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Abstract

Empirical evidence suggests that the malaria parasite Plasmodium falciparum employs a broad range
of mechanisms to regulate gene transcription throughout the organism’s complex life cycle. To better
understand this regulatory machinery, we assembled a rich collection of genomic and epigenomic data
sets, including information about transcription factor (TF) binding motifs, patterns of covalent histone
modifications, nucleosome occupancy, GC content, and global 3D genome architecture. We used these
data to train machine learning models to discriminate between high-expression and low-expression genes,
focusing on three distinct stages of the red blood cell phase of the Plasmodium life cycle. Our results
highlight the importance of histone modifications and 3D chromatin architecture and suggest a relatively
small role for TF binding in Plasmodium transcriptional regulation.

1 Introduction

Plasmodium falciparum is the deadliest species of malaria parasite, responsible for 445,000 deaths in 2016
[47]. As resistance to antimalarial drugs spreads, demand for novel antimalarials increases. Designing
such novel drugs would require an improved understanding of the biology of this parasite. Currently, one
of the primary open questions in Plasmodium biology is how the parasite maintains precise control of gene
expression. The current work aims to address this question by constructing an accurate predictive model of P.
falciparum transcription. The model accounts for the rich landscape of transcriptional control mechanisms in
Plasmodium by incorporating five types of features, representing transcription factor (TF) binding, covalent
histone modifications, nucleosome positioning, GC content, and chromatin 3D structure.

In many eukaryotes, TF binding within and around gene promoters is considered the dominant mechanism
of gene expression control. However, in Plasmodium, several lines of evidence suggest that TF binding may
be less central to transcriptional control. First, although major components of the general transcription
machinery are present in the Plasmodium genome [13], a relatively small set of specific Plasmodium TFs
(∼ 27) have been identified and validated in the parasite genome [13]. In comparison, the similarly sized
genome of the yeast S. cerevisiae contains ∼170 specific TFs [14]. Second, among the subset of TFs whose
binding affinities have been characterized via in vitro protein binding microarrays [15], only a handful display
stage-restricted expression and play clear roles in regulating life cycle transitions. An example is PfAP2-G,
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Multiple linear regression [9] 2001 X X X X
Conditional probability given levels of
regulators [39]

2002 X X X

Classification tree [43] 2003 X X X
Bayesian network [6] 2004 X X X X
Boosted alternating decision trees [36] 2004 X X X X
Boosted alternating decision trees [27] 2006 X X X X
Principal component regression and re-
gression tree [38]

2009 X X X

Multiple linear regression [24] 2010 X X X
Support vector machine [11] 2011 X X X X
Random forest and multiple linear regres-
sion [16]

2012 X X X X

Multiple log-linear regression [35] 2012 X X X X X
Bayesian variable selection regression [52] 2014 X X X X
Multiple regression [19] 2015 X X X X X X
Multilayer perceptron [10] 2016 X X X
Convolutional neural network [44] 2016 X X X
Multiple regression [17] 2017 X X X X X
Convolutional neural network [25] 2018 X X X
Multitask regression [37] 2018 X X X X X

Table 1: Comparison of methods for predicting gene expression. The “mRNA Expression” feature involves using the mRNA
expression of a set of putative regulators to predict the mRNA expression of a different set of target genes.

which drives expression of gametocyte-specific genes [23, 45]. Third, a large number of Plasmodium genes are
predicted by homology to function in the regulation of chromatin structure, mRNA decay, and translation
[13], suggesting the importance of epigenetic and post-transcriptional regulation.

Among mechanisms for epigenetic regulation, patterns of covalent histone modifications are perhaps the
most widely studied and understood. In this respect, some aspects of P. falciparum gene regulation are shared
with other eukaryotes, including the presence of the typically heterochromatin-associated H3K9me3 histone
modification at repressed var genes (referred to as virulence genes, for their role in parasite pathogenicity)
[12] and depletion of promoter nucleosomes correlating with gene transcription [8]. On the other hand,
Plasmodium epigenomic dynamics also exhibit notable deviations from those in commonly studied eukaryotes,
such as abundant and broad distributions of activating histone marks [3, 30], an absence of H3K27me3
repressive marks [3], and genome-wide changes in nucleosome occupancy during the asexual cycle [8, 40].
These observations suggest that the parasite may make use of a “histone code” like other well-characterized
eukaryotes, though the specific role of individual elements may differ.

In addition, empirical evidence suggests that gene regulation in Plasmodium occurs through changes in
chromatin structure, including shifts in nucleosome occupancy at the local level and 3D positioning at larger
scales. Nucleosome occupancy, as measured by MNase-assisted isolation of nucleolar elements (MAINE)
and formaldehyde-assisted isolation of regulatory elements (FAIRE), or assay for transposase accessible
chromatin with high-throughput sequencing (ATAC-seq), exhibit cyclic patterns that closely track changes
in gene expression during the red blood cell (erythryocytic) stages of the parasite life cycle [40, 48]. In
addition, 3D models of Plasmodium DNA based on Hi-C assays at multiple time points during the red blood
cell [3] and transmission [7] stages of the parasite point to a “gradient” of expression across the nucleus,
from a repressive center near the telomeres to an expressive center at the centromeres.

Based on the above evidence, we hypothesized that the cascade of transcripts observed throughout the
red blood cell (erythrocytic) cycle is the result of a combination of transcription factor binding, histone
modifications, and changes in chromatin structure. We further predicted than an integrated analysis of the
relationships among transcription and TF binding, histone modification, and chromatin structure data could
reveal the relative significance of individual features in defining high- and low-expression genes.

We are not the first to build predictive models of gene expression (Table 1), though to our knowledge we
are the first to do so in Plasmodium. To keep the model simple, we focus on the binary classification task,
in which each gene is either “on” or “off,” rather than the more challenging regression setting. We build
separate models in three different stages of the P. falciparum life cycle and analyze the resulting models to
understand which features are implicated in the up- or down-expression of Plasmodium genes in different
stages of the parasitic life cycle.
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Time point
Feature Study Description Ring Trophozoite Schizont
Distance to telomeres [2] Hi-C inferred distance X X X
Distance to centromeres [2] Hi-C inferred distance X X X
Distance to center [2] Hi-C inferred distance X X X
Nucleosome occupancy [8] 100-200 base pair fragments X X X
H2A.z [5] ChIP-Seq X X X
H3K9Ac [5] ChIP-Seq X X X
H3K4me3 (Bartfai et al) [5] ChIP-Seq X X X
H3K36me2 [22] ChIP-Seq X X
H3K36me3 [22] ChIP-Seq X X
H3K9me3 [22] ChIP-Seq X X
H4K20me3 [22] ChIP-Seq X X
H3K4me3 (Jiang et al) [22] ChIP-Seq X X
GC content See Methods 100 bp sliding windows N/A N/A N/A
TF motifs [51] FIMO scan of TF motifs N/A N/A N/A

Table 2: Summary of datasets used in classification models. Dataset sources are shown, along with the time points from each
study which were used to represent each of three life cycle stages. “N/A” is listed for the GC content and motif score features, as they
did not vary across life cycle stages.

2 Methods

2.1 Data sets

Although P. falciparum passes through multiple stages—mosquito, human liver, and human blood—we focus
here on the human blood stage of the parasite life cycle, primarily because of the availability of a wide number
of relevant data sets. We gathered data for three time points, corresponding to the three main asexual stages
within the red blood cell cycle: ring, trophozoite and schizont. Most data sets described below (Table 2)
are available in all three of these time points, with the exception of some ChIP-seq data for covalent histone
modifications (H3K36me2, H3K36me3, H3K9me3, H4K20me3, and one replicate of H3K4me3 [22]) that were
not available for the trophozoite stage.

2.1.1 Labels and features

GRO-seq To define the on/off labels for our classifier, we used the GRO-seq values (normalized for gene
length and GC content) from Lu et al. [31] Supplemental Table 1. To generate binary labels for genes, for
each stage we sorted all protein-coding genes by the normalized GRO-seq counts assigned to that gene in
that stage. We labeled the top third of genes as “High expression” and the bottom third of genes as “Low
Expression” (Figure 1). The middle third of genes were not used in the analysis.

Transcription start site and coding sequence annotations Many of the features that we employed
require specifying the start coordinate of each given gene. For this purpose, we use two data sets of co-
ordinates: either the start codons from the PlasmoDB v29 annotation or transcription start sites based
on CAGE-Seq data from [1]. In that resource, multiple start sites are often annotated for a given protein
coding gene. To assign a single TSS for use in feature assignment, we first looked to see if the “primary
TSS” assigned in [1] was upstream of the start codon of a gene. If it was, then the start of that TSS was
used. Otherwise, we used the TSS lying upstream and closest to the start codon. If no annotated TSS was
upstream of the start codon of a gene, then the start codon was used.

Histone modification ChIP-seq ChIP-seq data for the following histone modifications were collected
from two studies: H3K4me3, H3K9Ac, and H2.Az from Bartfai et al. [5] and H3K36me2, H3K36me3,
H3K9me3, H4K20me3, and H3K4me3 from Jiang et al. [22] Note that one mark, H3K4me3, was measured
in both studies. All of the ChIP-seq data was reanalyzed using a standard pipeline that consisted of trim-
ming reads to 76 nucleotides using the fastx toolkit (http://hannonlab.cshl.edu/fastx toolkit/index.html),
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mapping reads to the P. falciparum genome (PlasmoDB v29) using bwa-mem [28], filtering unmapped and
multimapping reads using samtools [29], and generating bedgraph files using bedtools [42]. Fold-change over
background was calculated relative to input DNA where available. For histone ChIP-seq datasets from Jiang
et al., no input DNA data was available, so values were calculated relative to the mean signal over all the
data.

Nucleosome occupancy MNase data from [8] was downloaded in FASTQ format, then trimmed and
filtered using sickle version 1.33 (https://github.com/najoshi/sickle). Reads were aligned to the P. falciparum
genome (PlasmoDB v29) using bwa-mem [28], then sorted and filtered for mapped reads using samtools [29].
A custom Python script selected all alignments between 100 and 200 bp in length, which were then used to
generate a bedgraph file using genomeCoverageBed [42].

Hi-C Per-gene distances from telomere centroid, centromere centroid, and center were computed in a
previous study [2], using 3D models generated from Hi-C data using PASTIS [49]. These values were
obtained directly from https://noble.gs.washington.edu/proj/plasmo3d/.

DNA sequence features Position-frequency matrices for 25 transcription factors for P. falciparum were
downloaded from CIS-BP [51]. With each motif, we scanned the P. falciparum genome using FIMO [20] with
a p-value threshold of 0.01. To ensure that the background model represented the unique sequence context
of P. falciparum, we generated a background model from the P. falciparum genome with the MEME Suite
command fasta-get-markov with Markov order 1 [4]. In addition, percent GC was calculated in 101 base
windows centered at each position in the genome.

2.2 Predictive model

2.2.1 Models

We used three types of models to classify Plasmodium expression and select predictive features.
The first was logistic regression with elastic net regularization, using the scikit-learn implementation
(sklearn.linear model.SGDClassifier). The second was a tree model with gradient boosting, using the XG-
boost Python implementation (xgboost.XGBClassifier). The third was a multi-layer perceptron model, with
two hidden layers, each containing the same number of nodes as the input layer. This model was implemented
by DeepPINK [32], which is designed to achieve robust feature selection with a controlled error rate.

2.2.2 Performance metric

The performance of each model was evaluated in terms of receiver operator characteristic (ROC) curves.
These plots show the rate of true positive classifications (on the y-axis, indicating sensitivity) against the
rate of false positive classifications (on the x-axis, indicating 1 - specificity). The area under the ROC curve
(AUROC) quantifies the ability of the classifier to balance sensitivity (true positives) against specificity
(avoiding false positives). An AUC value of 1 corresponds to perfect performance, whereas a value of 0.5
corresponds to random guessing.

For Figure 2A, the ROC curve for logistic regression classification was generated by combining the gene
scores from the test sets in three separate folds of cross-validation. These scores were sorted together to
generate the combined ROC curve shown.

2.2.3 Model development

We split the P. falciparum into five approximately equally sized (by gene count) folds by chromosome: fold
1 included chromosomes 1, 3, and 13; fold two included 2, 9, and 11; fold three included 7 and 14; fold four
included 6, 8, and 10; and fold five included 4, 5, and 12.

The first three folds were used for feature development and hyperparameter tuning. During this stage, we
selected hyperparameters by three-fold internal cross-validation. For the logistic regression model with elastic
net regularization, we tuned the “alpha” and “l1 ratio” parameters in a sklearn.linear model.SGDClassifier
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Model Parameter Possible values Selected value
Ring Trophozoite Schizont

LR alpha 0.1, 0.01, 0.001, 0.0001 0.0001 0.0001 0.0001
LR l1 ratio 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 0.95 0.8 0.9
Boosted trees max depth 4, 5, 6, 7, 8, 9 4 6 4
Boosted trees min child weight 2, 3, 4, 5, 6, 7 5 5 6
Boosted trees subsample 0.3, 0.4, 0.7, 0.8, 1.0 0.7 0.4 0.4
Boosted trees colsample bylevel 0.3, 0.5, 0.7, 1.0 0.3 0.5 0.3
Boosted trees n estimators 40, 60, 80, 100 100 60 80

Table 3: Hyperparameter selection.

model. For the boosted trees model, we tuned the “max depth”, “min child weight”, “subsample”, “col-
sample bylevel”, and “n estimators” hyperparameters in an xgboost.XGBClassifier model. In each case, we
performed a grid search across the values listed in Table 3. On the basis of this analysis, we eliminated
the motif-based features from our feature set, and we chose to use features based on CDS rather than TSS
locations (see Results section for details).

Subsequently, we trained classifiers to make predictions on each of the two test folds, in each case
training on the four remaining folds. In this case, hyperparameters were selected that yielded the greatest
AUROC value in the three training set “sub-folds” using cross-validation, as implemented in GridSearchCV
in sklearn.grid search. The selected hyperparameters are listed in Table 3.

After training, we examined each model to extract information about which features the model deemed
most relevant to the given classification task. For the logistic regression models, we recorded the coefficients
assigned to each feature. For the XGboost model, we used the SHAP package to calculate “SHAP values”
for each feature at each gene [33]. We quantified the overall significance score for each feature as the mean
of the SHAP value across all genes. DeepPINK computes a feature importance vector for all features by
multiplying the weight matrices across all layers of the multi-layer perceptron. We used the squared value
of feature importance score for each feature.

3 Results

3.1 Genes labeled as high- and low-expression display differences in several
regulatory features

Drawing from a variety of data sources, as described in Methods, we constructed a data set of heterogeneous
gene features across each of three stages of the erythrocytic cycle (ring, trophozoite and schizont). GRO-seq
measurements of nascent transcription were used to identify genes which high expression (top third) and low
expression (bottom third) (Figure 1A).

As an initial step of data exploration, features with signal at a base-by-base level (such as ChIP-seq tracks
or GC content) were visualized using aggregation plots showing the average level of signal for a feature with
respect to the start codon, segregated by high-expression and low-expression genes (Figure 1B). These plots
show expected trends, including enrichment of H3K4me3, H3K9Ac, and H2Az in highly expressed genes, as
well as depletion of nucleosome occupancy in promoter regions.

Given the apparent differences in signals upstream and downstream of the start codon, we split each
of these main features into two features. The “promoter” feature was the mean feature signal from -500
bases up to the start codon, whereas the “gene body” feature was the mean feature signal from the start
codon to 1 kb into the coding sequence. This was done for all covalent histone modification features, H2Az
composition, nucleosome occupancy, and GC content.

Similarly, for motif features, we calculated the maximum motif match log-odds score in two windows.
The “promoter” window was from -500 bases up to the start codon, while the “gene body” region extended
from the start codon up to 1000 bases into the coding sequence.

Ultimately, each ring- and schizont-stage gene was characterized by a set of 73 features, including 50
motif-based features, 14 histone modification features, 7 features characterizing local and global chromatin
structure, and 2 features describing local GC content. Trophozoite stage genes used the same feature vector,
but with 10 histone features removed due to missing ChIP-seq data sets in that stage.
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Figure 1: Differences between high- and low-expression genes. (A) Histograms showing the distribution of normalized GRO-Seq
values assigned to protein-coding genes within each of three stages of the P. falciparum life cycle. The labeled, dashed vertical lines
indicate the cut-off values for genes categorized as low- and high-expression. (B) Aggregation plots showing the average signal for
features with respect to the start codons of high-expression (blue) and low-expression (orange) genes in the ring stage.
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Figure 2: Comparison of classification models. (A) Classification models outperform all individual features for use in classification
of gene expression. Grey lines represent the ROC curves resulting from ranking genes by the values of single features in the ring stage,
with the best-performing feature shown in red. The blue line represents the ROC curve from training a logistic regression model with
elastic net regularization, where the curve is created by combining the predictions across all three test sets. (B) The ROC curves
for classification of gene expression by logistic regression across ring, trophozoite, and schizont stages. Individual curves represent
performance in one of test three folds in cross-validation. (C) AUROC values for logistic models either trained with or without motif
scores as features. Points represent AUROC values on the test set in three-fold cross-validation; bars represent average AUROC values
on the test data. (D) The AUROC values resulting from training of distinct models in different stages (“Log” = Logistic Regression,
“XGB” = XGBoost, “DP” = DeepPink). Individual points represent the AUROC values from distinct test sets, for the listed model in
a given stage.

3.2 Machine learning models accurately distinguish between expressed and
non-expressed genes

We initially examined single features to establish a baseline of classification performance based on a simple
ordering of genes by each individual feature. In this way, we generated one ROC curve for each feature
(gray lines in Figure 2A), obtaining AUROCs as high as 0.82 for H3K4me3 gene body signal (blue line in
Figure 2A) in classification of ring-stage genes, with similar results obtained in trophozoite and schizont
stages (data not shown).

Next, we compared this baseline approach against a machine learning method that integrates all of
the available features. We observed, not surprisingly, that an elastic net-regularized logistic regression
(“Logistic”) model that integrates all features outperformed rankings based on single features alone: the
ROC curve generated by the logistic regression (red curve, Figure 2A) dominates all of the ROC curves
generated by ranking genes using single features. We observed similar levels of performance across the three
erythrocytic stages, where in a three-fold cross-validated test, the logistic regression model achieved average
AUROCs of 0.868 in ring (Figure 2B), 0.817 in trophozoite and 0.829 in schizont.

A key question we aimed to address is the relative utility of the scores derived from TF motifs. Accord-
ingly, we repeated the cross-validated testing of the logistic regression model but using two different feature
sets: the full set of features and a reduced set in which the TF motif PWM scores have been eliminated. This
analysis suggested that the motif features did not aid in classification, and if anything hurt the performance
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of our models (Figure 2C). Accordingly, motif features were excluded from subsequent analyses.
To determine whether our results thus far depend upon the choice of machine learning method, we also

tested two additional types of models: a boosted trees ensemble (“XGBoost”), and a multilayer perceptron
with two hidden layers (“DeepPINK”). These methods all demonstrated similar performance on our devel-
opment folds (data not shown), so we carried all three models into the final testing stage. In this stage,
we trained and evaluated each type of model on two folds of data that had not been used in prior model
development. The folds each included around 340 high-expression and 340 low-expression genes. In each
stage, the three models demonstrate similar AUROC performance, with a slight trend of the multi-layer per-
ceptron model outperforming XGboost, which in turn outperforms logistic regression (Figure 2D). Overall,
we conclude that each of these machine learning methods achieves reasonably good performance in discrim-
inating between Plasmodium genes with high and low expression. Accordingly, we used all three methods in
subsequent analyses.

3.3 Classification models use stage-specific features

Having established the feasibility of predicting gene expression in Plasmodium, we next turned to the more
interesting question, namely, which features contribute most strongly to the performance of each classifier?
By including three different types of models, we reasoned that if multiple classification models select a similar
set of informative features within a single stage, then this would suggest that those features are robust to the
choice of model. Accordingly, for each model we calculated a feature importance score (see Methods) on a 0
to 1 scale, where 0 means uninformative and 1 means strongly informative. We also determined the direction
of effect, indicating whether a high feature value is predictive of high or low expression. Additionally, the
DeepPINK model identifies which features are informative for classification using a method that allows for
explicit control of false discovery rate (FDR < 0.05, see Methods).

Broadly, the three modeling approaches attributed similar levels of importance to features (Figure 3).
For example, when assigning importance to histone modifications, the three models tend to agree on which
features are informative and their direction of effect: all three models identify high H3K4me3 signal within
the gene body as indicative of high expression in the ring stage, select high H3K4me3 signal as indicative
of high expression in the trophozoite stage, and identify high H3K9Ac and H4K20me3 signal in the gene
body as indicative of high expression in the schizont stage. Similarly, the three models tend to attribute
consistent importance to physical chromatin features: all three models highlight the importance of gene body
nucleosome occupancy in the trophozoite stage and telomere distance in the ring stage. This consistency
across models and methods suggests that our approach to identifying informative features is robust to the
differences in modeling approaches.

Interestingly, in the DeepPINK model H2Az coverage in the gene body of trophozoite genes was marked
as significant (FDR < 0.05) and associated with low expression, in disagreement with both other models.
H2Az signal was previously reported to be almost completely absent from gene coding sequence [5], which
makes the apparent significance of gene-body H2Az signal quite surprising. Follow-up validation would
be required to see if a minimal level of H2Az truly encodes information within coding sequence, or if the
identification of the feature as significant was an artifact of the DeepPINK procedure. However, previous
studies in metazoan genomes have also identified H2A.Z in gene bodies. While some research groups link
low levels of H2A.Z with inhibition of transcription in reconstituted nucleosomes [34, 46], others suggest that
H2A.Z nucleosomes may facilitate transcriptional elongation [50]. Our results support a model in which a
low level of H2A.Z nucleosomes acts as a simple barrier to transcriptional elongation. Given the general
agreement between models for almost all other features (Figure 3A) the assignment of importance to H2Az
signal by DeepPINK alone suggests that the relationship should be considered very tentative.

In contrast to the high concordance among the three models, we observed low concordance among the
importance of individual features across different stages of the erythrocytic cycle. For instance, H4K20me3
was highly informative for predicting a “high expression” label in the schizont stage, but almost completely
uninformative in the ring stage (data was unavailable for this mark in the trophozoite stage). The high
consistency of feature importance within a stage argues that such differences are not an artifact of the model
training process, and suggests that distinct regulatory mechanisms may control transcription in the three
different stages. However, further work and replicatation is required to rule out confounding issues such
as batch effects between datasets for different stages. For instance, the H3K4me3 features from one source

8

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 29, 2018. ; https://doi.org/10.1101/431049doi: bioRxiv preprint 

https://doi.org/10.1101/431049
http://creativecommons.org/licenses/by-nc/4.0/


[5] was marked as informative for classification in the schizont stage by all three models, while H3K4me3
signal from a different source [22] was found to be relatively uninformative, by comparison (Figure 3A). Such
discrepancies likely stem from differences in either the data generation processes or the synchronization of
parasitic stages across distinct sources.

The XGBoost model afforded an additional look at each individual feature’s effects on the classification
of single genes. In addition to assigning feature significance and direction-of-effect at the level of the model
as a whole (as in Figure 3A), the SHAP score for the XGBoost model can be calculated separately for
each feature at each gene. The resulting distribution of per-gene SHAP scores for each feature (Figure 3B)
suggests that some features exhibit non-linear relationships between feature score and expression predic-
tion, visually observable as asymmetry in the density plots shown in Figure 3B. For instance, the effect of
H3K36me2 gene body signal in the schizont stage model is not a simple relationship where increases in the
feature value lead to consistent changes in model classification. This pattern is clearly visible when directly
comparing the H3K36me2 gene body signal in schizont genes (x-axis) to the SHAP score of the gene (y-axis)
in Figure 4A. Low to intermediate values of H3K36me2 give similar affects upon predictions across a wide
range of H3K36me2 signal. However, this trend gives way to a range of higher H3K36me2 values where
increases in H3K36me2 are strongly and almost linearly related to changes in classification (as quantified by
SHAP values). Such shifts in feature/classification relationships over different ranges of values are observable
in several features (Figure 4). This observation suggests that some epigenetic factors influence expression
through a relationship more complicated than additive, independent effects.

We also repeated the per-gene SHAP analysis for the Plasmodium virulence genes, which encode a protein
family that functions to anchor infected erythrocytes to the endothelium of blood vessels and are an important
target for immune recognition [18]. The virulence genes are tightly regulated, with each parasite expressing
exactly one of the 60 genes at a given time. In agreement with a known role for H3K9me3 in repression
of virulence genes [12], we find that virulence genes have large SHAP scores assigned to H3K9me3 signal.
This observation demonstrates that the classification model is not only able to find genome-wide rules for
classification, but also selects important features with respect to a specific subset of genes, capturing factors
that are known to be important for transcriptional control of that gene family.

3.4 Start codons outperform TSSs for predicting transcription

During our exploratory work using the three “development folds” of data, we tested two different approaches
for defining the start of a gene: transcription start sites (TSSs) and start codons. Surprisingly, this testing
indicated that start codons are more useful than TSSs for defining the division between promoter and gene
body for our predictive models. We started by using genome-wide CAGE-seq datasets to define transcription
start sites for all genes (see Methods). Plots of feature scores with respect to these two types of “start”
positions—start codons (Figure 1B) and TSSs (Figure 5A)—qualitatively showed stronger trends between
high- and low-expression genes when defining promoter/gene body splits using start codons rather than
TSSs. Furthermore, when we trained classifiers to label genes using features split by either start codon
or TSS, the models using promoter/gene body definitions split by start codons consistently out-performed
models using TSSs (Figure 5B). Consequently, we focused analyses in this work on models that are split by
start codons rather than TSSs.

4 Discussion

We developed predictive models for Plasmodium gene expression that yield AUC values in the range of 0.79–
0.88 in cross-validated testing. These values are somewhat lower than AUC values reported from studies
carried out in other eukaryotes like mouse (0.94 [11]) or human (0.95 [16]). Many factors may contribute to
this difference. For example, Plasmodium has a smaller number of datasets available for use as features in
our models: at most six unique histone covalent modifications were used in our models, whereas 11 unique
histone modification features were used in both [11] and [16]. Consistent with this, using a small feature set
(five histone modifications) to classify expression in human cells resulted in a model with an average AUC
of ∼0.8, a value in line with the performance we observed. Furthermore, compared to human and mouse,
Plasmodium has far fewer genes, which yields fewer examples for training our models. Additionally, the
high AT-content of the Plasmodium genome presents a consistent challenge to generation of high-confidence
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XGB = XGBoost, DP = DeepPink Multilayer Perceptron) were converted to 0-1 scales for combined visualization and plotted here
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XGboost classifier for all genes. SHAP values for a given gene represent how significant a specific feature was for classification of a gene
as low-expression or high-expression, as well as the direction in which the feature pushed the classification. A positive SHAP score for
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genomic datasets [3], so noise in feature datasets may have led to reduced accuracy. An alternate explanation
comes from the apparent abundance of genes related to post-transcriptional regulation, rather than gene-
specific transcriptional control [13]. This discrepancy has led to speculation that the most significant level
of gene expression control occurs at regulation of translation, relaxing requirements for strict transcriptional
regulatory programs [13]. It is possible that a relatively low reliance on strict transcriptional control allows
the parasite to tolerate high noise in transcriptional regulation, in turn leading to a system that is difficult
to model accurately.

One surprising outcome was the apparently low utility of features derived from TF binding motifs. This
result may be indicative of the relatively low importance of local TF activity in gene expression during
erythrocytic cycle. Alternatively, the result may arise simply because the motifs used here are of low quality
or because the way we employed the motifs (by scanning and aggregating p-values) is suboptimal. Clearly,
an extensive collection of TF ChIP-seq data would be hugely valuable in exploring the extent to which TFs
play an active role in gene regulation in Plasmodium.

Inspection of our trained models revealed the use of multiple types of features, from local histone mod-
ifications to high-order spatial positioning. Covalent histone modifications were consistently found to be
informative features, including the designation of gene-body H3K9Ac and H3K4me3 [5] as statistically sig-
nificant by DeepPink FDR control in all three stages (Figure 3A). Furthermore, nucleosome occupancy and
GC content were repeatedly identified as informative features (Figure 3A, Ring and Trophozoite feature
use). Together, these observations indicate that nucleosome occupancy, histone modification status, and
GC content all contain valuable information regarding the activity status of a locus. In addition, the high-
order features of gene distances to telomere cluster and nuclear center were also consistently informative for
classification of Plasmodium gene expression, albeit to a lesser extent than local features such as histone
modifications (Figure 3A). This is consistent with previous observations that Plasmodium expression cor-
relates with gene spatial positioning [2], and suggests that Plasmodium may encode regulatory information
in the 3D position of a gene, in addition to its local epigenetic state. Our findings complement previous
identification of co-regulatory relationships between functionally related genes in Plasmodium ([41]), with
our analysis identifying a repetoire of epigenetic features that underpin such observed patterns.

Some features were consistently informative for classification across the three stages. For instance, high
H3K9Ac and H3K4me3 signal in the gene body was indicative of high transcription in every model, for all
three stages (Figure 3A). We additionally note that GC content, telomere distance, and distance to center
were found to have consistent effects on expression predictions, both between models within a stage and
across stages (Figure 3A). This suggests that a number of features included in our models were informative
for expression across the intraerythrocytic life cycle.

In contrast to features that displayed consistent effects, some features were only informative in particular
stages of the erythrocytic cycle. The simplest comparison is between models trained on ring and schizont
stage genes, because these stages used the same set of input features. We see a more prolific designation
of distinct histone marks as informative in the schizont stage with respect to the ring stage, including
heavy use of H3K9me3 and H4K20me3 in schizont models (Figure 3A). Meanwhile, the ring-stage model
finds H2Az signal and GC content to be more informative than schizont-stage models (Figure 3A). This
difference suggests that regulation in the ring stage occurs particularly through the incorporation of H2Az
histones, GC content, and a small number of histone modifications like H3K4me3. In contrast, schizont-stage
parasites appear to encode regulation largely in the form of a diverse range of covalent histone modifications.
Within the models trained to classify trophozoite-stage genes there is a higher use of gene body nucleosome
occupancy signal, with respect to ring- or schizont-specific models (Figure 3A), consistent with dramatic
changes in nucleosome occupancy during the trophozoite stage being correlated to transcriptional activation
[8, 40]. However, the limited data availability for the trophozoite models makes clear interpretation of
trophozoite-specific features challenging.

Analyzing XGBoost models suggested that the best solution to the classification task did not take the
simple form in which a unit increase in a given feature leads to a specific, constant change in classifica-
tion probability (Figure 3B and 4). Mechanistically, this result is not particularly surprising, given known
thresholding effects, interactions of regulatory mechanisms, and non-linearity in transcriptional responses
[26]. Nonetheless, this result is important insofar as it violates the assumption of independent, additive fea-
ture effects made by some modeling approaches, such as the regularized logistic regression that we employed.
Our two approaches that allow for feature interactions and non-linear feature/classification relationships, XG-
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Boost and DeepPink, consistently out-performed logistic regression (Figure 2D). This suggests that while
assumptions of additive and independent effects can simplify models, they may both fail to faithfully reflect
underlying mechanisms and hurt the predictive performance of trained models.

During model development and feature refinement, we came to the surprising discovery that placing the
promoter/gene body division using start codon position was more effective than using transcription start
sites (Figure 5B). This observation is consistent with a previous analysis in which five out of six covalent
histone modifications associated with high transcription in Plasmodium displayed peak enrichment at the
start codons of Plasmodium genes, while only one displayed the highest enrichment at transcription start
sites [21]. Additionally, this is consistent with the observation that Plasmodium lacks a strongly positioned
+1 nucleosome at the TSS, but that clearly positioned nucleosomes are observed at the start and end of
coding sequences [8, 3]. In the future, it would be interesting to see if epigenetic information related to
transcriptional control is truly encoded primarily with respect to start codons, or if technical artifacts due to
the extreme AT bias in non-coding DNA upstream of start codons leads to the apparently limited information
value of TSS-centered signals.
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