOHuh7 cells at an moi of 3. After 4 h or 4 days post-infection, intracellular HCV RNA was quantified 481 by qPCR using GAPDH mRNA as the internal control. (E) WT and USP15KOHuh7 cells were infected with 482 HCV at an moi of 3. After 4 days post-infection, infectious titers in the culture supernatants were determined 483 by focus-forming assay. (F) The WT and USP15KOHuh7 cells were infected with HCV at an moi of 3. After 484 4 days post-infection, extracellular and intracellular HCV RNAs were quantified by qPCR. The ratios between 485 intracellular and extracellular HCV RNA were calculated as HCV RNA rates. (G) USP15KOHuh7 cells were 486 transfected with a plasmid expressing FLAG-USP15, and USP15KOHuh7 cells expressing FLAG-USP15 487 cells were established. The expression of USP15 was confirmed by immunoblotting. (H) USP15KOHuh7, 488 those with restored USP15 and Huh7 cells were infected with HCV. After 4 days post-infection, infectious 489 titers in the culture supernatants were determined by focus-forming assay. (I) In vitro transcribed HCV 490 subgenomic replicon RNA (pSGR-JFH1) was electroporated into WT and USP15KOHuh7 cells, and the cells 491

492	were incubated for 3 weeks in the presence of 1 mg/mL of G418. Colonies were visualized by Giemsa staining.
493	(J) In vitro transcribed HCV subgenomic replicon RNA (pSGR-NLuc-JFH1GND) was electroporated into
494	WT and USP15KOHuh7 cells, and the activity of Nluc in culture supernatants was monitored. (K) In vitro
495	transcribed capped-Fluc RNA was electroporated into parental and USP15KO Huh7 cells and the activity of
496	Fluc in electroporated cells was monitored.
497	Figure 4. Cell-type-specific reduction of HCV propagation in USP15KO cells.
498	(A) USP15KOHep3B/miR122 cells were generated using the CRISPR/Cas9 system. The expression of
499	USP15 was confirmed by immunoblotting. (B) USP15KO293T cells were also generated using the
500	CRISPR/Cas9 system, and subjected to immunoblotting to confirm the USP15 expression. (C)
501	USP15KOHep3B/miR-122 and parental Hep3B/miR-122 cells were infected with HCV at an moi of 3. After
502	4 h or 4 days post-infection, intracellular HCV RNA was quantified by qPCR using GAPDH mRNA as the
503	internal control. (D) Parental and USP15KO 293T cells were lentivirally transduced with miR-122, CLDN1
504	and APOE, and then infected with HCV (moi=10) at 2 days post-transduction. After 12 h or 2 days
505	post-infection, intracellular HCV RNAs were quantified by qPCR. (E) Infectious titers of parental and
506	USP15KO Hep3B/miR-122 cells in the culture supernatants were determined by focus forming assay at 4 days
507	post-infection. (F) Infectious titers of parental and USP15KO 293T cells in the culture supernatants were
508	determined by focus forming assay at 2 days post-infection. (G) In vitro transcribed subgenomic HCV replicon
509	RNA (SGR-NLuc-JFH1GND) was electroporated into parental and USP15KO 293T cells expressing
510	miR-122, and the activity of Nluc in the culture supernatants was determined.

- 511 **Fig**
- Figure 5. USP15 is partially involved in propagation of JEV but not VSV or EMCV.

512	(A) WT or USP15KOHuh7 cells were infected with JEV at an moi of 3. Intracellular JEV RNA was
513	quantified by qPCR at each time point. (B) WT or USP15KOHuh7 cells were injected with JEV at an moi of 3
514	and incubated for 2 days. Infectious JEV titers in the culture supernatants were determined by focus forming
515	assay. (C) WT and USP15KOHuh7 cells were infected with VSV at an moi of 3. Infectious VSV titers in the
516	culture supernatants were determined by plaque forming assay at the indicated time points. (D) WT and
517	USP15KOHuh7 cells were infected with EMCV at an moi of 1. Infectious EMCV titers in the culture
518	supernatants were determined by plaque forming assay at the indicated time points.
519	Figure 6. USP15 is not involved in innate immune responses <i>in vivo</i> .
520	(A) Generation of USP15 ^{-/-} mice. Small letters indicate parts of introns and capital letters indicate exon 1. The
521	red color sequence is the open reading frame of exon 1 of USP15. Sequences of the guide RNA targeting
522	USP15 are underlined. USP15 ^{-/-} mice possessed the 223-nucleotide deletion shown in bold. (B, C) USP15 ^{+/+}
523	(N=10), USP15 ^{-/-} (N=6) and IFN α / β R ^{-/-} (N=5) mice (16-17 weeks old) were intranasally infected with VSV (4
524	\times 10 ⁶ pfu) and their survival rates (B) and body weights (C) were monitored daily. Body weight changes at
525	each time point were indicated as the relative values against the body weights of mice at 1 day post-infection.
526	(D) MEFs were prepared from USP15 ^{-/-} and USP15 ^{+/+} mice. The expression of USP15 was confirmed by
527	immunoblotting. (E, F, G) MEFs infected with VSV at an moi of 1 were collected at each time point and the
528	mRNAs of <i>Ifna</i> (E), <i>Cxcl10</i> (F) and <i>Il6</i> (G) were quantified by qPCR.
529	Figure 7. USP15 controls LD formation to facilitate HCV propagation.
530	(A) Interactions between FLAG-USP15 and HA-tagged viral proteins in 293T cells were evaluated by

immunoprecipitation with antibodies to FLAG (FL)-, HA- and Glu/Glu-tag (Control, C). Immunoprecipitants

532	were subjected to immunoblotting by using FLAG and HA antibodies. (B) Subcellular localization of USP15
533	in Huh7 cells was observed by confocal microscopy. USP15 (green), lipid droplets (red) or nuclei (blue) were
534	stained with anti-USP15 antibody, HCS LipidTOX TM Red neutral lipid stains and DAPI, respectively. (C)
535	Lipid droplets in WT or USP15KOHuh7 cells were observed by confocal microscopy. Lipid droplets (red) or
536	nuclei (blue) were stained with HCS LipidTOX TM Red neutral lipid stains and DAPI, respectively. (D) The
537	intensity of stained LDs was quantified by FACS. (E) The expression of ADRP, a marker of LDs, in parental
538	and USP15KO Huh7 cells was detected by immunoblotting by using the indicated antibodies. (F) The
539	expressions of SREBP-1c in the WT cells, USP15KO cells and restored USP15 Huh7 cells were examined by
540	using reporter assay. Huh7 cells, USP15KOHuh7 and USP15KOHuh7 cells expressing USP15 were
541	transfected with pGL3-Basic SREBP-1c and pRL-TK and incubated for 2 days. Luciferase activity was
542	determined by using a Dual-Luciferase Reporter Assay System (Promega, Madison, WI). (G) Expression of
543	SREBP2 in parental and USP15KO Huh7 cells was quantified by qPCR. mRNA of GAPDH was used as the
544	internal control. (H, J) WT and USP15KO Huh7 cells were treated with 100 or 200 μ M palmitic acid (PA)
545	during HCV infection at an moi of 3. After 4 days post-infection, intracellular HCV RNA (H) or infectious
546	HCV titers (J) in culture supernatants were determined. (I, K) WT and USP15KOHuh7 cells were treated with
547	100 or 200 μ M oleic acid (OA) during HCV infection at an moi of 3. After 4 days post-infection, intracellular
548	HCV RNA (I) or infectious HCV titers (K) in the culture supernatants were determined.
549	References

Paul D, Madan V, Bartenschlager R. 2014. Hepatitis C Virus RNA Replication and Assembly: Living
 on the Fat of the Land. Cell Host Microbe 16:569–579.

552	2.	Maasoumy B, Wedemeyer H. 2012. Natural history of acute and chronic hepatitis C. Best Pract Res
553		Clin Gastroenterol 26:401–412.
554	3.	Barba G, Harper F, Harada T, Kohara M, Goulinet S, Matsuura Y, Eder G, Schaff Z, Chapman
555		MJ, Miyamura T, Brechot C. 1997. Hepatitis C virus core protein shows a cytoplasmic localization and
556		associates to cellular lipid storage droplets. Proc Natl Acad Sci USA 94:1200-1205.
557	4.	Suzuki R, Matsuura Y, Suzuki T, Ando A, Chiba J, Harada S, Saito I, Miyamura T. 1995. Nuclear
558		localization of the truncated hepatitis C virus core protein with its hydrophobic C terminus deleted. J Gen
559		Virol 76 (Pt 1) :53–61.
560	5.	Schwer B, Ren S, Pietschmann T, Kartenbeck J, Kaehlcke K, Bartenschlager R, Yen TSB, Ott M.
561		2004. Targeting of hepatitis C virus core protein to mitochondria through a novel C-terminal localization
562		motif. J Virol 78 :7958–7968.
563	6.	Suzuki R, Sakamoto S, Tsutsumi T, Rikimaru A, Tanaka K, Shimoike T, Moriishi K, Iwasaki T,
564		Mizumoto K, Matsuura Y, Miyamura T, Suzuki T. 2005. Molecular determinants for subcellular
565		localization of hepatitis C virus core protein. J Virol 79 :1271–1281.
566	7.	Matto M, Rice CM, Aroeti B, Glenn JS. 2004. Hepatitis C virus core protein associates with
567		detergent-resistant membranes distinct from classical plasma membrane rafts. J Virol 78:12047–12053.
568	8.	Galossi A, Guarisco R, Bellis L, Puoti C. 2007. Extrahepatic manifestations of chronic HCV infection. J
569		Gastrointestin Liver Dis 16:65–73.
570	9.	Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S,
571		Miyamura T, Koike K. 1998. The core protein of hepatitis C virus induces hepatocellular carcinoma in

⁵⁷² transgenic mice. Nat Med **4**:1065–1067.

573	10.	Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Tsukamoto K, Kimura S, Moriya K, Koike K. 2004.
574		Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin
575		resistance. Gastroenterology 126:840-848.
576	11.	Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. 2005. Modulation of hepatitis C virus RNA
577		abundance by a liver-specific MicroRNA. Science 309 :1577–1581.
578	12.	Jopling CL, Schutz S, Sarnow P. 2008. Position-dependent function for a tandem microRNA
579		miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 4:77-85.
580	13.	Kaul A, Stauffer S, Berger C, Pertel T, Schmitt J, Kallis S, Zayas M, Lohmann V, Luban J,
581		Bartenschlager R. 2009. Essential role of cyclophilin A for hepatitis C virus replication and virus
582		production and possible link to polyprotein cleavage kinetics. PLoS Pathog 5:e1000546.
583	14.	Okamoto T, Nishimura Y, Ichimura T, Suzuki K, Miyamura T, Suzuki T, Moriishi K, Matsuura Y.
584		2006. Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO J 25:5015–5025.
585	15.	Kasai H, Kawakami K, Yokoe H, Yoshimura K, Matsuda M, Yasumoto J, Maekawa S, Yamashita
586		A, Tanaka T, Ikeda M, Kato N, Okamoto T, Matsuura Y, Sakamoto N, Enomoto N, Takeda S,
587		Fujii H, Tsubuki M, Kusunoki M, Moriishi K. 2015. Involvement of FKBP6 in hepatitis C virus
588		replication. Sci Rep 5:16699.
589	16.	Tai AW, Benita Y, Peng LF, Kim S-S, Sakamoto N, Xavier RJ, Chung RT. 2009. A functional
590		genomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe 5:298-
591		307.

592	17. Berger KL, Cooper JD, Heaton NS, Yoon R, Oakland TE, Jordan TX, Mateu G, Grakoui A
593	Randall G. 2009. Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis
594	C virus replication. Proc Natl Acad Sci USA 106:7577–7582.
595	18. Reiss S, Rebhan I, Backes P, Romero-Brey I, Erfle H, Matula P, Kaderali L, Poenisch M
596	Blankenburg H, Hiet M-S, Longerich T, Diehl S, Ramirez F, Balla T, Rohr K, Kaul A, Buhler S
597	Pepperkok R, Lengauer T, Albrecht M, Eils R, Schirmacher P, Lohmann V, Bartenschlager R
598	2011. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of
599	the membranous replication compartment. Cell Host Microbe 9:32-45.
600	19. Fukuhara T, Wada M, Nakamura S, Ono C, Shiokawa M, Yamamoto S, Motomura T, Okamoto T
601	Okuzaki D, Yamamoto M, Saito I, Wakita T, Koike K, Matsuura Y. 2014. Amphipathic
602	alpha-helices in apolipoproteins are crucial to the formation of infectious hepatitis C virus particles. PLoS
603	Pathog 10:e1004534.
604	20. Huang H, Sun F, Owen DM, Li W, Chen Y, Gale MJ, Ye J. 2007. Hepatitis C virus production by
605	human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc Nat
606	Acad Sci USA 104:5848–5853.
607	21. Chang K-S, Jiang J, Cai Z, Luo G. 2007. Human apolipoprotein e is required for infectivity and
608	production of hepatitis C virus in cell culture. J Virol 81:13783–13793.
609	22. Shi ST, Lee KJ, Aizaki H, Hwang SB, Lai MMC. 2003. Hepatitis C Virus RNA Replication Occurs on
610	a Detergent-Resistant Membrane That Cofractionates with Caveolin-2. J Virol 77:4160-4168.
611	23. Aizaki H, Lee K-J, Sung VM-H, Ishiko H, Lai MMC. 2004. Characterization of the hepatitis C virus

612 RNA replication complex associated with lipid rafts. Virology 324 :450	-461.
---	-------

613	24.	Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T,
614		Hijikata M, Shimotohno K. 2007. The lipid droplet is an important organelle for hepatitis C virus
615		production. Nat Cell Biol 9:1089–1097.
616	25.	Shirakura M, Murakami K, Ichimura T, Suzuki R, Shimoji T, Fukuda K, Abe K, Sato S,
617		Fukasawa M, Yamakawa Y, Nishijima M, Moriishi K, Matsuura Y, Wakita T, Suzuki T, Howley
618		PM, Miyamura T, Shoji I. 2007. E6AP Ubiquitin Ligase Mediates Ubiquitylation and Degradation of
619		Hepatitis C Virus Core Protein. J Virol 81:1174–1185.
620	26.	Aizawa S, Okamoto T, Sugiyama Y, Kouwaki T, Ito A, Suzuki T, Ono C, Fukuhara T, Yamamoto
621		M, Okochi M, Hiraga N, Imamura M, Chayama K, Suzuki R, Shoji I, Moriishi K, Moriya K,
622		Koike K, Matsuura Y. 2017. TRC8-dependent degradation of hepatitis C virus immature core protein
623		regulates viral propagation and pathogenesis. Nat Commun 7:1–12.
624	27.	Hou W, Tian Q, Zheng J, Bonkovsky HL. 2010. Zinc mesoporphyrin induces rapid proteasomal
625		degradation of hepatitis C nonstructural 5A protein in human hepatoma cells. Gastroenterology
626		138 :1909–1919.
627	28.	Xue B, Yang D, Wang J, Xu Y, Wang X, Qin Y, Tian R, Chen S, Xie Q, Liu N, Zhu H. 2016.
628		ISG12a Restricts Hepatitis C Virus Infection through the Ubiquitination-Dependent Degradation Pathway.
629		J Virol 90 :6832–6845.
630	29.	Gao L, Tu H, Shi ST, Lee K-J, Asanaka M, Hwang SB, Lai MMC. 2003. Interaction with a

ubiquitin-like protein enhances the ubiquitination and degradation of hepatitis C virus RNA-dependent

633	30. Kim S-J, Syed GH, Siddiqui A. 2013. Hepatitis C virus induces the mitochondrial translocation of
634	Parkin and subsequent mitophagy. PLoS Pathog 9:e1003285.
635	31. Kim S-J, Syed GH, Khan M, Chiu W-W, Sohail MA, Gish RG, Siddiqui A. 2014. Hepatitis C virus
636	triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc Natl Acad Sci
637	USA 111 :6413–6418.
638	32. Arnaud N, Dabo S, Akazawa D, Fukasawa M, Shinkai-Ouchi F, Hugon J, Wakita T, Meurs EF.
639	2011. Hepatitis C virus reveals a novel early control in acute immune response. PLoS Pathog
640	7:e1002289.
641	33. Bremm A, Freund SMV, Komander D. 2010. Lys11-linked ubiquitin chains adopt compact
642	conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol
643	17:939–947.
644	34. Wang T, Yin L, Cooper EM, Lai M-Y, Dickey S, Pickart CM, Fushman D, Wilkinson KD, Cohen
645	RE, Wolberger C. 2009. Evidence for Bidentate Substrate Binding as the Basis for the K48 Linkage
646	Specificity of Otubain 1. J Mol Biol 386 :1011–1023.
647	35. Mevissen TET, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, Arnaudo N, Ekkebus R,
648	Kulathu Y, Wauer T, Oualid El F, Freund SMV, Ovaa H, Komander D. 2013. OTU
649	Deubiquitinases Reveal Mechanisms of Linkage Specificity and Enable Ubiquitin Chain Restriction
650	Analysis. Cell 154 :169–184.
651	36. Narbus CM, Israelow B, Sourisseau M, Michta ML, Hopcraft SE, Zeiner GM, Evans MJ. 2011.

652		HepG2 cells expressing microRNA miR-122 support the entire hepatitis C virus life cycle. J Virol
653		85 :12087–12092.
654	37.	Da Costa D, Turek M, Felmlee DJ, Girardi E, Pfeffer S, Long G, Bartenschlager R, Zeisel MB,
655		Baumert TF. 2012. Reconstitution of the entire hepatitis C virus life cycle in nonhepatic cells. J Virol
656		86 :11919–11925.
657	38.	Kambara H, Fukuhara T, Shiokawa M, Ono C, Ohara Y, Kamitani W, Matsuura Y. 2012.
658		Establishment of a novel permissive cell line for the propagation of hepatitis C virus by expression of
659		microRNA miR122. J Virol 86:1382–1393.
660	39.	Pauli E-K, Chan YK, Davis ME, Gableske S, Wang MK, Feister KF, Gack MU. 2014. The
661		ubiquitin-specific protease USP15 promotes RIG-I-mediated antiviral signaling by deubiquitylating
662		TRIM25. Sci Signal 7:ra3.
663	40.	Zhang H, Wang D, Zhong H, Luo R, Shang M, Liu D, Chen H, Fang L, Xiao S. 2015.
664		Ubiquitin-specific Protease 15 Negatively Regulates Virus- induced Type I Interferon Signaling via
665		Catalytically-dependent and -independent Mechanisms. Sci Rep 5:11220.
666	41.	Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T,
667		Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh C-S, Reis e Sousa C, Matsuura Y, Fujita T,
668		Akira S. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses.
669		Nature 441 :101–105.
670	42.	Zou Q, Jin J, Hu H, Li HS, Romano S, Xiao Y, Nakaya M, Zhou X, Cheng X, Yang P, Lozano G,

⁶⁷¹ Zhu C, Watowich SS, Ullrich SE, Sun S-C. 2014. USP15 stabilizes MDM2 to mediate cancer-cell

bioRxiv preprint doi: https://doi.org/10.1101/432930; this version posted October 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

672		survival and inhibit antitumor T cell responses. Nat Immunol 15:562–570.
673	43.	Shi ST, Polyak SJ, Tu H, Taylor DR, Gretch DR, Lai MMC. 2002. Hepatitis C virus NS5A
674		colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology 292:198-
675		210.
676	44.	Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C. 1997. Adipose
677		differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid
678		Res 38 :2249–2263.
679	45.	Farese RVJ, Walther TC. 2009. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139:855–860.
680	46.	Pai JT, Guryev O, Brown MS, Goldstein JL. 1998. Differential stimulation of cholesterol and
681		unsaturated fatty acid biosynthesis in cells expressing individual nuclear sterol regulatory
682		element-binding proteins. J Biol Chem 273:26138-26148.
683	47.	Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H. 1998. Activation of
684		cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice
685		overproducing sterol regulatory element-binding protein-2. J Clin Invest 101:2331-2339.
686	48.	Honda M, Ping LH, Rijnbrand RC, Amphlett E, Clarke B, Rowlands D, Lemon SM. 1996.
687		Structural requirements for initiation of translation by internal ribosome entry within genome-length
688		hepatitis C virus RNA. Virology 222:31-42.
689	49.	Masaki T, Arend KC, Li Y, Yamane D, McGivern DR, Kato T, Wakita T, Moorman NJ, Lemon
690		SM. 2015. miR-122 stimulates hepatitis C virus RNA synthesis by altering the balance of viral RNAs
691		engaged in replication versus translation. Cell Host Microbe 17:217–228.

692	50.	Roberts APE, Lewis AP, Jopling CL. 2011. miR-122 activates hepatitis C virus translation by a
693		specialized mechanism requiring particular RNA components. Nucleic Acids Res 39:7716-7729.
694	51.	Shimakami T, Yamane D, Jangra RK, Kempf BJ, Spaniel C, Barton DJ, Lemon SM. 2012.
695		Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc Natl Acad Sci USA
696		109 :941-946.
697	52.	Li Y, Masaki T, Shimakami T, Lemon SM. 2014. hnRNP L and NF90 interact with hepatitis C virus
698		5'-terminal untranslated RNA and promote efficient replication. J Virol 88:7199-7209.
699	53.	Schmidt T, Friedrich S, Golbik RP, Behrens SE. 2017. NF90-NF45 is a selective RNA chaperone that
700		rearranges viral and cellular riboswitches: biochemical analysis of a virus host factor activity. Nucleic
701		Acids Res 45 :12441-12454.
702	54.	Wang L, Jeng KS, Lai MM. 2011. Poly(C)-binding protein 2 interacts with sequences required for viral
703		replication in the hepatitis C virus (HCV) 5' untranslated region and directs HCV RNA replication
704		through circularizing the viral genome. J Virol 85:7954-7964.
705	55.	Weinlich S, Hüttelmaier S, Schierhorn A, Behrens SE, Ostareck-Lederer A, Ostareck DH. 2009.
706		IGF2BP1 enhances HCV IRES-mediated translation initiation via the 3'UTR. RNA 15:1528-1542.
707	56.	DiAugustine RP, Schaefer JM, Fouts JR. 1973. Hepatic lipid droplets. Isolation, morphology and
708		composition. Biochem J 132:323–327.
709	57.	Khor VK, Shen W-J, Kraemer FB. 2013. Lipid droplet metabolism. Curr Opin in Clin Nutr Metab
710		Care 16 :632–637.

58. Bickel PE, Tansey JT, Welte MA. 2009. PAT proteins, an ancient family of lipid droplet proteins that

712	regulate cellular lipid stores.	Biochim Biophys Acta 1791 :419–440.

713	59.	Vogt DA, Camus G, Herker E, Webster BR, Tsou C-L, Greene WC, Yen T-SB, Ott M. 2013. Lipid
714		droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the
715		viral NS5A protein. PLoS Pathog 9:e1003302.
716	60.	Boulant S, Douglas MW, Moody L, Budkowska A, Targett-Adams P, McLauchlan J. 2008.
717		Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule- and dynein-dependent
718		manner. Traffic 9 :1268–1282.
719	61.	Shavinskaya A, Boulant S, Penin F, McLauchlan J, Bartenschlager R. 2007. The lipid droplet
720		binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly. J Biol
721		Chem 282 :37158–37169.
722	62.	Moriishi K, Mochizuki R, Moriya K, Miyamoto H, Mori Y, Abe T, Murata S, Tanaka K,
723		Miyamura T, Suzuki T, Koike K, Matsuura Y. 2007. Critical role of PA28gamma in hepatitis C
724		virus-associated steatogenesis and hepatocarcinogenesis. Proc Natl Acad Sci USA 104:1661-1666.
725	63.	Tsutsumi T, Suzuki T, Shimoike T, Suzuki R, Moriya K, Shintani Y, Fujie H, Matsuura Y, Koike
726		K, Miyamura T. 2002. Interaction of hepatitis C virus core protein with retinoid X receptor alpha
727		modulates its transcriptional activity. Hepatology 35:937–946.
728	64.	Inui M, Manfrin A, Mamidi A, Martello G, Morsut L, Soligo S, Enzo E, Moro S, Polo S, Dupont S,
729		Cordenonsi M, Piccolo S. 2011. USP15 is a deubiquitylating enzyme for receptor-activated SMADs.
730		Nat Cell Biol 13 :1368–1375.
731	65.	Eichhorn PJ, Rodón L, Gonzàlez-Juncà A, Dirac A, Gili M, Martínez-Sáez E, Aura C, Barba I, Peg

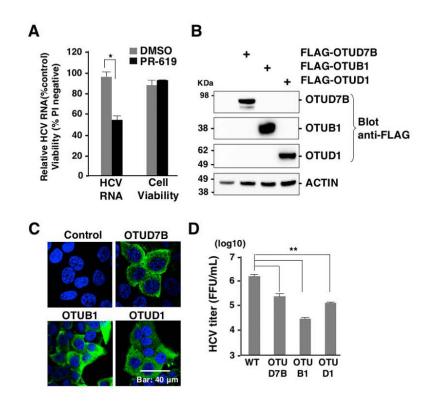
bioRxiv preprint doi: https://doi.org/10.1101/432930; this version posted October 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

732	V, Prat A, Cuartas I, Jimenez J, García-Dorado D, Sahuquillo J, Bernards R, Baselga J, Seoane J.
733	2012. USP15 stabilizes TGF- β receptor I and promotes oncogenesis through the activation of TGF- β
734	signaling in glioblastoma. Nat Med 18:429-435.
735	6. Villeneuve NF, Tian W, Wu T, Sun Z, Lau A, Chapman E, Fang D, Zhang DD. 2013. USP15
736	Negatively Regulates Nrf2 through Deubiquitination of Keap1. Mol Cell 51:68–79.
737	7. Long L, Thelen JP, Furgason M, Haj-Yahya M, Brik A, Cheng D, Peng J, Yao T. 2014. The U4/U6
738	recycling factor SART3 has histone chaperone activity and associates with USP15 to regulate H2B
739	deubiquitination. J Biol Chem 289:8916–8930.
740	8. Fukagai K, Waku T, Chowdhury AMMA, Kubo K, Matsumoto M, Kato H, Natsume T, Tsuruta F,
741	Chiba T, Taniguchi H, Kobayashi A. 2016. USP15 stabilizes the transcription factor Nrf1 in the nucleus,
742	promoting the proteasome gene expression. Biochem Biophys Res Commun 478:363-370.
743	9. Jongsma MLM, Berlin I, Wijdeven RHM, Janssen L, Janssen GMC, Garstka MA, Janssen H,
744	Mensink M, van Veelen PA, Spaapen RM, Neefjes J. 2016. An ER-Associated Pathway Defines
745	Endosomal Architecture for Controlled Cargo Transport. Cell 166:152–166.
746	0. Pyeon D, Timani KA, Gulraiz F, He JJ, Park I-W. 2016. Function of ubiquitin (Ub) specific protease
747	15 (USP15) in HIV-1 replication and viral protein degradation. Virus Res 223:161–169.
748	1. Su Z-J, Cao J-S, Wu Y-F, Chen W-N, Lin X, Wu Y-L, Lin X. 2017. Deubiquitylation of hepatitis B
749	virus X protein (HBx) by ubiquitin- specific peptidase 15 (USP15) increases HBx stability and its
750	transactivation activity. Sci Rep 7:40246.
751	2. Vos RM, Altreuter J, White EA, Howley PM. 2009. The Ubiquitin-Specific Peptidase USP15

38

bioRxiv preprint doi: https://doi.org/10.1101/432930; this version posted October 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

752		Regulates Human Papillomavirus Type 16 E6 Protein Stability. J Virol 83:8885–8892.
753	73.	Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale MJ. 2008. Innate immunity induced by
754		composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454:523-527.
755	74.	Kapadia SB, Chisari FV. 2005. Hepatitis C virus RNA replication is regulated by host
756		geranylgeranylation and fatty acids. Proc Natl Acad Sci USA 102:2561-2566.
757	75.	Chen W, Li X-M, Li A-L, Yang G, Hu H-N. 2016. Hepatitis C Virus Increases Free Fatty Acids
758		Absorption and Promotes its Replication Via Down-Regulating GADD45alpha Expression. Med Sci
759		Monit 22 :2347–2356.
760	76.	Leu G-Z, Lin T-Y, Hsu JTA. 2004. Anti-HCV activities of selective polyunsaturated fatty acids.
761		Biochem Biophys Res Commun 318 :275–280.
762	77.	Huang H, Chen Y, Ye J. 2007. Inhibition of hepatitis C virus replication by peroxidation of arachidonate
763		and restoration by vitamin E. Proc Natl Acad Sci USA 104:18666-18670.
764	78.	Sun H-Y, Lin C-C, Tsai P-J, Tsai W-J, Lee J-C, Tsao C-W, Cheng P-N, Wu I-C, Chiu Y-C, Chang
765		T-T, Young K-C. 2017. Lipoprotein lipase liberates free fatty acids to inhibit HCV infection and prevent
766		hepatic lipid accumulation. Cell Microbiol 19:e12673.
767	79.	Lohmann V, Korner F, Koch J, Herian U, Theilmann L, Bartenschlager R. 1999. Replication of
768		subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110–113.
769	80.	Russell RS, Meunier J-C, Takikawa S, Faulk K, Engle RE, Bukh J, Purcell RH, Emerson SU. 2008.
770		Advantages of a single-cycle production assay to study cell culture-adaptive mutations of hepatitis C
771		virus. Proc Natl Acad Sci USA 105:4370–4375.
772	81.	Katoh H, Mori Y, Kambara H, Abe T, Fukuhara T, Morita E, Moriishi K, Kamitani W, Matsuura


bioRxiv preprint doi: https://doi.org/10.1101/432930; this version posted October 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

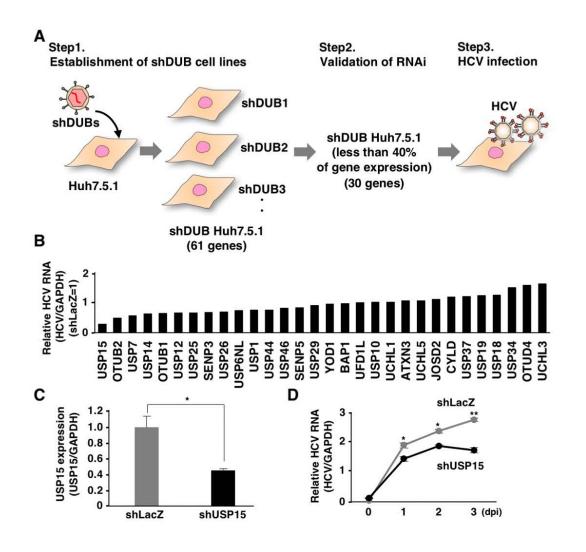
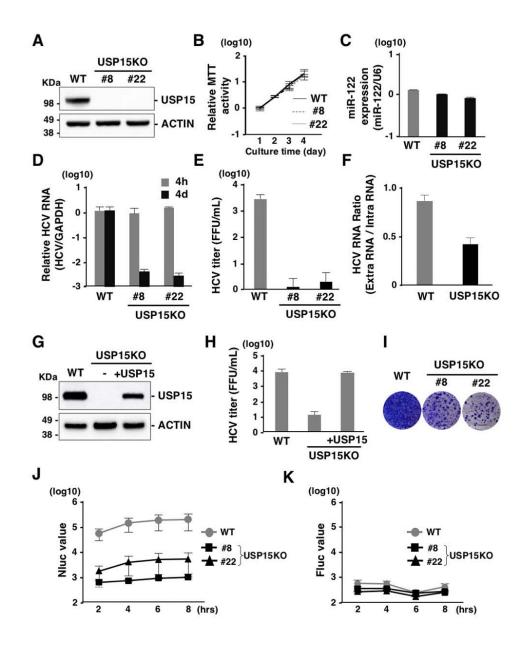
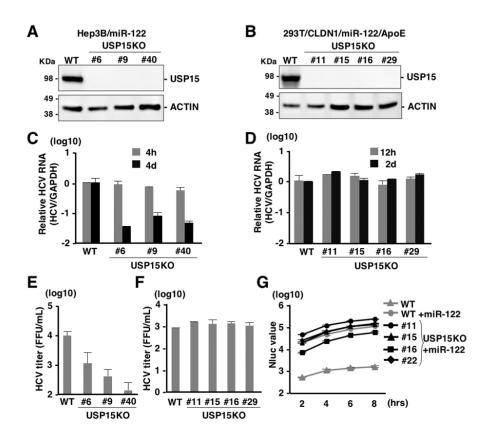
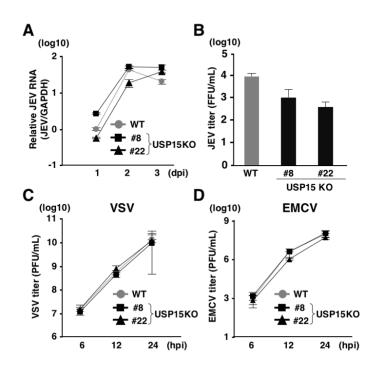
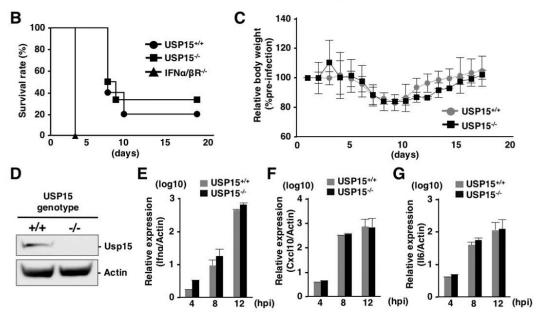

773	Y. 2011. Heterogeneous nuclear ribonucleoprotein A2 participates in the replication of Japanese
774	encephalitis virus through an interaction with viral proteins and RNA. J Virol 85:10976–10988.
775	82. Okamoto K, Mori Y, Komoda Y, Okamoto T, Okochi M, Takeda M, Suzuki T, Moriishi K,
776	Matsuura Y. 2008. Intramembrane processing by signal peptide peptidase regulates the membrane
777	localization of hepatitis C virus core protein and viral propagation. J Virol 82:8349-8361.
778	83. Huang DC, Cory S, Strasser A. 1997. Bcl-2, Bcl-XL and adenovirus protein E1B19kD are functionally
779	equivalent in their ability to inhibit cell death. Oncogene 14:405–414.
780	84. Niwa H, Yamamura K, Miyazaki J. 1991. Efficient selection for high-expression transfectants with a
781	novel eukaryotic vector. Gene 108:193–199.
782	85. Mashiko D, Fujihara Y, Satouh Y, Miyata H, Isotani A, Ikawa M. 2013. Generation of mutant mice
783	by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep 3:3355.
784	
785	
786	

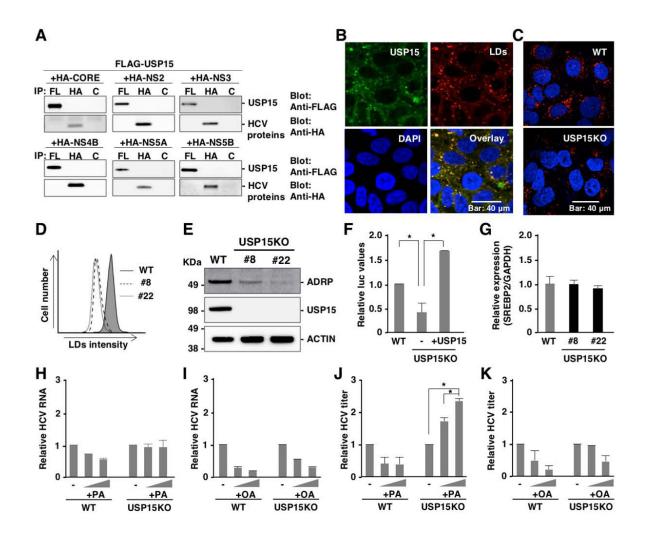
Table. 1. Primer set list for real-time PCR


1. Primer set list for real-time PCR					
Gene	Forward primer (5' to 3')	Gene	Forward primer (5' to 3')		
	Reverse primer (5' to 3') AGTAATGGACTTTCAAGAGGTAGC		Reverse primer (5' to 3') CAAACCAGTTGTACTCACAG		
USP1	GTTTATAGGTGAAGACTGTGCTG	USP44	CATGAACACCAATCTTCTCTC		
USPL1	CACTTTGTAGAAGGCTTACC	USP46	AGAAACACTGTGTAGTGAAC		
	GTCATCACATTCCAGCCAA ATTCTAAGAGTGCCCAGGGTC		CCATGTACTTGAACCGCTTTAG CCAAATTCACAGAGACAGAG		
USP2	GAGGGCTGTGTGTGTGCATTG	USP49	GAACCTGAGGTAGTCTGTAG		
USP4	CAAGCAGTGGAAGAAGTATGTGG	USP53	AGATGAGCAGCGATTTCAAC		
0011	CACAGCCGTACCAGTTTAGTAG GGTCCACAAAGACGAGTGC	00100	CATACAGAGTCATAGCAAAC TACAGTGCAGAGAATTTACG		
USP5	GCTGGCCGGTCTTATTGAAAT	USP54	GTTTCCAAAGGCTTCCTCAC		
USP6	GAATGTTCACCCTAACTACCAATG	ATXN3	AATTCTCTCTTGACGGGTCC		
0510	CATATAGGTCTTTCTTCCGGGTAT ACAAAGGAATACCACTCCAGC	mmus	CTGTTGGACCCTAATCATCTGC AGAGAAGGACCCACAACTAC		
USP6NL	CTGTCTCTAAACATAATGTGGTCCC	BAP1	GATGTTCTGCTCCACTAGGTTG		
USP7	CAGATGACCCACCAAGAATTAC	CYLD	AGTTTCTTTGAAGGTTGGAG		
0517	CATGGCAGATTTCGCACAAA	CILD	CACTCCATCAAATCTTCCATCC		
USP8	TCTCAGTGTTCCTGAAGAAGC CTAAACCAGTCAAGAAGTACCACA	UFD1L	TGATGCAGAACTTACTCTTGG GACAGGCAAAGTTCCTAAGTG		
USP9x	GCAACTTACATGGAAAGCATGAG	UCHL1	TGGAAGAGGAGTCTCTGG		
031 97	GGAAGTTAAGCCGTTCTTGAAC	UCHLI	CTAACTTCTTGTCCCTTCAGCTC		
USP10	AGTGGAACAGTTCTGTGTGG	UCHL3	CTGGAGGAATCTGTGTCAATG		
	GTGCTTGAAATACTGTAGCTGGG CGGTGACTGAGGATAGAGAG		CTCAGTCTGACCTTCATGGG ATCAAGATGATTGGATCAGTGC		
USP11	CTTATACCAGTGCTTCTCCAC	UCHL5	GTAACTCTGCTATCTTCTGCTC		
USP12	AAGAGTGTCGCAGCAAACAG	JOSD1	ATAACGTCTTCCAGGACAGC		
00112	GTACATTCTGTCTGGATTGGTGG TCTCAGGCCAGTATTCAAAGC	30001	CCATAATGACATTCACATCG AGCAGCAGCTCTTTAGCCAG		
USP13	CTCTACTAGATTCACCAGGTGC	JOSD2	CATTGACATCATAGTTGCCG		
USP14	ATGGAGTTACCATGTGGATTGAC	MYSM1	ATTGGGATGATTGTTAGTC		
05114	CTGCGCTGAAGCCATTTC	WI I SIVII	GGTTCTTCTAACATCTGCTG		
USP15	ATCCTGGACCCATTGATAACTCTG CCTTCCATCAATGTGTACCAGC	OTUB1	TTAACTGTCTGGCCTATGATG GCATACTCCTTGTATAGGAC		
USP16	AGTGATATTCCTTCTGGAAC	OTUB2	ATCCATTCTTCGGGACCATC		
03110	CTTCAGGGTGGTCAATAGTAC	010B2	CCTGTAGAAGCAGTTCCCATC		
USP18	GAGGCAAATCTGTCAGTCCATC GCAGGTCTGTCCAATGTTGT	OTUD4	TCTAGTCATTCTTCAGGGTC CTCAACTCTTTCACGATCAG		
USP19	CTCTCAGAGTGTTCATGTGAAGC	OTUD5	CAGTGGTGAATCCTAACAAG		
03117	CTTAGCCAACTCTGAGGATAGCA	01005	CTAGCATCTGCTGTTCAATC		
USP20	TTGGTCAACCCAATGTTCC GTTTCTCATCCGTGTCACTCG	PAN2	TTGACTTGCACGAGGAGATG GACTTGAAAGGATGAGTAGCG		
USP21	TGTTCAGCATACGGACAGAG	SENP3	TCTTCAATAAGGAGCTACTG		
USF21	GAAGGCCAACATGACCAGAG	SENTS	CTCTGCCTGTAGATACTTGG		
USP25	GAGGAGACAACTTACTACCAAACAG CCTGAATGCCCTGTTTGATTC	SENP5	AACAAACTATCGGGCCAGAC GACTGCATCCATTATCAGCTC		
USP26	GTGTAAGCTATAATCGAGAG	SENP6	TACTCCTCCTCTATCTCCTG		
USF20	GTCATCTAGGTAAGGATTTC	SENFO	GGTCCAGTAGACTCATTCAAAG		
USP28	AAACGGTTATCGCAACTTAGACG CACTGGAGGTAGCTTTGTAAACC	SENP7	ATGTTCAATCACCACTGTCC GGAAGTAACAGGACACCCTC		
USP29	CTGAGCAACAACATTAGAAG	SENP8	GGATGTACGTGATATGTAAC		
03F29	CTGTTTAGCATCTCTGTAGG	SENFO	CCTCTTCTTTGTGATGTATG		
USP31	TGGAGATGACTGGAGAAAGG CTTAGCAGACAGGGACCATGA	VCPIP1	GTCATCTAAGGAACTTCAGG CTGTAGAATACACCACCCT		
USP32	GGGTTAAGACCAGCTACTCC	VOD1	GAAGACTTGCCCATCCAATC		
USP32	CACTGCATGGAGATGATAAACC	YOD1	GCAAAGTTTCCCTGACGTAAC		
USP33	GTCTACACCACAGATCCTTCC CTTCTGTATTTCTTGTGCTG	SREBP2	AGGAGAACATGGTGCTGA TAAAGGAGAGGCACAGGA		
LIGDOA	TTTGATTCTGCTCAACTTGC	CLINDU	TGTAGTTGAGGTCAATGAAGGG		
USP34	CCTCTGGTTCCATGCGTTTG	GAPDH	ACATCGCTCAGACACCATG		
USP37	ACTGGCTCAGAATTGAATGAAG CTTCTGACTGTTTCAAACTC	Ifnα	AGCCTTGACACTCCTGGTACAAATG TGGGTCAGCTCACTCAGGACA		
LICEAO	CCTCTTCAGATGATTACAGTTC	0.110	ACACCAGCCTGGCTTCCATC		
USP38	GAGTGCAATTACCCATGTATCC	Cxcl10	TTGGAGCTGGAGCTGCTTATAGTTG		
USP39	GGACTTTGACTTTGAGAAAC GTAGGCGTGAGACTTCAAAC	116	CCACTTCACAAGTCGGAGGCTTA GCAAGTGCATCATCGTTGTTCATAC		
1100.40	ATCAGGACCAGACCAACTGTAC	A .:	TTGCTGACAGGATGCAGAAG		
USP40	GTAGAGGAGAGAAACTTGCGC	Actin	GTACTTGCGCTCAGGAGGAG		
USP42	CAATGCAAGCACATATTACC				
L	GCATAGCATCAACAGTGTATTG	1	1		


Kusakabe et al. Figure 1




Kusakabe et al. Figure 3



Α

