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Abstract:   

Background: Associations between the microbiome and the immune system are well documented.  However, 
elucidating specific mechanisms is an active research area.  High-dimensional “omic” assays such as 16S 
ribosomal RNA (rRNA) sequencing and CyTOF immunophenotyping support hypotheses generation, identify-
ing possible interactions that can be further explored experimentally. Linear regression between microbial 
and host immune features is useful for quantifying relationships between microbes and immune readouts.  
But, vetting dozens of significant associations can be cumbersome, especially when a project involves ex-
perts from different disciplines. In order to facilitate communication and sense-making across disciplines, we 
performed a design study for visual analysis of these relationships with a goal of helping researchers priori-
tize results for experimental follow-up.  
Results:  Using data from paired 16S ribosomal RNA (rRNA) sequencing and CyTOF immunophenotyping on 
gut biopsy samples from people with and without HIV, we fit a regression model to each microbe:immune 
cell pair, accounting for differences by disease status.  We used permutation testing to control the false dis-
covery rate, resulting in a “top table” of microbe:immune cell pairs.  After identifying essential tasks in the 
further analysis of this top table, we designed VOLARE (Visualization Of LinEar Regression Elements), a web 
application that integrates a searchable top table, a network summarizing this table, sparkline-inspired 
graphs of fitted regression models, and detailed regression plots showing sample-level detail.  We applied 
this application to two case studies--microbiome:immune cell data from gut biopsies and microbi-
ome:cytokine data from fecal samples.  
Conclusions:  Systematically integrating microbiome-immune system data through linear regressions and 
presenting the top table results in an interactive environment supports the Shneiderman mantra (“Overview 
first, filter, details-on-demand”). Our approach allows domain experts to control the analysis of their results, 
empowering them to screen dozens of candidate relationships with ease.  Our contributions include charac-
terizing the exploration of microbiome-immune system data in a team science context, and the support of an 
associated workflow by integrating existing visualization approaches. 
Availability:  R scripts, the web application, and sample data are available at 
https://sourceforge.net/projects/cytomelodics 
Contact: jsiebert@acm.org  
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1 Background 
Research teams have learned that aberrations in the gut microbiome are associated with diseases, such as in-
flammatory bowel disease (1), type 1 diabetes (2), asthma (3), multiple sclerosis (4), rheumatoid arthritis (5), 
and HIV (6,7).  All of these diseases are characterized by aberrant immune responses.  HIV-1 infection is as-
sociated with alterations in both the gut microbiome and immune cell repertoire.  However, it is unknown if 
these alterations drive or impact one another. Preliminary research suggests mechanistic relationships between 
immune cell subsets, gut microbes, and disease (8).  For example, Bacteroides fragilis produces zwitterionic 
polysaccharides (ZPSs), including polysaccharide A (PSA), which induces the IL-10 production by regulatory 
T cells (9).   IL-10 is also induced through the interaction of Faecalibacterium prausnitzii with dendritic cells 
(10).  Segmented filamentous bacteria are associated with the accumulation of IL-17 and IL-22 producing 
CD4+ T cells (11), which in turn are associated with murine autoimmune arthritis (12).  Based on these exam-
ples, we might reasonably speculate that there are other undiscovered microbe-immune cell-cytokine relation-
ships, and that they might differ in health and disease. 

Exploring the relationships between microbes and immune cell subsets demands expertise from both 
immunologists and microbiologists, and tools that enable these experts to navigate and explore these data in a 
team science context.   Using paired 16S rRNA microbiome and CyTOF (Time of Flight Mass Cytometry) 
immune cell repertoire from mucosal biopsy of HIV-infected individuals and controls, we performed linear 
regressions coupled with permutation testing to identify pairs of microbe genera and immune cell subsets dif-
ferentially related by disease state.  This approach yielded a “top table” of statistically significant associations, 
similar to those generated in the analysis of gene expression data. 

However, each row in our top table represents a sophisticated relationship across a microbe:immune 
subset pair, not well captured by the test statistic alone.  Visual analysis supports vetting of the results for sci-
entific relevance.  Vetting includes comparing the relationship in health (HIV-) and disease (HIV+), identify-
ing whether the relationship is driven by one or more outliers, and assessing whether the detailed regression 
plot is convincing.  Furthermore, a particular analyte can appear in multiple relationships.  For example, the 
microbe Dialister might be related to 6 immune cell subsets that are each in turn also associated with other 
microbes.  Thus, the identification and inspection of subnetworks of interest is an important task in the visual 
analysis. 

To elucidate the requirements of domain experts in exploring this data, we conducted a visualization 
design study using Munzner’s nested model methodology (13).  With input from our collaborating microbiol-
ogist and immunologists, our design study led to a web application, VOLARE, (Visualization Of LineAr Re-
gression Elements).  This application integrates a searchable top table, sparkline-inspired plots representing 
the linear models, detailed regression plots, and a network illustrating hubs within the top table.  After using 
VOLARE to analyze microbe:immune cell data from mucosal biopsies, we then analyzed microbe:protein data 
from fecal samples, thus illustrating the generalizability of the application. 

One of our contributions is the characterization of this team science context, in which the omes them-
selves interrogate distinct but interacting biomes (in this case, the microbiome and the immunome).  Conse-
quently, the relationships that span the omes are fundamentally cross-disciplinary and challenging for a single 
researcher to interpret. This challenge is not unique to microbiome/host relationships.  Studies that interrogate 
relationships between a microbiome and metabolome are facilitated by interactions between individuals who 
have expertise in these respective domains. Thus, a successful approach must facilitate cross-disciplinary 
analysis and communication.  A second contribution is the visual encoding of the top table and associated re-
gression elements, leveraging existing visualization techniques.   We extend the top table, a fundamental tool 
of single-omic analysis, to two omes.  We supplement it with a sparkline of the regression model, from which 
the researcher can drill down to a detailed regression plot illustrating both regression fit and sample-level de-
tail.  The table itself is summarized by an interactive network.  An additional strength of our approach is that it 
is broadly applicable to studies that include data from two or more high-throughput assays. 

Related work 
VOLARE complements existing applications that are designed to visualize the results of individual microbi-
ome and immune cell assays, regressions, and biological networks, but is geared towards the exploration of 
integrative analysis of multiple assays. We put VOLARE into context with other applications in this section.  

Visualizing results from single assays  
Microbiome:  Data from high-throughput sequencing of fixed and variable regions of 16S rRNA can 

be used to identify the microbes present in a biological sample.  The relative abundance of the various mi-

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 30, 2018. ; https://doi.org/10.1101/431379doi: bioRxiv preprint 

https://doi.org/10.1101/431379


 

 

crobes characterizes the microbial community of the sample.  Qiime is one application that provides tools for 
both processing the sequence data and generating graphs that capture features of sets of data (14).  Web appli-
cations like Calypso (15) and Seed (16) generate graphs from processed data, which generally consists of a 
taxa file (relative abundance values by sample) and a metadata file characterizing each sample. Common visu-
alizations include normalized stacked bar charts, illustrating the taxa that comprise a set of samples; and 2- or 
3-D principal coordinates plots (17), illustrating the similarity among various groups of samples.  Calypso also 
provides some machine learning support, such as hierarchical clustering and regression analysis. 
 

Immune cell subsets:  Historically, immunologists have identified immune cell subsets using combina-
tions of markers that bind to proteins on or inside the cells.  Using a series of 2-D scatterplots and GUI tools, 
the scientists define regions (known as gates) that identify cells of interest.  The regions often indicate pres-
ence or absence of one or more markers, and are thus labeled positive or negative for those markers, e.g. 
CD4+ICOS+.  Traditional flow cytometry uses fluorescent tags on the markers, identifying 4 to 11 markers 
per sample.  Mass cytometry (CyTOF) uses metal isotopes and time of flight spectrometry, identifying 30 to 
50 markers per sample.  Clearly, more cell subsets can be identified with mass cytometry, either through tradi-
tional manual gating or automated clustering approaches (18,19).  Chester and Maecker provide an accessible 
overview of some automated approaches (20).  Both traditional and automated approaches provide a combina-
tion of feature extraction and visualization.  However, the visualization tends to focus on one sample or two 
samples at a time.  Citrus supports the comparison of two pools of data, where samples representing the same 
experimental group (e.g. treated, untreated) are combined (18).      

Our work is focused on identifying patterns across omes.  As such, it differs from platform specific 
tools, such as Qiime for analyzing 16S sequencing, or approaches such as tSNE, SPADE, and Citrus for visu-
alizing patterns in CyTOF data.   In addition, these platform-specific tools may perform the feature extraction 
step of identifying and quantifying analytes, be they sequences that have been assigned to a microbe taxonomy 
or clusters based on immune markers.  Our work assumes such identification and quantification has been per-
formed by a platform-appropriate pipeline.  Thus, we are able to maintain a separation of concerns between 
feature extraction and visualization.  This allows us to focus on rich visual analysis tools that we can apply to 
other omes. 

Visualizing regression models 
One body of related work is that of visualizing regression models.  Breheny and Burchett provide a brief 
summary of over 40 years of such work in the introduction of their generalized approach for regression visual-
ization, the R package visreg (21).  They distinguish between plotting models to illustrate the fitted model and 
plotting models to diagnose assumptions.  Like them, we are focused on plotting models to illustrate fit.   In 
general, visualizing model fit focuses on illustrating the results of a single regression model at a time.  As 
such, there is limited emphasis on interactive visualization.  In contrast, we consider dozens of fitted regres-
sion models concurrently.  While each model considers a different pair of analytes, the models are of a com-
mon form.  VOLARE allows the analyst to quickly inspect several detailed regression plots in a single view.   

Visualizing biological networks:  hairballs and heatmaps 
Another body of related work is biological network visualization (22), represented by such works as RenoDOI 
(23) and Panther (24).  These approaches tend to emphasize genomic relationships (e.g. genes and gene prod-
ucts, genes and transcription factors) and are commonly interactive. One of the challenges they tackle is filter-
ing a very large number of relationships to a smaller, more manageable set that can be explored by a domain 
expert.  In some settings, the relationships are assumed to be reliable, supported by multiple lines of evidence, 
such as co-occurrence in a publication or pathway or a straightforward experimental construct such as cell 
line:drug interaction.  Both biological networks and microbe:immune system interactions have been represent-
ed as heatmaps, with color gradients illustrating p-values or correlation coefficients (23,25,26). 

In contrast, rather than consider hundreds or thousands of relationships, we are focused on dozens.  
Navigating the “hairball” is less of a concern in this top table domain.  Furthermore, in comparing human mi-
crobiome repertoire to immune cell repertoire, discovered relationships may well be considered speculative.   
The detailed regression plots allow the domain experts to assess the credibility of the relationships.  The un-
derlying detail, readily visualized, is essential to full appreciation of the top table results.  Ease of exploration 
of this detail also sets VOLARE apart from heatmaps.  While a heatmap provides an overall gestalt view, the 
underlying detail is rarely surfaced. 

 

2 Methods 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 30, 2018. ; https://doi.org/10.1101/431379doi: bioRxiv preprint 

https://doi.org/10.1101/431379


 

 

Data preparation 
To compare microbiome to proteins in fecal samples, we combined data for 35 study participants into a single 
file consisting of 71 microbes and 17 proteins.  We derived a linear regression model of the form Mb ~ Cohort 
+ Protein + Cohort x Protein and compared those results to those from a reduced model, Mb ~ Cohort.  We 
considered all possible 1,207 microbe:protein pairs, and surfaced the 58 pairs with p < 0.05  for exploration in 
VOLARE.  Given these pairs, we organized both the regression results and underlying detail into a single 
JSON file.  Regression results consisted of the names of each analyte in the pair, the observed F statistic, and 
the endpoints of the two fitted regression lines.  Underlying detail consisted of the cohort membership of each 
study participant and the observed data for each of the analytes that appeared in the 58 pairs.  Additional de-
tails are included in the R scripts. 

To compare microbiome to immune cell repertoire in gut biopsy samples, we combined data for 18 
study participants into a single file consisting of 54 microbiome genera with non-zero relative abundance val-
ues for at least 9 of 18 samples, and 103 immune cell subsets.   To account for the complex correlation struc-
ture within the data, we derived a null distribution for the F statistic, F*, by permuting the class labels 5,000 
times for 5,562 analyte pairs.  Using a false discovery rate of 2%, we identified 126 results with Fobs > F*95th 

percentile  (27,28).    

3 Results 
The initial goal of the domain experts was to identify which microbes are associated with which im-

mune cell subsets, accounting for differences in disease status (HIV positive or negative).  To address the 
question “is the relationship between any particular microbiome genera (Mb) and any particular immune cell 
subset (Ic) different based on disease status?” we used a partial F test comparing the linear regression model, 
Mb ~ HIV + Ic + HIV x Ic, to a reduced model, Mb ~ HIV.  We chose a linear regression framework because 
it is well established and extremely flexible.  The results are readily quantifiable, with established procedures 
for assessing statistical significance (28).  The regression framework also supports a variety of covariates (e.g. 
age, sex) and study populations, unlike differential correlation (29) or mutual information (30).  As with mi-
croarray or RNA-Seq analysis, such as that performed with limma (31), this yielded a “top table” of candidate 
results.  While the top table is an important step in the omics analysis workflow, it is only a starting point for 
more detailed exploration.   

For example, one important question researchers ask is which of the dozens of results in the table are 
the most promising for follow up.   Factors that influence this prioritization include credibility of the regres-
sion result, appreciation of the biological role of at least one of the analytes in the pair, and the ability to inter-
rogate the relationship in an in vitro experiment.  For example, if the microbe is readily available, the re-
searcher can co-culture it with immune cells and assess immunological responses such as cytokine production, 
cell proliferation, and cell differentiation.  To better appreciate the challenges faced by domain experts in ana-
lyzing this multiomic top table, we collaborated formed a multi-disciplinary team on the University of Colora-
do Medical School campus.  Our team includes a faculty member, a postdoctoral researcher, and a research 
assistant from the Allergy and Clinical Immunlogy/Infectious Disease Flow Cytometry Facility, our immunol-
ogy domain experts; one faculty member from the division of Biomedical Informatics and Personalized Medi-
cine, our expert in microbiology; and a student and faculty member from the Computational Bioscience Pro-
gram with expertise in statistics and data visualization.  Hereafter, we refer to the microbiologists and immu-
nologists as domain experts, and the computational bioscience program members as the investigators. 

Task analysis 
We developed VOLARE through an iterative design process, with the investigators working closely with the 
domain experts to gain an understanding of the domain vocabularies, identify analysis tasks and understand 
the overall analysis workflow, and gather feedback on designs.  Initially, we conducted two structured inter-
views.  One interview included both an immunologist and a microbiologist, and specifically targeted the cross-
domain analysis aspects and team-science context.  Another interview included a one-on-one session with an 
immunologist, allowing us to better distill domain-specific aspects of the analysis. We then created a first sys-
tem prototype and iteratively refined it through domain-expert input from multiple feedback sessions.  Finally, 
we distributed the application to our collaborators and observed as they analyzed their data using VOLARE.  
Throughout this design process, we attended weekly lab meetings that allowed us to better appreciate vocabu-
lary, existing data analysis approaches, and various research concerns. 
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We identified the following four tasks: 
 
T1:  Explore relationships between an analyte of interest and associated analytes in the other 

ome.  For example, the microbiologist might want to know which immune cell populations are associated with 
Bacteroides, while the immunologist might want to know which microbes are associated with cell populations 
that are positive for ICOS, a T cell co-stimulator related to CD28 (32) and associated with response to anti-
CTLA4 immunotherapy (33).  While “association” is a somewhat generic term, associations of interest include 
positive and negative correlations, with support for differing correlations by study cohorts, such as disease 
status or lifestyle.  Analysis of 16S rRNA sequencing of human gut microbial communities results in the de-
tection of relative abundance of thousands of microbial genera.  CyTOF characterizes more than 100 immune 
cell subsets.   Each approach measures analytes that are relatively well understood and analytes that are not.   
Well-understood analytes from one domain may shed insight on the other domain. 

 
 
T2:  Discover patterns of association based on disease status.  While some microbes and immune 

cell subsets may be positively (or negatively) correlated regardless of disease status, there may be other asso-
ciations that are different by disease status.  For example, there may be an association in the healthy gut but 
not in the diseased gut.  

 
T3:  Compare detailed regression plots for several analyte pairs.   Regression plots show which 

analyte pairs have convincing relationships, with credible magnitudes of readouts and well-fitting regression 
lines.  They also indicate presence of outliers.  The detailed plot illustrates goodness of fit, presence of outli-
ers, and magnitude of readouts.  The domain expert can use these to assess whether or not the relationships 
would be convincing to other experts in his field. 

 
T4:  Identify highly connected “hub” analytes.  A particular microbe may be connected to a number 

of immune cell subsets.  Such a microbe might be particularly influential in immune system responses.  Con-
versely, a particular immune cell subset might be connected to a number of microbes. 

Visual design 
The linear regression framework associates a microbe with an immune readout, while accounting for 

disease status, in a single model.  The corresponding detailed regression plot facilitates cross-disciplinary 
communication, potentially connecting a known analyte in one domain to an unknown analyte in another.  The 
top table is one of the key elements generated by a “differential expression” analysis in an -omics data set.  
This table contains a listing of the best results and associated statistics and metrics.  However, it is static, ob-
scures underlying detail, and fails to highlight relationships among the analytes.  When comparing omes, these 
relationships can shed insight on biological processes.   

Since the top table is such a fundamental element of omics analysis, we built VOLARE around the ta-
ble. To support T1, exploring which analytes in one ome are related to those in another ome, we added an in-
teractive filter function to the top table.   When the domain expert enters a microbe or immune marker, the 
table automatically displays only those relationships that match the phrase.  While we could have represented 
the top table as a matrix or heatmap, the textual and numeric details of the table are essential to communicate 
the results of the statistical analysis. Furthermore, we can easily add columns to the table, placing additional 
derived data in context.   

To support T2, discovering patterns of association based on disease status (Figure 1), we embedded a 
sparkline-inspired graph of the fitted regression lines in the top table (34).  We call this graphic the “mPlot” or 
microPlot.  Making this derived data attribute easily accessible enables the domain expert to scan the table to 
quickly assess what analytes are involved in what sorts of relationships.  As such, it also functions as a small 
multiple display.  The addition of the mPlot enhances an otherwise text-heavy display with a valuable visual 
element.  The mPlot illustrates the regression model using line tilt and color. While the same data could be 
represented by numeric values for slope, such an encoding would be less conducive to visual analysis.  Fur-
thermore, the magnitude of the analyte readouts (and thus the slopes) can vary widely across the data set.  The 
mPlot normalizes the magnitudes by plotting the relationship in a consistently sized glyph, regardless of the 
magnitude.  Figure 2 provides three different mPlot examples, with different interpetations.  Figure 2A illus-
trates a relationship in which the microbe and immune readout are associated in one cohort but not the other, 
possibly because the microbe is not present in one of the cohorts.  Figure 2B illustrates positive association in 
one cohort and negative association in the other, which might suggest differing biological mechanisms in 
health and disease.  Figure 2C illustrates a much smaller dynamic range of both analytes in one cohort than the 
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other.  While this could be driven by a single outlier, it also could indicate truly different ranges in both ana-
lytes across the two cohorts.  Thus, even though the mPlot provides a valuable glimpse of the relationship be-
tween the analytes, underlying detail is required to fully vet the relationship. 

To provide this detail and to better support T3, comparing several different analyte pairs, we provide a 
detailed regression plot in response to clicking the mPlot.  Multiple plots can be displayed in the same view.  
This detailed plot illustrates each data point, colored to indicate disease status, and the corresponding regres-
sion fit. Intriguingly, the encoding of a detailed regression plot necessary to convey statistical detail aligns 
well with best practices of visual encoding.  Each point is grounded in a common two-dimensional space, 
groups are indicated by color, and the group-specific fitted regression lines leverage tilt (35). To support T4, 
identifying highly connected hub analytes, we present a network that summarizes the relationships in the top 
table.  Each node is an analyte (purple = immune cell subset, green = microbe), with each edge indicating a 
row in the top table.  This is an efficient use of screen real estate conveying both high-degree analytes and 
their relationships.  Alternatively, we could have summarized the network with a histogram illustrating analyte 
degree by assay, but this would not have included the relationships between analytes.  Interestingly, while a 
top table from a gene expression study can be summarized by a pathway analysis, there is no pre-existing 
pathway data for microbe:immune cell relationships.  Thus, the network visually summarizes the top table in 
this context.  Taken together, these encodings support the Shneiderman mantra of overview first, zoom and 
filter, then details on demand (36).  The network and top table provide the overview.  The mPlots provide a 
pre-zoomed representation.  The top table itself can be filtered, and the detailed plots are available on demand.   

System architecture  
Our task analysis revealed that the processes of (1) organizing multiomic data for analysis, (2) performing 
thousands of pairwise linear regressions and generating an associated top table, and (3) analyzing the results in 
the top table are fundamentally distinct, separable, and performed by people with different areas of expertise.  
These distinctions are reflected in our system architecture as shown in Figure 3.   Data generated by assay-
specific analytical approaches are combined into a single file, with each row representing a sample and each 
column representing an analyte.  Data for different assays can be contributed by different team members, each 
with assay-specific expertise.  Regressions and permutation testing, which require statistical and computation-
al expertise, are performed in R.  Supporting details for the candidate results are organized into a single JSON 
file using the jsonlite library (37). Biological domain experts analyze top table results. VOLARE is imple-
mented as a stand-alone JavaScript application, leveraging the D3 library (38).   Because it reflects the funda-
mental separation of concerns, this architecture can be applied to a wide variety of omes.  It also results in a 
visual analysis environment that is quite responsive to user input, since the computationally intensive analysis 
has been previously performed and summarized. 
 
Generic workflow 
Figure 4 provides a schematic of a representative analysis workflow.  The researcher identifies an analyte of 
interest based on prior knowledge, network community, or mPlot trends.  He then filters the table to display 
the summary results for the subset of results that include this analyte.  He then inspects the detailed plots, 
which may in turn lead to the identification of a new analyte of interest.  A specific example of this workflow 
is discussed in section titled Microbiome:cytokine relationships. 

Validation 
We applied VOLARE to two data sets, each from a different study.   We originally developed VOLARE to 
support the analysis of microbiome:immune cell data, and then analyzed microbiome:cytokine data to demon-
strate generalizability.  For purposes of illustration, we discuss the microbiome:cytokine data first, followed 
by the microbiome:immune cell data.  In both cases, we present findings that suggest associations between 
opportunistic bacterial infections and immune readouts.  We then discuss user responses. 

Microbiome:cytokine relationships 
Fecal samples provide a non-invasive source of microbiota and proteins generated by immune cells. Here, we 
describe a study using such samples, and analysis of the resulting data using VOLARE.  Fecal samples were 
collected from study participants who were HIV negative high risk (HR; men having sex with men, n=17) 
or low risk (LR, n=18).  High risk individuals engage in behaviors that put them at increased risk for acquisi-
tion of HIV.  Biomarkers of inflammation, innate cell activation and intestinal barrier integrity were measured 
by ELISA either from the feces itself or water extracted from 2 grams of stool.  Fecal samples were also ana-
lyzed by 16S rRNA sequencing.  A representative analytical workflow is illustrated in Figure 5, and described 
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in detail below.  The steps referenced correspond to the generic workflow in Figure 4.  The microbe names 
have been anonymized due to ongoing research.  We start by searching the top table for “Mb_6,” a microbe of 
interest in our lab.  The filtered table has only one row, showing that Mb_6 is associated with IL.1alpha (Step 
1).  The table lists both analytes and the F statistic from the partial F-test.  A large statistic represents a better 
model.  We click on the mPlot to inspect the detailed plot (Step 2).  The x-axis represents the cytokine data 
(measured in pg/ml) while the y-axis represents the microbiome data (measured in relative abundance, in the 
range from 0 to 1).  Each point represents the values for one sample from one person.  Points are color coded 
to represent the cohort to which the corresponding person belongs.  Lines represent the fitted regression model 
for each cohort.  The closer the points are to the line, the better the model.  In this case, there is a strong nega-
tive association between the bacteria and IL.1alpha for the low risk group (LR in blue), while there is not 
much of a relationship between Mb_6 and IL.1alpha for the high risk group (HR in red).  However, we see 
that several people in the high risk group have high levels of IL.1alpha, represented by the rightmost points 
with values around 1,600 and 1,800 pg/ml.   We wonder if another bacteria is associated with these high val-
ues.  This makes IL.1alpha our new analyte of interest (Step 3).  Thus, we filter the table for IL.1alpha (Step 1) 
and drill down on the detailed plots by selecting several of the related bacteria based on mPlots and F statistics 
(Step 2).  We see that our IL.1alpha outliers are indeed associated with high levels of Mb_8, but not with high 
levels of Mb_12.  We speculate that perhaps the Mb_8 is driving an IL.1alpha immune response.  Since we 
have Mb_8 cultures in our lab, we can consider an in vitro experiment to recapitulate this association in cells 
from other study participants.   

Microbiome:immune cell relationships 
We used VOLARE for the visual analysis of paired microbiome and immune cell data from gut biopsies of 18 
volunteers, half of whom were HIV+ and half HIV-.  This was a general study population accrued for a diet 
intervention study.  The samples analyzed here were baseline samples prior to any intervention.  To show the 
utility of our approach, we describe a finding in the negative control population that was unrelated to HIV.  
Inspecting many of detailed plots, we noted that some of the associations were driven by outliers.  Two sam-
ples, both from HIV- females, showed high levels of f__Chlamydiaceae.g__Chlamydophila (between 30 and 
40% of the microbial population) associated with low levels of regulatory T cells (Fig. 6).  The presence of 
two outliers having such a high relative abundance made this an interesting finding warranting exploration in 
the published literature.  While chlamydia is the most common sexually transmitted infection worldwide (39), 
often presenting in the urogenital tract in women, it is common in the gastrointestinal tract of many mammals 
and birds (40).  Evidence suggests that women can be infected in both the anorectal and urogenital tract, and 
that an infection can be cleared in one tract but not the other (39,40).  Evidence further suggests autoinnocula-
tion from the gut to the urogenital tract (39,40).  Regulatory T cells tend to suppress immune response, while 
CD103 is a marker of mucosal homing (41). The relatively low level of CD103+ regulatory T cells for these 
two samples may suggest that chlamydia bacteria in the gut are able to evade a canonical immune response.  
Findings that support insight about differential microbiome:immune cell relationships based on disease status 
will be presented by our domain experts in a different venue.  

User responses  
The investigators observed the domain experts in a work session reviewing the results presented by VOLARE.  
In this work session, the microbiologist first leveraged the mPlot to categorize the microbes based on evidence 
of an association in both HIV+ and HIV-, in HIV+ only, and in HIV- only.  Using the detailed plot and do-
main knowledge, she also identified whether or not the relationship was driven by one or more outliers, likely 
to be contaminants; or by outliers likely to be informative (e.g. potential opportunistic pathogens such as Cla-
mydia). The microbiologist listed the microbes by category in a Powerpoint file and included screenshots of 
the detailed plots.  Next, the lead immunologist looked at the detailed plots that the microbiologist had catego-
rized.  He used his domain knowledge to add further narrative to the results.  Throughout this process, the sci-
entists shared commentary and insights with one another.  
 To better quantify the usage patterns, we instrumented the system to log the high-level user actions, 
such as loading files, searching the top table, and generating detailed plots.  Any particular analysis session 
might involve loading the same file several times to fully reset the visual display.  Thus, we used the notion of 
an “analysis pass” to represent all of the activities from loading the file to the last action performed prior to 
resetting the display.  Figure 7 illustrates metrics for 97 analysis passes collected over 20 days coming from 
five distinct IP addresses.  The results show that most passes last ten minutes or less. The most common action 
in a pass is the generation of detailed plots, with an average of 12 plots per pass.  Comparing the number of 
detailed plots generated per pass to the number of searches, we can identify three main usage scenarios.  One 
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scenario is “big picture” generation of dozens of detailed plots, unaccompanied by searches.  Another scenario 
is a mix of 2-5 searches and generation of 3-15 detailed plots.  This may represent a cycle where one set of 
detailed plot leads the analyst to search for and inspect another set of detailed plots.  A third scenario is zero or 
one searches combined with the generation of 1-5 detailed plots.  This may represent a refinement of an earlier 
analysis, with a goal of generating a specific set of detailed plots for a screen capture, or a quick check of data 
or functionality.  Taken together, these metrics illustrate that users are very interested in “details on demand” 
and that VOLARE supports a variety of exploration scenarios.  Importantly, the on-demand generation of de-
tailed plots is not a feature provided by a static top table. 

The domain experts on our team commented that VOLARE has the potential to dramatically change 
their workflow.  It allows them to screen dozens of candidate relationships quickly.  The set of candidate rela-
tionships is selected by a solid statistical method applied to all possible pairs of data.  This contrasts with 
manual methods in which researchers select a handful of analytes for inspection. VOLARE also allows do-
main experts to apply their domain knowledge to vetting the candidate relationships, as opposed to relying on 
a black box algorithm to suggest promising results.  Our domain experts noted that the combination of per-
spectives (network, top table with mPlot, detailed regression plot) is powerful and exciting.  They particularly 
appreciated having both network and regression visualizations in a single application.  

4 Discussion 
To identify and explore relationships between microbes and immune cell subsets, we applied a linear regres-
sion model to microbe:immune cell pairs.  This yielded a top table of relationships, ripe for visual analysis.  
Collaborating with microbiologists and immunologists, we conducted a design study to characterize the prob-
lem space and determine appropriate visual encoding.  Our resulting application includes a searchable top ta-
ble, sparkline representations of the regression models, detailed regression plots, and a network summarizing 
the table.  From the top table, we are able to conceptually zoom out to the summary of the table in the network 
and drill down to detailed regression plots.  Using this application, our domain experts were able to quickly 
prioritize relationships for follow-up research.  We repeated the process with microbe:cytokine data, illustrat-
ing generalizability of the approach.  Our contributions include characterizing the exploration of multiomic 
data in a cross-disciplinary team science context, and the support of an associated workflow by integrating 
existing visualization approaches. 

There are a number of strengths in our approach.  First, the linear regression framework is both well 
established and flexible, accommodating a wide variety of experimental designs.  Second, performing the re-
gressions and permutations off-line yields a fast and responsive web application for visual analysis.  Third, the 
overall presentation of a searchable top table including the mPlot, a detailed plot, and a network summarizing 
the table gives the researchers a variety of tools for exploring the results of their studies.  Fourth, systematical-
ly integrating and linking these approaches in one tool allows the domain experts to control the analysis of 
their results, empowering them to screen dozens of candidate relationships with ease.  Fifth, the visualization 
environment facilitates communication between the domain experts and the bioinformatics experts, allowing 
both groups to better appreciate the nuances of the data.  Sixth, the approach is broadly applicable to a variety 
of high throughput assay pairs, such as microbe:metabolome, microbiome:proteome, and RNA-Seq:immune 
repertoire.  

There are several limitations to this work.  First, as presented here, we have only considered two 
omes.  While more omes could be included by increasing pairwise comparisons, the pairwise approach is self-
limiting to a handful of omes.  That said, the support for visual analysis of promising regression results from 
two or more omes is a valuable contribution. Second, the regressions are performed by stand-alone computing 
resources, with necessary results and underlying details marshaled for the visualization layer.  This means that 
changes to the regression model cannot be made on the fly by end users.  However, the regression analysis 
requires some statistical experience that the domain experts may not have.  Thus, this is a natural breakpoint 
for separating the analysis workflow. In addition, the existing approach of handing off the data to a statistician 
for analysis has the same limitation. Third, we do not finely tune the regression model for each analyte pair.  
Instead, we use the same form of the regression model for all pairs, with the results providing a screening 
mechanism.  Domain experts are then able to assess model fit and scientific relevance.  Fourth, VOLARE does 
not provide strong support for extracting and modifying the graphs for presentation and publication.  Howev-
er, its main goal is data exploration rather than presentation.  Currently, graphs can be extracted either by 
screenshot, or by copying svg elements from the document object model of the web page into an svg editor 
such as Inkscape or Adobe Illustrator.  

Our future work includes adding features to VOLARE such as grouping by mPlot, automatically indi-
cating relationships driven by outliers, searching the top table by Boolean expressions of analyte names, and 
displaying the detailed plot in response to clicking on a network edge.  We would like to apply VOLARE to 
data sets that include different omics platforms, such as paired RNA-Seq and immune cell repertoire, and 
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paired microbiome and metabolome.  The work presented here demonstrates that visual analysis allows biolo-
gists to quickly identify and vet top table relationships between two different omic domains, using the infor-
mation from one platform to better appreciate results from the other platform.  Furthermore, the relationships 
provide insight into possible biological mechanisms.  In conclusion, our approach helps domain experts an-
swer two main questions, “What microbes are associated with what immune cell subsets?” and “How do I pri-
oritize the top table results for follow up?” 

Acknowledgements 
We thank Mike Shaffer for serving as a scribe in structured interviews. We thank Casey Martin for processing the 16S 
data and Sharon Sen for processing the CyTOF data used in the microbiome:immune cell analysis. 

Funding 
This work has been supported by NIH Grant 5 R01 LM009254 11. 
 

Conflict of Interest: none declared. 

References 
1.  Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008 Feb;134(2):577–94.  

2.  Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal 
microbiota in the development of Type 1 diabetes. Nature. 2008 Oct 23;455(7216):1109–13.  

3.  Huang YJ, Boushey HA. The microbiome in asthma. J Allergy Clin Immunol. 2015 Jan;135(1):25–30.  

4.  Cekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S, Nelson CA, et al. Gut bacteria from multiple sclerosis 
patients modulate human T cells and exacerbate symptoms in mouse models. PNAS. 2017 Oct 3;114(40):10713–8.  

5.  Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J, et al. An expansion of rare lineage intestinal mi-
crobes characterizes rheumatoid arthritis. Genome Medicine. 2016 Apr 21;8:43.  

6.  Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D, Gebert MJ, et al. Alterations in the gut microbiota 
associated with HIV-1 infection. Cell Host Microbe. 2013 Sep 11;14(3):329–39.  

7.  Li SX, Armstrong A, Neff CP, Shaffer M, Lozupone CA, Palmer BE. Complexities of Gut Microbiome Dysbiosis 
in the Context of HIV Infection and Antiretroviral Therapy. Clin Pharmacol Ther. 2016 Jun;99(6):600–11.  

8.  Arnolds KL, Lozupone CA. Striking a Balance with Help from our Little Friends – How the Gut Microbiota Con-
tributes to Immune Homeostasis. Yale J Biol Med. 2016 Sep 30;89(3):389–95.  

9.  Neff CP, Rhodes ME, Arnolds KL, Collins CB, Donnelly J, Nusbacher N, et al. Diverse Intestinal Bacteria Contain 
Putative Zwitterionic Capsular Polysaccharides with Anti-inflammatory Properties. Cell Host Microbe. 2016 Oct 
12;20(4):535–47.  

10.  Martín R, Bermúdez-Humarán LG, Langella P. Searching for the Bacterial Effector: The Example of the Multi-
Skilled Commensal Bacterium Faecalibacterium prausnitzii. Front Microbiol [Internet]. 2018 [cited 2018 Sep 2];9. 
Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2018.00346/full 

11.  Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of Intestinal Th17 Cells by Seg-
mented Filamentous Bacteria. Cell. 2009 Oct 30;139(3):485–98.  

12.  Wu H-J, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria 
drive autoimmune arthritis via T helper 17 cells. Immunity. 2010 Jun 25;32(6):815–27.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 30, 2018. ; https://doi.org/10.1101/431379doi: bioRxiv preprint 

https://doi.org/10.1101/431379


 

13.  Munzner T. A Nested Model for Visualization Design and Validation. IEEE Transactions on Visualization and 
Computer Graphics. 2009 Nov;15(6):921–928.  

14.  Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of 
high-throughput community sequencing data. Nat Methods. 2010 May;7(5):335–6.  

15.  Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion M-J, Berger B, et al. Calypso: a user-friendly web-server for 
mining and visualizing microbiome–environment interactions. Bioinformatics. 2017 Mar 1;33(5):782–3.  

16.  Beck D, Dennis C, Foster JA. Seed: a user-friendly tool for exploring and visualizing microbial community data. 
Bioinformatics. 2015 Feb 15;31(4):602–3.  

17.  Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. EMPeror: a tool for visualizing high-throughput microbial 
community data. Gigascience. 2013 Nov 26;2(1):16.  

18.  Bruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan GP. Automated identification of stratifying signatures 
in cellular subpopulations. PNAS. 2014 Jul 1;111(26):E2770–7.  

19.  Qiu P, Simonds EF, Bendall SC, Gibbs KD, Bruggner RV, Linderman MD, et al. Extracting a cellular hierarchy 
from high-dimensional cytometry data with SPADE. Nat Biotechnol. 2011 Oct 2;29(10):886–91.  

20.  Chester C, Maecker HT. Algorithmic Tools for Mining High-Dimensional Cytometry Data. The Journal of Immu-
nology. 2015 Aug 1;195(3):773–9.  

21.  Breheny P, Burchett W. Visualization of Regression Models Using visreg. The R Journal. 2017;  

22.  Gehlenborg N, O’Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, et al. Visualization of omics data 
for systems biology. Nature Methods. 2010 Mar 1;7(3s):S56.  

23.  Vehlow C, Kao DP, Bristow MR, Hunter LE, Weiskopf D, Görg C. Visual analysis of biological data-knowledge 
networks. BMC Bioinformatics. 2015 Apr 29;16:135.  

24.  Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, et al. PANTHER version 11: expanded annotation 
data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017 
Jan 4;45(D1):D183–9.  

25.  Routy B, Chatelier EL, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of 
PD-1–based immunotherapy against epithelial tumors. Science. 2018 Jan 5;359(6371):91–7.  

26.  Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates 
response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018 Jan 5;359(6371):97–103.  

27.  Wagner BD, Zerbe GO, Mexal S, Leonard SS. Permutation-based adjustments for the significance of partial re-
gression coefficients in microarray data analysis. Genet Epidemiol. 2008 Jan;32(1):1–8.  

28.  Simon RM, Korn EL, McShane LM, Radmacher MD, Wright GW, Zhao Y. Design and Analysis of DNA Microar-
ray Investigations. 2003 edition. New York; London: Springer; 2011. 200 p.  

29.  Siska C, Bowler R, Kechris K. The discordant method: a novel approach for differential correlation. Bioinformat-
ics. 2016 01;32(5):690–6.  

30.  Kinney JB, Atwal GS. Equitability, mutual information, and the maximal information coefficient. PNAS. 2014 
Mar 4;111(9):3354–9.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 30, 2018. ; https://doi.org/10.1101/431379doi: bioRxiv preprint 

https://doi.org/10.1101/431379


 

 

31.  Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for 
RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 Apr 20;43(7):e47.  

32.  Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, et al. ICOS is an inducible T-
cell co-stimulator structurally and functionally related to CD28. Nature. 1999 Jan 21;397(6716):263–6.  

33.  Chen H, Liakou CI, Kamat A, Pettaway C, Ward JF, Tang DN, et al. Anti-CTLA-4 therapy results in higher 
CD4+ICOShi T cell frequency and IFN-gamma levels in both nonmalignant and malignant prostate tissues. Proc 
Natl Acad Sci USA. 2009 Feb 24;106(8):2729–34.  

34.  Tufte ER. The Visual Display of Quantitative Information. 2nd edition. Cheshire, Conn: Graphics Pr; 2001. 200 p.  

35.  Munzner T. Visualization Analysis and Design. 1 edition. Boca Raton: A K Peters/CRC Press; 2014. 428 p.  

36.  Shneiderman B. The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In: The Craft 
of Information Visualization [Internet]. San Francisco: Morgan Kaufmann; 2003 [cited 2018 Jan 27]. p. 364–71. 
(Interactive Technologies). Available from: 
https://www.sciencedirect.com/science/article/pii/B9781558609150500469 

37.  Ooms J. The jsonlite Package: A Practical and Consistent Mapping Between JSON Data and R Objects. 
arXiv:14032805 [cs, stat] [Internet]. 2014 Mar 12 [cited 2018 Jan 29]; Available from: 
http://arxiv.org/abs/1403.2805 

38.  Bostock M, Ogievetsky V, Heer J. D3; Data-Driven Documents. IEEE Transactions on Visualization and Comput-
er Graphics. 2011 Dec;17(12):2301–9.  

39.  Heijne JCM, Liere GAFS van, Hoebe CJPA, Bogaards JA, Benthem BHB van, Dukers-Muijrers NHTM. What 
explains anorectal chlamydia infection in women? Implications of a mathematical model for test and treatment 
strategies. Sex Transm Infect. 2017 Jun 1;93(4):270–5.  

40.  Rank RG, Yeruva L. “Hidden in plain sight:” Chlamydial gastrointestinal infection and its relevance to “persis-
tence” in human genital infections. Infect Immun. 2014 Jan 13;IAI.01244-13.  

41.  Kreisman LSC, Cobb BA. Glycoantigens Induce Human Peripheral Tr1 Cell Differentiation with Gut-homing Spe-
cialization. J Biol Chem. 2011 Mar 18;286(11):8810–8.  

 

 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 30, 2018. ; https://doi.org/10.1101/431379doi: bioRxiv preprint 

https://doi.org/10.1101/431379


 

 

Fig. 1.  VOLARE overview: Network at the top, two detailed regression plots below, and top table at the 
bottom.  Buttons add labels to the nodes, synchronize the table with the network, or synchronize the 
network with the table.  
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Fig 2.  mPlot examples take from actual data.  Solid and dotted lines represent different 
cohorts.  Vertical axis represents microbe relative abundance, while the horizontal axis 
represents the immune readout. Three examples illustrate the different relationships that 
can be encapsulated in the sparkline-inspired mPlot.  (A). The relationship between the 
microbe and the immune readout exists in one cohort but not the other.  This might 
suggest that the microbe is absent in the “flat line” group.  (B). Differences in 
relationship between the microbe and immune readout across the two cohorts might 
suggest biological differences across the cohorts.  (C).  The difference in dynamic range 
across the cohorts might suggest that the relationship captured by the longer line is driven 
by an outlier, with high values in both analytes. 
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Figure 3.  VOLARE implementation architecture.  The architecture reflects 
a separation of concerns in which 16S and CyTOF data, having been 
processed by domain-specific pipelines, are combined for regression 
analyis.  The resulting patterns are then available for visual analysis.  A)  
Pattern identification is performed in R. P indicates number of analytes in 
data collection.  Results of each regression analysis are recorded, with Mb.1 
and IC.1 representing the first microbe and first immune cell respectively.  
F.1_1 represents the F statistic from the linear model using Mb.1 and IC.1, 
while F.50_80 represents the F statistic from the model using Mb.50 and 
IC.80.   The R script generates a JSON file that includes a summary top 
table of the patterns, underlying data, and configuration data for the web 
application.  B) Pattern exploration is performed using a JavaScript web 
application. 
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Fig 4.  Generic workflow.  The researcher identifies an analyte 
of interest based on a variety of sources.  He filters the top table 
to find relationships including this analyte.  He then inspects 
detailed regression plots.  Based on these, he identifies a new 
analyte of interest and repeats the process. 
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Fig 5.  Example workflow.  (A) The researcher searched for a microbe of interest in the top table, and then 
(B) generated and detailed regression plots.  She noticed potential outliers, high in IL.1alpha, so (C) 
searched for this protein.  (D) She observed that IL.1alpha high is associated with relatively high levels of 
Mb_8 but not Mb_12.  (E) Network with IL.1alpha as a hub connected to 8 proteins.   
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Fig. 6.  Two samples from HIV- females show evidence of chlamydia 
infection, coupled with low levels of regulatory T cells. 
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Fig 7.  Usage scenarios.  An analysis pass consists of 
loading a file and exploring the data, and lasts until the 
visual display is reset. (A)  Most analysis passes last less 
than 20 minutes, but have lasted up to 90 minutes.  (B) A 
comparison of the number of detailed plots generated 
versus the number of searches suggests 3 different analysis 
scenarios.  One scenario is “big picture” generation of 
dozens of detailed plots, unaccompanied by searches 
(searches=0, dPlots greater than 20).  Another scenario is a 
mix of 2-5 searches and generation of around 3-20 detailed 
plots. A third scenario is zero or one single searches 
combined with the generation of 1-10 detailed plots.  Data 
is jittered on the horizontal axis to reduce overplotting. 
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