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 3 

ABSTRACT 27 

Estimation of allele dosage in autopolyploids is challenging and current methods 28 

often result in the misclassification of genotypes. Here we propose and compare the use of 29 

next generation sequencing read depth as continuous parameterization for autotetraploid 30 

genomic prediction of breeding values, using blueberry (Vaccinium corybosum spp.) as a 31 

model. Additionally, we investigated the influence of different sources of information to 32 

build relationship matrices in phenotype prediction; no relationship, pedigree, and genomic 33 

information, considering either diploid or tetraploid parameterizations. A real breeding 34 

population composed of 1,847 individuals was phenotyped for eight yield and fruit quality 35 

traits over two years. Analyses were based on extensive pedigree (since 1908) and high-36 

density marker data (86K markers). Our results show that marker-based matrices can yield 37 

significantly better prediction than pedigree for most of the traits, based on model fitting and 38 

expected genetic gain. Continuous genotypic based models performed as well as the current 39 

best models and presented a significantly better goodness-of-fit for all traits analyzed. This 40 

approach also reduces the computational time required for marker calling and avoids 41 

problems associated with misclassification of genotypic classes when assigning dosage in 42 

polyploid species. Accuracies are encouraging for application of genomic selection (GS) for 43 

blueberry breeding. Conservatively, GS could reduce the time for cultivar release by three 44 

years. GS could increase the genetic gain per cycle by 86% on average when compared to 45 

phenotypic selection, and 32% when compared with pedigree-based selection.  46 

 47 

 48 

 49 

 50 

 51 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 3, 2018. ; https://doi.org/10.1101/432179doi: bioRxiv preprint 

https://doi.org/10.1101/432179
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

INTRODUCTION 52 

Polyploidy events are not an exception in plants, as about 70% of Angiosperms and 53 

95% of Pteridophytes underwent at least one polyploidization event (Soltis and Soltis 1999). 54 

Polyploids are normally grouped into two categories, autopolyploids and allopolyploids, but 55 

intermediate forms are also possible, such as segmental allopolyploids (Spoelhof et al. 2017). 56 

Thresholds for polyploid classification have been controversial, but following the general 57 

taxonomic definition, autopolyploids arise from within-species whole genome duplication, 58 

and allopolyploids arise from whole genome duplication prior to or after an inter-specific 59 

hybridization event (Soltis et al. 2007). 60 

Because speciation via ploidy increase can generate new phenotypic variability, this 61 

phenomenon is considered a powerful evolutionary source (Hieter and Griffiths 1999; Soltis 62 

et al. 2016). Despite the important role of polyploidization in plant evolution, its effects on 63 

inheritance of many agronomic traits and population genetics are still poorly understood 64 

when compared with diploid species (Dufresne et al. 2014). This especially holds true for 65 

autopolyploids. The complex nature of autopolyploid genetics is due to the presence of 66 

genotypes with higher allele dosage than diploids, larger number of genotypic classes, 67 

possibility of multivalent pairing, and poor knowledge of chromosome behavior during 68 

meiosis (Slater et al. 2013; Dufresne et al. 2014; Mollinari et al. 2015). 69 

The advent of high-throughput genotyping methods, associated with the development 70 

of genetic and statistical analysis tools, has generated significant genetic gains for diploid 71 

species (Desta and Ortiz 2014). However, the application of genomic information to 72 

polyploid crops remains a challenge (Comai et al. 2005; Grandke et al. 2016). Although 73 

methods for the analysis and interpretation of genetic data in polyploids have recently been 74 

described (see review in Bourke et al. 2018), much development is needed, especially for 75 

new breeding approaches, such as genomic selection. 76 
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Genomic selection (GS) is a method to increase the efficiency and accelerate the 77 

selection process in breeding programs. GS is used to capture the simultaneous effects of 78 

molecular markers distributed across the genome, based in the premise that linkage 79 

disequilibrium between causal polymorphisms and markers allow the prediction of 80 

phenotypes based on the genotypic values (Meuwissen et al. 2001; Zhang et al. 2011; de los 81 

Campos et al. 2013). The first GS studies addressing polyploids considered diploid genetic 82 

models to circumvent the complexity involved in accurately defining allelic dosage (i.e., the 83 

number of copies of each allele at a given polymorphic locus). Promising results have been 84 

reported for polyploids (e.g. Gouy et al. 2013; Annicchiarico et al. 2015; Ashraf et al. 2016), 85 

however simplified assumptions were mostly used for genetic and statistical inferences 86 

(Garcia et al. 2013). Only a few studies have added different factors accounting for polyploid 87 

effects (e.g., Slater et al. 2016; Sverrisdottir el al. 2017). Thus, more appropriate methods for 88 

GS in polyploids could be evaluated, possibly improving trait prediction. 89 

Polyploidy can affect phenotypes through allelic dosage (additive effect of multiple 90 

copies of the same alleles), or by creating more complex interactions between loci or alleles, 91 

such as dominance or epistasis (Osborn et al. 2003). Thus, the inclusion of allelic dosage 92 

information may improve GS results (e.g., better fit, increase of accuracy) by creating a more 93 

realistic representation of the effects of each genotypic class. Although the evidence of 94 

dosage effects in the expression of important economic traits exists (Guo et al. 1996; Birchler 95 

et al. 2001; Adams et al. 2003; Osborn et al. 2003), few studies linking dosage effects to 96 

phenotype prediction have been reported in autopolyploid species (e.g.; Slater et al., 2016; 97 

Sverrisdottir el al. 2017; Nyine et al. 2018; Endelman et al. 2018). It is interesting to note 98 

that genotype classification is one of the major challenges for polyploids. Studies about 99 

genotyping calling evaluation for autopolyploids with next generation sequencing (NGS) data 100 
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showed that none of the existing methods performs properly (Grandke et al. 2016), unless 101 

high sequencing coverage (60-80x) is used (Uitdewilligen et al. 2013).  102 

Here we compare a novel approach to GS in the context of autopolyploid, using 103 

Vaccinium corymbosum (southern highbush blueberry, SHB) as a model. The cultivated SHB 104 

is an autotetraploid, presenting 2n = 4X = 48 chromosomes (Lyrene et al. 2002). Inbreeding 105 

depression is strong in SHB and population improvements have been achieved by long-term 106 

recurrent phenotypic selection alongside with long testing phase and slow genetic gain per 107 

generation (Lyrene 2008). Our goal was to investigate and compare the influence of different 108 

relationship matrices that consider different ploidy information on phenotype prediction, 109 

using novel genotyping approaches based on next-generation sequencing.  110 

 111 

MATERIAL AND METHODS 112 

Population and phenotyping  113 

The population used in this study encompasses one cycle of the University of Florida 114 

blueberry breeding program’s recurrent selection, comprising 1,847 SHB individuals. This 115 

population was originated from 124 biparental controlled crosses, from 146 parents that 116 

presented superior phenotypic performance (cultivars and advanced stage of breeding). 117 

Phenotypic data of eight yield and fruit quality-related traits were collected during two 118 

production seasons (2014 and 2015), when the plants were 2.5 and 3.5 years of age. Yield 119 

(rated using a 1-5 scale), weight (g), firmness (g mm-1 of compression force), scar diameter 120 

(mm), fruit diameter (mm), flower bud density (reported as buds per 20 cm of shoot), soluble 121 

solids content (oBrix), and pH were evaluated. The last three traits were phenotyped only in 122 

one year – soluble solids content and pH were phenotyped in 2014 and flower buds in 2015.  123 

Five berries (fully mature and presenting picking quality) were randomly sampled to 124 

compose the measurement of fruit traits for each individual. Fruit weight was measured using 125 
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 7 

an analytical scale (CP2202S, Sartorious Corp., Bohemia, NY). The FirmTech II firmness 126 

tester (BioWorks Inc., Wamego, KS) was used to measure fruit diameter and firmness. The 127 

scar diameter was obtained by image analysis of the fruits using FIJI software (Schindelin et 128 

al. 2012). The number of flower buds was counted in the main cane upright shoot, in the top 129 

20 cm. A digital pocket refractometer (Atago, U.S.A., Inc., Bellevue, WA) was used to obtain 130 

soluble solids measures from 300μl of berry juice. The pH was measured using a glass pH 131 

electrode (Mettler-Toldeo, Inc., Schwerzenbach, Switzerland). More details are provided by 132 

Amadeu et al. (2016), Cellon et al. (2018), and Ferrão et al. (2018). 133 

 134 

Genotyping 135 

Genomic DNA was extracted and genotyped using sequence capture by Rapid 136 

Genomics (Gainesville, FL, USA). Polymorphisms were genotyped in genomic regions 137 

captured by 31,063 120-mer biotinylated probes, designed based on the 2013 blueberry draft 138 

genome sequence (Bian et al. 2014; Gupta et al. 2015). Sequencing was performed in the 139 

Illumina HiSeq2000 platform using 100 cycle paired-end sequencing. After trimming (quality 140 

score of 20), demultiplexing, and removing barcodes, reads were aligned to the draft genome 141 

using Mosaik v.2.2.3 (Lee et al. 2014). Genotypes were called using FreeBayes v.1.0.1 142 

(Garrison and Marth 2012) considering the diploid and tetraploid options. Single-nucleotide 143 

polymorphisms (SNPs) were filtered considering i) minimum sequencing depth of 40 144 

(average depth for the population); ii) minimum SNP quality score (QUAL) of 10; iii) only 145 

biallelic markers; iv) maximum population missing data of 0.5; and v) minor population 146 

allele frequency of 0.05. After filtering a total of 85,973 SNP were used in the GS analysis. 147 

Further information regarding population composition and genotyping approach were 148 

described in Ferrão et al. (2018). The genotypes for the diploid calling were coded as 0 (AA), 149 

1 (AB), or 2 (BB). For the tetraploid parameterization they were coded as 0 (AAAA), 1 150 
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(AAAB), 2 (AABB), 3 (ABBB), and 4 (BBBB). A third parameterization (assumption-free 151 

method) was used, which considered allele ratio #𝐴/(#𝐴 + #𝑎), where #𝐴 is the allele count 152 

(sequencing depth) of the alternative allele and #𝑎 is the allele count of the reference allele. 153 

No dosage calling was performed in this model (File S1); these data varied continuously 154 

between 0 and 1. 155 

 156 

Population genetics analysis  157 

In order to compare the information captured by each genomic-based relationship 158 

matrix, we performed linkage disequilibrium (LD), and principal components (PC) analyses. 159 

Pearson correlation tests (r2) were performed for pairwise LD estimation among SNPs within 160 

scaffolds, considering draft reference genomes (Bian et al. 2014; Gupta et al, 2015). One 161 

SNP was randomly sampled per probe interval, and a total of 22,914 SNP were used in the 162 

analysis. LD was obtained for all marker-based scenarios: i) diploid (G2); ii) tetraploid (G4) 163 

and iii) ratio (i.e., continuous genotypes; Gr). The LD decay over physical distance was 164 

determined as the mean distance at the LD threshold of r2 = 0.2. To compare the LD among 165 

scenarios, the mean distances (Kb) and their interval confidences at r2 = 0.2 were compared. 166 

The diversity captured from each relationship matrix was compared by PC using the R 167 

package adegenet v. 1.3-1 (Jombart and Ahmed 2011).  168 

In order to compare the information present in the marker matrices, we also evaluated 169 

the observed heterozygosity in the population. For this, we obtained the ratio between the 170 

number of heterozygote genotypes and the total number of individuals. To estimate the 171 

heterozygosity for the continuous genotypes, empirical limits were established based on the 172 

mean and standard deviations presented for homozygotes classes of the tetraploid 173 

parameterization. 174 

 175 
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Models 176 

One-step single-trait Bayesian linear mixed models were used to predict breeding 177 

values for each individual in the population, as follows:  178 

�̅� = 𝜇 + 𝑋𝑏 + 𝑍1𝑐 + 𝑍2𝑟 + 𝑍3𝑎 + 𝑍4𝑏𝑥𝑎 + 𝑒      (1) 179 

Where �̅� is a vector of the phenotypic values of the trait being analyzed, 𝜇 is the 180 

population’s overall mean, b is the fixed effect of year, c is the random effect of ith column 181 

position in the field ~ N (0, 𝐼𝜎𝑐
2), r is the random effect of the ith row position in the field ~ N 182 

(0, 𝐼𝜎𝑟
2), a is the random effect of genotype ~ N (0,𝐺𝑎𝜎𝑎

2), where 𝐺𝑎 was replaced by the 183 

different additive relationship matrices as described in the next section. The bxa is the 184 

random effect of the year by genotype interaction ~ N (0, 𝐼𝜎𝑏𝑥𝑎
2 ), and e is the random residual 185 

effect ~ N (0, 𝐼𝜎𝑒
2). Row and column effects were considered nested within year only for the 186 

traits evaluated in two years. For traits measured a single year, the same equation (1) was 187 

used without the year and the year by genotype interactions. The variance components for 188 

each random variable were: additive (𝜎𝑎
2), column (𝜎𝑐

2), row (𝜎𝑟
2), year-by-genotype 189 

interaction (𝜎𝑏𝑥𝑎
2 ), and residual (𝜎𝑒

2). 𝑋,  𝑍1,  𝑍2,  𝑍3, and 𝑍4 were incidence matrices for year, 190 

column, row, genotype, and year by genotype interaction, respectively. The narrow-sense 191 

heritabilities were estimated considering the ratio between the additive variance component 192 

and the total phenotypic variance (sum of all variance components).  193 

 194 

Relationship matrices 195 

To quantify the effect of the genetic information used to build the relationship 196 

matrices on the predictive ability (PA), we performed analyses considering different 197 

approaches to modeling the genotypic values in autotetraploid species (Table 1, File S1). The 198 

factors tested were: i) the source of information used to build the relationship matrix 199 
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 10 

(pedigree, genomic, or no relationship information); and ii) ploidy information (diploid, 200 

tetraploid, and assumption-free method). 201 

 202 

Table 1. Methods and assumptions used to compare the influence of relationship matrices, 203 

ploidy and continuous genotypes in the prediction of breeding values for blueberry.  204 

Relationship matrix Model Ploidy assumption Methodology 

Identity I none none 

Pedigree-based 
A2 2 Henderson (1976) 

A4 4 Kerr et al. (2012) 

Maker-based 

G2 2 

VanRaden (2008) G4 4 

Gr none 

 205 

The methods chosen to obtain the relationship matrices are shown in the Table 1. The 206 

pedigree-based relationship matrices (A) were built considering a diploid model (Henderson 207 

1976) and autotetraploid model without double-reduction (Kerr et al. 2012). The marker-208 

based relationship matrices (G) were based on the incidence matrices of markers effects (X) 209 

according to VanRaden (2008) and adapted by Ashraf et al. (2016). Different assumptions 210 

can be made regarding the marker allele dosage in autotetraploids (Table 2). We built the X 211 

matrices under three assumptions regarding the additive marker allele dosage effect: i) a 212 

pseudo-diploid model, where all the heterozygous genotypes are assumed as one class, 213 

corresponding to a unique effect (data coded as 0, 1, and 2); ii) an additive autotetraploid 214 

model, where each genotype had a specific value, and cumulative additive effect is assumed 215 

(data coded as 0, 1, 2, 3, and 4); and iii) an assumption-free method based on the ratio of 216 

reads count for the alternative and reference alleles (continuous parameterization, assuming 217 

values between 0 and 1), where also a cumulative additive effect is assumed. For the 218 

construction of the relationship matrices based on marker data, the missing genotypes were 219 

substituted by the mean. The R package AGHmatrix v. 0.0.3003 (Amadeu et al. 2016) was 220 

used to obtain all relationship matrices. 221 
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Table 2. Genotype codes for marker-allele dosage effects with different assumptions. 222 

Adapted from Slater et al. (2016). 223 

Genotype Pseudo-Diploid Autotetraploid Continuous values* 

AAAA 0 0 

0 - 1 

AAAB 1 1 

AABB 1 2 

ABBB 1 3 

BBBB 2 4 

* Continuous values with a ploidy assumption-free parameterization 

 224 

Model implementation 225 

The six models described above (Table 1) were fitted using the R package (R Core 226 

Team 2018) BGLR v. 1.0.5. (de los Campos and Pérez-Rodríguez 2016). The predictions 227 

were based on 30,000 iterations of the Gibbs sampler, in which 5,000 were taken as burn-in, 228 

and a thinning of five. The number of iterations, burn-in, and thinning interval parameters 229 

were evaluated to define the final values used in the analysis (Figure S1). A single step 230 

regression approach was applied to perform all phenotypic BLUP (I matrix), pedigree-BLUP 231 

(P-BLUP), and genomic-BLUP (G-BLUP). Default hyper-parameters were previously 232 

described (Perez and de los Campos 2014). 233 

 234 

Validation and model comparison 235 

For each trait, models were compared based on their PA, stability (mean square 236 

errors), goodness-of-fit, and expected genetic gain. A 10-fold cross validation scheme was 237 

applied to compute model PA. Because each validation group might have a different mean 238 

(Resende et al. 2012b), the phenotypic PA were obtained as the Pearson correlation 239 

coefficient between the empirical best linear unbiased estimation values (eBLUEs) obtained 240 

by considering all the variables in the equations 1 as fixed (i.e., Least Square means 241 

estimations; LSMeans) and the cross-validated breeding values (BV) predicted by the models 242 

for each validation fold. The goodness-of-fit for the different models was evaluated with 243 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 3, 2018. ; https://doi.org/10.1101/432179doi: bioRxiv preprint 

https://doi.org/10.1101/432179
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

measures of the posterior mean of the log likelihood obtained from the full data set. The 244 

model with the lowest value for this parameter defined the best fit for the data. For the 245 

expected genetic gain estimation we used the following formula: ΔG=(𝑃𝐴 ∙ 𝜎𝑎 ∙ 𝑖)/L, where 246 

PA is the phenotypic predictive ability, 𝜎𝑎 is the square root of additive genetic variance in 247 

the population, i is the selection intensity, and L is the breeding cycle length. The selection 248 

intensity (i) was considered constant for all methods. 249 

Phenotypic and genotypic data used for diploid and tetraploid parameterizations are 250 

available from Dyrad Digital Repository (accession number doi: 10.5061/dryad.kd4jq6h). 251 

Data for continuous parameterization is available for review upon request. Data will be 252 

available at Dyrad Digital Repository. The authors affirm that all data necessary for 253 

confirming the conclusions of the article are present within the article, figures, and tables. 254 

 255 

RESULTS 256 

Population genetics analysis 257 

 Linkage disequilibrium decayed below r2 = 0.2 at distances of 88.3 Kb, 92.6 Kb, and 258 

98.2 Kb for the diploid, tetraploid and continuous models, respectively (Figure 1A-C). No 259 

significant difference was observed considering the confidence interval for the mean distance 260 

(Kb) at r2 = 0.2 among different ploidies and continuous genotyping scenarios (Figure S2). 261 

Similarly, no major differences were found between parameterizations within 262 

methodology (i.e., pedigree-based or marker-based methods) in the PC analysis (Figure S3). 263 

The first two PC components of the marker-based (G) matrices were consistent across all 264 

matrices, explaining approximately 20% of the variation. For example, G2 matrix captured 265 

20.60% of the variation, while G4 captured 21.71%, and Gr captured 23.36% (Figure S3 A-266 

C). The PC results were consistent between pedigree methodologies as well. Approximately 267 

38% of the variation was explained (i.e., 37.74% of the variability was explained for the A2 268 
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matrix and 37.86% was explained for the A4 matrix, Figure S3 D-E). The results obtained in 269 

the PC analysis did not justify a stratified sampling of cross-validation populations, since no 270 

evidence of sub-population structure was detected for any of the relationship matrices.  271 

 272 
Figure 1. Linkage disequilibrium decay and heterozygocity for blueberry. Linkage 273 

disequilibrium decay estimation using one marker per probe, within scaffolds for (A) diploid, 274 

(B) tetraploid and (C) continuous genotype parameterizations. Heterozygosity observed in 275 

(D) diploid, (E) tetraploid, and (F) heterozygosity empirically established for the continuous 276 

genotypes scenario, assuming the limits of 0.058 ≤ X ≤ 0.908. 277 

 278 

Considering the heterozygosity observed in each scenario, genotypes assumed as 279 

homozygotes in the diploid parameterization were classified as one of the possible 280 

heterozygote classes in the tetraploid and in the assumption-free parameterizations (Figure 281 

1D-F). As a result of this process, the tetraploid parameterization presented 37.50% more 282 

heterozygotes than the diploid parameterization. Considering the empirical thresholds 283 

established to compare the proportion of “heterozygotes” in the continuous genotypes with 284 
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the ploidy parameterizations, values equal to or below 0.058 and equal to or above 0.908 285 

were considered as “homozygotes” classes (dashed lines, Figure 1F). With this, 61.59% of 286 

the genotypes were considered “heterozygotes”, thus the continuous method would have 287 

presented 89.92% and 41.23% more heterozygotes than the diploid and the tetraploid 288 

parameterization, respectively. Nevertheless, some misclassification of data into classes in 289 

the diploid and tetraploid parameterization might have occurred (Figure 2A-B). 290 

 291 

 292 
Figure 2. Relationship of the continuous values considering the classes assumed in the (A) 293 

diploid and (B) tetraploid parameterizations. 294 

 295 

Variance estimates 296 

The posterior means of the genetic parameters are summarized in Table 3. All the traits 297 

presented additive genetic variance significantly higher than zero. A wide range of variance 298 

was observed within a given parameter for the different methodologies, and most of the 299 

values were significantly different from each other (considering Tukey test results; Table 3, 300 

Table S1). Marker-based methodologies generated significantly smaller estimations for 301 

variance components when compared with pedigree-based estimations. Within marker-based 302 

methodologies, the assumption-free parameterization generated significantly smaller 303 

estimations. The effects of the difference in the estimation of variance components are 304 
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reflected in the estimated heritabilities – smaller values were estimated for marker-based 305 

methodologies. The lowest heritability was obtained for soluble solids, flower buds, and pH. 306 

Considering all methods, narrow-sense heritability values varied between 0.152 and 0.574, 307 

for flower buds and fruit weight, respectively. 308 

Table 3. Genetic parameters estimated for eight yield and fruit-related traits analyzed with 309 

six linear mixed models, considering the use of ploidy information and continuous genotypes. 310 

Source of information, and dosage parameterizations for the relationship matrices indicated 311 

by the letters (I, A, or G), and numbers (2 or 4), respectively* 312 

Trait 
Relationship 

matrix 

Additive 

Variance 

Residual 

Variance 
Heritability 

Goodness-of-

fit1 

EGG2 

2014 

EGG2 

2015 

S
o
lu

b
le

 S
o
li

d
 (

°B
ri

x
) 

I 0.806  b 1.794  d 0.257  a -2976.31  a 0.018  b - 

A2 0.777  c 2.129  b 0.239  b -3149.85  c 0.021  ab - 

A4 0.764  c 2.125  b 0.236  b -3148.067  c 0.021  ab - 

G2 0.848  a 2.026  c 0.262  a -3106.762  b 0.028  a - 

G4 0.673  d 2.109  b 0.215  c -3142.493  c 0.026  a - 

Gr 0.546  e 2.241  a 0.174  d -3195.892  d 0.022  ab - 

F
lo

w
er

 B
u
d
s 

I 2.133  a 4.752  d 0.270  a -4024.785  a - 0.018  a 

A2 1.247  cd 6.080  a 0.153  de -4275.597  d - 0.019  a 

A4 1.232  d 6.070  a 0.152  e -4274.008  d - 0.018  a 

G2 2.106  a 5.562  c 0.251  b -4192.561  b - 0.030  a 

G4 1.526  b 5.881  b 0.188  c -4244.712  c - 0.025  a 

Gr 1.315  c 6.115  a 0.161  d -4281.097  d - 0.023  a 

F
ru

it
 D

ia
m

et
er

 

I 2.236  f 6.804  b 0.162  f -8142.071  a 0.047  b 0.041  c 

A2 
3.647  a 6.854  b 

0.250  a 
-8147.133  a 0.063  b 

0.054  

bc 

A4 
3.581  b 6.825  b 

0.247  b 
-8141.58  a 0.061  b 

0.054  

bc 

G2 3.428  c 6.799  b 0.242  c -8139.628  a 0.088  a 0.079  a 

G4 
2.992  d 6.954  ab 

0.216  d 
-8178.698  ab 0.083  a 

0.072  

ab 

Gr 
2.910  e 7.219  a 

0.207  e 
-8243.89  b 0.082  a 

0.071  

ab 

F
ru

it
 F

ir
m

n
es

s 

I 509.180  f 737.735  b 0.275  f -16181.026  a 0.567  c 0.798  c 

A2 806.908  a 741.089  b 0.401  a -16183.975  a 0.881  b 1.16  b 

A4 786.601  b 742.547  b 0.395  b -16189.39  a 0.877  b 1.135  b 

G2 725.192  c 734.332  b 0.376  c -16171.694  a 1.243  a 1.511  a 

G4 659.584  e 749.865  b 0.351  e -16207.163  a 1.217  a 1.446  a 

Gr 687.685  d 783.729  a 0.354  d -16283.119  b 1.257  a 1.490  a 

p
H

 

I 0.053  a 0.118  d 0.253  a -592.837  a 0.005  a - 

A2 0.052  a 0.140  c 0.241  b -764.731  b 0.006  a - 

A4 0.052  a 0.140  c 0.238  b -762.886  b 0.005  a - 

G2 0.052  a 0.141  c 0.241  b -769.534  b 0.007  a - 

G4 0.040  b 0.147  b 0.191  c -805.822  c 0.006  a - 

Gr 0.035  c 0.153  a 0.165  d -840.501  d 0.006  a - 
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F
ru

it
 S

ca
r 

I 0.086  f 0.073  d 0.381  f -351.218  a 0.008  c 0.009  c 

A2 0.139  a 0.075  c 0.528  a -395.541  ab 0.013  b 0.014  b 

A4 0.135  b 0.075  bc 0.522  b -414.241  bc 0.013  b 0.014  b 

G2 0.123  d 0.075  cd 0.500  c -392.265  ab 0.018  a 0.018  a 

G4 0.115  e 0.077  b 0.479  e -451.945  c 0.018  a 0.017  a 

Gr 0.126  c 0.081  a 0.494  d -538.444  d 0.019  a 0.018  a 

F
ru

it
 W

ei
g
h
t 

I 0.217  f 0.214  b 0.374  f -2215.277  b 0.013  c 0.014  c 

A2 0.403  a 0.207  c 0.574  a -2157.103  a 0.021  b 0.021  b 

A4 0.393  b 0.205  c 0.568  b -2136.886  a 0.021  b 0.021  b 

G2 0.344  d 0.206  c 0.535  c -2152.251  a 0.030  a 0.029  a 

G4 0.323  e 0.215  b 0.513  e -2220.552  b 0.029  a 0.027  a 

Gr 0.352  c 0.231  a 0.522  d -2349.684  c 0.030  a 0.028  a 

Y
ie

ld
 

I 0.326  f 0.444  bc 0.310  f -3683.364  a 0.012  b 0.015  c 

A2 0.549  a 0.442  bc 0.447  a -3668.232  a 0.019  a 0.022  b 

A4 0.536  b 0.442  bc 0.441  b -3667.668  a 0.020  a 0.021  b 

G2 0.470  c 0.441  c 0.407  c -3662.062  a 0.026  a 0.030  a 

G4 0.421  d 0.458  b 0.374  d -3730.163  a 0.024  a 0.028  a 

Gr 0.411  e 0.493  a 0.356  e -3864.783  b 0.023  a 0.027  a 
*Letters based on Tukey test performed considering estimations obtained from 10 independent runs of the full models with 313 
BGLR (equation 1). 1 Posterior Mean of the Log Likelihood. 2 Expected Genetic Gain on trait scale. 314 

 315 

Effect of the genetic information to build the relationship matrices 316 

The incorporation of relationship information in the analysis generated better PA 317 

results than the phenotypic-BLUP model without it. Overall, we observed that higher values 318 

for the phenotypic PA were obtained when marker-based relationship matrices were used, 319 

when compared with phenotypic and pedigree BLUP (I and A matrices, respectively). 320 

However, the marker-based and pedigree-based results were not always significantly 321 

different from each other (Figure 3, Table S1). The use of molecular data yielded phenotypic 322 

PA values ranging from 0.27 (pH) to 0.49 (fruit scar) in 2014, and from 0.15 (flower buds) to 323 

0.51 (fruit firmness) in 2015. Lower PA values were obtained for traits with lower heritability 324 

and better results were observed for the second year of evaluation. The biggest increase in the 325 

PA values can be seen for fruit firmness – when we compared marker and pedigree results, 326 

we observed an average increase of 13.37% in 2014. Also, an increase in the PA values of 327 

11% was observed for fruit diameter and yield in 2015 when markers were used instead of 328 

pedigree data.  329 
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 330 
Figure 3. Phenotypic predictive abilities for (A) seven traits in 2014, and (B) for six traits in 331 

2015 for different dosage parameterizations (indicated by the numbers 2 or 4) of the 332 

relationship matrices (indicated by the letters I, A, and G) in the prediction of breeding values 333 

of 1,847 SHB individuals. 334 

 335 

The use of pedigree-based relationship matrices generated higher phenotypic PA 336 

values for all the traits, when compared with the assumption of unrelated individuals (i.e., 337 

identity matrix). Unlike the identity matrix, the use of pedigree-based matrix assumes that 338 

there is relationship (expected values) among individuals. The phenotypic PA obtained for 339 

the pedigree methods in 2014 yielded values from 0.20 (flower bud) to 0.49 (fruit firmness). 340 
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As with marker-based methods, smaller values were observed for traits with lower 341 

heritability (i.e., pH, brix, and flower bud). For 2015, the PA results for the phenotypic-342 

BLUP were 0.36, 0.38, and 0.42, for fruit weight, fruit scar, and fruit firmness, respectively. 343 

The PA values obtained for the same traits with pedigree-BLUP were 0.40, 0.45, and 0.49, 344 

respectively. No significant differences between the models’ stability were observed (Table 345 

S1).  346 

 347 

Use of dosage information and continuous genotypes  348 

Our results indicate that the importance of dosage in GS will vary depending on the 349 

trait being analyzed. For example, in 2014 the PA for fruit firmness, fruit scar, and fruit 350 

diameter showed modestly better phenotypic PA when the tetraploid and continuous 351 

parameterizations were applied, as opposed to the diploid parameterization (Figure 3, Table 352 

S1). Although no significant difference was observed between marker-based models, the use 353 

of relationship matrices derived from continuous genotype data (ploidy-free 354 

parameterization) performed equally well as the best models (Figure 3, Table S1). However, 355 

the goodness-of-fit statistics show that the use of a relationship matrix obtained from the 356 

continuous genotype data significantly improved model fit for all traits (Table 3). This was 357 

followed by the tetraploid parameterization using marker-based data.  358 

 359 

Expected genetic gain in a perennial fruit tree, blueberry  360 

The results obtained for the expected genetic gain (EGG) are summarized in Table 3. 361 

GS offers the possibility to accelerate genetic improvement by decreasing the breeding cycle 362 

and selecting superior individuals earlier in the breeding program. Considering a breeding 363 

cycle (L) of 12 years (Cellon et al. 2018) we propose that routine genomic selection could be 364 

implemented in the second stage of the blueberry breeding program, which would allow the 365 
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omission of a whole stage (stage III), and a three-year reduction for cultivar release (Figure 366 

4).  367 

Higher EGG was obtained for all traits when marker-based matrices (i.e., genomic 368 

selection) were applied (Table 3), which was mainly related to the reduction in cycle time. 369 

The implementation of GS in the second stage population would lead to an increase in the 370 

EGG varying from 27% (pH) to 119% (scar) when compared with the application of 371 

phenotypic BLUP. Considering the comparison of marker-based and pedigree-based models, 372 

an increase of 15% (pH) to 41% (fruit weight, fruit scar, and flower buds) in the EGG was 373 

observed (Table 3). In addition, the use of continuous data generated EGG values that were 374 

not significantly different of the best models for all traits (Table 3). 375 

376 
Figure 4. Example of the University of Florida blueberry breeding program stages and times 377 

of selection. Conventional process (left) compared with the proposed process implementing 378 

genomic selection (right). 379 

 380 

DISCUSSION 381 

In this study, six linear mixed models were applied to predict breeding values for 382 

eight yield and fruit-quality traits measured in a real blueberry breeding population as model. 383 

Analyses were based on phenotypic, pedigree, and high-density marker data from 1,847 384 

individuals. We compared the expected genetic gain, the stability, and the PA of models 385 
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considering different sources to build the relationship matrices (only phenotype=BLUP, 386 

phenotypes + pedigree=P-BLUP, phenotypes + genomic=G-BLUP). Our results also 387 

explored models accounting for ploidy information and proposed the use of genotypic data 388 

that is independent of assumptions regarding ploidy levels (continuous) to perform GS, 389 

avoiding the need for a priori parameterization for a given ploidy level.  390 

 391 

Continuous data  392 

Our research showed empirical evidences that the use of continuous genotypic data 393 

from NGS can be effectively applied in GS models for autotetraploid species. This method 394 

was tested and compared with marker calling methodologies at the individual level in 395 

genome wide association studies (Grandke et al. 2016). It was also tested in family pool data 396 

for GS (Ashraf et al. 2014; Guo et al. 2018), as well as used at the individual level in 397 

tetraploid potato for GS by Sverrisdottir el al. (2017). However, to our knowledge the 398 

comparison of continuous genotypes with ploidy parameterizations for genomic selection has 399 

not yet been reported. Here we empirically compare diploid, tetraploid, and continuous data 400 

at the individual level for the application of genomic selection in an autotetraploid species. 401 

In polyploids, the assignment of genotypic classes based on NGS data is a major 402 

challenge, with high risk of misclassification (Grandke et al. 2016, Bourke et al. 2018). The 403 

problem is further exacerbated as the ploidy increases – for a given level of ploidy, n, the 404 

expected number of genotypic classes is 2n+1. As a consequence, the signal distribution 405 

derived from each genotypic class increasingly approximates a continuous distribution where 406 

no clear separation is observed (Grandke et al. 2016). Despite extensive research to address 407 

these challenges (Serang et al. 2012), advances have been mostly limited to SNP arrays in 408 

tetraploid data (Carley et al. 2017). Studies that evaluated genotype calling with NGS data 409 

obtained from polyploids show that no method works properly, and that misclassification of 410 
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genotypes can significantly interfere in the results of genetic studies (Grandke et al. 2016). 411 

This misclassification can be observed in our results when a diploid, or tetraploid 412 

parameterization is used in the genomic data (Figure 2A-B) with standard parameters of 413 

filtering. The use of the continuous genotyping approach provides a relevant alternative to 414 

overcome this issue that is independent of assumptions regarding ploidy level. Models that 415 

used continuous genotypic data performed as well as the best models and resulted in 416 

modestly better predictive abilities for some of the traits (i.e., fruit firmness, fruit scar, and 417 

fruit diameter; Table 3), but better data fit, which could indicate better prediction of future 418 

populations. The use of continuous genotypes also simplifies the analysis complexity and 419 

time by eliminating the genotype calling and parameterization for a give ploidy, because 420 

instead, the ratio of reads assigned to each allele are used. Finally, our results showed that the 421 

addition of noise associated with the continuous distribution in the genotypes significantly 422 

improved model fitting for all analyzed traits (Table 3), instead of increasing the complexity 423 

of the models. The benefits of continuous genotyping could easily be extended to more 424 

complex polyploids (higher ploidies), where the genotype attribution is even more difficult, 425 

however higher sequencing depth would probably be required. Meanwhile, for more complex 426 

models, such as those that consider dominance effects, dosage calling is still necessary.  427 

 428 

Relationship matrices  429 

Our results also showed that including information based on the genetic merit of the 430 

individuals yielded better results when compared with the phenotypic-BLUP analysis (based 431 

on the identity matrix; Table 3), corroborating previous studies in the literature (e.g., Muir 432 

2005; Resende et al. 2012a; Muñoz et al. 2014a). In addition, the use of marker-based 433 

methodologies generated better predictions than pedigree for most of the traits. Marker-based 434 

methods allow the capture of Mendelian segregation. This is especially important in our 435 
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population, since it was composed of 117 full-sib families. In this context, pedigree-based 436 

methods have no power to distinguish variance within families. Another advantage is that 437 

marker-based methods allows the computation of genetic similarity among unidentified 438 

individuals in the pedigree, and corrections of errors in the pedigree, which can affect 439 

parameter estimation causing reduction in the genetic gain (Muñoz et al. 2014b). 440 

In our results, some non-significant differences between pedigree and marker-based 441 

methods were identified, which could be an effect of the extensive pedigree data used, as well 442 

as bias in pedigree-based estimations. Pedigree-based methods can overestimate the 443 

reliability of selection and consequently, the accuracy (Bulmer 1971; Gorjanc et al. 2015). 444 

Furthermore, it also presents low efficiency to capture and estimate genetic relationships 445 

among individuals (Resende et al. 2017).  446 

It is interesting to notice that we used extensive pedigree information that dates back 447 

to 1907 for our predictions, which may not be common in other autopolyploid breeding. This 448 

extensive information can have significant implications on the estimation of relationship 449 

coefficients (Amadeu et al. 2016) and consequently, in breeding value predictions. For 450 

breeding programs with smaller pedigree depth information, the comparison between 451 

accuracies of prediction from marker and pedigree-based methodologies could be even bigger 452 

than what was found in our study. 453 

 454 

Allele dosage  455 

The results obtained for both models that assumed more than three genotypic classes 456 

(G4 and Gr) demonstrate the importance of considering dosage in the prediction of breeding 457 

values. However, this will depend on the trait analyzed, as previously reported by Nyine et al. 458 

(2018) and Endelman et al. (2018). For example, modest improvement was verified in the PA 459 

for fruit firmness, fruit scar, and fruit diameter when this factor was considered in the models. 460 
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In addition, model fitting was significantly better for methods that accounted for dosage 461 

information (Figure 3, Table 3, Table S1). The inclusion of nonadditive effects into the 462 

models could also improve model accuracy. Endelman et al. (2018) demonstrated that the 463 

inclusion of digenic effects, as well as accounting for ploidy information, presented a higher 464 

accuracy over diploid models when using a SNP array. 465 

 466 

Genomic selection for perennial autopolyploids 467 

We also demonstrate the value of applying GS in a perennial fruit tree, blueberry. One 468 

cycle of blueberry breeding takes from 12 to 15 years until the release of a new cultivar 469 

(Lyrene 2008; Cellon et al. 2018). By applying selection based on high-density markers at 470 

early stages of the program, the time to cultivar release could decrease by three years (Figure 471 

4), significantly improving the expected genetic gain per unit of time. More specifically, the 472 

use of GS would lead to an average increase of 86% in the EGG when compared with 473 

phenotypic BLUP, and an average increase of 32% over the application of pedigree-based 474 

models (Table 3). Implementing GS in this form could eliminate one stage in the breeding 475 

and selection process toward cultivar development, which will reduce costs associated with 476 

field trials and phenotyping. The implementation of GS would require extra financial outlay 477 

when genotyping and accurately phenotyping the training population. However, the savings  478 

on phenotyping and field trials of future generations (selection populations) could results in a 479 

break-even financial exercise, and as a result could be a cost-effective application of GS. 480 

However, this financial analysis needs to be performed for each crop in a case-by-case basis. 481 

 482 

 483 

 484 

 485 
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Supplemental Material 500 

 501 
Figure S1. Model convergence obtained using different values for iterations (I), burn-in (B) 502 

and thinning (T) to perform the GS in BGLR for 1847 SHB genotypes. A) I=30K B=5K and 503 

T =5; B) I=60K B=10K and T =5; C) I=100K B=10K and T =5.  504 

 505 

 506 
Figure S2. Distribution of linkage disequilibrium distances at the empirical threshold r2=0.2 507 

for the diploid, tetraploid and continuous parameterizations. 508 

 509 
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 510 
Figure S3. Principal components heat plots for the relationship matrices used in this study. In 511 

blue are the marker-based, and in orange are the pedigree-based matrices. Genomic matrices 512 

were computed using VanRaden’s (2008) methodology (A) Diploid, (B) tetraploid, and (C) 513 

continuous relationship matrix. Pedigree-based matrices were computed for the additive 514 

effects using (D) Henderson (1976) methodology for diploid, and (E) Kerr et al. (2012) 515 

methodology for tetraploid. 516 

 517 

Table S1. Accuracy and model stability values for eight yield and fruit-related traits analyzed 518 

with six linear mixed models with different dosage parameterizations of the relationship 519 

matrices. Source of information, and dosage parameterizations for the relationship matrices 520 

indicated by the letters (I, A, or G), and numbers (2 or 4), respectively* 521 

 522 

Trait 
Relationship 

matrix 

Predictive 

ability 

2014 

Predictive 

ability 2015 
MSE (2014) MSE (2015) 

S
o
lu

b
le

 S
o
li

d
 (

°B
ri

x
) 

I 0.235 a -  5.795 a - 

A2 0.290 a -  4.926 a - 

A4 0.290 a -  4.531 a - 

G2 0.277 a -  2.238 a - 

G4 0.281 a -  2.197 a - 

Gr 0.274 a -  2.216 a - 

F
lo

w
er

 B
u
d
s I -  0.152 a -  9.261  a 

A2 -  0.203 a -  8.280  a 

A4 -  0.199 a -  8.039  a 

G2 -  0.187 a -  11.469  a 
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G4 -  0.182 a -  11.718  a 

Gr -  0.181 a -  11.860  a 
F

ru
it

 D
ia

m
et

er
 I 0.38 a 0.333 a 8.827 a 8.918  a 

A2 0.396 a 0.340 a 8.072 a 8.638  a 

A4 0.386 a 0.345 a 9.134 a 3.409  a 

G2 0.403 a 0.383 a 19.796 a 6.339  a 

G4 0.432 a 0.377 a 19.423 a 6.484  a 

Gr 0.432 a 0.376 a 19.718 a 7.241  a 

F
ru

it
 F

ir
m

n
es

s 

I 0.302 b 0.425 a 2725.511 a 1109.026  a 

A2 0.372 ab 0.490 a 2146.811 a 734.108  a 

A4 0.375 ab 0.486 a 778.212 a 1490.294  a 

G2 0.415 a 0.505 a 1240.152 a 2083.417  a 

G4 0.426 a 0.507 a 1245.192 a 2085.359  a 

Gr 0.431 a 0.511 a 1250.673 a 2124.308  a 

p
H

 

I 0.259 a -  0.244 a - 

A2 0.297 a -  0.257 a - 

A4 0.285 a -  0.126 a - 

G2 0.268 a -  0.253 a - 

G4 0.269 a -  0.259 a - 

Gr 0.271 a -  0.256 a - 

F
ru

it
 S

ca
r 

I 0.341 b 0.380 a 0.236 a 0.424  a 

A2 0.434 a 0.452 a 0.113 a 0.416  a 

A4 0.432 a 0.45 a 0.112 a 0.181  a 

G2 0.475 a 0.464 a 0.160 a 0.197  a 

G4 0.479 a 0.464 a 0.160 a 0.199  a 

Gr 0.488 a 0.466 a 0.171 a 0.184  a 

F
ru

it
 W

ei
g
h
t 

I 0.345 b 0.363 a 0.502 a 0.337  a 

A2 0.403 ab 0.405 a 0.529 a 0.391  a 

A4 0.403 ab 0.400 a 0.404 a 1.100  a 

G2 0.455 a 0.438 a 1.030 a 0.615  a 

G4 0.453 a 0.434 a 1.059 a 0.630  a 

Gr 0.453 a 0.430 a 1.027 a 0.702  a 

Y
ie

ld
 

I 0.251 a 0.312 b 0.881 a 1.221  a 

A2 0.312 a 0.353 ab 0.661 a 1.214  a 

A4 0.325 a 0.348 ab 0.638 a 1.730  a 

G2 0.335 a 0.390 a 1.191 a 2.343  a 

G4 0.327 a 0.389 a 1.263 a 2.308  a 

Gr 0.324 a 0.384 ab 1.297 a 2.294  a 
*Letters based on Tukey test performed considering estimations obtained from 10 independent runs of the full 523 
models with BGLR (equation 1). 524 

 525 

 526 

 527 

 528 
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