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Abstract: 

The importance of how brain networks function together to create brain states has become 

increasingly recognized.  Therefore, an investigation of eyes-open resting state dynamic 

functional network connectivity (dFNC) of healthy controls (HC) versus that of schizophrenia 

patients (SP) via both fMRI and a novel MEG pipeline was completed. The fMRI analysis 

used a spatial independent component analysis (ICA) to determine the networks on which the 

dFNC was based.  The MEG analysis utilized a source-space activity estimate (MNE/dSPM) 

whose result was the input to a spatial ICA, on which the networks of the MEG dFNC was 

based.  We found that dFNC measures reveal significant differences between HC and SP, 

which depended upon the imaging modality. Consistent with previous findings, a dFNC 

analysis predicated on fMRI data revealed HC and SP remain in different overall brain states 

(defined by a k-means clustering of network correlations) for significantly different periods of 

time, with SP spending less time in a highly-connected state. The MEG dFNC, in contrast, 

revealed group differences in more global statistics: SP changed between meta-states (k-

means cluster states that are allowed to overlap in time) significantly more often and to states 

which were more different, relative to HC. MEG dFNC also revealed a highly connected state 

where a significant difference was observed in inter-individual variability, with greater 

variability among SP.  Overall, our results show that fMRI and MEG reveal between-group 

functional connectivity differences in distinct ways, highlighting the utility of using each of the 

modalities individually, or potentially a combination of modalities, to better inform our 

understanding of disorders such as schizophrenia. 
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1. Introduction 

Noninvasive neuroimaging is currently available in a number of modalities, including 

functional MRI (fMRI) with its excellent spatial resolution, and magnetoencephalography 

(MEG) with its excellent temporal resolution. Harnessing and/or combining the strengths 

these modalities offer is of great interest in both healthy and patient populations, which can 

aid in informing the classification of patient populations, identification of new treatment 

targets, and/or potential treatment success. One of the main goals of multi-modal imaging is 

to provide clinicians with biomarkers to assist with producing a diagnosis with increased 

confidence, and predicting a long-term prognosis for each new patient.  Importantly, 

theoretical and experimental evidence imply that the biological signals detected by both fMRI 

and MEG originate from post-synaptic currents, albeit in a complex manner potentially 

variable by brain region (Ahonen et al., 1993; Hamalainen et al., 1993; Conner et al., 2011; 

Zhu et al., 2009; Harvey et al., 2013), indicating that the combination and/or comparison of 

MEG and fMRI makes theoretical sense (Hall et al., 2014).  Although the exact relationship 

and influence of particular frequency bands remains an open question, the relationship 

between BOLD signal and electrophysiological activation has been shown for a variety of task 

activations in gamma band (Niessing, et al., 2005; Lachaux et al., 2007; Zaehle et al., 2009; 

Scheeringa et al., 2011; Kunii et al,. 2013), and it has been shown that in the resting state the 

direction (positive or negative) of EEG-BOLD signal correlations vary across brain regions 

and frequency bands, with lower as well as higher frequency brain oscillations linked to 

neurovascular processes.  Of particular relevance here, it was found that low-frequency 

oscillations (<20 Hz), and not gamma activity, predominantly contributed to interareal BOLD 

correlations (Wang et al., 2012).  The authors report that these low-frequency oscillations also 
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influenced local processing by modulating gamma activity within individual areas, and suggest 

that such cross-frequency coupling links local BOLD signals to correlations across distributed 

networks. In addition, results from Bridwell et al. (2013) characterized brain networks spatially 

and spectrally, revealing that positive and negative associations appear within overlapping 

regions of the EEG frequency spectrum.  That is, positive associations were primarily present 

within the lower (delta and theta) and higher (upper beta and lower gamma) spectral regions, 

sometimes within the same brain regions as measured by fMRI.  Finally,  it has been shown 

that even though the two modalities (fMRI and M/EEG) may exhibit activity in similar spatial 

locations, the functional pattern of this activity may differ in a complex manner, suggesting 

that each modality may be tuned to different aspects of neuronal activity 

(Muthukumaraswamy et al., 2008).  Taken together these findings imply a complex 

relationship between neuronal activation and neurovascular coupling as measured by the 

BOLD signal, and suggest that all frequency bands contained in the M/EEG signal are 

potentially of interest when studying patient populations. 

It has been shown in fMRI by Abrol et al. (2016) that multiple discrete, reoccurring 

connectivity states arise during rest, and that subjects tend to remain in one connectivity state 

for relatively long periods of time before transitioning to another. Other researchers observed 

how brain regions spontaneously changed their "module affiliations" (i.e., network 

connectivity) on a temporal scale of seconds, which could not be simply attributable to head 

motion or other error (Liao, et al., 2017, Vergara, et al., 2017).  Similarly, in 

electrophysiological data it has been shown that sensor-space "microstates" arise and change 

on the order of hundreds of milliseconds (Van de Ville, et al., 2010; Khanna et al., 2015; Baker 

et al., 2014) and vary between disorders dependent upon which network a microstate 
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correlated with (e.g. a microstate which correlated with the frontoparietal network was 

impaired in schizophrenia, Nishida et al., 2013).  Patients with schizophrenia (SP) have been 

investigated in this manner by others as well, with SP experiencing particular microstates 

more often, and also experiencing briefer microstates than did healthy controls (HC)(review: 

Rieger et al., 2016).  

One way to summarize the recurring connectivity states described above is via a 

functional network connectivity (FNC) analysis, which may be defined as the way in which 

sets of brain areas (networks) work together over time to produce different brain states, 

represented by statistical associations between network timecourses without regard to the 

spatial proximity of the regions to one another. Since an increasing body of literature suggests 

that neural oscillations perform a key role in binding separate brain regions together and 

promoting information transfer between distant brain areas (Buzsáki and Draguhn, 2004; 

Engel and Singer, 2001; Roopun et al., 2008) FNC has become an important metric for the 

study of how this naturally occurs (Jafri et al., 2008; Allen et al., 2014, Calhoun, et al., 2014). 

Furthermore, connectivity between brain regions is now generally accepted as being key to 

healthy brain function (Hall et al., 2014). Clearly the temporal as well as the spatial properties 

of these networks is of importance to our understanding of brain function, and it is probable 

that the definition of a network may vary on different time scales (Erhardt et al., 2011). Over 

the past decade FNC has most often been investigated within the resting state (i.e. in the 

absence of a defined task) using fMRI (Biswal, et al., 1995; Biswal et al., 2012, Allen et al., 

2011) and, to a lesser extent electrophysiological methods, MEG and EEG (Brookes et al., 

2011; Meier et al,. 2016; Nugent et al., 2016; Allen et al., 2017) in diverse populations 

including schizophrenia, depression, bipolar disorder, and in aging (Cetin et al., 2016; Houck 
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et al., 2017; Wu et al., 2017; Fox, 2017; Du, et al., 2016; Nashiro et al., 2017; Madden 2017; 

Roiser, et al., 2016; Dong, et al., 2017; Alamian, et al., 2017). To date, FNC have most often 

been assessed as a static feature of the data, inferred from the overall (arbitrary) duration of 

the scan. But there is no a priori reason to assume that in the resting brain network 

correlations are static; indeed based on the known rapid dynamics of brain oscillations it may 

instead be expected that connections across networks change over time, even during a brief 

resting scan, as subjects experience different mental and emotional states (Miller et al., 2014 

and 2016). The logical extension of FNC that looks at how states vary over small time 

"windows" in order to capture networks on a finer temporal scale, has been termed dynamic 

functional network connectivity (dFNC).  dFNC has also been investigated in resting state 

fMRI (Sakoğlu et al., 2010; Miller, et al., 2014) and in diagnostic groups such as 

schizophrenia patients (Damaraju et al., 2014; Miller, et al., 2014) where for schizophrenia 

patients in an eyes-closed resting scan it has been shown that there is a reduction in fluidity, 

or dynamism, in their ability to move from state to state. Importantly, the dFNC spatial patterns 

of intra-subject dynamic variability have been shown to largely overlap with that of inter-

subject variability, both of which were highly reproducible across repeated scanning sessions 

(Abrol et al., 2016).  dFNC has therefore been established as a useful tool for both 

investigating changing brain states as well as for determining how these states vary between 

patient populations. 

 Here we present a dynamic functional network connectivity (dFNC) analysis using 

MEG and fMRI eyes-open resting scans collected from the same sample of healthy controls 

and schizophrenia patients, and indicate where we find overlap and differences between the 

results from the different modalities. We discuss possible reasons for these results, including 
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careful selection of analysis parameters and scan length, particularly for the MEG data 

analysis where this has not been extensively studied previously. For the dFNC of fMRI data 

we follow an established pipeline (Calhoun et al., 2014; Miller et al., 2014). For the MEG data 

analysis, we describe the creation of a novel pipeline which includes a source-space analysis 

(MNE/dSPM, i.e. dynamic statistical parametric mapping from within Minimum Norm Estimate 

software) as input to a spatial ICA as the basis for the dFNC. We argue that using 

components calculated in such a way helps mitigate the "signal leakage" problem for MEG 

source-space based analyses as leakage manifests in the spatial maps, but the network 

connectivity patterns are preserved (Houck, et al., 2017). Finally, we investigate group 

differences between healthy controls and schizophrenia patients for both methods. We expect 

that SP will spend less time in highly connected cognitive states.  We further hypothesize that 

for both fMRI and MEG analysis SP will show a reduction in global meta-state statistic values 

that measure how and when individuals move between states at a global level, relative to HC 

(i.e. we will see a “reduced dynamism” for SP). 

2. Methods 

2.1 Participants  

 Briefly, this investigation combined existing data (Aine et al., 2017) from 46 

schizophrenia patients and 45 healthy controls from whom informed consent was obtained 

according to institutional guidelines at the University of New Mexico Human Research 

Protections Office (HRPO). All participants were compensated for their participation. Patients 

with a diagnosis of schizophrenia or schizoaffective disorder were invited to participate. Each 

patient completed the Structured Clinical Interview for DSM-IV Axis I Disorders (First et al., 
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1997) for diagnostic confirmation and evaluation of co-morbidities. Exclusion criteria included 

history of neurological disorders, mental retardation, substance abuse, or clinical instability. 

Patients were treated with a variety of antipsychotic medications, therefore doses of 

antipsychotic medications were converted to olanzapine equivalents (see Table 1: Gardner et 

al., 2010). Although patients and controls were not specifically matched, demographic 

characteristics including age, gender, and caregiver socio-economic status (Werner et al., 

2007) were monitored throughout recruitment to ensure that both groups were of similar 

composition. There were no significant between-group differences on these measures. Each 

participant completed resting MEG and fMRI scans; however, only data from 74 participants 

was available to be used for the MEG analysis (demographics remained similar between 

groups, no significant differences were found). The participant data and preprocessing used 

for this study overlapped with that presented in Houck et al. (2017) but the analytic approach 

developed in this work is novel and distinct.  

2.2 fMRI  

 All fMRI data were collected on a 3T Siemens Trio scanner with a 12-channel radio 

frequency coil. High-resolution T1-weighted structural images were acquired with a five-echo 

MPRAGE sequence with TE=1.64, 3.5, 5.36, 7.22, 9.08 ms, TR=2.53 s, TI=1.2 s, flip 

angle=7°, number of excitations=1, slice thickness=1 mm, field of view=256 mm, 

resolution=256×256. T2*-weighted functional images were acquired using a gradient-echo 

EPI sequence with TE=29 ms, TR=2 s, flip angle=75°, slice thickness=3.5 mm, slice 

gap=1.05 mm, field of view 240 mm, matrix size=64×64, voxel 

size=3.75 mm×3.75 mm×4.55 mm. An automated preprocessing pipeline and 

neuroinformatics system developed at the Mind Research Network (MRN, Scott et al., 2011) 
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was used to preprocess the fMRI data.  Five minutes of eyes-open resting data was collected 

from each participant. 

 After standard preprocessing (realignment, slice-timing correction, spatial 

normalization, and smoothing, see Houck et al., 2017), a subject-specific data reduction PCA 

was performed, retaining 100 principal components (PC). In order to use memory more 

efficiently, group data reduction was performed using an EM-based PCA algorithm and C=75 

PCs were retained. The infomax algorithm (cf. Erhardt et al., 2011) was used for gICA from 

within the GIFT Toolbox (http://mialab.mrn.org/software/gift/). In order to estimate the reliability 

of the decomposition, the Infomax ICA algorithm was applied 10 times via ICASSO (Himberg 

et al., 2004) and the resulting components were clustered. Subject-specific maps and 

timecourses were estimated using a back-reconstruction approach based on PCA 

compression and projection (Calhoun et al., 2001, Erhardt et al., 2011). Of the 75 components 

returned by gICA, 39 were identified as BOLD-related based on their frequency content and 

spatial patterns (e.g. no edge-like effects, no components located in ventricles or white 

matter) [Allen et al., 2011]. 

    To assess the frequency and structure of reoccurring FC patterns we applied the k-

means clustering algorithm (Lloyd 1982) to windowed covariance matrices as in Allen et al. 

(2014), where dFNC was defined as the (Gaussian tapered) windowed zero-lag cross-

correlations among reconstructed timecourses. We used a 22 TR window length (44 sec, 

following Miller et al., 2014 and Damaraju et al., 2014 and within the guidelines presented by 

Leonardi et al., 2015), slid 1 TR at each step, and computed pairwise correlations between 

time courses within these windows.  Four "cluster states" were identified as optimal for k-

means clustering using the silhouette and gap methods for the dFNC analysis.  State 
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transitions were computed for each subject at all windows.    Temporal statistics of cluster 

states were calculated for each subject, including: frequency of occurrence (how often an 

individual visited a particular cluster state), dwell time (total time an individual remained in 

each cluster state), and number of transitions between cluster states.  We summarized the 

temporal behavior of the resulting cluster states, which are then allowed to overlap in time, 

into meta-states; that is, a representation of how much a given subject is in each of the cluster 

states at each point in time. This approach builds distance vectors to the cluster centroids for 

each windowed FNC matrix. More specifically, windowed FNCs are modeled as “weighted 

sums of maximally independent connectivity patterns (CP)” (Miller et al., 2016). Discretized 

CP distance vectors are called meta-states.  Global statistics were then calculated on the 

meta-states and compared between HC and SP groups, including:  1) The number of distinct 

meta-states subjects occupy during the scan length ("Number of states");  2) The number of 

times that subjects switch from one meta-state to another ("Change between states"); 3) The 

range of meta-states subjects occupy, i.e., the largest L1 distance between occupied meta-

states ("State span"); and 4) The overall distance traveled by each subject through the state 

space, i.e. the sum of the L1 distances between successive meta-states, ("Total distance"). 

2.3 MEG 

Five minutes of eyes-open resting state MEG data were acquired continuously. Artifact 

removal, correction for head movement, and downsampling to 250 Hz were conducted offline 

using Elekta Maxfilter software [Maxfilter, Elekta: (Taulu et al., 2004; Taulu and Simola, 2006)] 

with 123 basis vectors, a spatiotemporal buffer of 10 s, and a correlation limit of r=0.95. 

Cardiac and blink artifacts were removed using a signal-space projection (SSP) approach 

(Uusitalo and Ilmoniemi, 1997). 
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The cortical surface of each participant was reconstructed from T1-weighted MRI images 

using FreeSurfer for the automatic segmentation of the skull and scalp surfaces. Visual 

inspection confirmed that the automatic segmentation returned a reasonable solution.  A 

repeatedly subdivided icosahedron was used as the spatial subsampling method which 

resulted in 10,242 locations per hemisphere. Coordinate system alignment was accomplished 

by first manually identifying fiducial landmarks and second by refining the alignment with the 

iterative closest-point algorithm (Besl and McKay, 1992) using the digitized scalp surface 

points. Source space analysis was conducted using dynamic statistical parametric mapping 

(MNE/dSPM), an anatomically constrained linear estimation approach (Dale et al., 2000). The 

regularization parameter was set to correspond to a signal-to-noise-ratio of 3 in the whitened 

data. Source orientation had a loose constraint of β=0.2, and a depth weighting of 0.8 was 

used. The forward solution was calculated using a single compartment boundary element 

method (BEM) (Hämäläinen and Sarvas, 1989; Mosher and Leahy, 1999); the surface was 

tessellated with 5120 triangles. Activity at each vertex of the cortical surface was mapped 

using a noise-normalized minimum norm estimate (Dale et al., 2000). In essence, MNE/dSPM 

identifies where the estimated current differs significantly from baseline noise (e.g., empty 

room data); this method also acts to reduce the location bias of the estimates (Gramfort et al., 

2014). Spatial normalization was accomplished using FreeSurfer spherical coordinate system 

(Dale et al., 1999; Fischl et al., 1999) for group comparisons. Spatiotemporal source 

distribution maps downsampled to a 50 Hz sampling rate were obtained at each time point 

(providing an upper frequency bound of 25 Hz). Due to processing time and data storage 

considerations the first 60 seconds of each scan were projected into the brain volume and the 

files were converted to NIFTI format in order to be used with the GIFT toolbox.   
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 Group spatial ICA (gsICA) was applied to the subject MNE/dSPM source-space maps 

using the GIFT toolbox (http://mialab.mrn.org/software/gift) as in our prior work (Houck et al., 

2017). MEG ICA processing generally followed the procedures applied to the fMRI. Spatial 

maps were generated by decomposing the mixed MEG timecourses to yield a set of 32 

spatially independent and temporally coherent networks. The final number of components 

was selected by determining that 1) networks (single or multiple areas of activation) were not 

being lost by the reduction in number of components and 2) that the same area was not being 

"broken up" into numerous components when only a single area of activation was present 

(See Fig. 1 for examples of components). This was an important consideration since later 

analyses involved multiple statistical comparisons. Furthermore, unlike with fMRI, this data 

should contain a minimum of artifact components (in the present case we found no artifact 

components) due to noise reduction and artifact removal during preprocessing. As with fMRI, 

subject-specific maps and timecourses were estimated using a back-reconstruction approach 

based on PCA compression and projection (Calhoun et al., 2001; Erhardt 2011; Houck et al., 

2017).  Although a beamformer source-space analysis technique has been used in a similar 

manner before (as input to an ICA, Houck et al., 2017), we show here that the MNE/dSPM 

measure used in this way gives reasonable, and arguably more focal (although not point-like) 

components. This may be due to the differential sensitivity of MNE-based methods to 

connectivity in non-ERP data (Hincapié et al., 2017). Furthermore, simulation has shown that 

MNE provides better connectivity estimation than beamformers if the interacting sources are 

simulated as extended cortical patches with high within source coherence (Hincapié et al., 

2017).  Which method to use is also an important consideration when correlations between 

sources may lead to partial or full signal cancellation in the beamformer.   Lastly, a k-means 

clustering, dFNC, and meta-state analysis was conducted between all 32 components (Table 
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1), following the same procedure described above for fMRI.   

 One question which needed to be addressed was the length of the window to use for 

the dFNC analysis. For fMRI we chose to follow a well-established precedent of a 22-TR 

window (= 44 sec) (Allen et al., 2014). Such a long time window was not considered for the 

MEG data since we were interested in investigating the faster oscillations available from this 

modality. We therefore chose a 4 sec window length for the analysis.  This allowed us to 

capture our range of frequencies of interest (1 Hz - 25 Hz) giving us the ability to see 

connections at higher frequencies unavailable via the fMRI analysis while avoiding "washing 

out" information from higher frequencies with too long a window.   

 In addition, the decision of how many cluster states to use in the MEG dFNC analysis 

presented some questions. First was whether the MEG dFNC should closely parallel the fMRI 

dFNC steps. This was abandoned for two reasons: 1) due to the temporal resolution of the 

MEG data there was no a priori reason to expect that the two modalities would reveal the 

same number of states, and 2) different quantities of data were evaluated, with 60 seconds of 

50 Hz data in the MEG case (i.e., 3000 sampling points), as opposed to 300 seconds with a 

2-sec TR in the fMRI (i.e., 150 sampling points). We initially used the gap and silhouette 

methods to estimate the number of k-means cluster states, however we found that due to a 

single outlier individual the 2 cluster state suggestion was unstable. Investigation of 3, 4, and 

5 cluster states indicated that 4 states was optimal for the present dataset, as this gave 

stable, replicable results which consistently grouped all the data from the single outlier 

individual into its own cluster state, and also gave reasonable occupancy percentages for the 

remaining 3 states (i.e. the percentage of correlation maps in each meaningful state were: 

19%, 64%, 17%). The state which contained the outlier did not return any statistics for the 
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group analysis since it did not contain sufficient data (i.e. only a single individual entered that 

state and all data for that individual was associated with that state), this state was removed 

from all additional analyses and did not influence any of the results shown. 

 Lastly, we summarized the temporal behavior of the resulting cluster states, which are 

now allowed to overlap in time, into meta-states; that is, a representation of how much a given 

subject is in each of the cluster states at each point in time. Global statistics were then 

calculated on the meta-states and compared between HC and SP groups.  Recall these are: 

"Number of states", "Change between states", "State span", and "Total distance". 

3. Results 

3.1 dFNC and Meta-State statistics of fMRI data 

 We found that 4 k-means cluster states characterized the temporal dynamics of a 5 

min eyes-open resting state fMRI scan, for both HC and SP, with a minimum of 24 participants 

entering each state at some point during the 5 mins of data collection (Fig 2.A). Furthermore, 

we found that for some cluster states SP and HC spent significantly different amounts of time 

there, as determined by dwell time. Particularly, SP visited and remained in state 1 for a 

significantly longer time than HC, whereas for state 3 the trend was reversed, with HC 

remaining in that state for a significantly longer time (Fig 2.B). On average, schizophrenia 

patients spent less time than healthy controls in a state typified by strong, large-scale 

connectivity (state 3, many correlation showing r >0.5). No significant inter-individual 

variability between groups was found for any cluster state. 

 We also investigated global statistics, and for these meta-state statistics, found no 

significant group differences for any measures including: number of states, change between 
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states, state span, nor total distance (as defined in "Methods").  

3.2 dFNC and Meta-State statistics of MEG data 

 We found that 3 k-means cluster states were stable and characterized the temporal 

dynamics for 1 min of eyes-open resting MEG data, for both HC and SP, where a minimum of 

58 participants entered each state at some point during the 1 min of data investigated (Fig 

3.A). We found a significant overall between-group difference for state 2, with more variability 

for SP than for HC (i.e. a significant difference was observed in inter-individual variability for 

how closely each group resembled the state).   

In contrast to the fMRI results we found no group differences in dwell time between HC 

and SP groups (Fig 3.B). However, in this data we see group differences in the global meta-

state statistics "change between states" and "total distance" (Fig 3.C).  

4. Discussion 

4.1 dFNC of fMRI and MEG: Do they provide complementary information? 

 Our fMRI results, which reveal that SP spent significantly less time in a highly connected 

cognitive state (Dwell time, state 3 Fig. 2B), parallel and replicate those of Damaraju et al. 

(2014) although we investigated an eyes-open resting state in contrast to the eyes-closed 

paradigm used in their study. However, for meta-state statistics calculated from fMRI data we 

found no significant group differences for any measures including: number of states, change 

between states, state span, nor total distance (as defined in "Methods"). This is in contrast to 

Miller et al. (2014 and 2016) who introduced and investigated these statistics between HC 

and SP in eyes-closed resting data and found significant "reduced connectivity dynamism" in 
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all statistics for SP relative to HC for these global statistics.  Of additional note is that the 

directionality (i.e. which group, HC or SP, showed the higher mean value) of all four global 

meta-state statistics is in the opposite direction as was found in Miller et al. (2014), with HC 

exhibiting less movement between states than SP.  However, we again point out that an eyes-

open resting state was used for the current study and with a smaller sample size, whereas 

Miller used a eyes-closed resting state, both potentially effecting which states were detected 

and how frequently they are visited (McAvoy et al., 2012).  

  Our MEG dFNC results revealed a significant overall between-group difference for 

state 2, with more variability for SP than for HC (i.e. significant difference was observed in 

inter-individual variability for how closely each group resembled the centroid of the cluster 

state).  Because this state includes many high correlations between fronto-frontal and fronto-

parietal regions (i.e. r > 0.5), this group difference is in keeping with numerous results that 

indicate that there is a frontal dysfunctional connectivity (i.e., dysconnectivity; Bullmore, 

Frangou, & Murray, 1997; Friston & Frith, 1995) for SP, a dysconnectivity seen both among 

frontal regions, e.g. insula and lateral frontal cortex (Palaniyappan et al., 2013) and between 

frontal regions and more distal areas, particularly fronto-parietal control network regions (Wu 

et al., 2017; Roiser, et al., 2013). We also saw a strong correlation between activity in bilateral 

medial temporal gyrus (MTG) and parahippocampus for all cluster states and groups, a 

relationship that may deserve additional investigation due to their involvement in memory, 

particularly recollection (Eichenbaum et al., 2007), as well as to everyday functioning in SP 

(Hanlon et al., 2012). It appears that the timescale of the MEG data may be attuned for such 

study. 

In contrast to the fMRI results we found no group differences in dwell time between HC 
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and SP groups (Fig 3.B). However, it is in this data where we see group differences in some 

of the global meta-state statistics, specifically the "change between states" and the "total 

distance" (Fig 3.C). Recall these are the number of times that subjects switch from one meta-

state to another and the overall distance traveled by each subject through the state space (the 

sum of the L1 distances between successive meta-states), respectively.  This indicates that 

not only are SP changing states more often than HC, but they are also changing to states that 

are more different in comparison to the previous state occupied.  Interestingly, and something 

which should be investigated further, we find that in all cases global meta-state statistics occur 

in the same direction even when failing to reach significance. In other words, SP show higher 

mean values for meta-state statistics relative to HC for both the MEG and fMRI analyses in 

the current study, which is reversed from what was found in Miller et al. (2014) for an eyes-

closed resting state.  

 In the present study we found that the information that can be gained from a dFNC 

analysis of resting state data of the same participants differs between the neuroimaging 

modalities of fMRI (differences seen in cluster state level statistics) and MEG (differences 

seen mostly in global-level meta-state statistics).   Therefore the fusion of these modalities is 

expected to reveal additional information (Calhoun and Liu, 2016), potentially informing 

identification/classification (e.g. individuals may have co-morbidities), new treatment targets, 

and/or potential treatment success. The next step will include determining the best way of 

combining these data within an overarching framework to maximize the information from each 

modality and their combination (e.g. joint-ICA). The major limitations of the current study was 

the use of only 1 min of MEG data for the analyses, and the downsampling of the MEG data 

to 20ms necessitated by computing time and memory constraints, which resulted in an upper 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/432385doi: bioRxiv preprint 

https://doi.org/10.1101/432385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

frequency limit of 25Hz, and therefore an inability to probe gamma band relationships at this 

time.  We are currently working on implementing a faster method for the analysis and will 

soon have hardware supplying additional memory resources alleviating these shortcomings.  

Arguably, one could travel to a greater number of distinct "states" were one to have more time 

to do so, although of course both HC and SP had the same limitation.  In addition, were this 

the case we would argue that many more than 3 viable states would have been detected in 

the 1 min of MEG data analyzed.  A higher sampling rate could plausibly reveal more 

interactions and transitions (including gamma band), however a preliminary analysis with a 

10ms sampling rate (50Hz maximum frequency) reveled similar results to those presented 

here. It has been conjectured that even 5 mins of data (an often used scan duration for fMRI) 

may be too short for dFNC determined from fMRI data. Indeed, improvements in the reliability 

of resting state data tend to rise with scan length, plateauing at a scan length of 13 minutes  

(Birn et al., 2013). Consistent with this finding, Liuzzi, et al. (2016) showed that large 

improvements in repeatability were apparent when using a 10 min, compared to a 5 min 

recording for MEG resting state functional connectivity analyses. However, that study was 

looking for a single "canonical" state, whereas the present study, using windowed correlations 

and k-means clustering is evaluating a set of states whose number is data driven, which may 

have a different, perhaps shorter, optimal scan duration.  It has been shown that FNC states 

in electrophysiological data can be quite transient (100-200 ms), suggesting that the resting 

brain is changing between different patterns of repeated activity at a rapid pace at the 

neuronal temporal scale (Vidaurre et al., 2016). Clearly the time scales of these states need 

further investigation. However, regardless of the time scale, imaging modality, or underlying 

biological signal, the primary finding across studies, including the present study, is that d/FNC 

evolves as a multi-stable process passing through multiple and reoccurring discrete cognitive 
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states, rather than varying in a more continuous sense (Cabral, et al., 2016; Hutchison et al., 

2013; Allen et al., 2014; Hansen et al., 2015; Preti et al., 2016). 

4.2 Conclusions 

Our results here show how two neuroimaging modalities, MEG and fMRI, can each 

reveal distinct differences between HC and SP groups, and how the differences emerge in 

different metrics for each modality. For the eyes-open resting state investigated we found 

group differences at the "cluster-level" for fMRI (i.e., dwell time), whereas for MEG we found 

differences at what has been referred to as the "global-level" (i.e., change between states and 

distance traveled: Miller et al., 2014).  This indicates the importance of future work which 

usefully combines these two neuroimaging methodologies, taking advantage of the distinct 

information contained in each, in order to e.g. better differentiate clinical populations with 

overlapping symptoms, for example using a joint-ICA. Future work will also aim to identify 

which metrics correlate with illness characteristics such as symptoms, chronicity, and 

cognitive impairment.  In addition we presented a novel MEG analysis pipeline, which 

incorporates a source-space analysis (MNE/dSPM) as input to a group ICA, the 

networks/components of which may then be used for a dFNC analysis.   

 

Acknowledgments:  

Research reported in this publication was supported by the National Institute on General 

Medical Sciences, National Institute on Alcohol Abuse and Alcoholism, and National Institute 

of Biomedical Imaging And Bioengineering of the National Institutes of Health under award 

numbers P20GM103472, K01AA021431, R01EB006841, and R01REB020407.  Additional 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/432385doi: bioRxiv preprint 

https://doi.org/10.1101/432385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

support was provided by NSF grant 1539067. The content is solely the responsibility of the 

authors and does not necessarily represent the official views of the National Institutes of 

Health or the National Science Foundation. 

References: 

Abrol, A., Chaze, C., Damaraju, E., & Calhoun, V. D. (2016). The chronnectome: Evaluating 

replicability of dynamic connectivity patterns in 7500 resting fMRI datasets. Conf Proc IEEE Eng Med 

Biol Soc, 2016, 5571-5574. doi: 10.1109/EMBC.2016.7591989 

 

Ahonen, A. I., Hamalainen, M. S., Ilmoniemi, R. J., Kajola, M. J., Knuutila, J. E., Simola, J. T., & 

Vilkman, V. A. (1993). Sampling theory for neuromagnetic detector arrays. IEEE Trans Biomed Eng, 

40(9), 859-869. doi: 10.1109/10.245606 

 

Aine, C. J., Bockholt, H. J., Bustillo, J. R., Canive, J. M., Caprihan, A., Gasparovic, C., . . . Calhoun, V. 

D. (2017). Multimodal Neuroimaging in Schizophrenia: Description and Dissemination. 

Neuroinformatics. doi: 10.1007/s12021-017-9338-9 

 

Alamian, G., Hincapie, A. S., Combrisson, E., Thiery, T., Martel, V., Althukov, D., & Jerbi, K. (2017). 

Alterations of Intrinsic Brain Connectivity Patterns in Depression and Bipolar Disorders: A Critical 

Assessment of Magnetoencephalography-Based Evidence. Front Psychiatry, 8, 41. doi: 

10.3389/fpsyt.2017.00041 

 

Allen, E. A., Damaraju, E., Eichele, T., Wu, L., & Calhoun, V. D. (2017). EEG Signatures of Dynamic 

Functional Network Connectivity States. Brain Topogr. doi: 10.1007/s10548-017-0546-2 

 

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking 

whole-brain connectivity dynamics in the resting state. Cereb Cortex, 24(3), 663-676. doi: 

10.1093/cercor/bhs352 

 

Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., . . . Calhoun, V. D. 

(2011). A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci, 5, 2. 

doi: 10.3389/fnsys.2011.00002 

 

Besl & McKay. (1992).  A Method for Registration of 3-D Shapes. IEEE Transactions on Pattern 

Analysis and Machine Intelligence - Special issue on interpretation of 3-D scenes—part II archive, 

Volume 14 Issue 2, 239-256.  

 

Birn, R. M., Molloy, E. K., Patriat, R., Parker, T., Meier, T. B., Kirk, G. R., . . . Prabhakaran, V. (2013). 

The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage, 

83, 550-558. doi: 10.1016/j.neuroimage.2013.05.099 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/432385doi: bioRxiv preprint 

https://doi.org/10.1101/432385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor 

cortex of resting human brain using echo-planar MRI. Magn Reson Med, 34(4), 537-541.  

 

Biswal, B. B. (2012). Resting state fMRI: a personal history. Neuroimage, 62(2), 938-944. doi: 

10.1016/j.neuroimage.2012.01.090 

 

Bridwell, D. A., Wu, L., Eichele, T., & Calhoun, V. D. (2013). The spatiospectral characterization of 

brain networks: fusing concurrent EEG spectra and fMRI maps. Neuroimage, 69, 101-111. doi: 

10.1016/j.neuroimage.2012.12.024 

 

Brookes, M. J., Hale, J. R., Zumer, J. M., Stevenson, C. M., Francis, S. T., Barnes, G. R., . . . 

Nagarajan, S. S. (2011). Measuring functional connectivity using MEG: methodology and comparison 

with fcMRI. Neuroimage, 56(3), 1082-1104. doi: 10.1016/j.neuroimage.2011.02.054 

 

Brookes, M. J., Woolrich, M., Luckhoo, H., Price, D., Hale, J. R., Stephenson, M. C., . . . Morris, P. G. 

(2011). Investigating the electrophysiological basis of resting state networks using 

magnetoencephalography. Proc Natl Acad Sci U S A, 108(40), 16783-16788. doi: 

10.1073/pnas.1112685108 

 

Bullmore, E. T., Frangou, S., Murray, R. M., 1997. The dysplastic net hypothesis: an integration of 

developmental and dysconnectivity theories of schizophrenia. Schizophrenia Research 28, 143–156. 

https://doi.org/10.1016/S0920-9964(97)00114-X 

 

Buzsaki, G. (2004). Large-scale recording of neuronal ensembles. Nat Neurosci, 7(5), 446-451. doi: 

10.1038/nn1233 

 

Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 

1926-1929. doi: 10.1126/science.1099745 

 

Cabral, C., Kambeitz-Ilankovic, L., Kambeitz, J., Calhoun, V. D., Dwyer, D. B., von Saldern, S., . . . 

Koutsouleris, N. (2016). Classifying Schizophrenia Using Multimodal Multivariate Pattern Recognition 

Analysis: Evaluating the Impact of Individual Clinical Profiles on the Neurodiagnostic Performance. 

Schizophr Bull, 42 Suppl 1, S110-117. doi: 10.1093/schbul/sbw053 

 

Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method for making group inferences 

from functional MRI data using independent component analysis. Hum Brain Mapp, 14(3), 140-151.  

 

Calhoun, V. D., Miller, R., Pearlson, G., & Adali, T. (2014). The chronnectome: time-varying 

connectivity networks as the next frontier in fMRI data discovery. Neuron, 84(2), 262-274. doi: 

10.1016/j.neuron.2014.10.015 

 

Calhoun, V. D., & Sui, J. (2016). Multimodal fusion of brain imaging data: A key to finding the missing 

link(s) in complex mental illness. Biol Psychiatry Cogn Neurosci Neuroimaging, 1(3), 230-244. doi: 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/432385doi: bioRxiv preprint 

https://doi.org/10.1101/432385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10.1016/j.bpsc.2015.12.005 

 

Cetin, M. S., Houck, J. M., Rashid, B., Agacoglu, O., Stephen, J. M., Sui, J., . . . Calhoun, V. D. (2016). 

Multimodal Classification of Schizophrenia Patients with MEG and fMRI Data Using Static and 

Dynamic Connectivity Measures. Front Neurosci, 10, 466. doi: 10.3389/fnins.2016.00466 

 

Conner, C. R., Ellmore, T. M., Pieters, T. A., DiSano, M. A., & Tandon, N. (2011). Variability of the 

relationship between electrophysiology and BOLD-fMRI across cortical regions in humans. J Neurosci, 

31(36), 12855-12865. doi: 10.1523/JNEUROSCI.1457-11.2011 

 

Cousijn, H., Tunbridge, E. M., Rolinski, M., Wallis, G., Colclough, G. L., Woolrich, M. W., . . . Harrison, 

P. J. (2015). Modulation of hippocampal theta and hippocampal-prefrontal cortex function by a 

schizophrenia risk gene. Hum Brain Mapp, 36(6), 2387-2395. doi: 10.1002/hbm.22778 

 

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and 

surface reconstruction. Neuroimage, 9(2), 179-194. doi: 10.1006/nimg.1998.0395 

 

Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., & Halgren, E. 

(2000). Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging 

of cortical activity. Neuron, 26(1), 55-67.  

 

Damaraju, E., Allen, E. A., Belger, A., Ford, J. M., McEwen, S., Mathalon, D. H., . . . Calhoun, V. D. 

(2014). Dynamic functional connectivity analysis reveals transient states of dysconnectivity in 

schizophrenia. Neuroimage Clin, 5, 298-308. doi: 10.1016/j.nicl.2014.07.003 

 

Dong, D., Wang, Y., Chang, X., Luo, C., & Yao, D. (2017). Dysfunction of Large-Scale Brain Networks 

in Schizophrenia: A Meta-analysis of Resting-State Functional Connectivity. Schizophr Bull. doi: 

10.1093/schbul/sbx034 

 

Du, Y., Pearlson, G. D., Yu, Q., He, H., Lin, D., Sui, J., . . . Calhoun, V. D. (2016). Interaction among 

subsystems within default mode network diminished in schizophrenia patients: A dynamic connectivity 

approach. Schizophr Res, 170(1), 55-65. doi: 10.1016/j.schres.2015.11.021 

 

Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition 

memory. Annu Rev Neurosci, 30, 123-152. doi: 10.1146/annurev.neuro.30.051606.094328 

 

Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. 

Trends Cogn Sci, 5(1), 16-25.  

 

Erhardt, E. B., Allen, E. A., Damaraju, E., & Calhoun, V. D. (2011). On network derivation, 

classification, and visualization: a response to Habeck and Moeller. Brain Connect, 1(2), 105-110. doi: 

10.1089/brain.2011.0022 

 

Erhardt, E. B., Rachakonda, S., Bedrick, E. J., Allen, E. A., Adali, T., & Calhoun, V. D. (2011). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/432385doi: bioRxiv preprint 

https://doi.org/10.1101/432385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp, 32(12), 2075-

2095. doi: 10.1002/hbm.21170 

 

First, M., Gibbon M, Spitzer RL, Williams, JBW, Benjamin LS. (1997). Structured Clinical Interview for 

DSM-IV Axis II Personality Disorders, (SCID-II). Washington, D.C: American Psychiatric Press, Inc. 

 

Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774-781. doi: 10.1016/j.neuroimage.2012.01.021 

 

Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, 

and a surface-based coordinate system. Neuroimage, 9(2), 195-207. doi: 10.1006/nimg.1998.0396 

 

Fox, J. M., Abram, S. V., Reilly, J. L., Eack, S., Goldman, M. B., Csernansky, J. G., . . . Smith, M. J. 

(2017). Default mode functional connectivity is associated with social functioning in schizophrenia. J 

Abnorm Psychol, 126(4), 392-405. doi: 10.1037/abn0000253 

 

Friston, K. J., Frith, C. D., 1995. Schizophrenia: a disconnection syndrome? Clin. Neurosci. 3, 89–97. 

 

Gardner, D. M., Murphy, A. L., O'Donnell, H., Centorrino, F., & Baldessarini, R. J. (2010). International 

consensus study of antipsychotic dosing. Am J Psychiatry, 167(6), 686-693. doi: 

10.1176/appi.ajp.2009.09060802 

 

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., . . . Hamalainen, 

M. S. (2014). MNE software for processing MEG and EEG data. Neuroimage, 86, 446-460. doi: 

10.1016/j.neuroimage.2013.10.027 

 

Hall, E. L., Robson, S. E., Morris, P. G., & Brookes, M. J. (2014). The relationship between MEG and 

fMRI. Neuroimage, 102 Pt 1, 80-91. doi: 10.1016/j.neuroimage.2013.11.005 

 

Hamalainen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J. and Lounasmaa, O.V. . (1993). 

Magnetoencephalography-Theory, Instrumentation, and Applications to Noninvasive Studies of the 

Working Human Brain. Reviewed Modern Physics, 65, 413-497.  

 

Hansen, E. C., Battaglia, D., Spiegler, A., Deco, G., & Jirsa, V. K. (2015). Functional connectivity 

dynamics: modeling the switching behavior of the resting state. Neuroimage, 105, 525-535. doi: 

10.1016/j.neuroimage.2014.11.001 

 

Harvey, B. M., Vansteensel, M. J., Ferrier, C. H., Petridou, N., Zuiderbaan, W., Aarnoutse, E. J., . . . 

Dumoulin, S. O. (2013). Frequency specific spatial interactions in human electrocorticography: V1 

alpha oscillations reflect surround suppression. Neuroimage, 65, 424-432. doi: 

10.1016/j.neuroimage.2012.10.020 

 

Hanlon, F. M., Houck, J. M., Klimaj, S. D., Caprihan, A., Mayer, A. R., Weisend, M. P., Bustillo, J. R., 

Hamilton, D. A., Tesche, C. D., 2012. Frontotemporal anatomical connectivity and working-relational 

memory performance predict everyday functioning in schizophrenia. Psychophysiology 49, 1340–

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/432385doi: bioRxiv preprint 

https://doi.org/10.1101/432385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

1352. doi: 10.1111/j.1469-8986.2012.01448.x 

 

Himberg, J., Hyvarinen, A., & Esposito, F. (2004). Validating the independent components of 

neuroimaging time series via clustering and visualization. Neuroimage, 22(3), 1214-1222. doi: 

10.1016/j.neuroimage.2004.03.027  

 

Hincapié, A.-S., Kujala, J., Mattout, J., Pascarella, A., Daligault, S., Delpuech, C., … Jerbi, K. (2017). 

The impact of MEG source reconstruction method on source-space connectivity estimation: A 

comparison between minimum-norm solution and beamforming. NeuroImage, 156, 29–42. 

https://doi.org/10.1016/j.neuroimage.2017.04.038 

 

Houck, J. M., Cetin, M. S., Mayer, A. R., Bustillo, J. R., Stephen, J., Aine, C., . . . Calhoun, V. D. 

(2017). Magnetoencephalographic and functional MRI connectomics in schizophrenia via intra- and 

inter-network connectivity. Neuroimage, 145(Pt A), 96-106. doi: 10.1016/j.neuroimage.2016.10.011 

 

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., . . . 

Chang, C. (2013). Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage, 

80, 360-378. doi: 10.1016/j.neuroimage.2013.05.079 

 

Jafri, M. J., Pearlson, G. D., Stevens, M., & Calhoun, V. D. (2008). A method for functional network 

connectivity among spatially independent resting-state components in schizophrenia. Neuroimage, 

39(4), 1666-1681. doi: 10.1016/j.neuroimage.2007.11.001 

 

Kam, J. W., Bolbecker, A. R., O'Donnell, B. F., Hetrick, W. P., & Brenner, C. A. (2013). Resting state 

EEG power and coherence abnormalities in bipolar disorder and schizophrenia. J Psychiatr Res, 

47(12), 1893-1901. doi: 10.1016/j.jpsychires.2013.09.009 

 

Khanna, A., Pascual-Leone, A., Michel, C. M., & Farzan, F. (2015). Microstates in resting-state EEG: 

current status and future directions. Neurosci Biobehav Rev, 49, 105-113. doi: 

10.1016/j.neubiorev.2014.12.010 

 

Kim, J. S., Shin, K. S., Jung, W. H., Kim, S. N., Kwon, J. S., & Chung, C. K. (2014). Power spectral 

aspects of the default mode network in schizophrenia: an MEG study. BMC Neurosci, 15, 104. doi: 

10.1186/1471-2202-15-104 

 

Koh, Y., Shin, K. S., Kim, J. S., Choi, J. S., Kang, D. H., Jang, J. H., . . . Kwon, J. S. (2011). An MEG 

study of alpha modulation in patients with schizophrenia and in subjects at high risk of developing 

psychosis. Schizophr Res, 126(1-3), 36-42. doi: 10.1016/j.schres.2010.10.001 

 

Kunii, N., Kamada, K., Ota, T., Kawai, K., & Saito, N. (2013). Characteristic profiles of high gamma 

activity and blood oxygenation level-dependent responses in various language areas. Neuroimage, 

65, 242-249. doi: 10.1016/j.neuroimage.2012.09.059 

 

Lachaux, J. P., Fonlupt, P., Kahane, P., Minotti, L., Hoffmann, D., Bertrand, O., & Baciu, M. (2007). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/432385doi: bioRxiv preprint 

https://doi.org/10.1101/432385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Relationship between task-related gamma oscillations and BOLD signal: new insights from combined 

fMRI and intracranial EEG. Hum Brain Mapp, 28(12), 1368-1375. doi: 10.1002/hbm.20352 

 

Liao, X., Cao, M., Xia, M., & He, Y. (2017). Individual differences and time-varying features of modular 

brain architecture. Neuroimage, 152, 94-107. doi: 10.1016/j.neuroimage.2017.02.066 

 

Liuzzi, L., Gascoyne, L. E., Tewarie, P. K., Barratt, E. L., Boto, E., & Brookes, M. J. (2017). Optimising 

experimental design for MEG resting state functional connectivity measurement. Neuroimage, 155, 

565-576. doi: 10.1016/j.neuroimage.2016.11.064 

 

Meier, J., Tewarie, P., Hillebrand, A., Douw, L., van Dijk, B. W., Stufflebeam, S. M., & Van Mieghem, P. 

(2016). A Mapping Between Structural and Functional Brain Networks. Brain Connect, 6(4), 298-311. 

doi: 10.1089/brain.2015.0408 

 

Miller, R. L., Yaesoubi, M., & Calhoun, V. D. (2014). Higher dimensional analysis shows reduced 

dynamism of time-varying network connectivity in schizophrenia patients. Conf Proc IEEE Eng Med 

Biol Soc, 2014, 3837-3840. doi: 10.1109/EMBC.2014.6944460 

 

Miller RL, Yaesoubi M, Turner JA, Mathalon D, Preda A, Pearlson G, Adali T, Calhoun VD (2016).  

Higher Dimensional Meta-State Analysis Reveals Reduced Resting fMRI Connectivity Dynamism in 

Schizophrenia Patients.  PLoS One. 2016 Mar 16;11(3):e0149849. doi: 

10.1371/journal.pone.0149849. 

 

Mosher, J. C., Leahy, R. M., & Lewis, P. S. (1999). EEG and MEG: forward solutions for inverse 

methods. IEEE Trans Biomed Eng, 46(3), 245-259.  

 

Muthukumaraswamy, S. D., & Singh, K. D. (2008). Spatiotemporal frequency tuning of BOLD and 

gamma band MEG responses compared in primary visual cortex. Neuroimage, 40(4), 1552-1560. doi: 

10.1016/j.neuroimage.2008.01.052 

 

Nashiro, K., Sakaki, M., Braskie, M. N., & Mather, M. (2017). Resting-state networks associated with 

cognitive processing show more age-related decline than those associated with emotional processing. 

Neurobiol Aging, 54, 152-162. doi: 10.1016/j.neurobiolaging.2017.03.003 

 

Niessing, J., Ebisch, B., Schmidt, K. E., Niessing, M., Singer, W., & Galuske, R. A. (2005). 

Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science, 309(5736), 

948-951. doi: 10.1126/science.1110948 

 

Nishida, K., Morishima, Y., Yoshimura, M., Isotani, T., Irisawa, S., Jann, K., . . . Koenig, T. (2013). EEG 

microstates associated with salience and frontoparietal networks in frontotemporal dementia, 

schizophrenia and Alzheimer's disease. Clin Neurophysiol, 124(6), 1106-1114. doi: 

10.1016/j.clinph.2013.01.005 

 

Nugent, A. C., Luber, B., Carver, F. W., Robinson, S. E., Coppola, R., & Zarate, C. A., Jr. (2017). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/432385doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Yaesoubi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26981625
https://www.ncbi.nlm.nih.gov/pubmed/?term=Turner%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=26981625
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mathalon%20D%5BAuthor%5D&cauthor=true&cauthor_uid=26981625
https://www.ncbi.nlm.nih.gov/pubmed/?term=Preda%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26981625
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pearlson%20G%5BAuthor%5D&cauthor=true&cauthor_uid=26981625
https://www.ncbi.nlm.nih.gov/pubmed/?term=Adali%20T%5BAuthor%5D&cauthor=true&cauthor_uid=26981625
https://www.ncbi.nlm.nih.gov/pubmed/?term=Calhoun%20VD%5BAuthor%5D&cauthor=true&cauthor_uid=26981625
https://doi.org/10.1101/432385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Deriving frequency-dependent spatial patterns in MEG-derived resting state sensorimotor network: A 

novel multiband ICA technique. Hum Brain Mapp, 38(2), 779-791. doi: 10.1002/hbm.23417 

 

Palaniyappan, L., Simmonite, M., White, T. P., Liddle, E. B., & Liddle, P. F. (2013). Neural primacy of 

the salience processing system in schizophrenia. Neuron, 79(4), 814-828. doi: 

10.1016/j.neuron.2013.06.027 

 

Preti, M. G., Bolton, T. A., & Van De Ville, D. (2016). The dynamic functional connectome: State-of-the-

art and perspectives. Neuroimage. doi: 10.1016/j.neuroimage.2016.12.061 

 

Rieger, K., Diaz Hernandez, L., Baenninger, A., & Koenig, T. (2016). 15 Years of Microstate Research 

in Schizophrenia - Where Are We? A Meta-Analysis. Front Psychiatry, 7, 22. doi: 

10.3389/fpsyt.2016.00022 

 

Roiser, J. P., Wigton, R., Kilner, J. M., Mendez, M. A., Hon, N., Friston, K. J., & Joyce, E. M. (2013). 

Dysconnectivity in the frontoparietal attention network in schizophrenia. Front Psychiatry, 4, 176. doi: 

10.3389/fpsyt.2013.00176 

 

Roopun, A. K., Cunningham, M. O., Racca, C., Alter, K., Traub, R. D., & Whittington, M. A. (2008). 

Region-specific changes in gamma and beta2 rhythms in NMDA receptor dysfunction models of 

schizophrenia. Schizophr Bull, 34(5), 962-973. doi: 10.1093/schbul/sbn059 

 

Sakoglu, U., Pearlson, G. D., Kiehl, K. A., Wang, Y. M., Michael, A. M., & Calhoun, V. D. (2010). A 

method for evaluating dynamic functional network connectivity and task-modulation: application to 

schizophrenia. MAGMA, 23(5-6), 351-366. doi: 10.1007/s10334-010-0197-8 

 

Scheeringa, R., Fries, P., Petersson, K. M., Oostenveld, R., Grothe, I., Norris, D. G., . . . Bastiaansen, 

M. C. (2011). Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute 

independently to the human BOLD signal. Neuron, 69(3), 572-583. doi: 10.1016/j.neuron.2010.11.044 

 

Scott, A., Courtney, W., Wood, D., de la Garza, R., Lane, S., King, M., . . . Calhoun, V. D. (2011). 

COINS: An Innovative Informatics and Neuroimaging Tool Suite Built for Large Heterogeneous 

Datasets. Front Neuroinform, 5, 33. doi: 10.3389/fninf.2011.00033 

 

Smith, S. M., Vidaurre, D., Beckmann, C. F., Glasser, M. F., Jenkinson, M., Miller, K. L., . . . Van 

Essen, D. C. (2013). Functional connectomics from resting-state fMRI. Trends Cogn Sci, 17(12), 666-

682. doi: 10.1016/j.tics.2013.09.016 

 

Smith, S. M.,  Peter T. Fox, Karla L. Miller, David C. Glahn, P. Mickle Fox, Clare E. Mackay, Nicola 

Filippini, Kate E. Watkins, Roberto Toro, Angela R. Laird, Christian F. Beckmann.  Correspondence of 

the brain's functional architecture during activation and rest. Proceedings of the National Academy of 

Sciences Aug 2009, 106 (31) 13040-13045; DOI: 10.1073/pnas.0905267106  

Taulu, S., Kajola, M., & Simola, J. (2004). Suppression of interference and artifacts by the Signal 

Space Separation Method. Brain Topogr, 16(4), 269-275.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/432385doi: bioRxiv preprint 

https://doi.org/10.1101/432385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Taulu, S., & Simola, J. (2006). Spatiotemporal signal space separation method for rejecting nearby 

interference in MEG measurements. Phys Med Biol, 51(7), 1759-1768. doi: 10.1088/0031-

9155/51/7/008  

 

Uusitalo, M. A., & Ilmoniemi, R. J. (1997). Signal-space projection method for separating MEG or EEG 

into components. Med Biol Eng Comput, 35(2), 135-140.  

 

Van de Ville D, Britz J, Michel CM. (2010) .  EEG microstate sequences in healthy humans at rest 

reveal scale-free dynamics.  Proc Natl Acad Sci U S A. 107(42):18179-84. doi: 

10.1073/pnas.1007841107. Epub 2010 Oct 4. 

 

Vergara, V. M., Miller, R., & Calhoun, V. (2017). An information theory framework for dynamic 

functional domain connectivity. J Neurosci Methods, 284, 103-111. doi: 

10.1016/j.jneumeth.2017.04.009 

 

Vidaurre, D., Quinn, A. J., Baker, A. P., Dupret, D., Tejero-Cantero, A., & Woolrich, M. W. (2016). 

Spectrally resolved fast transient brain states in electrophysiological data. Neuroimage, 126, 81-95. 

doi: 10.1016/j.neuroimage.2015.11.047 

 

Vinck, M., Oostenveld, R., van Wingerden, M., Battaglia, F., & Pennartz, C. M. A. (2011). An improved 

index of phase-synchronization for electrophysiological data in the presence of volume-conduction, 

noise and sample-size bias. NeuroImage, 55(4), 1548–1565. 

https://doi.org/10.1016/j.neuroimage.2011.01.055 

 

Wang, L., Saalmann, Y. B., Pinsk, M. A., Arcaro, M. J., & Kastner, S. (2012). Electrophysiological low-

frequency coherence and cross-frequency coupling contribute to BOLD connectivity. Neuron, 76(5), 

1010-1020. doi: 10.1016/j.neuron.2012.09.033 

 

Werner, S., Malaspina, D., & Rabinowitz, J. (2007). Socioeconomic status at birth is associated with 

risk of schizophrenia: population-based multilevel study. Schizophr Bull, 33(6), 1373-1378. doi: 

10.1093/schbul/sbm032 

 

Wu, X. J., Zeng, L. L., Shen, H., Yuan, L., Qin, J., Zhang, P., & Hu, D. (2017). Functional network 

connectivity alterations in schizophrenia and depression. Psychiatry Res, 263, 113-120. doi: 

10.1016/j.pscychresns.2017.03.012 

 

Zaehle, T., Frund, I., Schadow, J., Tharig, S., Schoenfeld, M. A., & Herrmann, C. S. (2009). Inter- and 

intra-individual covariations of hemodynamic and oscillatory gamma responses in the human cortex. 

Front Hum Neurosci, 3, 8. doi: 10.3389/neuro.09.008.2009 

 

Zhu, Z., Zumer, J. M., Lowenthal, M. E., Padberg, J., Recanzone, G. H., Krubitzer, L. A., . . . Disbrow, 

E. A. (2009). The relationship between magnetic and electrophysiological responses to complex tactile 

stimuli. BMC Neurosci, 10, 4. doi: 10.1186/1471-2202-10-4 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/432385doi: bioRxiv preprint 

https://doi.org/10.1101/432385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
 
Figure 1. ICA component maps from resting MEG data separated into anatomic domains. Note that 
each color within each network represents a different independent component (IC). Please note that 
the same color in a different network does not necessarily represent the same region. DMN: Pink & 
Blue = inferior parietal/angular gyrus; Green = cingulate (isthmus); Red = posterior cingulate; VIS: 
visual components.  FRONT: Primarily frontal components (some overlap with cingulate areas). 
TEMP: Primarily temporal components. 
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Figure 2. A. fMRI k-means cluster states derived from ICA components, for HC and SP groups, 
number of participants that entered each state is indicated at the bottom of each plot. Color-coded as 
follows: light blue= subcortical, light green= auditory, pink= sensory motor, orange= cerebellar, light 
purple= visual, yellow= DMN, blue= attention, dark green= frontal. Insets show view of dFNC as 
correlation grids (components x components) in same network order (top to bottom). B. Average 
amount of time HC and SP spend in each state, i.e. dwell time. C. Global meta-statistics for HC vs SP 
groups. All t-tests represent HC-SP.  '*' indicates significance at p < 0.05, FDR corrected. 
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Figure 3. A. MEG k-means cluster states derived from ICA components, for HC and SP groups, 
number of participants that entered each state is indicated at the bottom of each plot. Color-coded as 
follows: light blue= auditory, light green= sensory motor, pink= inferior parietal, orange= visual, light 
purple= DMN, yellow= MTL, blue= precuneus, dark green= frontal, red= temporal pole. Insets show 
view of dFNC as correlation grids (components x components) in same network order (top to bottom). 
B. Average amount of time HC and SP spent in each state, i.e. dwell time. C. Global meta-statistics for 
HC vs SP groups. All t-tests represent HC-SP. '*' indicates significance at p < 0.05, FDR corrected. 
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MEG ICA 

Component # Component ID

1 Auditory (Left)

2 Posterior Cingulate (Bilat)

3 Lateral Occipital (Right)

4 Parahippocampus (Bilat)

5 Superior Frontal (Right)

6 Precuneus (Right)

7 Medial Orbital Frontal (Bilat)

8 Supramarginal (Left)

9 Temporal Pole (Right)

10 Insula (Right)

11 Visual (Left)

12 Precuneus (Left)

13 Paracentral (Right)

14 IFG/Insula/Lateral Orbital Front (Left)

15 Temporal Pole (Left)

16 Precuneus (Left)

17 Paracentral (Left)

18 Supramarginal (Right)

19 Frontal (Bilat)

20 Inferior Parietal (Right)

21 Postcentral (Right)

22 Insula (Left)

23 Inferior Parietal (Left)

24 Superior Frontal (Left)

25 Auditory (Right)

26 IFG/Insula/Lateral Orbital Front (Right)

27 Postcentral (Left)

28 Isthmus Cingulate (Bilat)

29 Lingual (Bilat)

30 MTG (Left)

31 MTG (Right)

32 Precuneus (Right)  

Table 1.  ICA component numbers and anatomical locations 
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