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Proper positioning of nucleosomes in eukaryotic cells is determined by a complex inter-

play of factors, including nucleosome-nucleosome interactions, DNA sequence, and active

chromatin remodeling. Yet, characteristic features of nucleosome positioning, such as gene-

averaged nucleosome patterns, are surprisingly robust across perturbations, conditions, and

species. Here, we explore how this robustness arises despite the underlying complexity.

We leverage mathematical models to show that a large class of positioning mechanisms

merely affects the quantitative characteristics of qualitatively robust positioning patterns.

We demonstrate how statistical positioning emerges as an effective description from the

complex interplay of different positioning mechanisms, which ultimately only renormalize

the model parameter quantifying the effective softness of nucleosomes. This renormalization

can be species-specific, rationalizing a puzzling discrepancy between the effective nucleosome

softness of S. pombe and S. cerevisiae. More generally, we establish a quantitative framework

for dissecting the interplay of different nucleosome positioning determinants.
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INTRODUCTION

Eukaryotic DNA is condensed into chromatin in a hierarchy of spatial organization and com-

paction levels. This organization is dynamic on all scales, from the large-scale organization of the

genome (Bonev and Cavalli, 2016; Fraser et al., 2015) down to the positions of individual nucleo-

somes, the smallest subunit of chromatin, which consists of 147 base pairs of DNA wrapped around

an octamer of histone proteins (Luger et al., 1997). Since nucleosomes restrict accessibility of other

factors to DNA, their positioning is essential for gene regulation (Bai and Morozov, 2010; Korber

and Barbaric, 2014; Lam et al., 2008; Teif et al., 2013; Venkatesh et al., 2013).

Genome wide mapping of nucleosome positions (Voong et al., 2017) reveals gene-specific nu-

cleosome patterns, which survive the average over many cells inherent to these methods. Known

determinants of nucleosome positions (Hughes and Rando, 2014; Struhl and Segal, 2013) include

the DNA sequence (Kaplan et al., 2009; Segal et al., 2006), competition with other DNA binding

proteins (Ozonov and van Nimwegen, 2013), ATP-dependent chromatin remodeling enzymes that

can relocate, modify or evict nucleosomes (Bartholomew, 2014; Clapier et al., 2017; Mueller-Planitz

et al., 2013; Zhou et al., 2016), RNA polymerase and the DNA replication machinery (Radman-

Livaja et al., 2011; Weiner et al., 2010), and interactions between the nucleosomes themselves,

which can partially invade each other, due to unwrapping of DNA from the histone core (Chereji

and Morozov, 2014; Engeholm et al., 2009). However, a complete understanding of how gene

specific nucleosome patterns emerge from this interplay remains elusive.

The complex gene-specific nucleosome patterns yield a simple, characteristic pattern when av-

eraged over many genes (Yuan et al., 2005), with a depleted promoter region followed by a down-

stream array. The nucleosomes within this array display a degree of variability in their positions

that increases with distance from the promoter, as reflected in the oscillatory nucleosome density

with peaks of decaying amplitude and increasing widths, cf. Fig. 1. The qualitative shape of this

consensus pattern is universal across species with the nucleosome peak to peak distance varying

from 150 base pairs (bp) in the yeast S. pombe (Lantermann et al., 2010; Moyle-Heyrman et al.,

2013) to more than 200 bp in humans (Schones et al., 2008; Valouev et al., 2011). Furthermore,

the shape is surprisingly robust against a multitude of perturbations: introduction of foreign DNA

into the genome (Hughes et al., 2012), substitution of remodeler-encoding genes by non-endogenous

variants and removal of H1 linker histones (Hughes and Rando, 2016), reduction of the overall his-

tone abundance (Celona et al., 2011; Gossett and Lieb, 2012), different growth conditions (Kaplan

et al., 2009), and diamide stress (Weiner et al., 2015) all affect the oscillatory consensus pattern
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only mildly. The passage of RNA polymerase also appears to have only a minor influence on the

gene-averaged nucleosome pattern (Bintu et al., 2011; Radman-Livaja et al., 2011; Weiner et al.,

2010), given that the pattern is only weakly dependent on transcription rate in yeast (Chereji and

Morozov, 2015; Weiner et al., 2010). However, some amount of transcription may be required to

establish the pattern, since silent genes show very weak oscillations in Drosophila melanogaster

(Chereji et al., 2016). Substantial changes in the gene-averaged nucleosome pattern have been

observed shortly after replication (Fennessy and Owen-Hughes, 2016; Vasseur et al., 2016) and in

some remodeler deletion strains, which display reduced positioning oscillations (Gkikopoulos et al.,

2011; Ocampo et al., 2016).

Why are gene-averaged nucleosome patterns so universal (across species) and robust (against

perturbations)? An important step towards addressing this fundamental question was made by

Kornberg and Stryer (Kornberg and Stryer, 1988), who suggested that nucleosome patterns could

be described by a simple model, known as the ‘Tonks gas’ in physics (Tonks, 1936). The model

assumes that nucleosome arrangements along the DNA correspond to an equilibrium ensemble of

extended, non-overlapping particles positioned at a certain average density along a one-dimensional

substrate. A perturbation in this gas, created for instance by a repulsive barrier, then induces

oscillatory patterns in the average positions of the adjacent particles, which seemed consistent

with the ladders observed in gels after nuclease digestion (Kornberg and Stryer, 1988). Later,

when whole-genome nucleosome mapping became feasible, the model could be compared to the

average nucleosome patterns in the vicinity of promoters (Mavrich et al., 2008). It was shown

that the patterns downstream of yeast promoters are in good agreement with the model, if the

perturbation is assumed to be created by a mechanism that holds the first nucleosome in a fixed

position, whereas the patterns upstream of the promoters are compatible with a repulsive barrier

(Möbius and Gerland, 2010).

While this “nucleosome gas” model originally treated nucleosomes as hard particles with foot-

prints that cannot overlap on DNA, subsequent analyses took into account the “softness” of nu-

cleosomes arising from transient DNA unwrapping from the histone core (Chereji and Morozov,

2014; Möbius et al., 2013). With this addition, the nucleosome gas model was able to provide a

unified effective description of the gene-averaged nucleosome patterns across different Ascomycota

fungi (Möbius et al., 2013). However, while this model can describe the data, it does not suffice to

explain it. A priori, the effectiveness of such a simple description even seems unreasonable, since

it neither accounts for the sequence specificity of the histone-DNA interaction, nor the action of

remodeling enzymes. The resolution of this conundrum is our primary goal here.
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We first illustrate the surprising effectiveness of the simple nucleosome gas model by showing

that it simultaneously describes two different properties of the nucleosome patterns, the gene

averaged nucleosome density and the spacing distribution, in both S. cerevisiae and S. pombe. This

provides the basis for our subsequent analysis of how the interplay of various nucleosome positioning

mechanisms can produce the robust nucleosome gas features. Towards this end, we design a class of

nucleosome positioning models that explicitly incorporate the effects of active remodeling and DNA

sequence-dependent nucleosome stability. We leverage the modeling framework to demonstrate

that many (but not all) of the considered mechanisms are compatible with the simple nucleosome

gas model, in the sense that they merely modify (or “renormalize”) the apparent softness of the

nucleosomes. As a consequence, the resulting gene-averaged patterns display a high degree of

universality, because their qualitative shape is not produced by a fine-tuned balance of specific

mechanisms, but emerges robustly from the interplay of different positioning mechanisms. We

suggest that a particular renormalization effect in S. pombe can explain why nucleosomes have a

different apparent softness in this species compared to S. cerevisiae and related species, even though

the underlying histone proteins are highly conserved. Finally, we use our models to infer which

nucleosome positioning scenarios are incompatible with the available data, and discuss which novel

types of experimental data would provide more effective discrimination between different scenarios.

RESULTS

To study the interplay of nucleosome positioning mechanisms, one would ideally monitor the

arrangements of groups of nucleosomes in individual cells over time. Such dynamical information

would directly reveal the effects of positioning mechanisms, and different mechanisms could be

disentangled with appropriate mutants. Instead, the established whole-genome nucleosome map-

ping techniques provide statistical information, due to the ensemble average over large numbers

of cells that is inherent to these techniques (Fig. 1A). In the case of MNase-seq data, a sequenc-

ing read reflects the DNA footprint of a single nucleosome in one of these cells. In contrast, the

chemical cleavage technique (Brogaard et al., 2012) yields sequencing reads of the DNA connecting

the midpoints (dyads) of two nucleosomes. Both techniques permit the extraction of nucleosome

density profiles, n(x), i.e. histograms of nucleosome dyad positions along the DNA (Fig. 1B).

Gene-averaged nucleosome density profiles, 〈n(x)〉, yield the consensus nucleosome pattern for a

set of genes, e.g. see Fig. 1C,D (left panels) for the S. cerevisiae and S. pombe patterns, respectively

(here, x denotes the distance in basepairs to the +1 nucleosome, see caption and ‘Methods’). Such
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FIG. 1: Surprising compatibility between nucleosome positioning data and soft-core nucleosome

gas model. Characteristic patterns emerge when nucleosome positions are averaged across cells (A) and

genes (B). (C,D) Black dots show the gene averaged nucleosome density (left) and the spacing distribution

(distribution of dyad-to-dyad distances, right) in S. cerevisiae and S. pombe from chemical cleavage data

(Brogaard et al., 2012; Moyle-Heyrman et al., 2013). The average is taken over genes longer than 2500 bp,

aligned by the most likely position of their first nucleosome. (E) The spacing distribution provides additional

statistical information about the nucleosome configurations of individual cells that is not contained in the

nucleosome density: The two ensembles have the same cell-averaged density profile 〈n(x)〉, but different

spacing distributions 〈n2(d)〉. (F) A physical model for nucleosome positioning: the nucleosome gas model

with a fixed barrier. Two parameters characterize the nucleosome properties: weff parametrizes the maximal

DNA footprint, and εeff is the effective nucleosome stiffness, i.e. the effective energy cost for unwrapping

nucleosomal DNA. This model accurately describes the gene averaged nucleosome density 〈n(x)〉 and spacing

distribution 〈n2(d)〉 simultaneously: the red curves in (C,D) show the best fit to the data. The estimated

nucleosome stiffness and footprint differ substantially between S. cerevisiae and S. pombe. We show here that

these differences can emerge from species-specific positioning mechanisms rather than pointing to different

properties of the histones, which are highly conserved across species.
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consensus patterns haven proven to be very reproducible, and are commonly used as quantitative

signatures of the interplay between different nucleosome positioning mechanisms in different species

or mutants (Gkikopoulos et al., 2011; Hughes and Rando, 2016; Tsankov et al., 2010; Zhang et al.,

2011).

The chemical cleavage technique (Brogaard et al., 2012) also permits to extract another type

of statistical information, the nucleosome spacing distribution 〈n2(d)〉, i.e. the distribution of

distances d between the dyads of neighboring nucleosomes, shown in Fig. 1C,D (right panels).

Importantly, the spacing distribution provides additional statistical information about the nucleo-

some configurations of individual cells, which is not contained in the nucleosome density pattern.

This is illustrated in Fig. 1E, by showing two ensembles of nucleosome configurations that yield

the same ensemble-averaged nucleosome density profiles 〈n(x)〉, but different spacing distributions

〈n2(d)〉. We therefore treat both of these statistical characteristics as quantitative signatures of

the interplay between different nucleosome positioning mechanisms.

Robust statistical characteristics of nucleosome positioning

To illustrate the conundrum that motivated this study, we analyze the quantitative signatures

〈n(x)〉 and 〈n2(d)〉 in S. cerevisiae and S. pombe, based on existing chemical cleavage maps (Bro-

gaard et al., 2012; Moyle-Heyrman et al., 2013). As seen in Fig. 1C,D (black dots), the data displays

qualitatively similar signatures in these evolutionarily distant yeast species. The gene-averaged nu-

cleosome density profiles show pronounced oscillations, with amplitudes that decay with increasing

distance from the first nucleosome (the “+1” nucleosome) of the genes, while the spacing distribu-

tions display a cusp-like peak with a fine-grained substructure. However, on a quantitative level,

the signatures differ significantly between the two species. The peak-to-peak distance in 〈n(x)〉
is much smaller in S. pombe (150 bp) than in S. cerevisiae (167 bp), and the oscillations persist

over a longer range in S. pombe. Furthermore, the spacing distribution is considerably wider in S.

cerevisiae than in S. pombe, and peaked at a larger average spacing.

S. cerevisiae is the best-studied representative from a group of Ascomycota fungi, for which the

gene-averaged nucleosome density profiles 〈n(x)〉 have previously been analyzed with the “nucle-

osome gas” model (Möbius et al., 2013). This analysis revealed that the precise shape of 〈n(x)〉,
as well as its species-to-species variation within this group, can be described within the same

model. Within this model, the differences between the profiles of different species arise purely

as a consequence of the different nucleosome packing densities, or, equivalently, different average
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linker lengths, as opposed to different nucleosome properties. A conceptually very similar model

was also used to interpret the spacing distribution of S. cerevisiae, again finding surprisingly good

agreement(Chereji and Morozov, 2014). The study showed that the model can even capture the

fine-grained structure of 〈n2(d)〉, by taking into account that nucleosomal DNA tends to unwrap

from the nucleosome core in discrete steps of one helical turn.

Here, we adopt the “nucleosome gas” model (Möbius et al., 2013), which describes the nucleo-

some properties by two effective biophysical parameters, see Fig. 1F. The softness of nucleosomes,

i.e. their ability to invade each others DNA footprint (Engeholm et al., 2009), is taken into account

in a coarse grained way by assuming an energetic cost εeff per base pair to unwrap DNA from the

histone core. Furthermore, the reach of the repulsive interaction between nucleosomes is parame-

terized by the effective nucleosome footprint radius weff , corresponding to a maximal footprint of

2weff +1 base pairs, which is expected to exceed the canonical 147 base pair length of nucleosomal

DNA, due to steric constraints arising when two nucleosomes are very close. The resulting effective

nucleosome-nucleosome interaction potential is derived by summing the statistical weights of all

unwrapping states compatible with a given nucleosome separation d (measured dyad-to-dyad), see

Supplement for a detailed description of all Methods.

In contrast to prior studies, we test whether the model is able to simultaneously describe both

signatures, 〈n(x)〉 and 〈n2(d)〉, with the same parameter values. The red lines in Fig. 1C,D show

the resulting best fit. For S. cerevisiae, the fit yields an effective interaction radius of weff = 82 bp

and an effective unwrapping cost of εeff = 0.152 kBT/bp. This is consistent with the previous

results for a group of Ascomycota fungi that included S. cerevisiae, where weff = 83 bp, εeff =

0.153 kBT/bp were obtained from the density patterns alone (Möbius et al., 2013). Here we find

that the spacing distribution is compatible with the same nucleosome gas model and parameters.

The visible discrepancy in 〈n2(d)〉 for large spacings is expected, since long sequencing reads are

suppressed in the data, see Supplement.

For S. pombe, the simultaneous fit provides an even better description of the density profiles and

the spacing distribution, see Fig. 1D. However, the corresponding parameter values, weff = 75 bp

and εeff = 0.236 kBT/bp, deviate markedly from those for S. cerevisiae and the previously studied

group of Ascomycota fungi. Fig. S1A-C shows that the fitting parameters are well constrained for

both species, aided by the inclusion of the spacing distribution in the fit. As an additional test

of the consistency of the model, we also reverse engineered the nucleosome-nucleosome interaction

directly from the experimentally measured spacing distributions, finding good agreement with our

best fit model, see Supplement and Fig. S1D,E.
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FIG. 2: General framework to analyze the effect of specific nucleosome positioning mechanisms

on the nucleosome gas. (A) We compute the nucleosome density 〈n(x)〉 and spacing distribution 〈n2(d)〉
resulting from the interplay of the “nucleosome gas model” with bare nucleosome parameters ε and w

(stiffness and size) and additional positioning mechanisms. Then, we determine if 〈n(x)〉 and 〈n2(d)〉 can be

described by the nucleosome gas model alone. If that is the case (fit good), the effective nucleosome properties

εeff and weff may differ from the bare ones. (B) To assess if a nucleosome positioning model can be effectively

described by the nucleosome gas model we compare the fit error, δ2(to fit) to the perturbation by the

additional positioning mechanism, δ2(to unperturbed), namely the squared deviation of 〈n(x)〉 and 〈n2(d)〉
in the presence of the positioning mechanism from the same quantities without it. For most considered

positioning mechanisms, to be discussed below, the fit error is much smaller than the perturbation, indicating

good compatibility with the nucleosome gas model. Only for the spacing mechanism with accurate spacing

(σ = 2 bp) we obtain a fit error that of similar magnitude as the perturbation, indicating that such accurate

nucleosome spacing is not compatible with the nucleosome gas model.

Taken together, these results support the nucleosome gas model as an effective description of

gene averaged in vivo nucleosome data across evolutionarily distant yeast species. This implies that

the statistical characteristics of the nucleosome gas are robust features of nucleosome positioning.

How does this robustness arise despite the underlying complexity of nucleosome positioning mech-

anisms? In the remainder of this article, we seek to resolve this conundrum. A second question

triggered by the above results is why the effective nucleosome stiffness εeff is so different between

S. pombe and S. cerevisiae. We will see that these questions are indeed related: the nucleosome

properties observed in the gene average are not the bare biophysical nucleosome properties, because

they are renormalized by additional positioning determinants – and this renormalization can be

different in different species.

To address these questions, we probe the effect of several simplified, but biologically motivated

nucleosome positioning mechanisms in the context of the nucleosome gas model. We use the general
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approach outlined in Fig. 2. First, we compute the gene-averaged nucleosome density 〈n(x)〉 and
the internucleosomal spacing distribution 〈n2(d)〉 for a modified nucleosome gas model that features

an additional positioning determinant, e.g. DNA sequence specificity or a remodeling mechanism.

Then, we fit 〈n(x)〉 and 〈n2(d)〉 by only the nucleosome gas model. Thereby we determine two

things. First, the goodness of the fit, which measures how compatible the specific positioning

determinant is with an effective description by the nucleosome gas model. Second, we determine

to what extent the effective parameters εeff and weff differ from the bare parameters ε and w. In

the following, we apply this framework to several different positioning mechanisms.

DNA sequence specific positioning leads to effective nucleosome softening

We first ask how gene-specific nucleosome positioning encoded in the DNA sequence affects gene-

averaged patterns. We use energy landscapes to account for DNA sequence specificity (Fig. 3B,C).

Various models for such energy landscapes have been developed (Tolkunov and Morozov, 2010),

e.g. based on DNA elasticity (Eslami-Mossallam et al., 2016; Morozov et al., 2009; Tolstorukov

et al., 2007), machine learning (Kaplan et al., 2009), or simple rules (van der Heijden et al., 2012).

Here, our goal is not to assess the predictive power of these models, but rather to describe their

generic effects on gene-averaged data. We will find that in this context the main parameter is the

“positioning power” of energy landscapes, which scales with their standard deviation σ (Fig. 3C).

Specifically, we use a DNA elasticity based model (Morozov et al., 2009). Exemplary landscapes

u(x) for S. cerevisiae genes are shown in Fig. 3C (cyan). We consider only genes longer than 2500

bp to avoid interference with positioning effects at gene ends.

We compute the nucleosome density and spacing distribution on each of the obtained landscapes

as follows: we fix a barrier particle at the consensus position of the first nucleosome and compute

the downstream densities and spacing distributions exactly using the transfer matrix method for

given values of the nucleosomes properties w and ε (Ssupplement). The resulting nucleosome

densities (Fig. 3C, black) are strongly influenced by the energy landscapes and thus differ between

genes. From these, we compute 〈n(x)〉 and 〈n2(d)〉, where 〈 〉 is the average across genes (Fig. 3D,

black). We point out that it is crucial to first compute the nucleosome density on each gene and

then take the average, not vice versa:

〈n(u(x))〉 6= n(〈u(x)〉) (1)

Indeed, the gene-averaged landscape 〈u(x)〉 is almost flat (σ = 0.056 kBT for our set of 914 long
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FIG. 3: Effective nucleosome softening by DNA sequence-dependent nucleosome positioning.

Following the general framework of Fig. 2, we use (A) the nucleosome gas model with bare nucleosome

parameters ε (stiffness) and w (size), together with (B) DNA sequence specific nucleosome positioning

energy landscapes to compute the nucleosome density n(x) and internucleosomal spacing distribution n2(d)

on each gene (C, only n(x) is shown). The gene averaged quantities (D) can be reproduced by the nucleosome

gas model without landscapes. The fit parameters εeff and weff are the effective nucleosome properties,

accounting for the effect of landscapes in the gene average. (E) This procedure is repeated for different

standard deviations σ of the landscapes (grey lines) and different bare nucleosome stiffnesses ε. The flow

line intersecting the experimentally observed εS.cer
eff

= 0.152 kBT/bp at the best estimate for σ = 1.56

belongs to the bare parameter εS.certrue = 0.17 kBT/bp (thick black line). The nucleosome footprint parameter

w is mostly unaffected by energy landscapes.

genes in S. cerevisiae, Suppl. Fig. S3E), which indicates that there are no sequence encoded

positioning clues in coding regions on average according to the used landscape model.

Next, we determine to what extent the nucleosome gas model is compatible with the gene
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averaged density and spacing distribution by fitting the model to 〈n(x)〉 and 〈n2(d)〉 simultaneously

(Fig. 3D, red, see Suppl. Fig. S2 for details). We find that the gene averaged quantities can be

surprisingly well reproduced by this simple model with renormalized nucleosome properties εeff

and weff . We also find that nucleosomes in the gene average appear softer than the bare particles,

εeff < ε, while the maximal footprint size is almost unaffected, weff ≈ w. The degree of effective

nucleosome softening depends on the average landscape amplitude σ (Fig. 3E). We determine a

realistic value of σ from the peakedness of the nucleosome density on single S. cerevisiae genes to

be σS.cer = 1.56 kBT (green dashed line in Fig. 3E, see also Suppl. Fig. S3A).

Finally, we determine how stiff individual nucleosomes are “truly”, given that they appear

softened by energy landscapes. To do so, we start from the nucleosome stiffness which fits the

S. cerevisiae data, and from the above estimate for the landscape amplitude, i.e. from the point

(εS.cereff , σS.cer) = (0.152 kBT/bp, 1.56 kBT ) (Fig. 3E, green star). We then trace back the renor-

malization flow and find the bare nucleosome stiffness εS.certrue = 0.17 kBT/bp (green circle). Our

results thus suggest that this is the true average energetic cost of unwrapping one bp of DNA from

a nucleosome in S. cerevisiae.

In order to show that the observed robustness and parameter renormalization are not a pe-

culiarity of the chosen energy landscape model we repeated the above steps with uncorrelated

landscapes, where for every lattice site an energy is drawn at random from a Gaussian distribution

with standard deviation σ. The renormalization flow is very similar (Suppl. Fig. S3D) which indi-

cates that the effective nucleosome softening is a generic phenomenon of averaging over nucleosome

positioning landscapes.

We have found that positioning by gene specific energy landscapes is “renormalizable”, i.e. the

gene averaged quantities can be reproduced without landscapes by altered nucleosome properties.

We point out that it is easy to come up with landscapes that do not belong to this renormalizable

class. For example, by specific variations in the landscape amplitude σ or by introducing specific

correlations we obtain gene averaged patterns that are not reproduced by the nucleosome gas

model (Fig. S4). We thus conclude that S. cerevisiae energy landscapes are random enough to be

renormalizable.

Remodeler effects: directional sliding

Like DNA sequence, nucleosome remodeling enzymes (“remodelers”) are a crucial determinant

of nucleosome positioning. They are required for proper nucleosome spacing (Krietenstein et al.,
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FIG. 4: Effective nucleosome softening by remodeler mediated directional sliding. (A) We model

nucleosome sliding in the presence of equal amounts of upstream (U) and downstream (D) remodelers,

which can bind to nucleosomes and then mediate a random walk that is biased in the upstream/downstream

direction. Sliding rates as shown are parameterised by the rate r and the bias γ. We measure the effectiveness

of a remodeler by its processivity, i.e. the average unobstructed displacement during the remodeler residence

time (see Supplement). (B) Nucleosome sliding strongly reduces nucleosome density oscillations. Yet, the

fit by the nucleosome gas model is excellent. (C) The effective nucleosome properties show a softening for

increasing remodeler processivity, which we alter by sweeping the directional bias γ or the rate r.

2016; Lieleg et al., 2015; Zhang et al., 2011), and are known to relocate nucleosomes along the DNA

using energy from ATP hydrolysis (Flaus and Owen-Hughes, 2011; Mueller-Planitz et al., 2013).

It is therefore remarkable that the emerging in vivo patterns are well described by the equilibrium

nucleosome gas model. Here, we rationalize this agreement by showing that many remodeling

mechanisms are indeed “renormalizable”.

We first ask how directional sliding of nucleosomes by remodelers affects positioning. Our

minimal model is guided by two observations. First, in vitro reconstitution experiments result

in stereotypic nucleosome array patterns only in the presence of ATP (Zhang et al., 2011). This

indicates that remodelers mobilize nucleosomes that are otherwise kinetically frozen, which is also

supported by direct observations of strongly increased DNA unwrapping rates upon remodeler

binding (Singh et al., 2018). Second, remodelers can displace nucleosomes in successive steps in

the same direction (Blosser et al., 2009). Here, we consider two types of remodelers, upstream (U)

and downstream (D) sliders, which preferentially move nucleosomes upstream/downstream along

the DNA (they could represent the same protein binding nucleosomes in different orientations).
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Both bind and unbind nucleosomes with rates rR+ and rR−, respectively (Fig. 4A). Remodeler bound

nucleosomes perform a biased random walk with a rate parameter r and a bias parameter γ, namely

ru,d = re±γ/2 (see Fig. 4A and Supplement). The parameters r and γ account for general mobi-

lization and directionality, respectively. We measure the remodeler effectiveness by its processivity

p, the mean displacement during its dwell time in the absence of interactions with other particles

(Supplement). Nucleosome interactions alter the binding and sliding rates, and simulations are

performed with a kinetic Monte Carlo scheme (Supplement).

We find that nucleosome sliding strongly reduces the characteristic oscillations in the nucleosome

density n(x) and broadens the spacing distribution n2(d) (Fig. 4B, see Fig. S5 for a parameter

sweep). Yet, both quantities are excellently compatible with the nucleosome gas model (red vs

black lines in Fig. 4B) . The effective nucleosome stiffness εeff decreases for increasing processivity

p (Fig. 4C). This is expected, since our sliding remodelers promote nucleosomes invading each

other. The softening is more pronounced when the processivity is altered via the bias parameter

γ instead of the rate parameter r because the bias is more important in overcoming interactions

with neighboring nucleosomes (see Supplement). In conclusion, we found that remodeler mediated

directional nucleosome sliding is excellently compatible with the nucleosome gas model and leads

to effective nucleosome softening.

Remodeler effects: nucleosome attraction and spacing

Next, we address remodeler mediated nucleosome attraction and spacing. In vitro (Lieleg et al.,

2015; Zhang et al., 2011) and in vivo (Celona et al., 2011; Gossett and Lieb, 2012) experiments

have shown that in the presence of remodelers nucleosome spacing does not change even when the

nucleosome abundance is strongly reduced. This is incompatible with the nucleosome gas model,

which predicts that the average nucleosome spacing increases for reduced density. Thus, remodeler

mediated attraction was proposed to maintain a fixed spacing in gene-coding regions (Lieleg et al.,

2015; Möbius et al., 2013).

We implement attraction towards a fixed spacing by superimposing the repulsive soft-core nu-

cleosome interaction with an attractive potential well centred around the S. cerevisiae spacing of

d0 = 167 bp (Fig. 5A). Its standard deviation σ parametrizes the remodeler’s spacing accuracy

and the depth a the spacing activity (see Supplement).

We find that high nucleosome spacing accuracy (σ = 2 bp) results in a strong peak in the

density n(x) and especially in the spacing distribution n2(d)(Fig. 5B, top panels, see Fig. S6 for
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FIG. 5: Effective nucleosome stiffening by remodeler mediated nucleosome attraction and spac-

ing. (A) Attraction and spacing activity are modelled by superimposing the soft-core repulsion with an

attractive potential well of width σ, depth a and center position d0. (B) For high spacing accuracy (σ = 2

bp, top panels) the density n(x) and especially the spacing distribution n2(d) show pronounced spikes at

the preferred spacing d0 that are incompatible with a description by the nucleosome gas model. (C) The

effective nucleosome properties show a stiffening with increasing remodeler activity (measured by the change

in the second virial coefficient due to the attractive potential wells, see Supplement). Dashed lines indicate

bad compatibility with the nucleosome gas model (Supplement).

a parameter sweep of a). Consequently, the compatibility with the nucleosome gas model, which

lacks this spacing peak, is not good. For a more sloppy nucleosome spacing (σ = 6 bp), however,

the compatibility is better (Fig. 5B, bottom panels). We find that for accurate and sloppy spacing

alike the effective particle stiffness εeff increases with the remodeler activity (Fig. 5C). This is

expected, since nucleosomes are preferentially kept at a fixed distance instead of invading each

other. In conclusion, we found that a somewhat sloppy remodeler mediated nucleosome attraction

towards a preferred spacing can be effectively described by the nucleosome gas model with increased

nucleosome stiffness.
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FIG. 6: Nucleosome density and AT content strongly correlate in S. pombe but not in S. cerevisiae.

Nucleosome density and AT content in S. pombe (A) but not in S. cerevisiae (B). This motivates our

hypothesis that nucleosomes are trapped on AT rich sequences in S. pombe. Clustering genes based on

their nucleosome dyad density (C,D, +1 aligned) or their AT content (E,F, TSS aligend) reveals additional

correlations in S. pombe (see main text). Data are smoothed by 15 bp in x-direction. Dyad densities are

normalized to unity on each gene. Some traces are offset for clarity as indicated by arrows.

AT trapping explains unusually strong oscillations in the S. pombe nuclesome density

We have shown that gene averaged nucleosome patterns can be modified by a multitude of

mechanisms which potentially differ between species. This puts us in a position to ask why nucleo-

somes appear much stiffer in S. pombe than in S. cerevisiae (Fig. 1C,D), even though the underlying

histones are conserved. We suggest that the large effective stiffness results from an S. pombe spe-

cific positioning mechanism, namely nucleosome trapping on AT-rich sequences. We motivate our

hypothesis by the observation from Moyle-Heyrman et al. (Moyle-Heyrman et al., 2013) that in

S. pombe nucleosomes are preferentially located on AT rich sequences within coding regions. This
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FIG. 7: Effective nucleosome stiffening by trapping on AT rich sequences in S. pombe. Similar to

Fig. 3 we use (A) the nucleosome gas model together with (B) DNA sequence specific energy landscapes, but

now superimposed by a decaying oscillatory potential (thick cyan line) to account for trapping on AT-rich

sequences as identified in Fig. 6. (C) Exemplary energy landscapes (cyan) together with the gene-specific

nucleosome densities (black). (D) The gene averaged nucleosome density 〈n(x)〉 shows oscillations that are
reinforced by the AT trapping (black vs. grey) and can be very well reproduced by the nucleosome gas

model (red). (E) The effective nucleosome properties show a stiffening for in creased AT trapping strength

(see text for details). Dashed lines indicate bad compatibility with the nucleosome gas model (Supplement).

correlation is even more pronounced in our alignment of genes by their +1 nucleosome (Fig. 6A),

but still completely absent in S. cerevisiae (Fig. 6B).

To corroborate our hypothesis we dissect the correlations between nucleosome positions and

AT content in more detail (Fig. 6C-F). We subdivide our set of long genes (> 2500 bp) in four

clusters using k−means clustering (other numbers of clusters yield the same conclusions). First,
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we perform the clustering on the nucleosome density and check for correlations in AT content. We

find that two clusters that differ in peak to peak distance (black and magenta lines in Fig. 6C),

also show changes in the AT content. Furthermore, genes with weakly pronounced density peaks

(pale green line) also show weak oscillations in the AT content. S. cerevisiae shows similar clusters

in the nucleosome density but none of the features in the AT content (Fig. 6D). Next, we perform

the clustering on the AT content and check correlations in nucleosome density. We find that in

S. pombe shifted AT peaks are accompanied by shifted nucleosome patterns (black and magenta

lines in Fig. 6E). In S. cerevisiae no genes with pronounced AT periodicity are found (Fig. 6F).

We conclude that nucleosome positions and AT content correlate strongly in S. pombe and

we thus posit an energy landscape that preferentially positions nucleosomes on AT rich regions

(Fig. 7B). Its period λ = 150 bp and decay length l0 = 555 bp are derived from the AT content

oscillations (Fig. S7B).

We point out that the sequence based model for energy landscapes used above predicts no AT

positioning on average on S. pombe genes (Fig. S3E). While it will be interesting to determine

if other sequence based models do so, or if an indirect mechanism like remodeling has to be

invoked, this question is irrelevant for our current goal to show that AT trapping can explain

the large effective nucleosome stiffness in S. pombe. Here, we account for the combined effect of

DNA sequence specificity and AT trapping by superimposing sequence derived landscapes and the

trapping landscape. Examples are shown in Fig. 7B.

To account for AT trapping within the nucleosome gas model we first compute 〈n(x)〉 and

〈n2(d)〉 with AT trapping. On single genes the effect of AT trapping is rather weak (Fig. S7C),

but when averaged over many genes the resulting oscillations are considerably strengthened (black

vs grey line in Fig. 7D). Next we fit the gene averaged density and spacing distribution by the

nucleosome gas model and determine the effective nucleosome parameters from the fit. We find that

AT trapping renormalizes the nucleosome stiffness ε to larger values, εeff > ε (black line in Fig. 7E).

This effective stiffening reaches εeff = 0.23 kBT (green star), which is close to the S. pombe value

of εeff = 0.236 kBT (green solid line), at a trapping strength of A = 1.33 kBT (greed dashed line).

This trapping strength is surprisingly low compared to the typical oscillations of sequence based

landscapes (compare the bold and thin cyan lines in Fig. 7C) reflecting that nucleosomes guide

each other by repelling reach other. The much slower decay of the density oscillations (compare

black to grey line in Fig. 7D) is completely consistent with the much more pronounced oscillations

in experimental S. pombe data compared to S. cerevisiae (Fig. 1C,D). We also observe that the

effective nucleosome size parameter weff does not drop to the S. pombe value of 75 bp in the range
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suggested by the ε renormalization. We come back to this in the discussion.

We here assumed a nucleosome density whose oscillation period matches the S. pombe value of

d = 150 bp even without the trapping landscape, the only effect of which was to result in more

persistent oscillations in the gene body. For completeness, we also consider the case that the native

density oscillation period equals the S. cerevisiae value of dA=0 = 167 bp. We find that cranking up

the AT trapping imposes its period of 150 bp on the density and, for sufficiently strong trapping,

again leads to effective nucleosome stiffening (thin grey line in Fig. 7E).

We conclude that nucleosome trapping on AT-rich sequences, which is motivated by strong

correlations between nucleosome density and AT-content in S. pombe, can explain why nucleo-

somes appear much stiffer (i.e. positioning oscillations are more pronounced) in S. pombe than in

S. cerevisiae even though the underlying histones are conserved.

DISCUSSION

Towards a quantitative understanding of nucleosome positioning we here asked how different

molecular mechanisms interact. We particularly focussed on how such mechanisms are reflected in

gene-averaged positioning data. The essence of gene-averaged nucleosome patterns can be under-

stood by the surprisingly simple model of statistical positioning against a barrier (Kornberg and

Stryer, 1988; Mavrich et al., 2008). We showed that a refined version of statistical positioning,

where DNA unwrapping is taken into account via a soft-core nucleosome interaction, accurately

describes the characteristic oscillations in gene coding regions as well as the distribution of inter-

nucleosomal spacings. This left us with an apparent contradiction: while gene-specific positioning

preferences are not required to reproduce gene averaged patterns, such preferences are very clearly

present and indeed shape gene-specific nucleosome patterns (Fig. 1B). We therefore investigated

how gene-specific positioning alters gene-averaged patterns. We found that it changes the gene-

averaged patterns quantitatively but not qualitatively. This was true independently of whether

gene-specific positioning was generated from a DNA elasticity model or randomly, which indi-

cates that the compatibility of strong positioning on individual genes and the emergence of simple

nucleosome gas features in the gene average are a generic phenomenon.

Going beyond the qualitative finding that specific positioning mechanisms can be compatible

with the nucleosome gas model in the gene average, we investigated their quantitative effects.

Our general approach was to first model the nucleosome gas together with some specific posi-

tioning mechanism, and to then reproduce the obtained patterns with only the nucleosome gas
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model (Fig. 2). We found that the resulting effective nucleosome properties, in particular the ef-

fective energy required for unwrapping DNA from the histone core (the “nucleosome stiffness”),

is renormalized by the additional positioning mechanisms. We would thus argue that Kornberg

and Stryer’s original conclusion, that “the sequence-specificity cannot bee too great” (Kornberg

and Stryer, 1988) should be modified to “the trace of sequence-specificity in the gene-average is a

renormalization of the effective nucleosome properties”.

We found that different positioning mechanisms alter the effective nucleosome properties in

different ways: While DNA sequence preferences (Fig. 3) and remodeler mediated nucleosome

sliding (Fig. 4) lead to an effective softening, the setting of a preferred spacing (Fig. 5) or positioning

along genes (Fig. 7) makes nucleosomes appear stiffer. We suggested that the latter can resolve

the apparent conflict that DNA unwrapping seems particularly hard in S. pombe even though the

underlying histones are conserved.

The picture that emerges from our results is that the salient feature of gene averaged nucle-

osome patterns, the decaying oscillations, emerges robustly from steric exclusion on DNA. The

quantitative aspects of these oscillations, however, reflect the additional positioning mechanisms,

which can be specific to species, cell types and conditions.

Our findings suggests that the quantitative features of nucleosome positioning data can be used

to unravel the importance of specific positioning mechanisms. This requires some care, though.

First, we have seen that some mechanisms lead to effective nucleosome stiffening and others to

softening, and different contributions could thus cancel. Furthermore, different mechanisms can

produce similar parameter renormalizations. For example, softening is caused by gene averaged

DNA sequence effects as well as by remodeler mediated sliding, and stiffening could come from

either a preferred nucleosome spacing (a two-particle quantity) or from preferred positioning along

the genome (a single-particle quantity). With respect to the anomalously large unwrapping energy

in S. pombe, which we suggested to stem from trapping on AT rich regions, alternative appealing

scenarios are altered interactions due to the lack of the linker histone H1 or altered remodeling due

to the lack of the ISWI remodeler in S. pombe. Further targeted studies are required to disentangle

those effects.

In spite of the above mentioned cautionary notes our quantitative approach can greatly help

in disentangling the interplay of positioning determinants. For example, we have demonstrated

that the conjectured nucleosome spacing by remodelers must be either somewhat fuzzy, or can not

be a dominant mechanism in vivo (Fig. 5). Furthermore, the correlation between AT content and

nucleosome density in S. pombe suggested an AT trapping mechanism.
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We point out that gene averaged patterns reveal information that would be hard to gain from

single genes or specific loci, as illustrated by the above examples of AT trapping and fuzzy spacing.

Of course, gene-specific patterns carry a great amount of additional information, which can be

explored in the future. This will build on the here developed tools of quantitative simulation of

specific remodeling mechanisms together with nucleosome interactions and sequence specificity.

Finally, we address experimental ramifications of our results. First, we suggest that the addi-

tional information revealed by chemical cleavage data over conventional MNase maps, namely the

distribution of internucleosomal spacings (Fig. 1E), is extremely valuable: much more sensitive to

mechanisms affecting the spacing than might be apparent from the nucleosome density patterns

(Fig. 5B). Furthermore, it provides information that is simply not contained in the density patterns

(Fig. 1E). In addition, the strength of oscillations in gene-averaged patterns depends on the pro-

nouncedness of the barrier (no barrier, no oscillations). The barrier likely results from an interplay

of sequence (Segal et al., 2006), remodeling (Krietenstein et al., 2016) and transcription (Chereji

et al., 2016) and may vary across species and conditions. This again highlights the importance of

the spacing distribution as a source of information about spacing mechanisms, since it does not rely

on a barrier but rather reflects the nucleosome-nucleosome interaction directly. Measuring it could

be of particular relevance in in vitro reconstitution experiments (Zhang et al., 2011), especially

with purified remodelers (Krietenstein et al., 2016) in order to unravel their spacing activity.

Furthermore, trans-species experiments have proven useful: nucleosomes on K. lactis sequences

cloned into S. cerevisiae were spaced with the shorter S. cerevisiae spacing, indicating that trans

acting factors determined the spacing (Hughes et al., 2012). Similarly, replacing the endogenous

gene for the remodeler Chd1 in S. cerevisiae by its K. lactis ortholog led to slightly increased

nucleosome spacing (Hughes and Rando, 2016). Similar experiments with S. pombe might reveal

the mechanism behind the correlation of nucleosome density and AT content.

In conclusion, we have established a framework for the quantitative understanding of how var-

ious mechanisms interact in nucleosome positioning. This approach can be particularly helpful in

addressing a gap in current knowledge about chromatin remodeling enzymes: while single molecule

experiments have revealed basic relocation steps (Flaus and Owen-Hughes, 2011; Mueller-Planitz

et al., 2013) it is largely unclear how such relocations are combined to shape characteristic nucleo-

some positioning patterns. An iterative procedure of identifying candidate relocation mechanisms

from single molecule experiments, exploring their single gene or genome wide effects in simulations

as done here, and comparison to knockout or reconstitution experiments can unravel the building

blocks of nucleosome positioning. Furthermore, an extremely interesting perspective is to unravel
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the relation between 1D nucleosome positioning and the 3D organization of chromatin. With

Micro-C (Hsieh et al., 2015), which produces nucleosome positioning maps as well as 3D contact

frequencies, questions about the 1D-3D relation might become addressable by joint experimental

and modeling efforts.
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Möbius, W., Osberg, B., Tsankov, A. M., Rando, O. J. and Gerland, U. (2013), ‘Toward a unified physical

model of nucleosome patterns flanking transcription start sites’, Proc. Natl. Acad. Sci. U.S.A. 110, 5719–

5724.

Morozov, A. V., Fortney, K., Gaykalova, D. A., Studitsky, V. M., Widom, J. and Siggia, E. D. (2009),

‘Using DNA mechanics to predict in vitro nucleosome positions and formation energies’, Nucleic Acids Res.

37, 4707–4722.

Moyle-Heyrman, G., Zaichuk, T., Xi, L., Zhang, Q., Uhlenbeck, O. C., Holmgren, R., Widom, J. and Wang,

J.-P. (2013), ‘Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2018. ; https://doi.org/10.1101/431445doi: bioRxiv preprint 

https://doi.org/10.1101/431445
http://creativecommons.org/licenses/by-nc/4.0/


24

positioning’, Proc. Natl. Acad. Sci. U.S.A. 110, 20158–20163.

Mueller-Planitz, F., Klinker, H. and Becker, P. B. (2013), ‘Nucleosome sliding mechanisms: new twists in a

looped history’, Nat. Struct. Mol. Biol. 20, 1026–1032.

Ocampo, J., Chereji, R. V., Eriksson, P. R. and Clark, D. J. (2016), ‘The ISW1 and CHD1 ATP-dependent

chromatin remodelers compete to set nucleosome spacing in vivo’, Nucleic Acids Res. 44, 4625–4635.

Osberg, B., Nuebler, J. and Gerland, U. (2015), ‘Adsorption-Desorption Kinetics of Soft Particles’, Physical

Review Letters 115, 088301.

Osberg, B., Nuebler, J., Korber, P. and Gerland, U. (2014), ‘Replication-guided nucleosome packing and

nucleosome breathing expedite the formation of dense arrays’, Nucleic Acids Res. 42, 13633–13645.

Ozonov, E. A. and van Nimwegen, E. (2013), ‘Nucleosome Free Regions in Yeast Promoters Result from

Competitive Binding of Transcription Factors That Interact with Chromatin Modifiers’, PLoS Comp. Biol.

9, e1003181.

Percus, J. K. (1989), ‘Entropy of a non-uniform one-dimensional fluid’, J. Phys.: Condens. Matter 1, 2911–

2922.

Radman-Livaja, M., Verzijlbergen, K. F., Weiner, A., van Welsem, T., Friedman, N., Rando, O. J. and van

Leeuwen, F. (2011), ‘Patterns and Mechanisms of Ancestral Histone Protein Inheritance in Budding Yeast’,

PLoS Biol. 9, e1001075.

Schones, D. E., Cui, K., Cuddapah, S., Roh, T.-Y., Barski, A., Wang, Z., Wei, G. and Zhao, K. (2008),

‘Dynamic regulation of nucleosome positioning in the human genome.’, Cell 132, 887–898.

Segal, E., Fondufe-Mittendorf, Y., Chen, L., Thastrom, A. C., Field, Y., Moore, I. K., Wang, J.-P. Z. and

Widom, J. (2006), ‘A genomic code for nucleosome positioning.’, Nature 442, 772–778.

Singh, R. K., Watanabe, S., Bilsel, O. and Peterson, C. L. (2018), ‘Transient kinetic analysis of SWR1C-

catalyzed H2A.Z deposition unravels the impact of nucleosome dynamics and the asymmetry of stepwise

histone exchange’, bioRxiv: https://doi.org/10.1101/304998 .

Struhl, K. and Segal, E. (2013), ‘Determinants of nucleosome positioning’, Nat. Struct. Mol. Biol. 20, 267–

273.

Teif, V. B., Erdel, F., Beshnova, D. A., Vainshtein, Y., Mallm, J.-P. and Rippe, K. (2013), ‘Taking into

account nucleosomes for predicting gene expression’, Methods 62, 26–38.

Tolkunov, D. and Morozov, A. V. (2010), ‘Genomic Studies and Computational Predictions of Nucleosome

Positions and Formation Energies’, Adv. Protein Chem. Struct. Biol. 79, 1–57.

Tolstorukov, M. Y., Colasanti, A. V., McCandlish, D. M., Olson, W. K. and Zhurkin, V. B. (2007), ‘A Novel

Roll-and-Slide Mechanism of DNA Folding in Chromatin: Implications for Nucleosome Positioning’, J. Mol.

Biol. 371, 725–738.

Tonks, L. (1936), ‘The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard

Elastic Spheres’, Phys. Rev. 50, 955–963.

Tsankov, A. M., Thompson, D. A., Socha, A., Regev, A. and Rando, O. J. (2010), ‘The role of nucleosome

positioning in the evolution of gene regulation.’, PLoS Biol. 8, e1000414.

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2018. ; https://doi.org/10.1101/431445doi: bioRxiv preprint 

https://doi.org/10.1101/431445
http://creativecommons.org/licenses/by-nc/4.0/


25

Valouev, A., Johnson, S. M., Boyd, S. D., Smith, C. L., Fire, A. Z. and Sidow, A. (2011), ‘Determinants of

nucleosome organization in primary human cells’, Nature 474, 516–520.

van der Heijden, T., van Vugt, J. J. F. A., Logie, C. and van Noort, J. (2012), ‘Sequence-based prediction

of single nucleosome positioning and genome-wide nucleosome occupancy’, Proc. Natl. Acad. Sci. U.S.A.

109, E2514–2522.

Vasseur, P., Tonazzini, S., Ziane, R., Camasses, A., Rando, O. J. and Radman-Livaja, M. (2016), ‘Dynamics

of Nucleosome Positioning Maturation following Genomic Replication’, Cell Reports 16, 2651–2665.

Venkatesh, S., Workman, J. L. and Smolle, M. (2013), ‘UpSETing chromatin during non-coding RNA

production’, Epigenetics & Chromatin 6.

Voong, L. N., Xi, L., Wang, J.-P. andWang, X. (2017), ‘Genome-wide Mapping of the Nucleosome Landscape

by Micrococcal Nuclease and Chemical Mapping’, Trends in Genetics 33, 495–507.

Weiner, A., Hsieh, T.-H. S., Appleboim, A., Chen, H. V., Rahat, A., Amit, I., Rando, O. J. and Friedman,

N. (2015), ‘High-Resolution Chromatin Dynamics during a Yeast Stress Response’, Mol. Cell 58, 371–386.

Weiner, A., Hughes, A., Yassour, M., Rando, O. J. and Friedman, N. (2010), ‘High-resolution nucleosome

mapping reveals transcription-dependent promoter packaging’, Genome Res. 20, 90–100.

Yuan, G.-C., Liu, Y.-J., Dion, M. F., Slack, M. D., Wu, L. F., Altschuler, S. J. and Rando, O. J. (2005),

‘Genome-Scale Identification of Nucleosome Positions in S. cerevisiae’, Science 309, 626–630.

Zhang, Z., Wippo, C. J., Wal, M., Ward, E., Korber, P. and Pugh, B. F. (2011), ‘A Packing Mechanism for

Nucleosome Organization Reconstituted Across a Eukaryotic Genome’, Science 332, 977–980.

Zhou, C. Y., Johnson, S. L., Gamarra, N. I. and Narlikar, G. J. (2016), ‘Mechanisms of ATP-Dependent

Chromatin Remodeling Motors’, Ann. Rev. Biophys. 45, 153–181.

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2018. ; https://doi.org/10.1101/431445doi: bioRxiv preprint 

https://doi.org/10.1101/431445
http://creativecommons.org/licenses/by-nc/4.0/


26

Supplement

S1. THE SOFT-CORE NUCLEOSOME GAS MODEL

A. Nucleosome gas models

By a “nucleosome gas model” we understand the following model for nucleosomes on DNA:

• Nucleosomes are interacting particles on a discrete one-dimensional (1D) substrate, i.e. the

DNA.

• The nucleosome-nucleosome interaction is a function of the separation d = |x2 − x1|, where
x1 and x2 are the two nucleosome positions (measured by nucleosomal reference points, e.g.

the nucleosome dyads):

v(x1, x2) = v(d)

Thus, the nucleosome interaction does not depend on the position of the nucleosome pair,

but only on the relative distance.

• There is no energetic preference for nucleosomes along the 1D substrate (note, however, that

sometimes we introduce a barrier by a strong energetic preference at a single site, namely at

x = 0).

• The above defined interacting lattice gas is in thermodynamic equilibrium.

• Depending on convenience, one can either use the canonical ensemble with a fixed number

of particles or the grand canonical ensemble where particles can bind to and unbind from

the 1D substrate, with a rate ratio defined by the chemical potential r+/r− = eµ.

Note that in large systems, which we are interested in, the two ensembles are equivalent.

Note that we defined the nucleosome gas model here to have no energetic preference along the

DNA (i.e. no “energy landscape”). This is an arbitrary choice and due to the fact that we treat

energy landscapes as additional positioning mechanisms.

B. Hard-core and soft-core interaction

The nucleosome-nucleosome interaction can be either a hard-core interaction, where each par-

ticle occupies a certain number of base pairs and overlaps between particle footprints are not
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allowed, or a soft-core interaction where overlaps are penalized by an interaction energy. The

hard-core model is a special case of the soft-core model where the interaction energy tends to infin-

ity when overlap occurs and zero otherwise. With the hard-core interaction, the model corresponds

to the Tonks gas known in statistical physics (Tonks, 1936).

C. The soft-core interaction used in this paper

Here we use a previously introduced soft-core interaction (Möbius et al., 2013; Osberg et al.,

2015, 2014) in order to account for nucleosomes invading each other on DNA (see below for in-

terpretation). The soft-core interaction has two parameters, ε and w. The nucleosome stiffness

parameter ε is the energetic cost of unwrapping one bp of DNA from the histone core. The nucle-

osome footprint parameter w determines the footprint of the fully wrapped nucleosome as 2w + 1

(see Fig. 1 in the main text).

The interaction potential for a given separation d between two nucleosome dyads is derived from

summing the statistical weights of all unwrapping states of the left and right nucleosome that are

compatible with the given separation d assuming thermodynamic equilibrium (see (Möbius et al.,

2013) and Figs. 5A and S1D,E for graphs of the interaction potential).

D. Interpretation of the soft-core interaction potential

The soft-core interaction was motivated by unwrapping of DNA from histone core, but it can also

represent other aspects of effective interaction between nucleosomes. Examples are steric hindrance

of nucleosomes in 3D, effects of linker histones, and the presence of (active) remodeling enzymes. In

particular the presence of H1 linker histones might contribute to increasing the effective footprint

size beyond the 147 bp observed in nucleosome crystal structures. In order to take those aspects

into account, we did not fix the parameters ε and w, but rather obtained them from fitting the

model to experimental nucleosome positioning data (Fig. 1).

We note that the dyad-to-dyad spacing distributions of both S. cerevisiae and S. pombe show a

finer substructure than our nucleosome gas model can reproduce: DNA unwrapping preferentially

occurs in 10 bp steps due to “contact points” related to the helical twist (Luger et al., 1997). While

a recent study has addressed this intranucleosomal structure (Chereji and Morozov, 2014), we here

use a more coarse grained approach neglecting this fine structure.
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E. Comparison of nucleosome interaction potentials from unwrapping model and as

inferred from the experimental spacing distributions

Above, we have introduced a biologically motivated model for the soft-core nucleosome interac-

tion based on DNA unwrapping, who’s parameters are determined by fitting of the model to data

(Fig. 1 and below). For comparison, we here start with the experimental spacing distribution and

reverse engineer the interaction, as based on a calculation from Ref. (Hansen-Goos et al., 2007).

In brief, we use that spacings are exponentially suppressed by their length d and their energetic

penalty v(d) such that the spacing probability density is

p(d) = Ae−αd−v(d)

Thus, spacings decay exponentially for d large enough such that v(d) = 0. From this, A and α

can be obtained by a linear fit to log(p(d)). Then, for smaller d, we obtain the interaction v(d) as

follows:

v(d) = − log(p(d)) + log(A)− αd

For the linear fit to determine A and α we used the spacing distribution in the range 170-180

bp. This is motivated by the fact that (i) for both species the fit of our unwrapping model to

the data yields a vanishing interaction in the above range (for S. cerevisiae / S. pombe we have

2w + 1 = 165 / 151 bp as maximal interaction range, see Fig. 1), and (ii) the spacing distribution

at increasingly long reads likely can not be trusted due to loss of long reads.

Results are shown in (Fig. S1D,E). We find very good agreement between the unwrapping model

and reverse engineered potential.

S2. COMPUTING THE NUCLEOSOME DENSITY AND SPACING DISTRIBUTION

As stated above, for the “nucleosome gas model” we assume no energetic preference for nucleo-

somes along the DNA. However, we later consider such energetic preferences (“energy landscapes”)

as an additional positioning mechanism. Here, we thus use computational methods to obtain the

nucleosome density and the spacing distribution in the presence of such an energy landscape,

understanding that for the nucleosome gas model the landscape will be flat.

The problem of computing the one- and two-particle densities of particles with short-range

interaction on a 1D lattice can be solved with tools from statistical mechanics. In particular, an

arbitrary position dependent external potential, an “energy landscape” can be taken into account,
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as described in the works of J. Percus (Percus, 1989). We compute the one-particle density n(x) and

the two-particle density n2(d) with a straightforward implementation of formulas in this reference.

Importantly, these methods assume that the system is in thermodynamic equilibrium. This

is a strong and debatable assumption, given that active chromatin remodeling enzymes play an

important role. Part of our results, however, show that the equilibrium-based soft core gas model

indeed reproduces experimental data well (Fig. 1). Other parts of our results rationalize this

agreement by showing that some remodeling mechanisms, e.g. nucleosome sliding (Fig. 4) are

excellently compatible with an effective equilibrium description.

For the nucleosome density in gene-coding regions we assume that one particle, the “barrier

particle” or “+1 nucleosome” is fixed in place and phases the adjacent particles. We fix this

particle by placing a deep energetic minimum of −35 kBT at the desired position.

The relevant predictions of the nucleosome gas model are the density downstream of a barrier

particle nmodel(x) and the nearest-neighbor spacing distribution nmodel
2 (d).

When comparing the nucleosome gas quantities to experimental data we need to take into

account that the reference nucleosome, which acts as a barrier particle, is not perfectly localized.

We thus convolve nmodel(x) with the experimental +1 peak form 50 bp left to 50 bp right of the

alignment point, resulting in ñmodel(x). For simulated ”data” this step is omitted.

S3. FITTING THE NUCLEOSOME GAS MODEL TO DATA

We fit the prediction of the nucleosome gas model (see above) to data. Here, “data” refers to

either experimental positioning data or to data from computational models including an “additional

positioning mechanism”.

A. Fit parameters

When fitting the nucleosome gas model to data we vary all three model parameters, ε, w, and

µ (see above). However, the quantities of interest are only the nucleosome properties ε and w

and we report only those. The chemical potential µ is not an observable that we can compare to

experimental data and we thus treat it as a dummy parameter.

To perform the fit, we choose a grid in the w, ε, 1/ρ̄ parameter space with a resolution of ∆w = 1

bp, ∆ε = 0.002 kBT and ∆(1/ρ̄) = 0.2 bp. Here, ρ̄ is the average nucleosome density and 1/ρ̄ the

average nucleosome spacing. We use this quantity to discretise the parameter space because the
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relation between the chemical potential µ and ρ̄ is highly non-linear.

B. Preparation of data for fitting by the nucleosome gas model

We use “chemical cleavage” nucleosome positioning data (Brogaard et al., 2012; Moyle-Heyrman

et al., 2013). Instead of the Bayesian deconvolution technique used in Ref. (Brogaard et al., 2012),

where the two nucleosome positions defining the endpoints of the read (read mates) were treated

independently, we instead consider the mate pairs as a quasi-2D measure for nucleosome position

and interdyad distance simultaneously, with some fuzziness or noise introduced by the cleavage

bias as observed in Ref. (Brogaard et al., 2012). We then reconstruct the original 2D position-

distance map using image deconvolution. This requires the specification of a point spread function

(PSF). The PSF is calculated from the ”single-end cleavage bias” (or ”template weighted score” in

Ref. (Brogaard et al., 2012)) by combining the effect of independent cleavage effects on position and

distance. Adding 500bp flanking sequence around each gene, we then perform the deconvolution

using the Matlab library function deconvlucy.

From the obtained genome wide nucleosome dyad density we use only genes longer than 2500

bps (to minimize influence from the transcription termination site). We align genes by the most

likely position of their first nucleosome (the +1 nucleosome), which we determine as follows: From

the TSS we look for the first downstream nucleosome position; if none is found within 300 bp we

loop up to 50 bp upstream. If none is found, the gene is discarded (51 for S. cerevisiae, 2 for

S. pombe). This results in 914 genes for S. cerevisiae and 841 for S. pombe. The distribution of

dyad-to-dyad distances is taken only from the selected genes.

For experimental nucleosome maps, the data is not normalized and depends for example on the

sequencing depth. We thus infer a normalization from comparison to the model. This can be done

analytically, as described in Ref. (Möbius et al., 2013). Basically, we compute the normalization

parameter α, which we refer to as the ’sequencing depth’, as

α =

∑xmax

xmin
nmodel(x) ndata(x)

∑xmax

xmin
nmodel(x)2

(2)

where xmin and xmax specify a valid range which we choose the same as the fit range (see below).

For the spacing distribution in experimental data the normalization is not known either, since

reads beyond a certain length window [dmin, dmax] are lost. The nucleosome gas predictions,

however, have tails beyond this window. Therefore, we equate the areas under the curves between

the cutoffs. Namely, we use n̂2(d) = n2(d)/Σ
dmax

dmin
n2(d) of the nucleosome gas prediction and the
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data. We use dmax = 200 bps as the upper cutoff when fitting experimental data and dmax = 300

when fitting simulated data, and we also use a sufficiently low dmin = 50 as lower cutoff.

As gene-averaged data may still be somewhat noisy we smooth the data prior to fitting by

computing moving averages over 10 bp.

C. Fit error function

The quadratic error to be minimized is calculated as follows:

δ2(tot) = δ2(〈n(x)〉) + δ2(〈n2(d)〉),

δ2(〈n(x)〉) =
xmax
∑

xmin

(

nmodel(x)− 1

α
ndata(x)

)2

,

δ2(〈n2(d)〉) =
dmax
∑

dmin

(

n̂model
2 (d)− n̂data

2 (d)
)2

.

We choose the fit range xmin = 100 and xmax = 1500 for the density. The internucleosomal

distances that are used for the fit of the gene- and position-averaged spacing distribution are taken

only from this range as well. For the fit range for the spacing distribution we use [dmin, dmax] from

above.

As the sum in δ2(〈n(x)〉) runs over more points than in δ2(〈n2(d)〉) the fit is more sensitive to the

density. A possible way to adjust the relative weight would be to reduce δ2(〈n(x)〉) by the number

of particles in the fit region Σxmax

xmin
ρ(x)dx. Yet, we find that this leads to very unsatisfying results

for the density and thus refrain from the correction. We point out that, in any case, discrepancies

point to deviations from Tonks gas physics, irrespective of whether the density fit is ’improved’ at

the cost of the spacing distribution or the other way round.

D. Criterion for god or bad fit

To decide if (experimental or simulated) data is compatible with the nucleosome gas model we

need a criterion for what constitutes a good fit and a bad fit. Defining such a criterion is somewhat

arbitrary. Here we choose a maximal value of the total fit error, namely δ2(tot) < 0.003 for a good

fit (magenta line in Figs. S2, S5, S6, S7.

We point out that the total fit error should also be compared to the effect of the additional

positioning mechanism under consideration: ideally, the effect of the mechanism on the pattern is

large, but the compatibility is still good (i.e. δ2(tot) is small). Thus, we plot also the squared de-
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viation between our quantities with additional positioning mechanism and without the mechanism

(“to unperturbed” in Figs. S2, S5, S6, S7).

S4. FIT TO DATA FROM S. CEREVISIAE AND S. POMBE.

In Fig. S1 we show the fit of the nucleosome gas model to the experimental data from S. cere-

visiae and S. pombe (see Fig. 1 in the main text) alongside the density and spacing distribution

from non-optimal parameters (purple and green lines).

We note that the fit error for the density alone, δ2(〈n(x)〉), has an extended banana-shaped valley

with a comparatively sloppy mode. Consequently, the density can be reasonably well reproduced

by values (ε, w) that are far from the optimal ones, provided that they lie in the valley (see purple

lines in Fig. S1B,C for examples). The spacing distribution, however, is more sensitive and its fit

error δ2(〈n2(d)〉) has less of a valley. Correspondingly, the spacing distribution for the purple lines

in Fig. S1 is not a satisfactory fit.

A. Note on the discrepancy between nucleosome density and spacing distribution in

S. cerevisiae

An intriguing feature of the chemical cleavage data from S. cerevisiae is the difference between

the peak to peak distance in the density pattern of 167 bp and the mean length of fragments

(collected only in the region of this pattern) of only 157 bp, which was pointed out before (Chereji

and Morozov, 2014). We can see two possible explanations: (1) An experimental bias towards

short fragments (note that the simultaneous fit fails in particular at reads exceeding 170 bp). (2)

Mechanisms beyond statistical positioning, inducing more correlations.

S5. NUCLEOSOME POSITIONING BY ENERGY LANDSCAPE MODELS

A. Landscape models

We use two types of energy landscapes: sequence based energy landscapes and random land-

scapes without an underlying physical model. We point out that our focus is not the predictive

power of specific models at specific loci, but rather the generic effect of energy landscapes on gene-

averaged patterns. We show that in this respect the details of the model are of minor importance.

As input for a sequence based landscape model we use S. cerevisiae and S. pombe DNA sequences
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aligned by the +1 nucleosome. We use only genes longer than 2500 bp in order to minimize

effects from the transcription termination site, see above. We compute landscapes using 4000 bp

downstream of TSSs. For the fit to the nucleosome gas, however, we use only the first 1500 bp as

explained above. The large overhang is to avoid effects from the end of the substrate.

As a specific sequence based model for energy landscapes we use the model proposed in Ref. (Mo-

rozov et al., 2009). This computes the energetic cost of bending a specific DNA sequence into the

shape required fro wrapping around the histone core based on elastic properties of the DNA.

Namely, each base pair stacking is associated with deformation force constants (3 displacements,

3 rotation angles).

The authors of Ref. (Morozov et al., 2009) use either only the central 71 bp or the full 147 bp

to compute nucleosome formation energies. The former is motivated by the central part binding

DNA first and thereby already determining the nucleosome positions, while the later wrapping of

the outer parts has no influence on the nucleosomes sequence preference. We here use the central

71 bps. We checked, however, that using the full 147 bp yields qualitatively similar results in terms

of the here studied parameter renormalization by energy landscapes.

To investigate the overall effect of the landscape amplitude (measured by the standard deviation

σ) we rescale the landscapes and determine the effective nucleosome properties as a function of σ.

B. Computing the nucleosome density and spacing distributions on energy landscapes

We compute the nucleosome density and spacing distribution on individual energy landscapes

exactly. We use the transfer matrix based equilibrium methods from statistical mechanics as

explained above.

For each landscape we first set the mean of this landscape to zero and then subtract the chemical

potential µ. When fitting the model to data, the chemical potential is a fit parameter as described

below. When generating data (e.g. the nucleosome density on sequence based energy landscapes

considered in this section) the chemical potential is obtained by an iterative process such that, in

the gene average, a specified average nucleosome density is reached.

C. Gene averaged energy landscapes show now positioning featues

We pointed out in the main text that it is crucial to take sequence dependent positioning energy

landscapes u(x) into account for each gene separately and then average the obtained densities across
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genes:

〈n(u(x))〉genes 6= n(〈u(x)〉genes) (3)

where 〈 〉genes is the average across genes. For comparison, Fig. S3E shows the gene averaged energy

landscape 〈u(x)〉genes. We observe that its standard deviation is very small, namely σ = 0.056 kBT ,

which is very close to 1.56 kBT/
√
914 = 0.052 kBT , which is expected from averaging uncorrelated

landscapes across our set of 914 genes. This indicates that there are no typical features encoded

in the sequence dependent landscapes according to the used landscape model. These findings are

independent of aligning genes by the +1 nucleosome or the TSS (Fig. S3E top and middle panel).

For energy landscapes from S. pombe sequences we observe more pronounced oscillations near

the +1 nucleosome, which, however, disappear about 200 bp downstream, i.e. between the +2 and

+3 nucleosome (Fig. S3E bottom panel). In particular, we observe no positioning oscillations in

phase with the S. pombe specific AT content oscillations.

D. Detailed account of fitting of the nucleosome gas model to positioning data on energy

landscapes

Figure S2 shows in detail the fitting of the nucleosome gas model to data from sequence based

energy landscapes, corresponding to Fig. 3 in the main text. In order to determine if the data can

be reproduced by the nucleosome gas model, we investigate the fit errors, see, panels (B). We show

the error of the gene averaged quantities for a given σ with respect to the fit (red) and with respect

to the quantities in the absence of landscapes (black). Thereby we compare the compatibility with

the nucleosome gas model to the effect of energy landscapes on 〈n(x)〉 and 〈n2(d)〉. We find that

the compatibility is very good compared to the effect (errors “to fit” are much smaller than error

“to σ = 0”). For the error in the spacing distribution the two errors are comparable, which results

from the fit being more sensitive to the density (see above). The magenta line in the total error

plots indicates our cutoff for a good fit, namely δ2 = 0.001. All considered examples satisfy this

criterion.
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E. Inferring the amplitude of disorder landscapes from the peakedness of gene-specific

nucleosome density profiles

In the main text we showed how gene specific nucleosome positioning energy landscapes make

nucleosomes appear softened in gene-averaged patterns. We found that the degree of this parameter

renormalization depends on the standard deviation of the energy landscapes. Here, our goal is to

infer this standard deviation from the experimental nucleosome density profiles.

A natural observable to this end is the peakedness of the density on individual genes. Figure S3A

shows the experimental S. cerevisiae dyad density for an exemplary gene, compared to model

densities on a landscape with varying standard deviation σ. Importantly, all three cases are from

the “intersection line” ε = 0.152kBT in Fig. 3A, namely, they all yield the same gene averaged

patterns. On the single gene level, however, there are visible differences in the peakedness.

To quantify the peakedness, we propose histograms of the position dependent density values

as an adequately integrated measure (Fig. S3B). For example, σ = 1.07 kBT leads to moderately

peaked density patterns, where loci with large density peaks are less likely than in experimental data

(the histogram drops much quicker than for the experimental data). Conversely, for σ = 2.48 kBT

the model densities are too spiky and the corresponding histogram shows more counts for very

large densities than the experimental data. The best agreement is obtained for σ = 1.56 kBT .

This value is very consistent with the σ that the authors of the sequence based landscape model

give, namely σ = 1.74 kBT (Morozov et al., 2009).

F. Parameter renormalization flow for sequence based energy landscapes and uncorrelated

Gaussian landscapes

We pointed out in the main text that the main parameter for the renormalization of the nucle-

osome stiffness parameter ε is the standard deviation σ of energy landscapes. Here, we show that

indeed a completely different landscape model leads to a very similar renormalization.

We use landscapes whose only parameter is the standard deviation σ. Landscapes are gen-

erated by drawing a random number from a Gaussian with standard deviation σ, p(E) =

1/(
√

2πσ2) exp(−E2/2σ2), at each base pair independently (“uncorrelated Gaussian landscapes”).

Example landscapes in Fig. S3C show that the typical 10 bp oscillation observed in sequence based

landscapes (Fig. 3C) is absent here. Nevertheless, the corresponding parameter flow (Fig. S3D) is

very similar.
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G. Examples of positioning landscapes that are not compatible with the nucleosome gas

model

In order to show that not all nucleosome density patterns near a barrier can be fitted, we tested

two examples of random landscape ensembles that have a flat gene average, but result in densities

that still cannot be fitted by the “interaction + barrier” model:

In the first example the external potential has normally distributed landscape values at each

position with a non-constant standard deviation: introducing a peak in the standard deviation (max

at 600bp, footprint 20bp, linear increase of multiplication factor from 1 to 11 and corresponding

decrease) leads to potentially very high negative peaks in the landscape which strongly attract

nucleosomes leading to a peak at 600bp in the one-particle density not in agreement with the

normal nucleosome array pattern.

In the second example we artificially introduce correlations into the external potential. Starting

from the barrier and moving downstream, negative peaks below -2.8 kT are copied further down-

stream by 172, 173, 174, 345, 346 and 347 base pairs, overwritting the original values. This step is

repeated from the position of the last overwritten value until we reach the end of the region. This

introduces correlations between strong negative peaks and leads to a bimodal spacing distribution

with a second peak at 173bp without affecting the one-particle density. Strictly speaking this does

not have a zero landscape on average yet, but this can be fixed by also copying peaks above +2.8

kT, without noticable effects on the average densities, since nucleosome positions are only governed

by the lowest external potential values.

S6. REMODELER MEDIATED NUCLEOSOME SLIDING

A. Model

In order to model nucleosomes subject to the action of active remodeling enzymes we use kinetic

Monte Carlo simulations, which we describe in detail in this section.

We use a lattice of length L = 5010 with one lattice site corresponding to one base pair.

Nucleosomes. Nucleosomes can adsorb/desorb onto/from the lattice. We label nucleosomes by

the position x of their center (their dyad) on the substrate. We use the following adsorption and
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desorption rates:

rN+ = exp[µN −B∆φ] (4)

rN− = exp[(1−B)∆φ] (5)

⇒ rN+
rN−

= exp[µN −∆φ] (6)

where µN is the chemical potential for nucleosomes. B is a number between zero and one which B

distributes the Boltzmann weight exp[∆φ] to the rates of adsorption and desorption and thereby

does affect the kinetics of each process separately, but not the rate ratio (see above) and thus

not the relative equilibrium occupancies. In lack of detailed experimental data we use B = 1/2

throughout. See below for the particle-particle interaction potential change ∆φ.

Remodelers: adsorption-desorption. Remodelers can adsorb onto DNA bound nucleosomes. We

use the rates

rR+ = VR exp[µR] (7)

rR− = VR (8)

⇒ rR+
rR−

= exp[µR] (9)

where VR is a basal ”volatility” which sets the time scale of remodeler kinetics relative to the

nucleosome kinetics, and µR is the remodeler chemical potential. These considerations apply

separately to every type of remodeler in our system (here, upstream and downstream remodelers,

see below)

Remodeler-nucleosome complexes: adsorption-desorption: For consistency, we assume that

remodeler-nucleosome complexes can also bind and unbind. We impose detailed balance for the

reaction sequence rN+ → rR+ → rC−, which means that µC = µN + µR. We use the rates

rC+ = VC exp[µC −B∆φ] (10)

rC− = VC exp[(1−B)∆φ] (11)

⇒ rC+
rC−

= exp[µC −∆φ] (12)

where VC sets the time scale of complex kinetics relative to the nucleosome kinetics. These consid-

erations apply separately to every type of remodeler in our system (here, upstream and downstream

remodelers, see below)

Interactions. All rates given above include modifications by particle-particle interactions which

satisfy detailed balance. We assume that nucleosomes interact via the potential φ described above

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2018. ; https://doi.org/10.1101/431445doi: bioRxiv preprint 

https://doi.org/10.1101/431445
http://creativecommons.org/licenses/by-nc/4.0/


38

(see also (Möbius et al., 2013)). For simplicity we here also assume that nucleosome interactions

are not modified by the presence of remodelers. This is likely not a realistic scenario, since (i)

nucleosome remodelers are large proteins, and (ii) they can destabilise nucleosomes even in the

absence of ATP [ref]. Yet, lacking a well-founded model for the interaction potential between

remodelers, we here go forward with this simplifying assumption.

Rates are modified by

∆φ = φ(x− xL) + φ(xR − x)− φ(xR − xL) (13)

which is the change in interaction energy upon adsorption of a nucleosome or complex, where x is

the center position of the adsorbing particle and xL and xR are the positions of the next particles

to the left and right.

Remodeler mediated nucleosome sliding. As a minimal model for directional nucleosome sliding

we consider a biased random walk: While bound to the nucleosome, an upstream/donwstream

remodeler slides a nucleosome in a direction that is chosen at random, but with a bias for the

upstream/downstream direction. For simplicity, we assume a stepsize of 1 bp. The sliding rates

are

ru = r exp[±γ/2−∆φs/2] (14)

rd = r exp[∓γ/2 + ∆φs/2] (15)

∆φs = φ(x− 1− xL) + φ(xR − x+ 1)

− (φ(x− xL) + φ(xR − x)) (16)

⇒ ru
rd

= exp[±γ −∆φs] (17)

where ru and rd are the rates for sliding the nucleosome upstream from x and sliding the nucle-

osome downstream from the upstream position x + 1, respectivly. r is a rate (“basal activity”),

which sets the timescale of remodeler mediated nucleosome sliding relative to the nucleosome ad-

sorption/desorption kinetics, and the upper/lower sign is for upstream/downstream remodelers.

Furthermore, if a sliding complex and another particle invade each other, the change in nucleo-

some interactions due to sliding, ∆φs, is non-zero and slows down sliding reactions which increase

the interaction energy, and expedites sliding which reduces the interaction energy by the same

factor exp[∆φs/2].

The rate ratio (17) shows that, in the absence of interactions, an upstream/downstream remod-

eler preferentially slides a nucleosome upstream/downstream by a factor eγ . This sliding model

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2018. ; https://doi.org/10.1101/431445doi: bioRxiv preprint 

https://doi.org/10.1101/431445
http://creativecommons.org/licenses/by-nc/4.0/


39

breaks detailed balance and results in different steady state densities compared to a pure nucleo-

some adsorption/desorption model without sliding, if and only if γ 6= 0.

Remodeler processivity. In order to measure the effectiveness of nucleosome sliding we define

a remodeler’s processivity as the average displacement of a nucleosome during the residence time

of the remodeler in the absence of any interactions. The processivity can be computed as follows:

The average drift speed of the remodeler mediated random walk is the difference of downstream

and upstream sliding rates, namely

v = rd − ru (18)

where we have chosen the downstream direction as positive. To obtain the average displacement

we divide the drift speed by the average residence time, 1/r̃−, where r̃− = rR− + rC− is the sum

of the unbinding rates of the remodeler and the remodeler-nucleosome complex in the absence of

interactions. We thus arrive at

p = v/r̃− = 2 sinh(γ/2) r/r̃− (19)

where for small γ we have

p ≈ γ r/r̃−.

Simulation parameters for nucleosome sliding. We vary the remodeler processivity in two

ways, namely by sweeping the bias parameter γ and the rate parameter r. We choose processiv-

ities that are of the order of w/2, thus of a quarter of the nucleosome size. Note, however, that

processivities are defined in the absence of interactions. The actual remodeler mediated invasion

of one nucleosome into another is smaller, since increasing interactions promote unbinding of the

nucleosome-remodeler complex and furthermore progressively slow down the invasion and eventu-

ally neutralise and reverse the bias. The condition for neutralising the sliding bias due to another

invaded particle is ±γ = ∆φs. The used parameter values and resulting processivities are given in

Table S1.

B. Detailed account of fitting of the nucleosome gas model to remodeler mediated

nucleosome sliding data

Figure S5 shows in detail the fits of the nucleosome gas model to the data from our model

for remodeler mediated nucleosome sliding. The bottom graphs in panels A,B show the fit errors
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(red) and the deviation of the data in the presence of remodeling from data in the absence of

remodeling (black). This juxtaposes the compatibility of the considered remodeling mechanism

with the nucleosome gas model to the effect of this remodeling.

We find that the compatibility error is extremely low compared to the effect of nucleosome

sliding. This indicates excellent compatibility of nucleosome sliding with the nucleosome gas model.

The magenta line in the total error plots indicates our cutoff for a “good fit”, namely δ2 = 0.001.

All considered examples satisfy this criterion.

S7. REMODELER MEDIATED ATTRACTION AND SPACING

A. Model

As a coarse grained model for remodeler mediated nucleosome attraction and spacing we modify

the repulsive soft-core nucleosome interaction by adding an attractive potential well:

v(d) = vsc(d) + vwell(d) (20)

with

vwell(d) = − a exp

(−(d− d0)
2

2σ2

)

(21)

where a is the depth of the well (in units of kBT ), σ the standard deviation and d0 the preferred

nucleosome distance.

For our coarse grained model we compute the equilibrium density and spacing distribution with

the above nucleosome interaction potential using the transfer matrix method as described above.

We thus choose an equilibrium description of the effect achieved by energy consuming molecular

machines, potentially neglecting any affects that are not amenable to such an effective description.

Within our coarse grained equilibrium model we sweep the remodelers’ attraction strength by

changing the well parameter a. According to equilibrium statistical physics the correct measure for

the impact of the attraction is the second virial coefficient, or, up to a factor −1/2, the integrated

deviation of the Boltzmann factor from unity. In a 1D system it reads

B2 = −1

2

∫

dx e−βE(x) − 1 (22)

where β = 1/kBT . The integrand is shown in Fig. S6C. Contributions to B2 from repulsion are

positive and contributions from attraction are negative. Due to the strong repulsive core our B2
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are always positive (dominated by repulsion). We measure the impact of adding an attractive well

to our soft-core repulsion by the corresponding change in the second virial coefficient as

∆B2 = B2(a = 0)−B2(a). (23)

B. Detailed account of fitting the nucleosome gas model to remodeler mediated attraction

and spacing data

Figure S6 shows in detail the fits of the nucleosome gas model to the data from our model

for remodeler mediated attraction and spacing. The bottom graphs in panels A,B show the fit

errors (red) and the deviation of the data in the presence of remodeling from data in the absence

of remodeling (black). This juxtaposes the compatibility of the considered remodeling mechanism

with the nucleosome gas model to the effect of this remodeling.

We find that for narrow wells (σ = 2) the compatibility error and the effect are similar, while

for the wider wells (σ = 6) the compatibility error is much smaller than the effect, indicating better

compatibility. The magenta line in the total error plots indicates our cutoff for a “good fit”, namely

δ2 = 0.001. For the narrow well only low spacing activity (a ≤ 0.6) satisfies this criterion.

S8. AT TRAPPING IN S. POMBE

A. Analysis of decaying oscillations of the AT content in +1 aligned S. pombe genes

Here we characterise the AT content in +1 aligned S. pombe genes. Fig. S7B shows the raw

data for our set of 841 S. pombe genes longer than 2500 bp (grey), and the same data smoothed

by a 30 pb sliding window. The latter clearly highlights out the oscillations.

Next we detect local maxima and minima (red and blue circles) in the smoothed data. Plotting

the max-to-min difference for each consecutive pair on a log scale vs the position x of the maxima

reveals an exponential decay of the max-to-min difference with x. The decay length is 1/0.001803

= 555 bp, the y-intercept is 2A = exp(−2.686) = 0.068. The oscillation period λ as obtained from

the maxima positions is 152 bp and matches excellently with the period of nucleosome density

oscillations of 150 bp (Fig. 1D). For the AT trapping sequence we thus use

u(x) = A cos(2πx/λ)ex/l0 (24)
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with λ = 150 bp and l0 = 555 and a variable A to investigate the nucleosome parameter

renormalization for varying AT trapping strength. The corresponding relation is overlayed in

green on panel Fig. S7B with the A = 0.034 from the fit (the offset and linear dependence are hand

tuned to approximate the underground on top of which the maxima and minima are found).

B. Note on the interpretation of the AT trapping model in S. pombe

We have suggested that trapping on AT-rich sequences might explain why nucleosomes appear

much stiffer in gene-averaged data from S. pombe due to parameter renormalization. We have not

addressed what could cause this trapping. We have no indication that DNA bending mechanics

alone is involved: The corresponding sequence based model (Morozov et al., 2009), when fed with

the S. pombe sequences that exhibit 150 bp periodic AT content, does not show any landscape

periodicity on average Fig. S3. An indirect effect, like sequence dependent remodeling, thus seems

more likely. In any case, this distinction is unimportant for our statement that trapping makes

nucleosomes appear stiffer.

The AT trapping mechanism renormalizes the footprint parameter w more than all other studied

mechanisms. However, a renormalization to the value of 75 bp obtained from the fit of the soft-core

model to the data seems out of reach for reasonable ε renormalization. It might be possible to

obtain a stronger w change by tuning the shape of the trapping landscape.
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parameter description value

µN nucleosome chemical potential 4.012

VR remodeler timescale factor 10

µR remodeler chemical potential − ln(2)

VC complex timescale factor 1

µC complex chemical potential 4.012− ln(2)

B Boltzmann weight distribution parameter 1/2

r rate parameter w

2

VR

8ε

γ bias parameter 8ε[0, 1

24
, 1

23
, 1

22
, 1

2
, 1]

p processivity [0, 2.3, 4.7, 9.4, 19, 40]

r rate parameter w

2

VR

ε
[ 1

25
, 1

24
, 1

23
, 1

22
, 1

2
, 1, 2]

γ bias parameter ε

p processivity [1.2, 2.3, 4.7, 9.3, 19, 37, 75]

TABLE S1: Simulation parameters for nucleosome sliding model. The lower two blocks are values used in

the sweeps of the remodeler bias parameter and the rate parameter, respectively. Sweep values are given as

a list in brackets. The resulting remodeler processivities are given as well. The nucleosome properties are

chosen from the fit to S. cerevisiae (Fig. 1), namely ε = 0.152 kBT and w = 82 bp.
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FIG. S1: Related to Fig. 1. Fitting the nucleosome gas model to data from S. cerevisiae and S.

pombe (A) Comparison of fitting the nucleosome gas model to either the nucleosome density alone (blue) or

simultaneously to the nucleosome density and the spacing distribution (red). The latter leads to much better

agreement for the spacing distribution. This indicates two things: first, the density alone does not constrain

the fit (see panels B,C). Second, there is some discrepancy between the density 〈n(x)〉 and the spacing

distribution 〈n2(d)〉, since otherwise the fit to one of them should also reproduce the best fit to the other.

At the moment we can only speculate that this discrepancy is due to the length selection of sequenced DNA

fragments. We point out that this discrepancy is almost absent in S. pombe (Fig. 1D), which has a narrower

fragment length distribution and might thus be less susceptible to length cutoffs. (B,C) Best fit (red)

compared to other choices of w (purple) or ε (green). Again, non-optimal parameters impair consistency

with the spacing distribution visually more than with the density. (D,E) Soft-core nucleosome interaction

potential according to our model based on DNA unwrapping and fit to experimental data, compared to the

potential inferred from the dyad-to-dyad spacing distributions.
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FIG. S2: Related to Fig. 3. Fitting the nucleosome gas model to data from nucleosomes on

energy landscapes. Ensemble averages of the nucleosome density 〈n(x)〉 (left panels) and spacing

distribution 〈n2(d)〉 (right panels) on energy landscapes (black, smoothed by 10 bp). (A) Landscapes are

computed from the sequence based DNA elasticity model (Morozov et al., 2009) using the DNA sequences

of 914 S. cerevisiae genes that are longer than 2500 bp and aligned by the consensus position of the +1

nucleosome. (C) Uncorrelated Gaussian landscapes: on every gene at every basepair we draw the energy from

a Gaussian with standard deviation σ to obtain uncorrelated landscapes. Examples are shown in Fig. S3C.

(A,C) The quantities n(x) and n2(d) are computed on each gene as described above, using bare nucleosome

parameters ε = 0.17kBT/bp and w = 82bp, and then averaged across all genes, yielding the black lines.

The results are fitted by the nucleosome gas model without landscapes (red lines). The standard deviation

σ of the landscapes is swept from 0 (top panel in A) to 4 kBT (bottom panel in A). For reference, the σ = 0

case is given in each plot (green). With increasing σ the oscillations become increasingly dampened, but

still nicely reproduced by the nucleosome gas model without landscapes but renormalized parameters εeff

and weff (given in each left panel). The panels in (B,D) show the errors δ2(tot), δ2(〈n(x)〉) and δ2(〈n2(d)〉)
as a function of the landscape amplitude σ (see text). The magenta line in the total error plots indicates

our cutoff for a good fit, namely δ2 = 0.003. All considered examples satisfy this criterion.
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FIG. S3: Related to Fig. 3. (A) Examples of nucleosome densities as measured experimentally and

predicted by the soft-core nucleosome model on energy landscapes from different models and with various

amplitudes σ. (B) Histogram of nucleosome density occurrences (see text for details). (C) Uncorrelated

Gaussian landscapes where the energy at each basepair is drawn from a Gaussian distribution with a given

standard deviation σ and corresponding nucleosome densities according to the nucleosome gas model. (D)

Parameter flow for the DNA elasticity based energy model used in the main text (black) and uncorrelated

Gaussian landscapes (red). (E) Averaged energy landscapes as predicted by the used DNA sequence based

model for our sets of S. cerevisiae and S. pombe genes. The absence of a correlation between the oscillatory

gene averaged nucleosome density and the gene averaged landscapes shows that there are no sequence

encoded positioning cues on average. This is true in both alignments and both species. Note that this

finding does not preclude strong sequence encoded positioning on individual genes.

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2018. ; https://doi.org/10.1101/431445doi: bioRxiv preprint 

https://doi.org/10.1101/431445
http://creativecommons.org/licenses/by-nc/4.0/


47

0

0.01

0.02

2

to unpert

to fit

0

0.01

0.02

2

0

2

4

6

2

10
-4

d
e

n
s
it
y
 (

a
.u

.)

e
n

e
rg

y
 (

k
B
T

)

0

10

-10

0

1

2

3

σ
 (

la
n

d
s
c
a

p
e

s
)

e
n

e
rg

y
 (

k
B
T

)

pos. dependent σ of landscapes

gene averaged landscape

example nuc. density

example landscape

d
e

n
s
it
y

0.04

0

position x (bp), from +1 nucleosome
0 1000500 1500

p
ro

b
a

b
ili

ty

0.03

0

d
e

n
s
it
y

0.03

0

εeff  = 0.14 kBT/bp  

weff = 83 bp

w/o peak in σ
with peak in σ
fit:

εeff  = 0.122  

weff = 85

w/o correlations

with correlations

fit:

distance d (bp)
100 200

d
e

n
s
it
y
 (

a
.u

.)

e
n

e
rg

y
 (

k
B
T

)

0

10

-10

-1

0

1

 e
n

e
rg

y
 (

k
B
T

)

-1

position x (bp), from +1 nucleosome
0 1000500 1500

distance d (bp)
100 200

gene averaged landscape

example nuc. density

example landscapes

p
ro

b
a

b
ili

ty
0.03

0

peak in
 σ 

copy dips

uncorre
lated

peak in
 σ 

copy dips

uncorre
lated

peak in
 σ 

copy dips

uncorre
lated

total error  n(x)  n2(d)error in error in

A

C

B

counterexample 1: peak in σ of energy landscapes

counterexample 2: correlations in landscape by copy-shift of dips

FIG. S4: Related to Fig. 3. Examples of positioning landscapes that are incompatible with the

nucleosome gas model (A) Top: examplary random energy landscape (cyan) where the energy at position

x is drawn from a Gaussian distribution with standard deviation σ(x). Corresponding nucleosome density

in black. Middle: we used σ(x) = 1 except for a region between bp 590 and 610, where σ ramps up to 3

(dark blue). In the landscape averaged over 100 realizations (cyan) the peak in σ(x) averages out. Bottom:

The averaged density has a strong maximum in the peak region (black), which is incompatible with the

nucleosome gas (red). (B) Top: We introduce spatial correlations into the landscape by repeating values

lower than 2.8 kBT further downstream, namely shifted by 172, 173, 174 and 345, 346, 347 bp (magenta

circles show an example). Middle: In the gene averaged landscape these correlations are barely visible.

Bottom: The spacing distribution reflects the correlations in a second peak at the shift of 173 bp, which is

incompatible with the nucleosome gas (red). (C) The fit errors show that the discrepancy between data and

fit (red) is almost as large as between unperturbed and perturbed data (black). Hence we consider those

positioning mechanisms as incompatible with the nucleosome gas model.
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FIG. S5: Related to Fig. 4. Fitting the nucleosome gas model to data from remodeler mediated

nucleosome sliding. Time averages of the nucleosome density n(x) and spacing distribution n2(d) in

the presence of remodeler mediated directional sliding (black) as described in the main text. The remodeler

processivity is varied in two ways, namely by sweeping the bias parameter γ (panel A) and the basal activity

A (panel B). See Table S1 for all parameters. Red: Best fit to data. Green: quantities for A = 0 as a

reference. The magenta line in the total error plots indicates our cutoff for a “good fit”, namely δ2 = 0.003.

All considered examples satisfy this criterion. (C) Overview over the used values for A and γ. The curves

are lines of constant remodeler processivity p.
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FIG. S6: Related to Fig. 5. Fitting the nucleosome gas model to data from remodeler mediated

attraction and spacing. (A,B) Simulated nucleosome positioning data (black) for remodeler mediated

attraction and spacing for increasing remodeler activity parametrized by the potential well area (see text)

for a narrow well with σ = 2bp (A) and a wider well with σ = 6 bp (B). For the narrow well the fit by

the nucleosome gas model (red) is not good, since the discrepancy between the data and the fit is almost as

large as between perturbed and unperturbed data (bottom panels). For a wider well fit error is much lower,

indicating better compatibility with the nucleosome gas model. The magenta line in the total error plots

indicates our cutoff for a “good fit”, namely δ2 = 0.003. For the narrow well not all considered examples

satisfy this criterion, for the wide well all do. (C) Top: example nucleosome interaction potentials for our

effective equilibrium description of remodeler mediated attraction and spacing in terms of adding attractive

potentials wells to the soft-core repulsive potential. Bottom: corresponding deviations of the Boltzmann

factor from unity which appear in the integrand of the second virial coefficient, Eq. (22).
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FIG. S7: Related to Fig. 7. Fitting the nucleosome gas model to data from a model for trapping

on AT rich sequences. (A,B) Simulated nucleosome positioning data (black) on gene-specific energy

landscapes superimposed by a decaying oscillatory landscape to account for trapping on AT rich sequences

on average (see text for details). From top to bottom the maximal amplitude A of the trapping landscape is

increased. Red: Best fit to data. Green: quantities for A = 0 as a reference. Left: the period of the trapping

landscape equals the density peak-to-peak distance (both are 150 bp, like in S. pombe). Right: the period

of the trapping landscape is 150 bp (like S. pombe), but the density peak-to-peak distance without trapping

is 167 bp (like S. cerevisiae). Bottom panes: fit errors. The magenta line in the total error plots indicates

our cutoff for a “good fit”, namely δ2 = 0.003. For too strong trapping the fits fail to meet this criterion.

(B) AT content in S. pombe genes. The max-to-min difference decays exponentially with increasing distance

from the +1 nucleosome. (C) Density on example genes computed with and without a trapping landscape

in addition to gene specific energy landscapes derived from a DNA elasticity based model (see main text).

The trapping landscape is our model for positioning of nucleosomes on AT rich sequences that is observed

in S. pombe data. On individual genes the influence appears rather small, but when averaged over many

genes the resulting oscillations are markedly more pronounced, which leads to an effective stiffening (see

main text).
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