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Abstract 

A major barrier to curing HIV is the long-lived latent reservoir that supports re-emergence of HIV 

upon treatment interruption. Targeting this reservoir will require mechanistic insights into the 

establishment and maintenance of HIV latency. Whether T cell signaling at the time of HIV-1 

infection influences productive replication or latency is not fully understood. We used a panel of 

chimeric antigen receptors (CARs) with different ligand binding affinities to induce a range of 

signaling strengths to model differential T cell receptor signaling at the time of HIV-1 infection. 

Stimulation of T cell lines or primary CD4+ T cells expressing chimeric antigen receptors 

supported HIV-1 infection regardless of affinity for ligand; however, only signaling by the highest 

affinity receptor facilitated HIV-1 expression. Activation of chimeric antigen receptors that had 

intermediate and low binding affinities did not support provirus transcription, suggesting that a 

minimal signal is required for optimal HIV-1 expression. In addition, strong signaling at the time 

of infection produced a latent population that was readily inducible, whereas latent cells 

generated in response to weaker signals were not easily reversed. Chromatin 

immunoprecipitation showed HIV-1 transcription was limited by transcriptional elongation and 

that robust signaling decreased the presence of negative elongation factor, a pausing factor, by 

more than 80%. These studies demonstrate that T cell signaling influences HIV-1 infection and 

the establishment of different subsets of latently infected cells, which may have implications for 

targeting the HIV reservoir. 

 

Author Summary 

Activation of CD4+ T cells facilitates HIV-1 infection; however, whether there are minimal 

signals required for the establishment of infection, replication, and latency has not been 

explored. To determine how T cell signaling influences HIV-1 infection and the generation of 

latently infected cells, we used chimeric antigen receptors to create a tunable model. Stronger 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/432401doi: bioRxiv preprint 

https://doi.org/10.1101/432401
http://creativecommons.org/licenses/by/4.0/


 Gagne, et al. Page 3 

signals result in robust HIV-1 expression and an inducible latent population. Minimal signals 

predispose cells towards latent infections that are refractory to reversal. We discovered that 

repression of HIV-1 transcription immediately after infection is due to RNA polymerase II 

pausing and inefficient transcription elongation. These studies demonstrate that signaling 

events influence the course of HIV-1 infection and have implications for cure strategies. They 

also provide a mechanistic explanation for why a significant portion of the HIV latent reservoir is 

not responsive to latency reversing agents which function by modifiying chromatin. 

 

Introduction 

HIV-1 persists in a transcriptionally silent latent state in long-lived memory T cells. Although 

antiretroviral therapies (ART) suppress HIV-1 replication, interruption of treatment results in 

rapid viral rebound. Therefore, HIV-1 patients must remain on ART indefinitely, despite long 

term side effects, development of treatment resistance, and viral-induced inflammation [1-3]. For 

this reason, one strategy currently being explored for cure efforts is “shock and kill,” in which 

latent HIV-1 is reactivated in conjunction with ART using latency-reversing agents (LRAs). 

Following reactivation, infected cells are predicted to be eliminated by HIV-specific immunity or 

virally induced apoptosis. However, clinical trials using LRAs have only minimally perturbed the 

size of the viral reservoir [4-6].  

A cure for latent HIV-1 will require a better understanding of the biochemical factors involved. 

Latency in chronically infected primary cells and cell lines is regulated by multiple transcriptional 

mechanisms including NF-κB activation, chromatin accessibility, provirus transcription initiation, 

Tat availability, P-TEFb sequestration, and transcriptional elongation [7-11]. However, what is 

not understood is how latency is initially established within a cell and if events at the time of 

HIV-1 infection influence the transcriptional status of the provirus. These questions are relevant 
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since the latent reservoir is established within the first two weeks of infection [12,13]. New cure 

strategies will need to limit the size of the reservoir at early time points. 

One mechanism that could predispose HIV-1 towards active replication or transcriptional 

repression and latency is signaling through the T cell receptor (TCR). Engagement of the TCR 

and costimulatory CD28 molecule result in a multitude of cellular outcomes that influence HIV 

replication including cytoskeleton reorganization, the activation of transcription factors, 

enhanced RNA polymerase II (RNAP II) processivity, and chromatin remodeling [14-16]. We 

hypothesized that the magnitude of T cell signaling during HIV-1 infection will dictate the course 

of the infection. In order to manipulate signal strength received by a T cell at the time of HIV-1 

infection, we utilized chimeric antigen receptors (CARs) that recapitulate T cell receptor and 

CD28 signaling. By modulating the affinity with which these CARs bind to their ligand, we can 

differentially deliver signals to target cells. 

Using these CARs, we demonstrate that stronger T cell signaling at the time of HIV-1 infection 

increases subsequent HIV-1 transcription and replication. Robust signals also facilitated the 

formation of latently infected cells that were readily inducible upon secondary stimulation. 

Minimal signaling through CARs, although sufficient for HIV-1 integration, failed to support viral 

replication and generated a deep-seated latent infection. Transcriptional elongation of HIV-1 

provirus was limited by RNAPII pausing in the absence of CAR signaling; however, strong CAR 

signaling correlated with decreased negative elongation factor (NELF) binding and enhanced 

RNAPII processivity. Our results suggest a model in which signaling strength influences HIV-1 

transcription and establishment of latency at the time of initial infection of CD4+ T cells. 
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Results 

CARs induce T cell signaling 

To examine how signaling cascades downstream from the T cell receptor regulate HIV-1 

transcription we utilized CARs (Fig 1A). Intracellular signaling domains for the CARs include 

CD3ζ with its immunoreceptor tyrosine-based activation motifs (ITAMs) and the CD28 

costimulatory domain with its four critical tyrosine residues [17]. Furthermore, a mCherry tag 

provides a marker for positive selection of CAR+ cells. The extracellular ligand-binding domains 

of the CARs consist of a single chain variable fragment (scFv) that recognizes receptor tyrosine-

protein kinase erbB-2 (Her2) [18,19]. By using different scFvs, a library of CARs with binding 

affinities for Her2 ligand spanning three logs were generated (Fig 1B). CARs were transduced 

into Jurkat T cells and primary CD4+ T cells. By enriching for mCherry, we obtained CAR+ 

populations that were >90% pure (Fig 1C).  

To confirm that signaling through the CARs mimicked TCR signaling, CD69, a transmembrane 

lectin and a marker for CD4+ T cell activation, was monitored by flow cytometry before and after 

receptor activation with Her 2 ligand (S1 Fig).  Primary CD4+ T cells transduced with either the 

low affinity or the high affinity receptors were stimulated with plate-bound Her2 ligand for 24 h.  

In the absence of ligand, less than 7% of the cells were positive for CD69, verifying that there is 

no ectopic CAR signaling. Activating cells with Her2 induced CD69 expression in the low affinity 

and high affinity receptors relative to their affinity for ligand. These data demonstrate that CARs 

can be used as a tool to modulate T cell signaling. 

 

T cell signaling at the time of HIV-1 infection regulates provirus expression 

To determine whether T cell signaling influences viral infection, Jurkat T cells expressing low 

affinity or high affinity CARs were plated on Her2-coated wells and simultaneously infected with 

VSV-G pseudotyped NL4-3.Luc, a single-cycle HIV-1 clone which contains a luciferase reporter 
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in place of Nef. VSV-G allowed us to bypass potentially confounding effects from 

receptor/chemokine receptor signaling due to gp120 binding and focus specifically on CAR-

associated signaling cascades. To assess whether signaling influenced the establishment of 

infection, we measured levels of HIV-1 proviral DNA using an established nested Alu-PCR 

approach [20]. We modified the assay by designing primers to luciferase to estimate the relative 

frequency of HIV integration without confounding signals from the lentiviral vectors used to 

express the CARs (see materials and methods). CAR-associated signaling did not affect the 

infection of Jurkat cells since we detected comparable levels of provirus regardless of the 

presence or absence of CAR ligand (Fig 2A). When HIV-1 expression was measured by 

luciferase activity, Jurkat cells infected in the context of strong T cell signaling expressed 

greater than 10-fold more HIV-1 compared to untreated controls (Fig 2B). In contrast, 

engagement of the low affinity receptor led to a modest 3-fold expression compared to 

unstimulated cells despite a similar proviral load as the high affinity CAR-expressing cells. 

These data indicate that strong T cell signaling at the time of infection facilitates HIV-1 

expression without enhancing provirus integration. 

We confirmed that these differences were due to downstream signaling emanating from the 

CARs by using the src kinase inhibitor PP2. In the presence of PP2, the increase in HIV-1 

expression upon cellular stimulation was attenuated, consistent with T cell signaling as a 

regulator of HIV-1 expression (S2 Fig). The pharmacologically inactive version of this inhibitor, 

PP3, had no effect on the ability of CARs to influence HIV-1 expression. 

We validated these results using primary CD4+ T cells that were transduced with either the low 

affinity or high affinity CAR. Following transduction, cells were allowed to return to a resting 

state as monitored by low CD69 expression before infection with HIV-1 in the absence or 

presence of the ligand Her2. Consistent with the data from Jurkat cells, similar levels of proviral 

DNA were detected in primary T cells regardless of CAR signaling (Fig 2C). Cells that received 
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robust stimulation at the time of infection expressed 1.5- to 4-fold more HIV-1 than cells 

stimulated through the low affinity receptor (Fig 2D). 

To gain insight into whether there is a threshold or minimal T cell signal required for HIV-1 

infection and replication, we transduced Jurkat T cells with CAR receptors that spanned a range 

of binding affinities (Fig 1B). These cells were infected with NL4-3.Luc as described above in 

the absence or presence of Her2. Although the high affinity condition supported HIV-1 infection 

and transcription, the intermediate and low affinity receptors did not support HIV-1 expression 

(Fig 3A). This was despite similar levels of infection as determined by measuring proviral DNA 

(Fig 3B). These data suggest that T cell signaling controls HIV-1 expression by a digital on/off 

mechanism since viral expression does not linearly correlate with signal strength. 

 

Robust signals during HIV-1 infection establishes an inducible latent reservoir 

We hypothesized that differential T cell signaling during infection alters the size of the inducible 

latent reservoir. To examine this, we infected CAR-expressing primary CD4+ T cells with VSV-G 

pseudotyped BRU-dENV-GFP in the presence of Her2 ligand. One week post infection, cells 

were sorted for both mCherry expression as a marker for the CAR and lack of GFP expression 

in order to enrich for latently infected cells. CAR+/GFPneg cells were reactivated with PMA plus 

ionomycin or left unstimulated to control for spontaneous HIV-1 reactivation (Fig 4A). PMA plus 

ionomycin significantly reactivated HIV-1 expression within cells that had been initially infected 

in the context of strong signaling, resulting in a 3- to 9-fold increase in the percentage of GFP 

positive cells and a 1000-fold induction of HIV-1 mRNA measured by qRT-PCR (Fig 4B). 

However, the observed reactivation of HIV-1 was modest in cells infected at the time of 

stimulation through the low affinity CAR. A 200-fold induction of HIV-1 RNA was detected in 

reactivated latently infected cells expressing low affinity CARs, and less than a 2-fold change 

was observed in the percentage of GFP+ cells. Therefore, despite both minimal and robust 

signaling resulting in comparable amounts of integrated HIV-1 provirus, robust signaling was not 
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only necessary for active transcription but also supported the generation of a population of 

latently infected cells that could be readily induced to express HIV-1. The population of latent 

cells generated in response to weaker CAR signaling was more resistant to reversal suggesting 

that HIV-1 in these cells was strongly repressed.  

 

RNAP II Processivity Limits HIV-1 Transcription in the Absence of Robust 

Signaling 

We were interested in mechanisms that governed HIV-1 repression following integration in the 

absence of sufficient T cell signaling; therefore, we examined the binding of transcriptional 

regulators on the HIV-1 LTR by chromatin immunoprecipitation (ChIP). Jurkat T cells expressing 

low or high affinity CARs were infected with NL4-3.Luc in the absence or presence of Her2 

ligand. One day post-infection, cells were fixed and chromatin was prepared for ChIP.  

Since HIV-1 proviral latency correlates with a positioned nucleosome that is downstream of the 

transcriptional start site, we explored whether the LTR was associated with post-translationally 

modified histones as an indicator of chromatin organization. ChIPs for acetylated histone H3 

showed no significant difference in binding of the HIV-1 LTR between cells infected in the 

absence or presence of T cell signaling (Fig 5A). Therefore, chromatin accessibility does not 

appear to be limiting HIV-1 proviral transcription following infection. 

We then examined RNAP II processivity by measuring RNAP II occupancy at multiple points, 

including the transcriptional start site and downstream in the HIV tat gene. RNAP II was 

detected at the HIV transcriptional start site whether cells were activated through a CAR or were 

unstimulated (Fig 5B). However, signaling through the high affinity receptor resulted in an 

increase in downstream RNAP II by greater than 4-fold, whereas only modest levels of RNAP II 

were found downstream in the absence of signals or following weak signaling (Fig 5C).  
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Since these data indicated a role for transcriptional pausing, we examined if CAR signaling 

altered the presence of the pausing factor NELF at the HIV-1 transcriptional start site. Using 

ChIPs, we determined that signaling through the high affinity receptor diminished binding of 

NELF at the HIV LTR by greater than 85% (Fig 5D). These data support a model in which a lack 

of robust T cell signaling limits HIV transcription by establishing a paused polymerase complex.  

 

Discussion 

Previous studies suggest that cell signaling may be a key regulator of HIV-1 expression and 

latency. The latent reservoir is enriched for antigen specific T cells, including those that respond 

to CMV, HSV, tuberculosis, and HIV [21-25]. Furthermore, the use of superantigens during viral 

entry increases HIV-1 replication [26]. Partial activation, cellular polarization, cell-to-cell contact, 

and/or infection of resting quiescent cells through perturbation have also been suggested to bias 

infections towards latency [11,27-31]. Therefore, the extent of cell activation is a key 

determinant in regulating the course of HIV-1 infection including the formation of the reservoir.  

We have shown that differential signaling through CARs, which mimic TCR signaling, influences 

HIV-1 transcription and latency. In the lymph node, a primary site for both HIV replication and 

the persistent latent reservoir [32-34], T cells will sample lymph node resident cells in search for 

antigen. Some of these interactions, facilitated by the presentation of the T cell cognate antigen, 

will result in robust T cell activation, clonal expansion, and changes in gene expression. 

However, most MHC complexes will lack cognate antigen and initiate weak signaling [35,36]. 

Using multiple CARs whose affinities for the Her2 ligand span several logs, we can deliver a 

range of signaling inputs to model the spectrum of T cell receptor signaling events. Our data 

indicates that stronger T cell activation at the time of infection, which would be more similar to 

antigen specific responses, correlates with robust HIV-1 expression as well as the 

establishment of inducible latently infected cells.  
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Having a library of CARs with a range of binding affinities allowed us to determine if HIV-1 

responds to signaling in an analog fashion correlating with signal input or digitally regulated by 

specific thresholds resulting in all-or-none responses [37]. Signaling through the CARs with 

affinities that were intermediate did not support active transcription despite a greater than 10-

fold increase in binding affinity compared to our low affinity receptor. These results would 

suggest that TCR signaling provides more of an on/off switch and that there exist signaling 

thresholds that must be overcome to assure efficient transcription and replication. 

Signal transduction and gene expression are inherently noisy processes, and stochastic events 

are hypothesized to drive HIV latency. That latency and HIV replication are driven by episodic 

bursts of proviral transcription and Tat levels has been supported by mathematical modeling 

and experiments using engineered virus models [38-40]. Even if latency is driven by random 

fluctuations of provirus transcription, T cell associated signals are strong modulators of noise, 

and targeting these pathways could enhance treatments directed at HIV reactivation [41]. 

However, it is important to appreciate that although signaling and transcription are subject to 

stochastic variation, these are coordinated and combinatorial processes that lead to defined 

patterns of gene expression and phenotypic outcomes [42]. 

Regulated aspects of transcription include assembly of multi-subunit complexes such as RNAP 

II and associated cofactors, chromatin, and transcription factors at the LTR. Our data suggest 

that the association of NELF with RNAP II is regulated by TCR signaling. Multiple positive and 

negative signals are known to converge on NELF-driven transcriptional pausing. P-TEFb  

relieves NELF repression through phosphorylation [43] and is itself regulated by cellular stress 

and signals [44-46]. Furthermore, we have shown that NELF interacts with co-repressors 

including NCoR1-GPS2-HDAC3 at the HIV-1 promoter [47] which may reinforce HIV latency, 

especially during chronic infection, by facilitating post-translational modifications of histones and 

chromatin organization.  
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We propose that strength of signal at the time of infection acts as a bifurcating event leading to 

either robust transcription and the establishment of an inducible latent reservoir or minimal 

transcription and deep-seated latency. Our observations are consistent with the previous 

characterization of patient reservoirs that identified three subsets of latently infected cells: a 

small population of cells carrying inducible provirus, a larger populations of cells with intact 

proviruses that are difficult to reactivate, and many defective proviruses [48]. Successful purging 

of the latent reservoir may require the use of a cocktail of latency reversing agents or the 

development of novel strategies to block reactivation [49-51]. 

 

Materials and Methods 

Cells 

Jurkat CD4+ T cells (E6-1) and human embryonic kidney 293T cells were obtained from 

American Type Culture Collection (ATCC). Jurkat cells were cultured in RPMI 1640, 5% FBS 

(Corning, Inc.), 100 units/mL penicillin (Invitrogen), 100 μg/mL streptomycin (Invitrogen), and 2mM L-

glutamine (Invitrogen). 293T cells were cultured in Dulbecco’s Modified Eagle Medium, 10% 

FBS, 100 units/mL penicillin, 100 μg/mL streptomycin, and 2mM L-glutamine. Cells were grown at 

37° C with 5% CO2. 

Primary CD4+ T cells were derived from de-identified healthy blood leukapheresis packs 

purchased from NY Biologic. Mononuclear cells were enriched from leukapacks by 

centrifugating through Histopaque gradient (Sigma-Aldrich). CD4+ T cells were isolated by 

negative selection using EasySep Human CD4+ T Cell Enrichment Kits from StemCell 

Technologies. CD4+ cells were maintained in RPMI 1640, 10% FBS, 100 units/mL penicillin, 100 

μg/mL streptomycin, and 2mM L-glutamine at 37° C with 5% CO2. Prior to transduction with 

CARs, primary cells were supplemented with 10 units/mL IL-2 and 10 ng/mL IL-7. Following 
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transduction, IL-2 was removed from culture conditions. All cells and cell lines were split every 

2-3 days. 

 

Viruses and transductions 

CARs were driven by a SFFV promoter in the lentiviral vector pHR [18,19]. pNL4-3.Luc.R-E- 

was obtained from NIH AIDS Reagent Program. BRU-ΔEnv-GFP was a gift from Gregory 

Viglianti (Boston University). Lentiviruses were made by transfection of vectors, VSV-G, Rev, 

Tat, and Gag-Pol constructs into 293T cells with 45μL polyethylenimine (1 mg/mL) per 6x106 cells. 

Supernatants were collected, filtered with 0.45μm syringe filter (Corning), concentrated by 

centrifuging through a 20% sucrose gradient, and titered with CEM cells [52]. We used a range 

of multiplicity of infections, but most viruses and lentiviruses within this paper were concentrated 

to approximately 1x106 IU/mL. 

For transductions with CAR vectors, primary and Jurkat cells were stimulated for 5-6 h with 10 

μg/mL PHA, washed in PBS, and spinoculated with lentivirus and 5 μg/mL polybrene (Millipore) at 

1200g for 90 min. Cells were then supplemented with fresh RPMI and IL-7, cultured overnight, 

and washed in PBS 18 h later. Cells were rested for one week to return to a resting state as 

confirmed by low CD69 expression (Brilliant Violet 421 anti-human CD69 antibody; Clone FN50, 

BioLegend) prior to HIV-1 infection. 

 

CAR stimulation and infections 

Non-tissue culture treated plates were coated overnight at 37oC with 1 μg/mL Her2 (Recombinant 

Human ErbB2/Her2 Fc Chimera Protein from R&D Systems, 1129-ER). Her2 solution was 

removed from wells, plates were washed 3 times in PBS, and wells were blocked for 1 h with a 

5% FBS-PBS solution. 
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Jurkat or primary CD4+ T cells were infected and simultaneously plated in Her2-treated wells. 

For experiments in which latently infected cells were generated, cells were spinoculated in the 

Her2-treated wells at 1200xg for 90 min and then supplemented with fresh RPMI and IL-7.  

Following overnight infection, cells were washed and either lysed or maintained in fresh media 

in the absence of Her2. 

For reactivation of latent cells, mCherry (CAR) positive and GFP (HIV) negative cells were 

sorted at 6 or 7 days post HIV infection. Cells were cultured with 5 ng/mL PMA and either 10 or 

100uM ionomycin for 2.5 h. Reactivated cells were washed in PBS and re-plated in media 

supplemented with 10 ng/mL IL-7. Cells were cultured overnight prior to fixation for flow analysis.  

For some experiments, cells were treated with 10 μM PP2 or PP3 (Calbiochem - Millipore 

Sigma) at the time of infection.  

 

Luciferase analysis 

Jurkat cells were washed and lysed for luciferase analysis 24 h post infection, while primary T 

cells were measured at 4 days post infection. Luciferin (Promega) was added and luciferase 

activity was measured via BioTek Synergy HT Microplate Reader. 

 

Nested Alu-PCR 

Nested PCR strategy was adapted from Agosto et al., 2007 [20]. Briefly, integrated HIV DNA 

was amplified using forward primers for the luciferase sequence and reverse primers for human 

Alu  (see Table 1). The first reaction was performed on a TProfessional Thermocycler from 

Biometra according to the following conditions: 4 m at 95° followed by 20 cycles of 15 s at 93°, 

15 s at 50°, and 2.5 m at 70°. A second round of amplification was then performed using a 

forward primer, a reverse primer, and a probe for real time PCR within the HIV-1 3’ R / U5 

region (see Table 1). The amount of amplified copies of HIV was determined based on an NL4-
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3 plasmid copy standard. The second reaction was performed on an Applied Biosystems 

QuantStudio 3 Real-Time PCR system with heating for 4 m at 95° and real-time PCR conditions 

of denaturation for 15 s at 95°, annealing for 30 s at 60°, and extension for 1 m at 72°. 

Table 1. Oligos used for Alu-PCR. 

Reaction Gene / 

Target 

Primer 

Direction 

Primer Sequence 

1st Step 

Alu Forward 5’-CGTCGCCAGTCAAGTAAC-3′  

luc Reverse 5’-CTGTAATCCCAGCAGTTTGGGAGGC-3′  

2nd Step 3’ R/U5 

Forward 5′-GCCTCAATAAAGCTTGCCTTGA-3′  

Reverse 5′-TCCACACTGACTAAAAGGGTCTGA-3′  

Probe 5′-FAM-CCAGAGTCACACAACAGACG-

TAMRA-3′ 

 

Flow cytometry 

Flow data were collected on an LSRII from BD Biosciences. Zombie UV Fixable Viability Kit 

(BioLegend) was used as live/dead stain for reactivation experiments. All cells were washed 

and fixed in a final concentration of 2% paraformaldehyde prior to analysis. Cell sorting was 

performed on a MoFlo Astrios from Beckman Coulter. All flow experiments performed at Boston 

University School of Medicine Flow Cytometry Core Facility. 

 

RT-PCR 

RT-PCR for HIV-1 mRNA was performed using forward primers and reverse primers for 

unspliced HIV Tat sequence, and all values were normalized against beta-actin as a 

housekeeping gene (see Table 2). The second reaction was performed on an Applied 

Biosystems QuantStudio 3 Real-Time PCR system with heating for 15 m at 94° and real-time 
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PCR conditions of denaturation for 15 s at 94°, annealing for 30 s at 60°, and extension for 30 s 

at 72°. 

Table 2. Oligos used for RT-PCR. 

Gene / Target Primer Direction Primer Sequence 

tat 

Forward 5’-GGAGCCAGTAGATCCTAGAC-3′  

Reverse 5’-CTTGGCAATGAAAGCAACAC-3′  

ACTB 

Forward 5’-TGGGACGACATGGAGAA-3′  

Reverse 5′-GGGTGTTGAAGGTCTCAAA-3’  

 

Chromatin immunoprecipitation 

ChIP was performed according to Natarajan et al., 2013 [47] with the addition of a nuclei 

isolation step using Farnham Lysis Buffer prior to sonication. Briefly, cells were washed in PBS 

and fixed in a final concentration of 1% formaldehyde in methanol. Crosslinking was quenched 

by addition of glycine to a final concentration of 240mM. Cells were then washed, centrifuged, 

and flash frozen in liquid nitrogen. Pellet was lysed in Farnham Lysis Buffer (5mM PIPES pH 

8.0, 85mM KCl, 0.5% NP-40 with addition of Halt Protease and Phosphatase Inhibitor Single-

Use Cocktail from ThermoFisher) before centrifugation to obtain nuclei fraction. Nuclei were 

lysed in RIPA buffer prior to sonication in BioRupter Pico for 15 m with alternating 30 s cycles. 

Samples were centrifuged to remove debris and pre-cleared with addition of 50% protein A 

sepharose bead for 30 m at 4°C. Beads were then pelleted and supernatants were split into 

100μL portions as input DNA and multiple 300μL portions for sample analysis. Samples were 

incubated with antibodies overnight at 4°C. Antibody-bound proteins and cross-linked DNA were 

isolated by addition of 50% protein A sepharose beads for 2 h at 4°C prior to centrifugation. 
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Immunoprecipitates were then washed with low salt (0.1% SDS, 1% Triton X-100, 2mM EDTA, 

20mM Tris-HCl pH 8.0, 150mM NaCl), high salt (0.1% SDS, 1% Triton X-100, 2mM EDTA, 

20mM Tris-HCl pH 8.0, 500mM NaCl), lithium wash (0.25M LiCl, 1% NP-40, 1% sodium 

deoxycholate, 1mM EDTA, 10mM Tris-HCl), and Tris-EDTA buffers (10mM Tris, 1mM EDTA) 

before use of elution buffer (1% SDS, 0.1M NaHCO3). Cross-linking was reversed with addition 

of 5M NaCl overnight at 65°C to both samples and input DNA before addition of proteinase K to 

isolate DNA. Sample DNA was purified using ChIP DNA Clean & Concentrator Kit (Zymo 

Research). 

Antibodies used included anti-NELF-d (Antibody TH1L from Proteintech Group), anti-RNA 

Polymerase II antibody (Clone N20 from Santa Cruz Biotechnology), anti-histone H3 antibody 

(Product 06-599 from Millipore Sigma), and Normal Rabbit IgG (Product 12-370 from Millipore 

Sigma). 

Primers used for the transcriptional start site include the forward primer at +30 and the reverse 

primer at +239. Primers used for transcriptional elongation include the forward and reverse 

primers within the tat gene (see Table 3).  

Table 3. Oligos used for Chromatin Immunoprecipitation Assays. 

Gene / Target Primer Direction Primer Sequence 

TSS* (+30) Forward 5’-CTGGGAGCTCTCTGGCTAACTA-3′  

TSS* (+239) Reverse 5’-AGATCTCCTCTGGCTTTAC-3′  

tat (+5379) Forward 5’-GGAGCCAGTAGATCCTAGAC-3′  

tat (+5482) Reverse 5’-CTTGGCAATGAAAGCAACAC-3′  

* HIV Transcriptional Start Site 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/432401doi: bioRxiv preprint 

https://doi.org/10.1101/432401
http://creativecommons.org/licenses/by/4.0/


 Gagne, et al. Page 17 

Statistical analysis 

All statistical analysis performed using unpaired student’s t test. 
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Figure legends 

Fig 1. Chimeric antigen receptors used for tunable T cell signaling.  

(A) The design of CARs including CD3ζ and CD28 signaling domains. (B) CAR single chain 

variable fragments with their corresponding dissociation constants for the Her2 ligand. We refer 

to these CARs by their relative ligand affinity. (C) Enrichment of primary CD4+ T cells based on 

mCherry expression following CAR transduction. See also S1 Fig. 

 

Fig 2. T cell signaling at the time of HIV-1 infection regulates provirus expression.  

(A and B) Jurkat T cells were transduced with the high or low affinity CAR. Cells were stimulated 

through the CAR at the time of HIV-1 infection with VSV-G pseudotyped NL4-3.Luc. (A) Relative 

levels of integrated provirus 24 h post infection of high or low affinity Jurkat T cells using nested 

Alu-PCR. Uninfected CAR-expressing Jurkat T cells were a negative control. (B) Luciferase 

activity measured 24 h post-infection presented as fold difference in relative light units (RLUs) 

over unstimulated cells for each CAR+ cell line. **p<0.005,***p≤0.0005. A and B were 

performed in triplicate and are representative of four independent experiments. Data are 

presented as mean ± standard deviation. (C and D) Primary CD4+ T cells isolated from healthy 

human donors were transduced with CARs and given one week to return to a resting state. 

Cells were stimulated through the CAR at the time of HIV infection with single-round VSV-G 

pseudotyped NL4-3.Luc. (C) Relative levels of integrated provirus 24 h after infection of high or 

low affinity CAR-expressing primary T cells (from the same donor) using nested Alu-PCR. 

Uninfected CAR-expressing primary T cells were a negative control. Results are from a single 
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experiment performed in triplicate and are representative of two independent experiments. Data 

are presented as mean ± standard deviation. (D) Luciferase activity measure 4 days post-

infection presented as fold difference in RLUs over unstimulated cells for each CAR+ cell line. 

Experiments from two separate donors are shown and are representative of three independent 

experiments. See also S2 Fig. 

 

Fig 3. Robust T cell signaling is required for HIV transcription.  

(A) Jurkat T cells were transduced and positively selected for indicated CARs and then infected 

with NL4-3.Luc. 24 h post infection, cells were lysed for luciferase analysis. Data are presented 

as fold difference in RLUs over unstimulated cells for each CAR+ population. **p<0.005, 

***p<0.0001. B) Relative levels of integrated provirus after infection of CAR-expressing Jurkats 

using nested Alu-PCR. A and B were performed in triplicate and are representative of four 

independent experiments. Data are presented as mean ± standard deviation. 

 

Fig 4. Robust signals during HIV-1 infection establishes an inducible latent reservoir.  

(A) Outline of experimental plan to enrich for latently infected cells following infection. Primary 

CD4+ T cells are infected with BRU-deltaEnv-GFP and GFP-negative cells are sorted to enrich 

for latently infected cells. (B) Percent GFP+ HIV-expressing cells after stimulation of latent cells 

with PMA plus ionomycin or without stimulation.  Data are from three separate donors. (C) 

Latently-infected cells were restimulated with PMA and ionomycin. HIV-1 expression was 

monitored by measuring Tat RNA by qRT-PCR. Values are shown as fold difference in HIV 

transcripts over corresponding non-reactivated controls. Note the log scale. All data in C are 

derived from 4-6 replicates and are representative of three independent experiments with 

different donors. Data are presented as mean ± standard deviation. *p<0.05, **p<0.005, 

***p<0.0001. 
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Fig 5. RNAP II Processivity Limits HIV-1 Transcription in the Absence of Robust 

Signaling.  

(A) ChIP for presence of acetylated H3 near the transcriptional start site  (nuc1). (B) ChIP for 

RNAP II at the HIV transcriptional start site. (C) ChIP for RNAP II associated with the HIV tat 

gene to measure polymerase processivity. Data from A-C are normalized to corresponding IgG 

controls for each stimulation condition. (D) ChIP for NELF-d at the HIV transcriptional start site. 

Data is normalized to corresponding unstimulated condition for each CAR+ cell line. A-D were 

performed in triplicate and are representative of at least three independent experiments in 

Jurkat T cells. Data are presented as mean ± standard deviation. Primers used for HIV 

transcriptional start site are +30 and +239. Primers used for tat gene are +5379 and +5482. 

*p<0.05, **p<0.005, ***p≤0.0005. 

 

Supporting information legends 

S1 Fig. Differential signaling through chimeric antigen receptors.  

Related to Fig 1. CD4+ T cells isolated from healthy human donors were transduced with low 

affinity or high affinity CARs and then allowed to return to a resting state. Cells were either then 

stimulated through the receptor or left unstimulated. CD69 expression was compared to a 

negative control of untransduced cells one day after Her2 stimulation. Data is presented as dot 

plots based on flow cytometry analysis and is from a representative experiment that has been 

performed four times with different donors.  

 

S2 Fig. Src kinase inhibitor PP2 inhibits CAR-mediated HIV transcription.  

Related to Fig 2. CAR+ Jurkat T cells were stimulated with or without Her2 in the absence or 

presence of 10 μM PP2 or PP3 at the time of HIV infection with single-round VSV-G 

pseudotyped NL4-3.Luc. 24 h post infection, cells were lysed to measure luciferase. Data are 
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presented as fold difference in RLUs over unstimulated cells for each CAR+ population. 

**p<0.005, ***p≤0.0005. S2 Fig was perfomed in triplicate and is representative of five 

independent experiments. Data are presented as mean ± standard deviation. 
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Fig 1 
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Fig 2 
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Fig 3 
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