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Abstract

Component analysis is a powerful tool to identify dominant patterns of interactions in multivariate datasets. In the
context of fMRI data, methods such as principal component analysis or independent component analysis have been used
to identify the brain networks shaping functional connectivity (FC). Importantly, these approaches are static in the sense
that they ignore the temporal information contained in fMRI time series. Therefore, the corresponding components
provide a static characterization of FC. Building upon recent findings suggesting that FC dynamics encode richer
information about brain functional organization, we use a dynamic extension of component analysis to identify dynamic
modes (DMs) of fMRI time series. We demonstrate the feasibility and relevance of this approach using resting-state and
motor-task fMRI data of 730 healthy subjects of the Human Connectome Project (HCP). In resting-state, dominant
DMs have strong resemblance with classical resting-state networks, with an additional temporal characterization of the
networks in terms of oscillatory periods and damping times. In motor-task conditions, dominant DMs reveal interactions
between several brain areas, including but not limited to the posterior parietal cortex and primary motor areas, that are
not found with classical activation maps. Finally, we identify two canonical components linking the temporal properties
of the resting-state DMs with 158 behavioral and demographic HCP measures. Altogether, these findings illustrate
the benefits of the proposed dynamic component analysis framework, making it a promising tool to characterize the
spatio-temporal organization of brain activity.

Keywords: Dynamic Functional Connectivity, Dynamic Modes, fMRI, Behavior, Component Analysis, Autoregressive
Models.

Introduction

The human brain exhibits a spatio-temporal organiza-
tion of activity when performing a task (Rissman et al.,
2004; Jiang et al., 2004; Gazzaley et al., 2004) and dur-
ing resting-state (Greicius et al., 2003; Damoiseaux et al.,
2006; Smith et al., 2013b). Characterizing the nature of in-
teractions between different brain regions can be done via
functional connectivity (FC) analyses of fMRI time series
(Friston, 2011). FC is classically estimated within frame-
works that ignore the temporal information that might be
present in fMRI time series. The corresponding measures
are called static because they are averaged over the entire
fMRI time series and they neglect the ordering of fMRI
time points (Theiler et al., 1992; Liégeois et al., 2017).
Static measures of FC include Pearson correlation (Biswal
et al., 1995; Buckner et al., 2009; Zalesky et al., 2010;
Power et al., 2011; Yeo et al., 2011; Margulies et al., 2016),
partial correlation (Fransson and Marrelec, 2008; Ryali
et al., 2012), or mutual information (Chai et al., 2009),
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computed over entire fMRI time series. In the past years,
converging evidence has suggested the presence of infor-
mation beyond static FC and new frameworks exploiting
this additional information have been proposed (Hutchi-
son et al., 2013a; Preti et al., 2017). For example, sliding
window correlation approaches explore the time-varying
nature of FC (Hutchison et al., 2013b; Leonardi et al.,
2013; Allen et al., 2014; Wang et al., 2016). Another way
to extend the static FC framework is to include infor-
mation encoded in the temporal ordering of time series,
or precedence information, that was shown to be of par-
ticular relevance to describe fMRI dynamics (Roebroeck
et al., 2011; Karahanoğlu and Ville, 2017). Measures ex-
ploiting precedence information include those using tem-
poral derivatives (Shine et al., 2015; Karahanoğlu and Van
De Ville, 2015; Bolton et al., 2018) or autoregressive pa-
rameters (e.g., Rogers et al., 2010) of fMRI time series.
The latter extension of the static framework leads to dy-
namic measures of FC and the former may also be referred
to as dynamic FC, or time-varying FC to avoid confusion
(Liégeois et al., 2017).

In order to extract the most neurologically relevant in-
formation from FC measures, different approaches have
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been proposed. Among them, component analysis frame-
works such as principal component analysis (PCA) (Vi-
viani et al., 2005; Zhong et al., 2009), independent compo-
nent analysis (Calhoun et al., 2009; Varoquaux et al., 2010;
Smith et al., 2012), sparse PCA (Ulfarsson and Solo, 2007;
Eavani et al., 2015) or constrained PCA (Hirayama et al.,
2016) have been applied to identify the main patterns of
interactions in fMRI time series. The identified compo-
nents are interpreted as the main networks shaping brain
connectivity, such as the default mode network, the visual
network, or the motor network (Van Den Heuvel and Pol,
2010; Moussa et al., 2012). It is important to note that in
these frameworks, components are identified from a static
representation of the data. For example, principal compo-
nents are the eigenvectors of the correlation -or covariance-
matrix of the entire fMRI time series and can therefore be
considered as static (Jolliffe, 1986). Based on this, and in
the same way new FC measures were proposed to explore
the time-varying nature of FC as well as its dynamic prop-
erties (Hutchison et al., 2013a; Preti et al., 2017), one could
investigate the time-varying and the dynamic extensions of
component analysis. The former can be achieved by apply-
ing a classical component analysis within a sliding window
setting (Kiviniemi et al., 2011; Leonardi et al., 2013). The
latter consists in exploiting the links between successive
time points of time series in order to identify the main os-
cillatory modes driving their dynamics. Several methods,
originally developed to characterize the spatio-temporal
organization of climate systems, have been proposed to
this end: principal oscillatory patterns (Penland, 1989;
Bürger, 1993; von Storch et al., 1995), principal interaction
patterns (Hasselmann, 1988), or more recently dynamic
mode decomposition (Schmid, 2010). These methods are
based on a first-order autoregressive (AR-1) representation
of time series, and dynamic modes (DMs) are obtained by
decomposing the AR-1 model matrix identified from the
time series (see Methods). Since they are computed from
a dynamic generative model, DMs not only have a spa-
tial characterization, as in classical component analysis,
but they also have a temporal characterization. More pre-
cisely, each DM is associated with a damping time and a
period that provide further information about the dynam-
ics of the main patterns of connectivity present in the data
(Neumaier and Schneider, 2001).

The use of AR models to explore the multivariate inter-
actions within fMRI time series dates back to more than
a decade (Harrison et al., 2003; Valdes-Sosa, 2004; Valdés-
Sosa et al., 2005; Rogers et al., 2010). The optimal or-
der of these models decreases with the number of ROIs,
and was in general found to be one in whole brain analy-
ses considering more than a hundred ROIs (Valdes-Sosa,
2004; Ting et al., 2015). More recently, the AR-1 model
was also shown to be a promising representation of FC
dynamics (Liégeois et al., 2017). Therefore, we propose
to explore the spatio-temporal organization of fMRI data
using a dynamic extension of component analysis based
on the AR-1 model of fMRI time series (Neumaier and

Schneider, 2001). We start by illustrating the benefits of
this approach over classical static component analysis on
a toy example. Then, using resting-state and motor-task
fMRI data of 730 healthy subjects of the Human Connec-
tome Project (Van Essen et al., 2013), we compute the
dominant DMs in resting-state and motor-task fMRI time
series. Finally, using canonical correlation analysis (CCA),
we explore the link between 158 HCP behavioral and de-
mographic measures and the temporal properties of the
resting-state DMs. Overall, our results complement previ-
ous findings using classical static methods, offering a new
way to explore the spatio-temporal organization of brain
function in rest and during task.

Methods

Data

We used data of the HCP 1200-subjects release com-
prising resting-state functional MRI, task functional MRI,
and behavioral measures of young (ages 22-35) and healthy
participants drawn from a population of siblings (Van Es-
sen et al., 2013). All imaging data were acquired on a
3-T Siemens Skyra scanner using a multi-band sequence.
Functional images have a temporal resolution of 0.72 sec
and a 2-mm isotropic spatial resolution. For each subject,
four 14.4 min runs (1200 frames) of functional time series
were acquired (Smith et al., 2013a). Resting-state fMRI
data was projected to the fs LR surface space using the
multimodal surface matching method (MSM-All; Robin-
son et al., 2013; Van Essen et al., 2013). Data were cleaned
using the ICA-FIX method (Salimi-Khorshidi et al., 2014;
Griffanti et al., 2014) and saved in CIFTI grayordinate
format. Linear trends and mean cortical grayordinate sig-
nal were regressed. fMRI time series were parcellated into
NR = 400 cortical regions of interest (ROIs) (Schaefer
et al., 2017), demeaned and normalized ROI-wise. Finally,
for consistency reasons we selected the NS = 730 subjects
with four complete runs.

The HCP experimental protocol for the motor task was
adapted from Buckner and colleagues (Buckner et al.,
2011; Yeo et al., 2011). The motor-task fMRI data con-
sisted of two 3.5 min (284 frames) runs per subject. Partic-
ipants were presented with a visual cue, prompting them
to perform one of the five motor tasks: squeeze left or
right toes, tap left or right fingers, move tongue. Each
task was performed twice within each run, with task block
durations of 12 seconds preceded by a 3 second cue. We
applied the same preprocessing as for resting-state fMRI
time series, including a parcellation into 400 cortical areas
(Schaefer et al., 2017), ROI-wise demeaning and normal-
ization. The dynamic modes specific to each motor task
were computed from sections of the time series: we se-
lected only the last 6 seconds of each task block in order to
consider the portion of the block where the hemodynamic
response for the cued task is maximal, while also allow-
ing a refractory period for the hemodynamic response of
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the previous task block (Buxton et al., 2004). Our results
were reproduced for other choices of the fMRI time series
subsections selected for each task (Figure S3).

Among the set of 458 HCP subject measures (SMs), we
selected the 158 behavioral and demographic measures of
most interest following Smith and colleagues (Smith et al.,
2015). The list of SMs is reported in Table S1.

Estimation of Dynamic Modes

We identify dynamic modes from the AR-1 representa-
tion of time series (Neumaier and Schneider, 2001):

xt = A · xt−1 + εt ∀t ∈ [2, . . . , T ], (1)

where xt ∈ RNR×1 represents the fMRI time series at time
t, A ∈ RNR×NR is the model parameter that encodes the
linear relationship between successive time points, εt ∈
RNR×1 are the residuals of the model, and T is the number
of time points. The model parameter A is computed by
solving the following least-squares problem:

min
A

T∑
t=2

||xt −A · xt−1||2, (2)

whose optimal solution is A = XY ′(Y Y ′)−1 where X =
[x2, . . . , xT ] and Y = [x1, . . . , xT−1] (Stoica and Moses,
2005). For subject-level computations, time series of dif-
ferent runs are concatenated and points corresponding to
transitions between runs are removed from X and Y . The
group-level estimation of A, denoted AG, is obtained by
concatenating the time series of all runs and all subjects,
and points corresponding to transitions between different
runs or different subjects are removed from X and Y .

The eigendecomposition of A is defined as A = SΛS−1

where the columns of S, denoted Si, are the eigenvectors
of A and the diagonal matrix Λ encodes the corresponding
eigenvalues, denoted λi. Since A is not symmetric with
real entries, S and Λ are in general complex with com-
plex entries coming in complex conjugate pairs: if λi is
an eigenvalue and Si an eigenvector of A, then their com-
plex conjugates are also eigenvalues and eigenvectors of A.
Using this decomposition of A, one can reformulate the dy-
namic system (1) as a sum of linearly decoupled dynamic
modes (DMs) (Neumaier and Schneider, 2001): each eigen-
vector of A defines one DM and the associated eigenvalue
λi provides its temporal characterization in terms of its
damping time (∆i) and period (Ti):

∆i =
−1

log |λi|
and Ti =

2π

|arg λi|
. (3)

In summary, each DM is described by Si (spatial char-
acterization), and ∆i and Ti (temporal characterization).
If λi is complex or if it is real and negative, its period Ti
is bounded and the corresponding DM is known as an os-
cillator of period Ti. If λi is real and positive, its period
Ti is infinite and the associated DM is a relaxator char-
acterized by a damping time ∆i (von Storch et al., 1995;

Neumaier and Schneider, 2001). The modes are ordered
by decreasing value of damping time ∆i, meaning that
the least damped mode is assumed to be the most impor-
tant one. For complex modes, we show both the real and
imaginary parts of Si and do not show the corresponding
redundant complex conjugate DM. In the same way real
eigenvectors are defined up to a change of sign, complex
eigenvectors are defined up to a random phase shift. To
ensure unicity of complex eigenvectors Si, we impose or-
thogonality between their real and imaginary parts as de-
tailed in Appendix A1 (see also Neumaier and Schneider,
2001). Values of ∆i and Ti are multiplied by the tempo-
ral resolution of fMRI time series (0.72 sec) in order to
express these quantities in seconds.

Matching modes across subjects

In our last experiment we explore whether the tempo-
ral characterization of resting-state DMs encodes subject-
specific behavioral and demographic information. How-
ever, subject-level DMs cannot be simply organized to al-
low comparison across subjects as there is no natural corre-
spondence between DMs of different subjects. To circum-
vent this, we imposed the spatial modes (Si) of each sub-
ject to be equal to the group spatial modes. The temporal
characteristics of these DMs in subject k are computed
from the solutions of the following least-squares optimiza-
tion problem:

min
Dk

T∑
t=2

||xt−SDkS
−1 ·xt−1||2 = min

Dk

T∑
t=2

||xt−Ak ·xt−1||2,

(4)
whereDk is a diagonal matrix with entries to be optimized,
S contains the eigenvectors of the optimal AR-1 parame-
ter AG, and Ak = SDkS

−1. The difference between prob-
lem (4) and the unconstrained least-squares problem (2)
is that Ak is forced to share the same eigenvectors as AG.
We provide the closed form expression of the solution to
this problem in Appendix A2. From the optimal values of
the entries of Di obtained from Eq. (A10)-(??), subject-
specific damping times and periods of the DMs sharing
the same spatial properties as the group DMs are com-
puted using Eq. (3). In other words, for each subject we
identify DMs that have the same spatial characterization
as the group-level modes, but that have different damping
times and periods. The dynamical properties of subject
i’s resting-state DMs can be summarized by the damping
times and periods of all its modes, resulting in a vector vk
of length 2NR for each subject, where NR is the number
of ROIs, equal to the number of DMs identified for each
subject.

Linking dynamic modes to behavior

We explore the link between the dynamical proper-
ties of resting-state DMs and the 158 HCP subject mea-
sures (SMs) using canonical correlation analysis (CCA)
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(Hotelling, 1936). The dynamical properties of DMs are
encoded in the matrix V = [v1; . . . ; vNS

] of size 2NR×NS ,
where NS is the number of subjects, and SMs are encoded
in the matrix B of size 158 × NS . Age, gender and ed-
ucation were regressed from the SMs, and since periods
Ti may take infinite values we use the corresponding fre-
quencies fi = 1/Ti as inputs to CCA. In order to avoid
CCA overfitting, we first applied PCA to both V and B,
extracting the 36 first principal components (PCs) of B
and the 20 first PCs of V , thereby keeping the same pro-
portion of variance in both datasets: 97%. Our results
are not significantly affected by changes in these values.
The resulting 20×NS and 36×NS matrices were the in-
puts to the CCA framework. We evaluate the statistical
significance of the identified canonical modes by permu-
tation testing that preserves the family structure of the
HCP dataset using the hcp2blocks function of Winkler
and colleagues (Winkler et al., 2015).

The different analyses carried in this work are summa-
rized in Figure 1.

Figure 1: Summary of analyses carried in this work. Figure 3 and
Figure 4 present the dominant group-level DMs in resting-state and
in task, and Figure 5 presents the results of the CCA analysis link-
ing 158 behavioral and demographic HCP measures to the temporal
properties of the subject-level resting-state DMs. CCA: Canonical
Component Analysis. DMD : Dynamic Mode Decomposition. SMs:
Subject Measures.

Results

Dynamic modes vs. static components

In Figure 2 we present a toy example illustrating the spa-
tial and temporal properties of the dynamic modes (DMs)
of multivariate time series.

The toy example is composed of 5 variables -or regions
of interest (ROIs)- containing two networks associated to
different periods of oscillation. The first network, depicted
in red in Figure 2A, oscillates with a period of 10 arbitrary
units and is present in ROIs 1, 2 and 3 with ROIs 2 and
3 being dephased by π/7 with respect to ROI 1. The

other network, depicted in blue in Figure 2A, oscillates
with a period of 7 a.u. and is present in ROIs 3 and 4,
with a dephasing of π/4. The networks overlap in ROI 3
which hence consists of a sum of two noisy sine waves with
periods 7 and 10, and ROI 5 is pure white gaussian noise.
The details of the simulation are found in Eq. (S1).

From these toy time series, we compute components -or
modes- using three methods: two classical static compo-
nent analysis frameworks (Figure 2B) and the dynamic
extension that is used in this work (Figure 2C). Princi-
pal Component Analysis (PCA) and Independent Com-
ponent Analysis (ICA) identify five components that re-
cover more or less accurately the spatial organization of
the two networks. In comparison, the proposed frame-
work extracts five DMs including two pairs of complex
conjugate DMs, thereby leading to the three unique DMs
represented in Figure 2C. We first note that the spatial
information recovered by the real parts of the DMs almost
perfectly matches the organization of the two overlapping
toy-networks. Then, the imaginary part of the DMs allows
to recover the correct dephasing between the variables of
a same DM from the ratio between its imaginary and real
parts (Neumaier and Schneider, 2001): ROIs 2 and 3 of
DM 1 are found to have a dephasing of π/7 with respect
to ROI 1 of the same mode, and ROI 4 of DM 2 a de-
phasing of π/4 with respect to ROI 3 of the same mode,
as modeled in the toy example (S1). Finally, the tempo-
ral properties of the DMs encode information about their
characteristic damping times and periods. The oscillatory
periods of the first and second DMs are 9.97 a.u. and 7.00
a.u., which almost exactly correspond to the true periods
characterizing the two toy-networks. The third mode has
an infinite period, which is consistent with the fact that
white gaussian noise is not dominated by periodic oscilla-
tions. It also has a low damping time suggesting a weak
influence between successive time points, as expected. On
the contrary, the damping times of the first two modes are
relatively high since the oscillatory behavior is not damped
along the toy time series (Neumaier and Schneider, 2001).
We finally note that the generative model of this toy ex-
ample (Eq. (S1)) consists of sine functions which are not
AR-1 time series as they contain information beyond the
first autocorrelation lag. Hence recovering the correct toy-
networks using the proposed dynamic component analysis
framework does not result from considering a toy example
fitting the framework’s assumptions, but rather highlights
the relevance of exploiting the temporal information en-
coded in time series.

Overall, Figure 2 shows the additional information car-
ried by dynamic modes as compared to classical static
components such as independent or principal components.
First, the complex-valued DMs allow to encode phase shift-
ing information. Then, the associated eigenvalues pro-
vide a temporal characterization of the modes in terms
of damping times and periods. These properties are not
captured by classical components as their generative model
treats time series as a collection of observations rather than
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Figure 2: Toy example illustrating the differences between classical component analysis frameworks and their dynamic extension used in the
present work. (A) The toy example consists of 5 variables representing activity in regions of interest (ROIs) as a function of time. ROIs
are grouped into two overlapping networks based on their characteristic periods. The first network (red) is present in variables 1-3 and has
a period of 10 (arbitrary units), and the second network (blue) is present in variables 3-4 with a period of 7 (a.u.). We included dephasing
within networks, ROIs 2 and 3 being dephased by π/7 as compared to ROI 1 within the red network, and ROI 4 being dephased by π/4 as
compared to ROI 3 within the blue network. ROI 5 is white gaussian noise. Details of the toy model are given in Eq. (S1). (B) Components
identified using Principal Component Analysis (PCA) and Independent Component Analysis (ICA) on the toy time series. (C) A dynamic
extension of component analysis identifies complex dynamic modes (DMs) that have a spatial and a temporal characterization. Only the first
two DMs are complex, we represent their real (Re) and imaginary (Im) parts separately. The real parts of the DMs accurately recover the two
original networks and their imaginary parts allow to recover dephasing within the networks. The DMs also have a temporal characterization
in terms of periods (T ) that are very close to the original values, and damping times (∆).

as a succession of time points with a temporal structure
(Jolliffe, 1986; Liégeois et al., 2017).

Dynamic modes in resting-state fMRI

We compute group-level dynamic modes using resting-
state fMRI data from 730 HCP subjects. The three dom-
inant DMs, i.e. the ones with the longest damping times,
are shown in Figure 3. In each DM, ROIs associated with
warm colors are anti-correlated with those associated with
cool colors.

The first mode displays two anti-correlated networks.
The warm-colored network overlaps with the default mode
network (DMN), including strong activations of the poste-
rior cingulate cortex, the precuneus, and the ventromedial
prefrontal cortex, as well as parts of the superior tempo-
ral sulcus and the inferior parietal lobule. The network
associated with cool colors overlaps with the task positive
network (TPN) with activations around the intraparietal
sulcus, in the inferior temporal gyrus, and in lateral parts
of the prefrontal cortex (Fox et al., 2005; Fransson, 2005;
Yeo et al., 2011). This DM is found to be the one domi-
nating resting-state fMRI dynamics, with a characteristic
damping time of 7.27 sec. The second DM shows activa-
tions in lateral subregions of the DMN as well as in parts
of the prefrontal cortex that were less or not activated
in the first DM. These ROIs are anti-correlated with the
primary visual area and the damping time of the DM is

Figure 3: Dominant group-level resting-state dynamic modes. The
first two modes are purely real and the third mode is complex. Modes
oscillate with a characteristic period T and decay with a characteris-
tic damping time ∆. The weight of each ROI in the dynamic modes
is indicated by the colorbar, cool colors ROIs being anti-correlated
with warm colors ROIs.

5.87 sec. The third DM is complex-valued. The real part
presents clear activations of the motor, somatosensory, and
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Figure 4: Dominant group-level dynamic modes in five motor-tasks: left foot, right foot, left hand, right hand, and tongue. The dominant
mode is complex in each task, and the real and imaginary parts are displayed separately on the cortical surface map. Classical activation maps
corresponding to these tasks are represented in the bottom right (adapted from Yeo et al. (2011), with permission). Task-related activity
classically identified in activation maps seems to be mostly encoded in the imaginary parts of the DMs (arrows), indicating a dephasing of
activity with respect to the corresponding real parts.

primary visual areas, with anticorrelation to regions of the
lateral prefrontal cortex and the intraparietal sulcus. The
imaginary part of this DM indicates a dephasing of brain
activity in the orbitofrontal prefrontal cortex with respect
to the areas activated in its real part. Subsequent DMs
are shown in Figure S1.

Dynamic modes in task fMRI

The dominant DMs of fMRI time series acquired during
five different motor task experiments are shown in Figure
4.

The five tasks involve moving left and right feet, left
and right hands, and the tongue. The real parts of the
dominant modes are consistent across tasks with the ac-
tivation of the visual areas and the medial part of the
posterior parietal cortex. Activations corresponding to

classical activation maps of the tasks (Yeo et al., 2011;
Barch et al., 2013) are encoded in the imaginary parts of
the DMs along the motor and somatosensory cortex. This
suggests the presence of a dephasing between specific task-
related activity and the less specific activity observed in
the real parts of the five dominant DMs. The identifica-
tion of the task-related activity in the imaginary parts of
the dominant DMs is robust to changes of parameters, as
illustrated in Figure S3. The temporal properties of the
dominant DMs are similar in the five experiments, with a
characteristic damping time around 2.5 sec and an oscil-
latory period on the order of 12 sec. The second DMs in
each task are presented in Figure S2.
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Linking resting-state DM’s temporal characteristics to be-
havior

In order to further explore the information carried by
the temporal properties of DMs, we perform a canonical
correlation analysis (CCA) between, on the one hand, the
subject-specific loadings -from which temporal character-
istics are computed, see Methods- of group-level spatial
modes, and on the other hand, 158 HCP behavioral and
demographic subject measures (SMs).

Figure 5: Most positive and negative correlations between the sub-
ject measures (SMs) and the two canonical modes linking 158 behav-
ioral measures and the temporal characteristics of resting-state DMs.
Full HCP headers corresponding to the SMs are found in Table S1

We find two statistically significant (p < 0.05) canonical
modes linking SMs and temporal characteristics of resting-
state DMs with correlations of r = 0.71 and r = 0.69. SMs
that most positively or negatively correlate with the two
canonical modes are shown in Figure 5. The exact values
of the correlations with the CCA modes as well as the full
HCP denominations are reported in Table S1.

Discussion

In this study, we propose a data-driven approach to
identify dynamic modes (DMs) in rest and task fMRI time
series. In the same way new methods have been recently
developed to exploit the dynamic nature of FC time series
(Hutchison et al., 2013a; Preti et al., 2017), the proposed
framework can be seen as a dynamic extension of classi-
cal component analysis, allowing to identify dynamic brain
networks -or dynamic modes- that offer a richer character-
ization of the main patterns shaping brain activity.

Related methodological approaches

Various component analysis methods such as princi-
pal component analysis (PCA) or independent component
analysis (ICA) have been applied to fMRI time series in
order to identify the main interaction patterns driving
functional connectivity (FC) (Viviani et al., 2005; Ulfars-
son and Solo, 2007; Calhoun et al., 2009; Smith et al.,

2012; Eavani et al., 2015; Hirayama et al., 2016). Impor-
tantly, these component analysis frameworks are static in
the sense that they treat successive time points of multi-
variate time series as independent observations. For ex-
ample, PCA relies on the eigendecomposition of the cor-
relation matrix of time series which is a static measure of
FC (Jolliffe, 1986; Theiler et al., 1992) and ICA uses static
measures such as kurtosis to maximize non-gaussianity of
independent components (Hyvarinen et al., 2001). In con-
trast, the proposed framework is based on a first-order
multivariate autoregressive (AR-1) model of fMRI time
series which is dynamic because it exploits the statistical
link between successive time points (Theiler et al., 1992).
Building upon this key property, multivariate AR-1 mod-
els were shown to capture much more dynamic FC infor-
mation as compared to their static counterparts on which
classical components frameworks are based (Liégeois et al.,
2017).

Our approach should also be distinguished from the
time-resolved frameworks consisting in performing classi-
cal component analysis within sliding windows (Kiviniemi
et al., 2011; Leonardi et al., 2013). Indeed, these meth-
ods exploit the sample variability of static measures along
time series to derive the temporal fluctuations of these
measures; i.e., within a window only static measures of
connectivity are used. On the contrary, our framework
does not provide time-resolved information and instead ex-
ploits the whole time series in order to provide the most
accurate estimates of the dynamical connectivity patterns
shaping the time series. This distinction is reminiscent of
the distinction between time-varying and dynamic mea-
sures of FC mentioned in the Introduction and detailed in
previous work (Liégeois et al., 2017). For the same reason,
activation time series that can be associated to principal
or independent components (e.g., Calhoun et al., 2009) are
essentially different from the proposed framework as they
carry time-resolved information of static components.

As for principal components, DMs are most often or-
dered by decreasing absolute value of the associated eigen-
values. In the context of PCA, the eigenvalue carries infor-
mation about the amount of variance of the original data
explained by a component (Jolliffe, 1986). In the case of
DMs, the absolute value of the associated eigenvalues finds
an interpretation in terms of damping time, which is why
the DMs with highest absolute eigenvalue; i.e., the ones
with longest damping times, are ranked first. The distri-
bution of damping times of the first 100 DMs Figure is
shown in S4. Note that other ordering rules exploiting the
amplitude of the noise in the AR-1 model (1) have been
proposed (Neumaier and Schneider, 2001).

Dynamic modes in rest and task

The dominant resting-state DMs presented in Figures
3 and S1 all have connections with known resting-state
networks. The first resting-state DM contains two anti-
correlated networks: the default mode network (DMN -
warm colors in Figure 3) and a set of ROIs (cool colors)
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overlapping, but not exactly matching, with the task pos-
itive network (TPN) defined by Fox and colleagues (Fox
et al., 2005). Identifying the DMN in the least damped
DM might contribute to explain its robust identification in
resting-state fMRI data (Van Den Heuvel and Pol, 2010;
Moussa et al., 2012), as well as its central role in the
macroscale cortical organization (Margulies et al., 2016;
Gu et al., 2017). The second DM shows strong activations
in lateral parts of the DMN that were not activated in the
first DM, with anti-correlation localized around the visual
network. This suggests that DMs 1 and 2 capture differ-
ent sub-networks of the DMN and might shed a new light
into the complex organization of the DMN and its inter-
actions with other networks (Uddin et al., 2009; Raichle,
2015; Karahanoğlu and Van De Ville, 2015). The next
DMs show activations in the motor and somatosensory ar-
eas around the central sulcus (DMs 3 and 4), in the vi-
sual area (DMs 4 and 5) and in subregions of the DMN
(DM 5), thereby also providing a characterization of the
interactions between known resting-state networks. Find-
ing neurologically interpretable dominant DMs suggests
that the proposed decomposition and the corresponding
ranking of DMs based on their damping times exploit im-
portant features of fMRI time series. In comparison, inde-
pendent components of fMRI time series cannot be ranked
and need to be classified as being of neurological origin or
not (Tohka et al., 2008; Beckmann, 2012; Griffanti et al.,
2017).

Atop of the spatial properties of resting-state DMs, each
mode is also associated with a damping time and a period.
This temporal characterization of the modes is not directly
available for static components as they are not computed
from a dynamic model of fMRI time series. The utility
of the spatial properties of resting-state DMs has been
illustrated in Figures 3 and 4. We further discuss in a later
subsection the use of their associated temporal properties
by linking them to demographic and behavioral subject
measures.

In task condition, the dominant DM is complex and
shows activations in the motor and somatosensory cortex
that are dephased with the visual area and the posterior
parietal cortex (Figure 4). The DMN is partially found in
the second task DM and seems decoupled from its anti-
correlated network found in the dominant resting-state
DM. Unlike in the resting-state, the DMN is not the dom-
inant DM which is consistent with the known decreased
activity of the DMN during externally-oriented tasks (Fox
et al., 2005). Interestingly, some of the regions that were
anti-correlated with the DMN in resting-state DMs, such
as the primary visual area, are consistently activated in
task DMs which suggests they might play a key role in the
transition between rest and task conditions.

Dephasing as a fingerprint of task-related activity

The activation maps of the five motor tasks considered
in this work have been studied previously, showing activa-
tions along the primary motor and somatosensory cortex

(Yeo et al., 2011; Barch et al., 2013). The same ROIs
are found to be active in the imaginary parts of the dom-
inant task DMs, together with activations in the visual
cortex and in the posterior parietal cortex encoded in the
real parts of the DMs (Figure 4). The imaginary and real
parts of a DM represent aspects of the mode that share
the same damping times and periods, but that are de-
phased by π/2 (von Storch and Zwiers, 1999; Neumaier
and Schneider, 2001). Activations of the visual and poste-
rior parietal cortices in the same DM as the somatomotor
cortex suggest that these areas are also involved in the
execution of the task. This might be explained by the
known role of the posterior parietal cortex as a sensorimo-
tor interface transforming visual information into motor
commands (Andersen and Buneo, 2002; van Mier et al.,
2004; Buneo and Andersen, 2006; Dean et al., 2012). The
dephasing between the active areas of the real and imagi-
nary parts of the dominant DM could be due to latency dif-
ferences of activations in these ROIs, as previously found
in a visuomotor task (Lin et al., 2013). A change in the
hemodynamic response function could also contribute to
this dephasing (Bellgowan et al., 2003; Handwerker et al.,
2012; Orban et al., 2015; Goelman et al., 2017) and delin-
eating its exact causes would require further examination,
for example using multi-modal data (Lewis et al., 2016).

Most studies use a general linear model to identify task-
related activations (Yeo et al., 2011; De Guio et al., 2012;
Barch et al., 2013; Kristo et al., 2014). In the case of mo-
tor tasks such as the ones considered here, this amounts to
identifying task-related activity by comparing brain activ-
ity at rest and during task. In contrast, the DMs presented
in Figures 4 and S3 are computed only from the time se-
ries acquired when performing the task, and no comparison
with a baseline condition is used. Recovering the classi-
cal activation maps of these tasks in the dominant DMs
therefore suggests that the proposed framework -and the
associate ranking criterion of the DMs- exploits relevant
features of fMRI time series. This could also explain why
ROIs that are less directly related to the task execution,
and are therefore not found in classical activation maps,
are found to be active in the dominant DMs. Overall,
dominant DMs showing strong dephasing across brain re-
gions could be another element distinguishing task from
resting-state fMRI time series (Zhang et al., 2016), possi-
bly contributing to our understanding of the mechanisms
associated with various task conditions.

Behavioral counterparts of dynamic modes

The DMs have a spatial characterization, encoded in
the eigenvectors of the matrix A in model (1), and the
corresponding eigenvalues provide a temporal characteri-
zation of the DMs in terms of damping times and periods
(Eq. (3)). The previous analyses mainly explored the spa-
tial properties of the DMs. In Figure 5, we test whether the
temporal characteristics of the DMs are linked to 158 HCP
behavioral and demographic subject measures (SMs) us-
ing CCA, and identify two significant CCA modes. To this
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end we impose the subject-specific DMs to share the same
eigenvectors, i.e. the same spatial properties, as the group
DMs, only allowing for inter-subject variability of the cor-
responding temporal properties. This is quite restrictive
as individual network topography was shown to be qualita-
tively different from group average estimates (Braga and
Buckner, 2017; Gordon et al., 2017; Kong et al., 2018).
However, we decided to specifically explore the interpre-
tation of the temporal properties of the DMs in order to
complement our previous findings. A combined analysis
linking SMs to both spatial and temporal properties of
DMs is left for future work, as detailed further.

We use the same SMs as Smith and colleagues (Smith
et al., 2015) and follow a similar methodology. Smith
and colleagues found one significant CCA mode relating a
static measure of functional connectivity and the SMs, we
find two (Figure 5). Interestingly, the three SMs most pos-
itively correlated with our first CCA mode (Picture Vocab-
ulary Test, Delay Discounting and Oral Reading Recogni-
tion) are also strongly positively correlated with Smith
and colleagues’ first CCA mode. Hence these SMs are
related to both static and dynamic aspects of functional
connectivity, which further evidences their links with brain
functional organization. The other SMs most strongly
correlating with our first CCA mode are different from
Smith and colleagues’ and seem to draw a distinction be-
tween measures related to a classical intelligence factor
(Spearman, 1904), which are positively correlated with the
first CCA mode, and measures closer to life satisfaction,
which are negatively correlated. The second CCA mode
shows strongest correlations with SMs such as the num-
ber of correct identification of various emotions, Fluid In-
telligence, Purpose of Life, Social Task Performance, and
Positive Affect which evaluates the level of pleasurable en-
gagement including happiness, joy, enthusiasm, and con-
tentment (Van Essen et al., 2013). As such, this CCA
mode could be related to the concept of emotional intel-
ligence that refers to the cooperative combination of in-
telligence and emotion (Salovey and Mayer, 1990; Roberts
et al., 2001; Mayer et al., 2008). This includes the abil-
ity to recognize emotions and use it to enhance thoughts.
Emotional intelligence was shown to be linked to happi-
ness (Furnham and Petrides, 2003), life satisfaction (Ciar-
rochi et al., 2000) and quality of social relationships (Lopes
et al., 2004) which were all found to be strongly correlated
to the second CCA mode. These results offer a new per-
spective on the behavioral information encoded in resting-
state FC, complementing previous findings using classical
(i.e., static) measures of brain functional organization.

Methodological limitations and future directions

Adding a dynamic dimension to the classically static
component analysis framework modifies the properties of
the resulting components that need to be interpreted ac-
cordingly (Neumaier and Schneider, 2001). The features
of DMs have been discussed along this study but some

interpretations in this application could be further inves-
tigated. For example, Figure S3 shows the dominant DMs
computed from a subsection of the fMRI time series used
to compute the dominant DMs presented in Figure 4. The
spatial distribution of the modes are very similar, with ac-
tivations of the motor and somatosensory ROIs encoded
in the imaginary parts of the DMs, but the damping times
and periods show substantial differences in the two cases.
In general, our experiments (not shown) suggest that the
period of the dominant DM increases with the length of the
time series used to perform the decomposition, sometimes
leading to a purely real dominant DM with infinite pe-
riod for long fMRI time series (e.g., when several runs are
concatenated). As a consequence, inter-subjects compar-
isons of these quantities should be performed using time
series of same length for each subject, as in our CCA anal-
ysis. This effect is puzzling and its causes are unclear.
One possible explanation is that the frequencies of oscil-
lating patterns are fluctuating along the fMRI time series
(Chang and Glover, 2010; He, 2011) which might affect the
correct identification of a single frequency to characterize
the dominant DM in long fMRI time series. Pre-filtering
fMRI time series in specific frequency bands might help to
circumvent this limitation.

A time-resolved computation of the DMs using a sliding
window approach could be considered but three limitations
need to be emphasized. First, the interpretation of DMs is
more complex than classical static components and the in-
terpretation of the temporal fluctuations of DMs would be
even more, possibly masking the important properties car-
ried by DMs. Second, the identification of an AR-1 model
of multivariate time series (Eq. (1)) requires at least as
many time points as variables (Stoica and Moses, 2005).
Using this study’s parcellation, this would result in win-
dows containing at least 400 fMRI time points which is
likely to be too long to capture meaningful temporal fluc-
tuations of DMs (Liégeois et al., 2016; Preti et al., 2017).
Note that low rank approximations of A, the model ma-
trix of the AR-1 model, can be estimated using less time
points, thereby identifying only the most important DMs
(Neumaier and Schneider, 2001). This might be sufficient
as only a small proportion of DMs have high damping
times (Figure S4). Finally, we showed in previous work
that a single AR-1 model of fMRI time series captures
a significant part of FC temporal fluctuations (Liégeois
et al., 2017), thereby suggesting that a time-resolved com-
putation of DMs might not be necessary to capture the
dominant spatio-temporal properties of functional connec-
tivity.

We explore the link between the temporal properties of
DMs, and demographic and behavioral SMs in order to
illustrate their utility and complementarity with the spa-
tial properties of DMs. Subsequent studies focusing on
the link between resting-state dynamic FC and SMs could
use both spatial and temporal properties of DMs in their
analysis, and/or use alternative methods to CCA (Grell-
mann et al., 2015). Using only the top DMs might be
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another way to reduce the dimensionality of this multi-
variate analysis problem, but this depends on the ranking
criterion of the DMs. Even if the criterion we use seems to
be meaningful in this application, other rankings could be
considered (Section 2.1, Neumaier and Schneider, 2001).

Conclusion

This study uses a dynamic extension of component anal-
ysis to compute the main dynamic modes (DMs) shaping
brain function in different conditions. Using data of 730
HCP subjects, we compute the dominant group DMs in
resting-state and in five different motor-task conditions.
Resting-state DMs show similarities with classical (i.e.,
static) resting-state networks, but also significant differ-
ences that provide further insight about their interactions
and dynamical properties. The dominant task DMs show
activity in the areas of the primary somatomotor cortex
classically identified in activation maps of the five tasks.
The same DMs also consistently show dephased activity
in other ROIs including the visual and posterior parietal
cortices, revealing the dynamic interactions between these
brain areas during the execution of the tasks. Finally, a
CCA analysis identified two CCA modes linking the tem-
poral properties of DMs and 158 HCP SMs, thereby com-
plementing previous findings that identified a single mode
of co-variation between the same SMs and static markers of
FC. Altogether, these results suggest that dynamic mode
decomposition is a promising tool to explore the spatio-
temporal properties of brain functional dynamics encoded
in fMRI time series.
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Appendix

A1. Unicity of complex eigendecomposition

Let us denote v = (a1 eiφ1 , . . . , aN eiφN ) a complex
eigenvector of a square matrix A of size N , with ai and
φi denoting the amplitude and phase of its ith entry. By
definition, v has unit norm and we have Av = λv, where λ

is the eigenvalue associated to v. Any vector vα = v · eiα
also has a unit norm and verifies Avα = λvα. In order to
have a unique representation of each eigenvector, we fol-
low the convention of Neumaier and Schneider imposing
that the real and imaginary parts of all eigenvectors are
orthogonal, and that the amplitude of the imaginary part
is smaller than or equal to the amplitude of the real part
(Neumaier and Schneider, 2001). First, we identify the
phase α0 that leads to orthogonality between the real and
imaginary parts of vα0

:

Re(vα0) · Im(vα0) =
1

2

N∑
i=1

a2i sin(2(φi + α0)) (A1)

=
1

2
(cos(2α0)

N∑
i=1

a2i sin(2φi)

+sin(2α0)
N∑
i=1

a2i cos(2φi)) (A2)

= 0, (A3)

which leads to:

α0 =
1

2
arctan

(
2 ·Re(v) · Im(v)

|Im(v)|2 − |Re(v)|2

)
. (A4)

Since α0 is defined up to shifts of π/2, the real and
imaginary parts of vα0

can be interchanged in order to
make the absolute value of its real part larger or equal to
its imaginary part.

A2. Identification of spatially matched DMs

We solve the following optimization problem:

min
d1,...,dNR

T∑
t=2

||S

d1 . . . 0
...

. . .
...

0 . . . dNR

S−1 · xt−1 − xt||2
= min

d1,...,dNR

F (d1, . . . , dNR
), (A5)

where S is a square matrix of size NR. Denoting un (vn)
the nth column (line) of S (S−1), we can write:

S

d1 . . . 0
...

. . .
...

0 . . . dNR

S−1 =

NR∑
n=1

dnunvn. (A6)

Using Eq. (A6), the argument of the minimization prob-
lem (A5) writes

F (d1, . . . , dNR
) =

T∑
t=2

‖(
NR∑
n=1

dnunvn)xt−1 − xt‖2 (A7)

=
T∑
t=2

xTt−1Mxt−1 − 2xTt [

NR∑
n=1

dnunvn]xt−1

+ xTt xt (A8)
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where M is given by:

M =

NR∑
n1=1

NR∑
n2=1

dn1
dn2

vTn1
vTn2

un1
un2

.

The solution of the convex problem (A5) is found by
finding the zeros of its partial derivatives with respect to
di, ∀i ∈ {1, . . . , NR}:

δF

δdi
=

T−1∑
t=1

xTt−1[(

NR∑
n1=1
n1 6=i

vTn1
uTn1

dn1uivi)

+(

NR∑
n2=1
n2 6=i

vTi u
T
i dn2un2vn2) + 2div

T
i u

T
i uivi]xt−1

−2xTt uivixt−1 (A9)

which leads to a system of NR linear equations providing
the optimal value of the NR unknowns:


d1
d2
...

dNR

 =


c1,1 c1,2 . . . c1,NR

c2,1 c2,2 . . . c2,NR

...
...

. . .
...

cNR,1 cNR,2 . . . cNR,NR


−1 

b1
b2
...
bm

 (A10)

where ck1,k2 =
∑T
t=1 2xTt−1v

T
k1
uTk1uk1vk1xt−1 if k1 = k2,

ck1,k2 =
∑T
t=1 x

T
t−1(vTk2u

T
k2
uk1vk1 +vTk1u

T
k1
uk2vk2)xt−1 oth-

erwise, and bk1 =
∑T
t=2 2xTt uk1vk1xt−1.
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12

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2018. ; https://doi.org/10.1101/431718doi: bioRxiv preprint 

http://dx.doi.org/10.1016/j.pediatrneurol.2011.11.019
http://dx.doi.org/10.1016/j.neuron.2011.12.035
http://dx.doi.org/10.1016/j.neuroimage.2014.09.058
http://dx.doi.org/10.1002/hbm.20113
http://dx.doi.org/10.2224/sbp.2003.31.8.815
http://dx.doi.org/10.3758/CABN.4.4.580
http://dx.doi.org/10.3758/CABN.4.4.580
http://dx.doi.org/10.1038/srep43743
http://dx.doi.org/10.1038/srep43743
http://dx.doi.org/10.1016/j.neuron.2017.07.011
http://dx.doi.org/10.1016/j.neuroimage.2014.12.025
http://dx.doi.org/10.1016/j.neuroimage.2016.12.036
http://dx.doi.org/10.1016/j.neuroimage.2014.03.034
http://dx.doi.org/10.1016/j.neuroimage.2014.03.034
http://dx.doi.org/10.1016/j.neuroimage.2017.01.003
http://dx.doi.org/10.1016/j.neuroimage.2017.01.003
http://dx.doi.org/10.1016/j.neuroimage.2012.02.015
http://dx.doi.org/10.1029/JD093iD09p11015
http://dx.doi.org/10.1371/journal.pone.0168180
http://dx.doi.org/10.1093/biomet/28.3-4.321
http://dx.doi.org/10.1002/hbm.20012
http://dx.doi.org/10.1038/ncomms8751
http://dx.doi.org/10.1038/ncomms8751
http://dx.doi.org/https://doi.org/10.1016/j.cobme.2017.09.008
http://dx.doi.org/10.1089/brain.2011.0036
http://dx.doi.org/10.1093/cercor/bhy123
http://dx.doi.org/10.1002/hbm.22180
http://dx.doi.org/10.1073/pnas.1608117113
http://dx.doi.org/10.1073/pnas.1608117113
http://dx.doi.org/10.1016/j.neuroimage.2017.09.012
http://dx.doi.org/10.1016/j.neuroimage.2017.09.012
https://doi.org/10.1101/431718
http://creativecommons.org/licenses/by-nc-nd/4.0/


M.A., Yeo, B.T.T., Soddu, A., Vanhaudenhuyse, A., Laureys, S.,
Sepulchre, R., 2016. Cerebral functional connectivity periodically
(de)synchronizes with anatomical constraints. Brain structure and
function 221, 2985–2997. doi:10.1007/s00429-015-1083-y.

Lin, F.H., Witzel, T., Raij, T., Ahveninen, J., Tsai, K.W.K., Chu,
Y.H., Chang, W.T., Nummenmaa, A., Polimeni, J.R., Kuo, W.J.,
Hsieh, J.C., Rosen, B.R., Belliveau, J.W., 2013. fmri hemody-
namics accurately reflects neuronal timing in the human brain
measured by meg. Neuroimage 78, 372–84. doi:10.1016/j.
neuroimage.2013.04.017.

Lopes, P.N., Brackett, M.A., Nezlek, J.B., Schütz, A., Sellin, I.,
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Supplementary Material

Toy model

The generative model of the 5-variate time series used in Figure 2 is, for t ∈ [1, . . . , 1000]:

y1(t) = sin(
2πt

10
) + 0.01 ε(t)

y2(t) = sin(
2πt

10
+
π

7
) + 0.01 ε(t)

y3(t) = sin(
2πt

10
+
π

7
) + sin(

2πt

7
) + 0.01 ε(t) (S1)

y4(t) = sin(
2πt

7
+
π

4
) + 0.01 ε(t)

y5(t) = 0.5 ε(t)

where ε(t) is white gaussian noise.

Detail of subject measures

We use the 158 HCP subject measures that were previously used by Smith and colleagues (Smith et al., 2015):
PicVocab Unadj PicVocab AgeAdj PMAT24 A CR DDisc AUC 200 THC LifeSatisf Unadj List Sort AgeAdj Read-

Eng Unadj SCPT SPEC ReadEng AgeAdj ListSort Unadj DDisc AUC 40K Avg Weekday Any Tobacco 7days
Num Days Used Any Tobacco 7days Total Any Tobacco 7days PicSeq AgeAdj FamHist Fath DrgAlc Pic-
Seq Unadj Avg Weekday Cigarettes 7days Avg Weekend Any Tobacco 7days Total Cigarettes 7days Dexter-
ity AgeAdj Avg Weekend Cigarettes 7days Dexterity Unadj Times Used Any Tobacco Today PSQI Score An-
gAggr Unadj Taste AgeAdj ASR Rule Raw Taste Unadj ASR Thot Raw EVA Denom SSAGA TB Still Smoking
FamHist Fath None ASR Thot Pct PercStress Unadj ProcSpeed AgeAdj ASR Rule Pct ProcSpeed Unadj
DSM Antis Raw ER40 CR NEOFAC A ASR Crit Raw VSPLOT TC NEOFAC O ER40ANG VSPLOT OFF
SSAGA Times Used Stimulants ASR Soma Pct SSAGA Mj Times Used DSM Antis Pct Ca- rdSort AgeAdj
ASR Extn Raw ASR Oth Raw ASR Totp T ASR Extn T ASR Totp Raw EmotSupp Unadj DSM Anxi Pct
PercReject Unadj ER40NOE DSM Anxi Raw ASR TAO Sum SSAGA TB Smoking History CardSort Unadj
PosAffect Unadj SSAGA ChildhoodConduct Odor AgeAdj ASR Witd Raw SSAGA Alc Hvy Frq Drk
ASR Soma Raw DSM Depr Pct ASR Aggr Pct SSAGA Alc 12 Max Drinks DSM Depr Raw Mars Final
PercHostil Unadj DSM Somp Pct SSAGA Alc Age 1st Use ASR Witd Pct IWRD TOT PainInterf Tscore
MMSE Score SSAGA Alc 12 Frq Drk Odor Unadj SSAGA Alc D4 Ab Sx SSAGA Mj Use ASR Aggr Raw
SSAGA Mj Ab Dep DSM Somp Raw FearSomat Unadj SSAGA Alc 12 Drinks Per Day Mars Log Score Self-
Eff Unadj SCPT SEN NEOFAC N SSAGA Agoraphobia ASR Intn T AngHostil Unadj Num Days Drank 7days
SSAGA Times Used Cocaine Loneliness Unadj ASR Intn Raw SSAGA Alc Hvy Drinks Per Day MeanPurp Unadj
DSM Avoid Pct NEOFAC E Total Beer Wine Cooler 7days DSM Avoid Raw Avg Weekday Wine 7days
Flanker AgeAdj ASR Anxd Pct Avg Weekend Beer Wine Cooler 7days SSAGA Alc D4 Ab Dx To-
tal Drinks 7days SSAGA Alc Hvy Max Drinks FearAffect Unadj Total Wine 7days Avg Weekday Drinks 7days
ER40SAD Flanker Unadj ER40FEAR Avg Weekday Beer Wine Cooler 7days SSAGA Times Used Illicits
Avg Weekend Drinks 7days SSAGA Alc D4 Dp Sx NEOFAC C Total Hard Liquor 7days Correction
SSAGA Alc Hvy Frq 5plus DSM Adh Pct ASR Attn Pct VSPLOT CRTE SSAGA Depressive Ep AngAf-
fect Unadj SSAGA PanicDisorder Avg Weekend Hard Liquor 7days FamHist Moth Dep ASR Anxd Raw
SSAGA Times Used Opia- tes SSAGA Times Used Sedatives SSAGA Alc Hvy Frq SSAGA Alc 12 Frq 5plus
Friendship Una- dj SSAGA Depressive Sx ASR Attn Raw ASR Intr Raw SSAGA Alc 12 Frq FamHist Fath Dep
InstruSupp Unadj ASR Intr Pct SSAGA Times Used Hallucinogens Avg Weekend Wine 7days Fa- mHist Moth None
Sadness Unadj DSM Hype Raw DSM Adh Raw DSM Inat Raw

The details of subject measures presented in Figure 5 are reported in Table S1.
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C
C
A

M
o
d
e
1

SM Weight HCP Header Friendly name
0.48 PicVocab AgeAdj Picture Vocabulary
0.44 ReadEng AgeAdj Oral Reading
0.43 DDisc AUC 40K Delay Discounting Task
0.36 ListSort AgeAdj Working Memory (List Sorting)
0.31 Loneliness Unadj Perception of Loneliness

0.30
Language Task Math
Avg Difficulty Level

Difficulty of Language Task (Math)

0.28 Relational Task Acc Relational Task

0.28
Language Task Story
Avg Difficulty Level

Difficulty of Language Task (Story)

-0.19 NEOFAC E Extraversion
-0.19 InstruSupp Unadj Instrumental Support
-0.20 EmotSupp Unadj Emotional Support
-0.22 Friendship Unadj Friendship
-0.24 Taste AgeAdj Taste Intensity

C
C
A

M
o
d
e
2

SM Weight HCP Header Friendly name
0.44 VSPLOT Compl Line Orientation
0.29 ER40FEAR Emotion Recognition: Fear
0.29 IWRD TOT Episodic Memory
0.28 NEOFAC O Personality: Openness
0.28 ER40 CR Emotion Recognition: Total
0.26 PicVocab AgeAdj Picture Vocabulary
0.25 ReadEng AgeAdj Oral Reading
0.23 ListSort AgeAdj Working Memory (List Sorting)
0.22 PMAT24 A CR Fluid Intelligence
-0.13 Mars Log Score Contrast Sensitivity
-0.14 SCPT Compl Sustained Attention
-0.15 MeanPurp Unadj Purpose of Life
-0.16 Social Task Perc TOM Social Task
-0.22 PosAffect Unadj Positive Affect

Table S1: List of subject measures (SMs) that are most strongly associated with the two significant CCA modes. HCP headers and names
used in Figure 5 are given, and more details about the SMs can be found at https://wiki.humanconnectome.org/display/PublicData/. The SM
weights are determined by the correlation between the SMs and the two canonical modes linking the 158 SMs and the temporal characteristics
of resting-state DMs.
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Additional modes found in resting-state and task conditions

Figure S1 shows the fourth and fifth group-level dynamic modes of resting-state fMRI time series. The first three
modes are shown in Figure 3.

Figure S1: Fourth and fifth group-level dynamic modes of resting-state fMRI time series. The fourth mode is purely real, hence its period T
is infinite, whereas the fifth mode is complex.

Figure S2 shows the second group-level dynamic modes for each of the five tasks considered in this work.
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Figure S2: Second group-level dynamic modes for each of the five tasks considered in the present work and consisting in moving the left and
right hands, the left and right feet, and the tongue.

Impact of the length of the time series on detection of task

We test whether finding task-related activations in the imaginary parts of the dynamic modes is not due to a lucky
choice of the fMRI time series’ 6-seconds subsections selected to compute the modes. To this end, we compute the first
dynamic mode in each task using shifted subsections of different lengths of the corresponding time series. Figure S3
shows the first dynamic modes in the five task-conditions using the last 3-seconds subsections of the 6-second sections
used originally. Activations directly related to the tasks and classically found in the corresponding activation maps (Yeo
et al., 2011; Barch et al., 2013) are consistently encoded in the imaginary parts of the modes.
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Figure S3: The task-related activation is also encoded in the imaginary part of the modes when only the last three seconds of the corresponding
time series are considered.

We get similar results when using 4-seconds or 5-seconds subsections with different starting points within the 6-seconds
windows.
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Distribution of damping times of resting-state and task dynamic modes

The distribution of the damping times of the first 100 dynamic modes in task and rest are presented in Figure S4.
These distributions have similar shapes and suggest that the most important modes are found within the first 10-20
modes. Note that the vertical axes have different scales in rest and in task.

Figure S4: Damping times of the first 100 dynamic modes, ordered by decreasing values of damping times, in resting-state and in the five
task conditions considered in this work.

Figure S5 shows the values of the frequencies associated to the first 100 dynamic modes.

Figure S5: Frequencies associated to the first 100 dynamic modes, ordered by decreasing values of associated damping times, in resting-state
and in the five task conditions considered in this work.
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