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Abstract

Models of complex heterogeneous systems like the brain are inescapably incomplete,
and thus always falsified with enough data. As neural data grow in volume and
complexity, absolute measures of adequacy are being replaced by model selection
methods that rank the relative accuracy of competing theories. Selection still depends
on incomplete mathematical instantiations, but the implicit expectation is that ranking
is robust to their details. Here we highlight a contrary finding of “brittleness,” where
data matching one theory conceptually are ranked closer to an instance of another.
In particular, selection between recent models of decision making is conceptually
misleading when data are simulated with minor distributional mismatch, with mixed
secondary signals, or with non-stationary parameters; and decision-related responses
in macaque cortex show features suggesting that these effects may impact empirical
results. We conclude with recommendations to mitigate such brittleness when using
model selection to study neural signals.
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Introduction1

Sciences that deal with heterogeneous complex systems—including ecology, economics, finance,2

medicine and systems neuroscience—encounter a particular challenge when seeking to validate3

theories with data. The classical scientific method, exemplified in fundamental physics, requires4

careful quantitative experimental measurements to corroborate precise theoretical predictions within5

the margin of observational error (e.g., ATLAS Collaboration, 2012; Schneider, 1992; Renn et al.,6

1997). But this is rarely possible in a complex system: no tractable formal theory will fully account7

for every complexity, and so measurements are influenced by factors unmodeled and typically8

uncontrollable (Focardi et al., 2012). Thus, theories in these fields are most often loosely-defined9

models or working hypotheses that may capture the essential trends of empirical phenomena but10

inevitably simplify the mathematical forms of empirical relationships, and the shape and source of11

empirical variability.12

At the most basic level, progress in these sciences can be made using experiments which simply13

test for the existence of a hypothesized relationship in the data. For example, do primary visual14

cortical neurons modulate their firing in response to the orientation of a contrast edge (Hubel and15

Wiesel, 1959)? Other studies seek an ordering of effects: is one drug treatment more effective than16

another (Kane et al., 1988)? For these types of questions, the classical statistical hypothesis testing17

framework (Neyman and Pearson, 1966) can reject null hypotheses of independence or of equivalent18

efficacy. However, the approach does not easily extend to testing models: for instance, are the19

dynamics of grating-evoked responses consistent with a model where tuning curves are shaped by20

strong recurrent interaction (Ringach et al., 1997)? In such cases, the null hypothesis that should be21

tested using observational data is not obvious, and direct evaluation of the validity of a particular22

model of recurrent interaction inevitably shorn of the fine details of the circuit (e.g., Ben-Yishai et al.,23

1995), will always lead to rejection in the face of sufficient data. In some cases, a suitably-designed24

intervention may help to address the issue (Lien and Scanziani, 2013; Reinhold et al., 2015) but for25

many models, interventions are both conceptually and technologically intractable.26

The unsuitability of Neyman-Pearson hypothesis testing to validate models of complex systems27

has led many to argue for the use of model selection in its place (Aho et al., 2014; Anderson and28

Burnham, 2002; Raftery, 1995). This family of approaches, which includes cross-validation (Gelman29

et al., 2014), a variety of information criteria (Akaike, 1974; Hannan and Quinn, 1979; Akaike, 1998;30

Aho et al., 2014; Gelman et al., 2014; Spiegelhalter et al., 2002, 2014), and Bayesian model evidence31

or Bayes factors (Gelman et al., 2014; Kass and Raftery, 1995), compares two or more different32

models—representative of two or more working hypotheses—to select the model that provides a33

better account for a set of observations. Recent years have seen burgeoning interest in applying34

model selection in neuroscience, both for the firing patterns of single neurons (Bollimunta et al.,35

2012; Latimer et al., 2015b,a, 2016, 2017; Rossant et al., 2011), as well as for functional imaging and36

encephalographic signals (Durstewitz et al., 2016; Linderman and Gershman, 2017; Marreiros et al.,37

2010a,b; Mars et al., 2012). While broadly supportive, previous authors have highlighted potential38

pitfalls and challenges to the proper application of model selection approaches in neuroscience and39

other fields (Aho et al., 2014; Anderson and Burnham, 2002; Churchland and Kiani, 2016; Mars40

et al., 2012). Much of this concern has focused on the properties and failures of particular selection41

criteria, especially in situations where one or the other of the models is assumed to be correct or42

closest in a chosen sense to the data (Gelman et al., 2014).43
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In this viewpoint, we highlight a deeper, conceptual, challenge to the application and interpretation44

of model selection; one that emerges from a common lack of robustness, which we term “brittleness,”45

of selection results in the face of small and apparently tangential deviations between models and46

data. We encountered this brittleness as we sought to expand on recent results using model selection47

(Latimer et al., 2015b, 2017) and so present our findings in the context of that study, but note that48

qualitatively similar issues have arisen in other fields (e.g., ecology; Anderson and Burnham, 2002)49

and so the issue is very likely to be pervasive, although it appears to be still underappreciated in50

neuroscience and allied fields.51

The brittleness arises from the need to translate loose theoretical working hypotheses, framed at a52

conceptual or intuitive level, into precise mathematical models for testing. Consider, for instance, the53

question of whether a neuron signals a decision by an abrupt transition in firing at one point in a54

trial (a “step”) or alternatively reflects the gradual accumulation of evidence by a graded change55

in rate across the entire trial duration (a “ramp”) (Shadlen and Newsome, 1996; Okamoto et al.,56

2007; Bollimunta et al., 2012; Latimer et al., 2015b). These are conceptually distinct theories of57

single-neuron dynamics during decision making, but as they stand they are too loosely defined for58

model selection. The broad classes they represent must first be reduced to specific mathematical59

instances. Latimer and colleagues chose a doubly stochastic “step” model in which a single transition60

between fixed spike rates happened at a time and in a direction that depended on sensory evidence,61

with spike times distributed according to a Poisson process given the stepped rate. Their doubly62

stochastic “ramp” model was based on the drift-diffusion model (DDM) for decision-making: a latent63

variable integrated sensory evidence over time until it reached a threshold after which it remained64

constant. The sensory evidence was assumed to be drawn from a noisy Gaussian distribution. The65

latent variable was mapped to firing through a soft-threshold non-linearity to yield a predicted rate,66

with spike times once again drawn from a Poisson process (Latimer et al., 2015b).67

These are both plausible and simple representative candidate models for steps and ramps, but it68

cannot reasonably be expected that real neurons’ firing will be described exactly by either one.69

Nonetheless, many model selection criteria seek to identify the model that is closest in some sense70

(typically according to a probability divergence, such as the Kullback-Leibler divergence), or following71

Box (1976), the most “useful” in predictive terms (Aho et al., 2014; Box, 1976; Burnham and72

Anderson, 2003). The presumption is that this sort of criterion will be robust, in that data generated73

by any process that falls into one of the broad conceptual hypothesis classes will be closer to the74

particular mathematical model used to instantiate that class; or, equivalently, that that mathematical75

instantiation will be the more useful. If a neuron’s firing steps, then model selection should prefer76

the Poisson change-point step process even if the true step statistics differ from those assumed.77

Conversely, if the true change in firing is gradual, like a ramp, then the drift-based model should be78

more predictive even if the true ramp follows a different distribution.79

Our findings show that this robustness does not always hold. Synthetic data that are generated with80

small deviations from the drift-diffusion model, such as underdispersion of spike counts relative to81

Poisson or incorporation of a systematic stimulus-independent modulation of the rate, become reliably82

associated with the “step” model even though no firing-rate step is introduced. More worryingly,83

data are similarly misassigned even if they are simulated from the exact form of drift-diffusion model84

used for selection, but with different settings of the parameters in different subsets. Examining85

neuronal data from the lateral intraparietal cortex (Rorie et al., 2010) and dorsal premotor cortex86

(Chandrasekaran et al., 2017), we find relationships between firing statistics and model selection87
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results, as well as disparities in trial-by-trial contributions to the selection results, that are consistent88

with these potential forms of misassignment. Thus selection results based on these two specific89

mathematical models can at best provide only weak evidence to decide between the “step” and90

“ramp” conceptual classes that they represent.91

The conceptual difficulty in the interpretation of model selection applied to complex heterogeneous92

systems that our results highlight is very likely to apply in other settings in neuroscience and beyond.93

Nonetheless, progress in understanding such systems will ultimately depend on deploying these94

methods with care. We offer some suggestions in the Discussion to help in the mitigation of the95

attendant challenges.96

A preliminary version of these results was reported previously (Chandrasekaran et al., Society For97

Neuroscience Annual Meeting, 2016).98

Results99

We evaluated the robustness of model selection using the same selection criterion and the same100

specific mathematical models of “step” and “ramp” decision making as adopted by Latimer et al.101

(2015b). We considered three ways in which recorded neural data might plausibly differ from both of102

the mathematical models being compared, while in each case remaining broadly coherent with the103

ramp conceptual framework. Each variation was motivated by either a commonly observed feature of104

neural activity, or a theoretical consideration regarding decision-making circuitry. In each case, we105

first simulated data from the variant ramp model, evaluating the results of model selection using106

Latimer and colleagues’ approach. We then examined decision-related neural data collected in two107

different brain regions for signs that the effects we noted in the simulations might also shape the108

results of empirical model selection.109

Neural Data110

We used two data sets, drawn respectively from the lateral intraparietal area (LIP) and the dorsal111

aspect of the pre-motor cortex (PMd) in macaque monkeys making binary-outcome decisions about112

sensory stimuli.113

LIP Data: The LIP data were recorded by Rorie and collaborators (Rorie et al., 2010) from two114

monkeys performing an oculomotor random-dot motion discrimination task (Supp. Fig. 1A). We used115

data from 81 LIP neurons recorded across 4 reward conditions, providing us with a pool of 324 (81x4)116

pseudo-independent recordings. As suggested in the Latimer et al. (2015b) study, we considered a117

recording for analysis only if it had sufficient choice selectivity (defined as having a signal-detection118

theory sensitivity (d′) of 0.5 or greater). This criterion selected 117 recordings. The firing rates and119

other response properties of these recordings are consistent with the many reports of decision-related120

activity in LIP (e.g., Shadlen and Newsome, 2001) and other brain areas (Ding and Gold, 2012;121

Hanks et al., 2015). LIP neurons had strong firing rates for the preferred (PREF) saccadic choice122

trials and modest decreases or flat firing rates for the nonpreferred (NONPREF) saccadic choices.123
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PMd Data: The PMd data comprised 806 units recorded from two monkeys while they performed124

a color checkerboard reaction time discrimination task, reporting their decision with a self-timed125

arm movement (Supp. Figs. 1B-D). We have previously shown that trial-averaged firing rates of126

a subpopulation of these PMd units increase gradually during the trial, at a rate that covaries127

systematically with choice, sensory evidence, and reaction time (Chandrasekaran et al., 2017).128

These are features described in many other studies of decision-related activity in various cortical and129

subcortical areas (e.g., Roitman and Shadlen, 2002; Shadlen and Kiani, 2013; Thura and Cisek, 2014)130

and consistent with properties expected of a candidate decision variable (Gold and Shadlen, 2007).131

In the current study, we examined 429 units that showed the expected hallmarks of decision-related132

activity (Shadlen and Kiani, 2013). The average firing rate of the 429 units organized by stimulus133

coherence and choice, and reaction time and choice, are shown in Supp. Figs. 2A, B. Other units134

either decreased their activity or only responded just before movement initiation and were inconsistent135

with a candidate decision variable. We again enforced the criterion that d′ ≥ 0.5, selecting a total of136

311 units.137

Model fitting and DIC138

We used the computer code developed and generously shared by Latimer and colleagues to perform139

a Bayesian fit of both the DDM and the step model to each neuron in both data sets, obtaining140

Monte-Carlo samples of parameters that were consistent a posteriori with the measured spike counts141

(10 ms bins). These “posterior” samples allowed us to evaluate the difference in the deviance142

information criterion (DIC) between the two models (Spiegelhalter et al., 2002). DIC is a model143

selection metric that combines a goodness of fit term (measured using the deviance or scaled negative144

log-likelihood relative to a baseline) with a penalty for model complexity. Higher values of DIC145

indicate a poorer description of the data by the model. The difference between the DIC for the DDM146

and the step model, the “DIC score,” provides an estimate of the log-ratio of deviances penalised by147

a measure of relative model complexity, and can be used to rank the support offered by the data for148

the different models. As per Latimer et al. (2015b), negative DIC scores suggest that the data are149

better described by a DDM; conversely, positive DIC scores signal data that appear closer to the step150

model.151

Although the precise form of penalty assumed by DIC has been criticised (Spiegelhalter et al., 2014),152

it remains widely used. We adopted it here to maintain consistency with the methods of Latimer153

et al. (2015b), and because our goal was to address a general point about model selection that is154

broadly independent of the criterion used. Further experiments, not shown, revealed comparable155

results using alternative model selection criteria.156

The total deviance and complexity penalty are both obtained by summing contributions from individual157

trials, and so the magnitude of DIC tends to increase with trial count. Thus, although we found larger158

magnitudes of DIC score in PMd than in either our own LIP data, or than reported by Latimer et al.159

(2015b) in theirs, the disparity was very likely to have arisen at least partly from the significantly160

larger number of trials we had available from PMd. Furthermore, as both expected value and variance161

of DIC scores increase with trial count, and trial length, numerical comparison of scores across studies162

is difficult even for similar neuronal populations, as is the choice of a single absolute threshold value163

for “significance” (Murtaugh, 2014). We therefore interpreted any DIC score > 0 as evidence in164

support of the step model, and scores < 0 as evidence for the DDM.165
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1. Brittleness to violation of parametric assumptions166

Model selection is designed to evaluate parametric statistical models, which assign a probability of167

occurrence to each possible observation. Thus, the specific models being evaluated must incorporate168

assumptions, explicit or implicit, about the forms of the relevant probability distributions. Even169

where models are specified in hierarchical form, so that the parameters that most directly govern170

the probabilities themselves vary under the control of higher-level parameters, the ranges allowed171

and the parametric forms that they govern must still be assumed. This raises the question of how172

robust model selection proves to be when data are generated from a process that broadly follows the173

form of one of the candidate models, but differs from it—and potentially also from the competitor174

model—by an apparently minor parametric choice.175

We considered this question in the context of the step and ramp models. Both models assumed that176

spike counts followed a Poisson distribution around a mean firing rate that itself varied from trial177

to trial. Thus, they both predicted that the total variance in the observed spike count in each bin178

should be overdispersed relative to Poisson, with a Fano factor greater than 1. Moreover, the DDM179

also predicts that the Fano factor should often increase over time, as long as neither the saturating180

bound nor the rectifying floor is reached routinely (Supp. Fig. 3).181

In principle, biophysical processes such as firing refractoriness and adaptation might lead to sub-182

Poisson variability in firing. Indeed, underdispersion of spike counts has been reported before in183

LIP data (Maimon and Assad, 2009). In our LIP data, we found some neurons with super-Poisson184

Fano factors, according with the model assumptions (Fig. 1A). However, many other neurons had185

Fano factors less than or around 1 and in some cases these Fano factors also decreased over time186

(Figs. 1B-D). In fact, the median Fano factor in the 450 – 700 ms epoch onset after dots onset for187

PREF choices was 0.95 (min: 0.56, max: 1.40; sign test H0: Fano factor=1, p=2.17×10−4,) and188

0.96 for NONPREF choices (min: 0.57, max: 1.42; sign test, H0: Fano factor=1, p=2.11×10−5).189

As this underdispersion reflected a parametric departure from both models, it offered a plausible test190

of robustness to such variation.191

Simulated underdispersed DDM firing rates are assigned to the step model192

We began by simulating data using the drift-diffusion latent process of the ramp model, but with spikes193

generated by a process (gamma-renewal) that is underdispersed relative to Poisson (see Methods194

and Supp. Fig. 4A). In these simulations we assumed strong sensory evidence (a non-zero drift rate)195

in one group of trials and no sensory evidence (zero drift rate) in the other group, corresponding to196

pattern seen in much of our data. While these simulations with underdispersed spike counts depart197

from the exact form of DDM used in model selection, they do not introduce any sort of discrete step.198

Thus, if model selection were robust we might expect no more than a modest lowering of confidence199

in the selection, perhaps reflected in a reduced magnitude of DIC score favoring the DDM. In fact,200

we found a reliable trend for model selection to favour the step model as an explanation of these201

simulated sub-Poisson DDM spike trains (e.g., Figs. 2A-C and Figs. 2D, E) whereas nearly identical202

simulations with DDM dynamics and Poisson spike-generation processes were robustly classified as203

consistent with the DDM (Fig. 2F). A similar bias was seen in simulations based on multiple levels204

of sensory evidence (4 conditions with 4 drift rates, Supp. Figs. 4B, C). This bias in favour of the205

step model for data generated by a process firmly within the ramp conceptual class demonstrates206
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a brittleness of model selection to violations of underlying parametric assumptions, even when the207

violation is of an assumption common to both the models being compared.208

Underdispersion in data is predictive of DIC score for LIP neurons209

We wondered if there might be signs of a similar dispersion-induced model selection bias in neuronal210

responses recorded from LIP. Unfortunately, spike-count dispersion—as varied in our simulations—211

could not be measured directly. Trial-to-trial variance in spike counts conflates two contributions:212

one from randomness in integration or stepping across trials and the second from neuronal spiking213

variability. Dispersion corresponds to second of these, but it cannot easily be isolated. However, we214

reasoned that the Fano factor on NONPREF trials, where firing rates were low and may sometimes215

have reflected firing at a baseline rate, might provide a indicative signal for dispersion. Thus, we216

asked if this Fano factor predicted DIC scores in the LIP data, either alone or in combination with217

additional regressors which might help to isolate dispersion more completely.218

We first regressed the DIC score for each neuron against its NONPREF Fano factor in an interval219

450-700 ms after dots onset, when onset-related transients should have decayed. The result was220

consistent with the simulation findings and the interpretation of the NONPREF variance as indicative221

of dispersion, with a significant regression weight between NONPREF Fano factor and DIC score for222

LIP neurons (R2=0.038, p=.034; βFanofactor=-95.08± 44.44 (standard error; SE); t(115)=-2.13,223

p=.034, see Eqn. 1).224

Fano factor will be most accurate as a surrogate for dispersion when other sources of variance are225

small. While integration or stepping may play a role in all trials, we reasoned that their influence on226

variance would be greatest when they most strongly modulated firing rate, and that this modulation227

depth could be estimated by measuring the starting and ending firing rate during the trial. Thus, we228

fit an expanded multivariate regression model (see Methods, Eqn. 2) which included the starting firing229

rate measured between 300-400 ms (i.e. after the initial 200 ms initial dip in the LIP response) and230

the ending firing rate, which was estimated at 600-700 ms after dots onset for each of the PREF and231

NONPREF conditions. This combined regression model predicted more variance in the DIC scores232

(R2=0.29, p=2.17×10−7). In this expanded regression, Fano factor was more strongly related to233

the DIC score (βFanofactor=-163.71± 42.15, t(111) = -3.88, p <.0001, partial R2 for Fano factor=234

0.093). The coefficient for the Fano factor remained negative suggesting that underdispersion still235

favoured the step model. This was consistent with the results of the simulated underdispersed DDM.236

The regression coefficients for starting firing rate for PREF and NONPREF choices also predicted237

the DIC score (PREF: βStart=6.5± 1.62, t(111)=4.00, p <0.0001, NONPREF: βStart=-5.13± 1.73,238

t(111)=-2.96, p <.003). We also observed a modest relationship between ending firing rate for PREF239

and NONPREF conditions and DIC (PREF: βend=-0.27± .80, t(111)=-0.33, p=0.73, NONPREF:240

βend=-2.02± 1.73, t(111)=-1.98, p= .049).241

Thus, although we cannot be sure of the parametric form that underlies the real data, we found that242

LIP responses could be underdispersed, and that DIC scores for neurons with lower Fano factors were243

more likely to support the step model even though the step model also predicts overdispersion. Thus,244

at least some of these cases may have arisen from a systematic mismatch in dispersion with both245

models, rather than any true evidence for a step-like process.246
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2. Brittleness emerging from mixed responses247

The behaviour of each element in a complex system is often influenced by many processes running in248

parallel. In neuroscience, neurons with “mixed responses” that reflect more than one aspect of a249

task are particularly widespread in areas of the brain concerned with cognitive functions (see for e.g.,250

Meister et al., 2013; Rigotti et al., 2013; Mante et al., 2013; Raposo et al., 2014). We wondered251

how the presence of such signals extraneous to model predictions might affect model selection. In252

particular, we considered the case of extraneous signals which very clearly fell outside conceptual253

repertoire of the models being tested.254

The canonical average response profile associated with the decision-making process increases or255

decreases monotonically from an initial value towards a bound. Both DDM and step models were256

designed to produce such profiles. (Note that although both up and down transitions are possible in257

the step model given fixed sensory evidence, the timing of transition does not depend on its sign. So258

combining both directions of step still yields a monotonic average.)259

The PMd data we considered displayed many of the hallmarks of decision making activity (Chan-260

drasekaran et al., 2017) and indeed firing rates of some neurons increased monotonically during the261

decision-formation period as expected (Fig. 3A, B). However, firing rates of other neurons undulated262

during the trial (Fig. 3C, D and many further examples in Supp. Fig. 5). This non-monotonicity263

was evident in firing rate averages for single conditions, and so it was not created by averaging over264

different condition-specific temporal profiles. Instead, other processes, perhaps related to preparation265

of the upcoming movement, appear to be mixed with the decision-making signals.266

We performed principal components analysis (PCA) on the set of all firing rate profiles (for both267

PREF and NONPREF conditions, averaging over strengths of sensory evidence) recorded from the268

PMd neurons. A schematic for this analysis is shown in Fig. 4A. The first two principal components269

(PCs) captured ∼93% of the variance in trial-averaged firing rates during the decision-making task.270

That only two PCs capture most of the variance is because differences in evidence, choice, and271

reaction time are all collapsed in the overall averages; more dimensions are needed when the PCA272

is based on condition-specific means. However, these PCs were designed to reveal mixed signals273

that were not necessarily associated with the decision process. Fig. 4B shows the first two principal274

components estimated in this way from the PMd firing rates. The first PC profile (X1, ~74% of275

variance) contributes a monotonic ramp-like change in firing rate in line with the two decision-making276

models. However, the second PC (X2, ~19%) rises and then falls, peaking approximately 150ms277

before the onset of movement.278

Simulated non-monotonic firing rates are assigned to the step model279

We used the profiles identified by PCA as the basis for a simulation (200 trials per condition, 2280

stimulus conditions, again one with a strong drift rate and the other with a zero drift rate) with281

latent firing rate time courses showing increases and decreases broadly mimicking the shape of282

X2 (Supp. Fig. 6A). We found that model selection applied to these hypothetical neurons with283

non-monotonic firing rates tended to favour the step model (Figs. 4C,D). This assignment persisted284

even when the latents were initially generated from a DDM and only then modified to incorporate285

time-varying firing rate profiles based on X2 (Supp. Figs. 6B, C). Of the 155 hypothetical neurons286
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simulated with non-monotonicfiring rate profiles and robust firing modulation, 122 (Fig. 4E, binomial287

test, 78.71%, p=3.32×10−13) were better described by the step model even though the simulation288

process introduced no explicit steps.289

Non-monotonicity in PMd data predicts DIC score290

Returning to the data, we asked if DIC score was related to the degree of non-monotonicity in PMd291

firing rates. We binned neurons by their loadings on X1 and X2 averaged over both PREF and292

NONPREF trials, and estimated the percentage difference in assignments to the DDM and step293

model for each bin in this two dimensional grid (Fig. 5). When loadings were positive on X1 and294

negative on X2 (dashed red ellipse in Fig. 5), firing rates of single neurons were both closer to295

monotonic and more likely to be selected as consistent with the DDM (Examples 1–3 in Fig. 5).296

Conversely, for neurons with loadings positive on X2 and negative on X1 (dashed blue ellipse), firing297

rates appeared non-monotonic and DIC scores were more consistent with the step model (Examples298

4–6 in Fig. 5).299

Consistent with this qualitative picture, the average loading for a neuron on X2, again averaging300

over PREF and NONPREF trials, was positively correlated with the DIC score. Thus greater non-301

monotonicity, as modeled by projection onto X2, is associated with a greater likelihood of being302

assigned to the step model (Spearman’s ρ = 0.16, p=.006).303

We also found a negative correlation with the average loading on the first PC (X1) suggesting304

that neurons with stronger overall changes in firing rate are likely to be better described by the305

DDM (PREF: Spearman’s ρ = -0.18, p =0.0015). These correlation analyses were also consistent306

with a non-parametric regression that attempted to predict DIC score as a function of the loadings307

on X1 and X2 (Birkes and Dodge, 2011, F(308) = 19.85, p < .00001, βX1 = -599.08 ± 133.13,308

t(309)=-4.99, p < .0001; βX2 = 680.87 ± 124.82, t(309) = 5.46, p < .0001).309

Recall that neither the DDM nor the step model predicts non-monotonic firing rates profiles, and so310

this additional signal mixed in the PMd data should not overtly favour either model during selection.311

Nonetheless, we find that it has a clear impact on outcomes.312

Together, the analyses suggest that non-monotonicity in firing rate profiles can impact the results of313

model selection. Neurons with more non-monotonicity in their firing rates were more likely to be314

identified by model selection as more consistent with the step model.315

3. Brittleness to parameter non-stationarity or adaptation316

Model selection, like other statistical analyses applied to high-dimensional complex systems, requires317

a great deal of data to yield confident results. This requirement increases the chances that a system318

will adapt or experience fluctuations over the period spanned by data collection, or that trials collected319

under different experimental conditions will need to be grouped together. In this case, even when a320

system is well described by a single parametric form of model, the specific parameter values that321

best characterise it may vary with time or experimental factors. In our final study we asked whether322

model selection would prove to be robust to such variation when the models tested formally assumed323
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a single setting of the parameters to explain all data, albeit one that is treated as unknown and324

modelled with uncertainty in a Bayesian analysis.325

Parameter variation might arise naturally within a neural implementation of a drift-diffusion process326

where evidence for opposite decisions is accumulated in two competing neural populations (e.g.,327

Usher and McClelland, 2001). In such circuits, evidence supporting a NONPREF decision arrives328

indirectly through inhibition from the competitor neural pool. If the gain of such inhibition differs329

from that of the direct positive evidence then both the drift rates and the diffusion variance for330

NONPREF trials would be different from those in the PREF condition. Indeed, it may even be that331

ongoing inhibition is weak or non-existent, so that the two populations are engaged in a ‘race’ to332

separate thresholds, with a strong inhibitory signal unleashed by the population that wins. In this333

case, individual neurons might appear to “step” down for NONPREF decisions, but still “ramp” up334

in PREF conditions. Differences in dynamics between the PREF and NONPREF conditions have335

been suggested previously for both PMd (See Fig. 6 of Thura and Cisek, 2014) and LIP (Fig. 7 of336

Roitman and Shadlen, 2002). We considered these two possibilities in two simulations (Fig. 6 and337

Fig. 7).338

Difference in diffusion variance for different conditions339

In the first case, we simulated responses in which one set of trials had a high drift rate and diffusion340

variance on the same order of magnitude as that estimated for the LIP data, while the other had341

zero drift and diffusion variance was either one or two orders of magnitude smaller than the first.342

This setup was broadly consistent with the case of inhibition arriving with low gain from a competing343

population, although in our simulations the gain depended on the overall signal rather than the344

instantaneous input. Two example simulations where the diffusion variance for one set of trials was345

one order of magnitude smaller than the variance of another set of trials are shown in Figs. 6A-C.346

These hypothetical neurons with latent dynamics from the DDM but different values of diffusion347

noise were often identified as being more consistent with the “step” model, even though no steps348

were present in the generative model (Fig. 6D, 110/122 simulated neurons with were identified as349

consistent with the step model, p=2.73×10−21, binomial test).350

Drift-diffusion for PREF choices, and steps for NONPREF choices351

The second simulation was analogous to the ‘race’ model of decision formation described above,352

where the neurons would appear to ramp for PREF choice trials but step down on NONPREF choice353

trials. Figs. 7A, B and Fig. 7C show examples of two hypothetical neurons simulated using this hybrid354

model. As the numbers of PREF and NONPREF trials in the simulations are equal, robust model355

selection would arguably generate scores distributed near to and around 0, with roughly half of the356

hypothetical neurons being assigned to each class. Alternatively, given the robust modulation modeled357

for the PREF choices and relatively weaker modulation (and thus less “signal”) for NONPREF choices,358

it might also have been reasonable for DIC scores to modestly favour the DDM. In fact, model359

selection assigned all of the simulated hypothetical neurons to the step model (Fig. 7D, median DIC360

score=197.71), even when the DDM parameters for drift and diffusion were substantial in the PREF361

direction.362
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PREF and NONPREF trials combine to affect DIC scores in two ways. First, the parameters of the363

competing models are fit to all trials at once, and so where the two groups are generated by different364

processes the resulting posterior distributions must reflect a compromise between conflicting sources365

of evidence. Second, the final DIC score is formed by summing contributions from each trial to the366

deviance and its posterior average (see Methods).367

If both PREF and NONPREF trials are generated from a single model with a single set of parameters,368

then we expect the net contributions to DIC from both groups of trials to be consistent to within369

noise-driven variability. We wondered if the converse would be consistently true. That is, in these370

neurons simulated from this mixture of the DDM and the step model, would the DIC contributions371

made by the corresponding groups of trials correctly identify that the PREF trials come from the372

DDM and NONPREF trials come from the step model (even though the parameters would still be373

fit to all the trials together). This was indeed the case for a subset (32/198) of the hybrid model374

simulations, with the sum of PREF trial contributions pointing to the DDM model, but NONPREF375

contributions supporting the step model. However, for the majority of the hypothetical neurons376

(166/198), the DIC score contributions from both the PREF and NONPREF directions favoured the377

step model. Thus, although systematic inconsistency in the direction of the contribution made by378

two subsets of the data (here PREF and NONPREF trials) may be reasonably taken to challenge the379

DIC results, the converse does not hold. Consistency in the directions of net contributions from two380

groups of trials does not imply a robust conclusion.381

Results of model selection on PMd and LIP data differ for PREF and NONPREF trials382

We wondered whether the neural data might also show signs of inconsistency between PREF and383

NONPREF trials. We first examined contributions to the total DIC score made by each group384

(Fig. 7E, F). If each neuron was equally well fit by ramp or by step model in both groups of trials385

then we might have expected these contributions to have been well correlated. Instead, we found a386

broad diversity of patterns, with 49/117 (41.88%, Fig. 7E) neurons in LIP and 125/311 (40.16%,387

Fig. 7F) units in PMd exhibiting inconsistency in the contributions from PREF and NONPREF trials.388

In general, PREF trial contributions pointed to the DDM more often than those of NONPREF trials389

for both LIP (Chi-Squared test, PREF: 55/117 support DDM, NONPREF: 24/117 support DDM,390

χ2(1) = 19.06, p < .0001, Fig. 7E) and PMd (Chi-squared test, PREF: 173/311 support DDM,391

NONPREF: 104/311 support DDM, χ2(1) = 30.92, p < .0001, Fig. 7F).392

Discussion393

We asked whether model selection could robustly distinguish between two conceptual hypothesis394

classes given the inevitable heterogeneity of data from complex systems. In our simulations—and395

those of Latimer et al. (2015b)—when data were generated from an exact instance of one or the other396

of the two mathematical models being compared, the DIC criterion correctly favoured the generating397

model. In this way, then, model selection worked as intended. However, once the parameters of the398

generating process departed from the formally specified DDM-based model chosen for analysis, model399

selection proved brittle and mis-assignments became common. This happened even for intuitively400

minor departures that preserved the gradual changes in single-trial firing rate that are characteristic401
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of the “ramp” class that the DDM was meant to represent, without introducing the abrupt changes402

key to the competing “step” model. The neural data from decision-making experiments that we403

examined shared diagnostic features with the variant models we simulated, raising concerns about404

the interpretability of model selection results in these data.405

Information criteria for model selection that approximate a probabilistic distance between models and406

data are intended to be robust to small variations in the generative process. When neither model407

fits exactly, the information-theoretically closer of the two models to the data should also be the408

more conceptually consistent with them. Our results belie this common assumption, demonstrating409

empirically that model selection applied to complex data can be brittle. Although we only discussed410

results with DIC here so as to remain comparable to earlier work, we found much the same to be true411

of the “widely applicable” information criterion (Watanabe, 2010). Rather than depending on the412

precise criterion chosen, it seems likely that brittleness arises from a fundamental mismatch between413

probabilistic or information-theoretic proximity and conceptual consistency.414

The situation can be summarised using a fruit analogy (Fig. 8). Suppose that we seek to classify415

a sample fruit into either the pome or the citrus families (model classes) based on its appearance416

alone. Both families are difficult to describe in their respective entireties: the potential range of417

hybrid or sport pome and citrus fruit is so extensive and complex that no simple model of their418

appearance will capture every potential variation. Instead, we are forced to choose two representative419

instances against which to compare the new fruit. Call them the apple and the orange (Fig. 8A).420

When presented with a new fruit we ask whether it appears closer to our model of an apple than an421

orange, and if so classify it as “pome”. This is the operational essence of model selection as used in422

the complex sciences. For instance, in the case we considered here, the pomes are steps, the apple423

the Poisson change-point model (with all its constraints), while the citrus are ramps and the orange424

the drift-diffusion-based model.425

One challenge posed by this model selection approach is obvious. Our procedure identifies every426

fruit as “pome” or “citrus”. If applied to, say, a banana, such a classification is meaningless; but the427

model selection procedure has no automatic way of rejecting the comparison (Fig. 8B).428

More pernicious, perhaps, is the case of a sanguinello or blood orange. Intuitively and botanically429

this is a citrus fruit. However, if the model of “orange” appearance is specified to have a very narrow430

range of possible skin colours, while that of “apple” tolerates many hues (green, yellow, red, ...),431

then it is possible that when forced to select between these two specific models the “apple” is found432

to be closer (Fig. 8C). Arguably, this is analogous to what happened in many of our case studies433

(Fig. 8D). Data generated from versions of the DDM that retained the gradual firing rate change434

over the trial that is central to the informal definition of “ramp” nonetheless fell outside the narrow435

definition of the model instance used for testing, and so were classified as a “step”.436

Consequences for interpreting decision-making processes437

We were led to consider the brittleness of model selection while attempting to extend the step or438

ramp characterisation of decision-related activity discussed by Latimer et al. (2015b). However, as439

our results demonstrate, model selection in this application proves to be brittle in many respects.440

Although we believe the underlying question to be well-founded and important, the particular model441

instantiations for step and ramp chosen in that study fail to represent the intended conceptual442
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model classes fully. In particular, apparently minor deviations from the ramp DDM model lead to443

mis-assignments of model selection, and evidence for such deviations is evident in neural data. Based444

on these concerns, we cannot rule out the possibility that, despite the apparent model-selection445

evidence from Latimer et al. (2015b), all neurons in LIP (and PMd) with decision-related activity446

reflect some form of ramp-like drift-diffusion process.447

Recommendations to mitigate the brittleness of model selection448

Despite the challenges to its application and interpretation, we believe that model selection should449

still play an important role in systems neuroscience (Churchland and Kiani, 2016; Durstewitz et al.,450

2016; Linderman and Gershman, 2017). To paraphrase Box’s position: all models of a complex451

system are inescapably wrong, and so hypothesis testing will always lead to rejection in the face of452

enough data. Nonetheless, scientific progress depends on identifying models that are both reasonable453

and useful.454

An increasingly sophisticated arsenal of data-gathering technologies (Jun et al., 2017; Maynard et al.,455

1997), along with novel capabilities to intervene with ever finer precision in the central nervous456

system (Lee et al., 2015; Packer et al., 2014), make it possible to test a widening array of models457

by evaluating qualitative, rather than quantitative, predictions that are able to distinguish between458

entire classes of conceptual model. Where they are possible, such experiments may obviate the need459

for formal model selection. But for many models, including those represented by the “step” and460

“ramp” considered here, such qualitative approaches remain technically intractable.461

How might a future model-selection study then mitigate these challenges? Based on the insights462

from the case studies here, we offer three recommendations that could help make conclusions based463

on model selection applied to neural responses more robust.464

First, an initial set of qualitative methods should be used to rule out any potential instances in465

the data that are broadly inconsistent with all of the working hypotheses being considered—that466

is, “bananas” in our fruit analogy. This may require a close look both at the overall behaviour, and467

at the variations within the data set. Where the data are single neuron recordings, for example,468

it may be that a simple summary statistic such as the grand-mean firing rate over all trials and469

neurons appears broadly consistent with the models under consideration, but that the contribution470

of individual neurons to this mean are not. Although apparent departures from the hypotheses in471

any one neuron might be put down to noise, systematic deviations that appear in some degree in472

many neurons suggest that the model space needs enlargement. Such systematic deviations may be473

revealed by methods such as PCA that examine the pattern of firing rate profiles of neurons in the474

population as a whole. This was the case in the PMd data set considered here. The grand-mean475

firing rate profile across neurons appeared to increase gradually throughout the trial (Supp. Fig. 2)476

in a manner plausibly consistent with either step model or DDM. However, PCA revealed that this477

grand mean concealed a significant component of variation in individual neuron firing rate patterns478

that did not fit either hypothesis; and we found that the strength of this component in an individual479

neuron firing rate was predictive of the model selection outcome.480

A second proposal is to carry out confirmatory qualitative analyses after selection, to ask whether the481

quantitative assignments appear plausible—and so to test for the possibility that a blood orange has482

been classed as an apple. This might involve reassessing properties of the data themselves in light483
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of the selected model fit, although we did not take such an approach here. Instead, we observed a484

qualitative feature in the model selection results themselves which cast doubt on robustness. If model485

selection were robust, then—for data that are collected in trials, as ours were—it would be reasonable486

to expect that each type of trial should influence the selection result in the same direction, even if not487

with the same confidence. In fact, for many of our PMd and LIP neurons PREF and NONPREF trials488

systematically disagreed in their contributions to selection, with the overall assignment depending on489

which contribution was the stronger. In principle, this finding could mean that the different groups of490

trials were, in fact, better described by different classes of model. However, we found that a similar491

situation arose in simulations when all the trials were generated by a single class of model but with492

different parameters. Thus, the observed heterogeneity suggests again that the model space chosen493

is too restrictive and so the results of selection suspect.494

Both recommendations above are diagnostic of brittleness, but do not in themselves offer a clear495

solution. In fact, however, both point to the conclusion. Despite the appeal inherent in selecting a496

single, elegant mathematical model to represent each working hypothesis under consideration, model497

selection results will align more closely to the intuitive hypothesis classes if each is represented by498

a composite model which attempts as far as possible to tile the range of the hypothesis space —499

representing “citrus” by oranges, lemons, limes, grapefruit and more exotic varieties; and “pome” by500

apples, pears, quince, loquat and others (Burnham et al., 2011). In the current example, for the “step”501

class one might consider models that allow more than one transition between the parametrized firings,502

and trial-to-trial fluctuations in gain (Goris et al., 2014); while “ramp” models, even if restricted to503

the DDM, may incorporate variable start times for different trials (Kiani et al., 2014), a non-zero504

lower bounding rate (Zylberberg and Shadlen, 2016), and elements such as urgency (Ditterich, 2006)505

or bound collapse (Hawkins et al., 2015b,a). Both models may be elaborated with different spiking506

statistics (Pillow, 2009).507

None of these proposals provides a fully automated fix to the issues we have raised. However many508

qualitative measures have been evaluated, it is always possible that another measure will reveal the509

assigned fruit to be an imposter. Any enumeration of formal models within a hypothesis class — say510

of all the varieties of tangerine — will always be open to the discovery or invention of another. Thus,511

formal statistical model selection cannot be more than one tool of many, that must be combined to512

advance our understanding of complex systems such as the brain.513

Summary514

Fields such as systems neuroscience, which study heterogeneous and complex natural systems, face515

a particular challenge in the evaluation of theoretical models. All such models will inescapably be516

rejected by hypothesis testing based on enough data. So, scientific progress depends on identifying517

models that are reasonable, and more importantly useful, rather than “correct”. In neuroscience,518

improvements in data gathering and interventional technologies increasingly make it possible to519

test qualitative predictions of some models. But such methods still have limits, and there remains520

a need for formal model selection where such tests are intractable. While we broadly support the521

use of such methods, we have identified a key challenge which may lead to misguided conclusions522

about the neural dynamics underlying behavior. To guard against such challenges, model selection523

should employ a plurality of model instances within each broad class to be considered, and should be524

combined with qualitative measures of model agreement to provide a more robust path to scientific525

progress.526
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STAR Methods527

The task, training and electrophysiological methods used to collect the data used here have been528

described previously (LIP: Rorie et al. 2010; PMd: Chandrasekaran et al. 2017) and are reviewed529

briefly below. The methods for fitting the models are elegantly and comprehensively described in the530

recent report (Latimer et al., 2015b) and book chapter (Latimer et al., 2015a) that developed the531

model selection framework. Again, we review these only briefly.532

Oculomotor visual discrimination task and recordings from LIP:533

Task: Two monkeys (Ar and Te) performed a variant of a fixed duration random dot discrimination534

task where both stimulus difficulty—set by the coherence level of the random dots—and reward535

contingencies were manipulated (Supp. Fig. 1A, Rorie et al., 2010). The monkeys were trained to536

detect the net direction of motion of a noisy moving random-dot stimulus and report it by making537

a saccadic eye movement to one of two targets positioned in line with the axis of motion being538

discriminated. The dots stimulus was displayed for 500 ms. Following this, monkeys were required to539

maintain fixation for a variable delay (300-550 ms), and were then cued to initiate the eye-movement540

report. A correct response was rewarded with a drop of juice; the size of the reward depended on the541

value assigned to that target.542

Recordings: While monkeys performed this task, single neuron activity was recorded from LIP using543

single, sharp dura-piercing electrodes. The original report included 81 LIP neurons (51 from Monkey544

Ar, 30 from Monkey Te) and neurons were selected in the original study using a variant of the545

delayed saccade task. Each neuron was tested in 4 different reward conditions. We separated these546

conditions, giving a pool of 324 pseudo-independent recordings (81 neurons x 4 reward contingencies)547

with which to examine the model selection technique.548

Model selection analysis: For analysis of these LIP firing rates (FRs) we took all data in an549

interval from 200 ms after dots onset until 200 ms after the dots offset; the lag was designed to550

avoid the initial transient often seen in LIP responses and to approximate the latency with which551

visual information arrives in LIP (Roitman and Shadlen, 2002). As in Latimer et al. (2015b), we only552

selected firing rates from recordings with adequate choice selectivity (d’ > 0.5, LL: 36, HH: 26, LH:553

33,HL: 22). This selection criterion left a total of 117 pseudo-independent recordings. Following554

Latimer et al. (2015b), we binned trials in the LIP data according to their signed motion coherence555

into six different groups by level (3 in each direction), with 0% coherence trials placed in a separate556

group.557

Somatomotor reaction time visual discrimination task and recordings from558

PMd:559

Task: Two trained monkeys (Ti and Ol) performed a visual reaction time discrimination task560

(Chandrasekaran et al., 2017). The monkeys were trained to discriminate the dominant color in561

a central static checkerboard composed of red and green squares and report their decision with562

an arm movement (Supp. Figs. 1B-D). If the monkey correctly reached to and touched the target563

Page 15 PDF at 2018/09/28 at 11:18:05

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 29, 2018. ; https://doi.org/10.1101/430710doi: bioRxiv preprint 

https://doi.org/10.1101/430710
http://creativecommons.org/licenses/by-nc-nd/4.0/


that matched the dominant color in the checkerboard, they were rewarded with a drop of juice.564

The reaction time task allowed monkeys to initiate their action as soon as they felt they had565

sufficient evidence to make a decision. On a trial-by-trial basis, we varied the color coherence of the566

checkerboard, defined as 100× (R−G)/(R +G). (Supp. Fig. 1D), where R is the number of red567

squares and G the number of green squares. The color coherence value for each trial was chosen568

uniformly at random from 14 different values arranged symmetrically from 90% red to 90% green.569

Reach targets were located to each side of the checkerboard. In many sessions their colors were also570

chosen randomly on each trial; in a few other sessions the target configuration was fixed over a block571

of contiguous trials.572

Recordings: In our original study, we reported the activity of 996 units recorded from Ti (n=546),573

and Ol (n=450) while they performed the task (Chandrasekaran et al., 2017). PMd units demonstrate574

temporal complexity in their firing rate profiles. We analyzed an 806 unit subsample and applied the575

visuomotor index of Chandrasekaran et al. (2017) that measures the degree of sustained activity to576

separate this population into the broad categories of increased (429/806), perimovement (118/806)577

and decreased (259/806) units. Increased units exhibited ramp-like increases in average firing rate,578

time-locked to the onset of the visual stimulus, with slopes that varied with stimulus coherence.579

These are the classic candidates for neurons that might carry an integrated decision variable for the580

discrimination task (Supp. Figs. 2A,B). We therefore focused for this study on these increased units,581

again filtering for significant choice selectivity (d’ > 0.5), arriving at 311 PMd units for analysis.582

Model selection analysis: For analysis of single-trial firing rate dynamics, we used spike trains583

beginning 100ms after the checkerboard onset and extending until the initiation of movement. The584

100 ms assumed latency matched that found in population analysis in our previous study. Analysed585

spike trains were therefore approximately 200 to 900 ms long, and the probability density of the time586

analysed for each trial roughly matched a gamma distribution. To simplify and speed up the model587

selection analysis, we first created a signed directional evidence measure signal which combined588

the checkerboard signed coherence and the target configuration. We then grouped the 14 signed589

directional evidence values into six different levels. {-90, -60, -40}, {-30, -20}, {-10, -4}, {4 10},590

{20,30}, {40, 60, 90}.591

Statistical Analysis592

Regression analysis for LIP neurons593

We pursued two regression analyses to examine the relationship between under dispersion and DIC594

scores for the LIP neurons.595

In the first, we tested the relationship between DIC and Fano factor for the NONPREF choices
(FFNONPREF ).

DIC ∼ β0 + β1FFNONPREF (1)

In a second regression analysis, we included both the starting and the ending firing rates for the596
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PREF and NONPREF choices.597

DIC ∼ β0 + β1FFNONPREF (2)
+β2StartPREF + β3StartNONPREF (3)
+β4EndPREF + β5EndNONPREF (4)

We used standard regression methods to fit these models and report the model fit, the coefficients,t-598

statistics, and p-values in the main text. We also report the partial R2 for the regression between599

DIC and NONPREF Fano factor, after accounting for the starting and ending firing rates. Using600

other intervals (e.g., the entirety of the dots epoch) for the Fano factor did not materially alter the601

results nor did using the PREF direction Fano factor in place of the NONPREF Fano factor.602

Principal component analysis of PMd neurons603

To perform principal component analyses (PCA) of the firing rates of PMd neurons, we aligned the604

data to movement onset and averaged to obtain the mean PREF and NONPREF response profile605

for each one. We then created a large matrix of firing rates of size 2N × T , where N refers to the606

number of units analyzed and T the time period. We chose the 500 ms before movement onset as607

the time period for the PCA analysis.608

We first subtracted the mean across neurons from this matrix and computed the principal components609

via eigenvalue decomposition of the covariance matrix of this centered firing rate matrix. We then610

used the loadings on the principal components for our analyses.611

Correlation and regression analyses for PMd neurons612

We used two methods to investigate the relationship between the loading on principal components613

and DIC score. For the PMd data, we obtained significant numbers of very large outlier DIC scores (614

> ±1000) either in support of the DDM or the step model. These outliers can impact the values of615

Pearson correlation and linear regression coefficients. We therefore used Spearman rank correlations616

and non-parametric regression to investigate relationship between DIC and the loadings (Birkes and617

Dodge, 2011). For correlation analyses, we used Spearman’s correlation between the average loading618

on a principal component for the PREF and NONPREF trials and the DIC score for a neuron. We619

also used a non-parametric regression where we predicted DIC score using the average loading for620

PREF and NONPREF firing rates on X1 and X2 and report the F statistic for the regression as well621

as t statistics for the predictors (Birkes and Dodge, 2011).622

Model specification for analysis of binned single neuron responses623

We briefly review the formulation and the parameters for the step and DDM models introduced624

by Latimer et al. (2015b,a). The model selection method evaluates whether single-trial responses625

of decision-related neurons are better explained by a step model or a DDM. Both models assume626

that an observed spike train is a Poisson process with a rate governed by a noisy, unobserved latent627
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process. Therefore, both the DDM and the step model are “doubly stochastic”. In the case of the628

DDM, the latents follow a noisy diffusive process whereas in the step model the stochasticity arises629

from randomness in step times across trials.630

DDM: The drift-diffusion model of single-trial firing rate dynamics is parameterized as follows. The
time-varying firing rate rj,1 . . . rj,Tj

for trial j of length Tj time steps (each of size ∆t) is determined
by a latent trajectory (xj,1 . . . xj,Tj

), which is distributed according to a discrete-time drift-diffusion
process. The latent process starts at an initial state x0. At each time step, it evolves with a drift
rate of βc(j) where c(j) indexes the coherence on trial j, and diffusion noise of variance ω2. The
firing rate rj,t follows this drift-diffusion process until it reaches an absorbing upper bound, given by
γ. There is no absorbing lower bound. The model for trial j can be written as follows (c.f. Latimer
et al., 2015b):

xj,1 = x0 + εj,0

xj,t+1 = xj,t + βc(j) + εj,t for t = 1 . . . Tj (5)
εj,t ∼ N

(
0, ω2

)
for t = 0 . . . Tj

τj =

min{t : xj,t ≥ 1} if any xj,t ≥ 1
∞ otherwise

(6)

rj,t =

f(γxt) for t < τj

f(γ) for t ≥ τj
(7)

yj,t ∼ Poisson(rj,t∆t) (8)

τj is the bound-hitting time (the first time bin at which xj,t ≥ 1). The latent state is converted into
a firing rate using the soft-rectification function:

f(γxt) = log(1 + exp(γxt)) (9)

In this formulation, the effective absorbing bound for the latent variable x is 1, and the latent is scaled631

by γ to obtain the neuron’s spike rate. This spike rate is then used to generate spike counts from a632

Poisson distribution. (Note that latent trajectories in Fig. 2, Fig. 6 and Fig. 7 are shown with the633

bound applied directly to x.) The parameters for the diffusion model are : Θ = {x0, ω
2, γ, β1 . . . βC}.634

The condition-specific slope parameters β1 . . . βC allow the rate of accumulation to vary with the635

strength of the sensory evidence–in our task, given by the coherence level of the random dots or the636

difference in red vs. green dots in the checkerboard. The parameters are governed by the following637

prior distributions, with fixed hyperparameters:638

x0 ∼ N (µ0, σ
2
0)

β ∼ N
(
µβ, σ

2
β

)
ω2 ∼ Inv-Gamma (αω, βω)
γ ∼ Gamma (αγ, βγ)

Step model: The step model is constructed around three possible firing states: an initial state 0639

with constant firing rate α0 and two other states 1 and 2, with rates α1 and α2 respectively, that640

Page 18 PDF at 2018/09/28 at 11:18:05

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 29, 2018. ; https://doi.org/10.1101/430710doi: bioRxiv preprint 

https://doi.org/10.1101/430710
http://creativecommons.org/licenses/by-nc-nd/4.0/


are associated with the possible decisions in a 2AFC task. Transitions between these states occur641

instantaneously, and at most one state transition is allowed on each trial (i.e., the firing rate will642

either remain constant at the initial rate, or change from the initial state to a single other value at643

some point). The transition on the jth trial happens at a time zj drawn from a negative binomial644

distribution, and to the state given by dj ∈ {1, 2}, with probabilities (φc(j), 1− φc(j)) that depend645

on the strength of sensory evidence. If zj is greater than the trial length, then no step occurs during646

the trial.647

zj ∼ NegativeBinomial
(
pc(j), r

)
dj ∼ Categorical

(
φc(j), 1− φc(j)

)
yj,t ∼

Poisson (α0∆t) if t ≤ zj

Poisson
(
αdj

∆t
)

if t > zj

Implementation: We used the MATLAB (Mathworks) and CUDA (NVIDIA) code published by648

Latimer et al. (2015b), with a minor modification to the number of GPU compute threads to649

accelerate analysis of our PMd, LIP, and hypothetical neuron datasets. We confirmed that our650

modification did not introduce any inadvertent errors by verifying that our results were consistent651

with those produced by the original code for two sample neurons. Analyses ran on custom-built652

computers containing multiple GPUs (9 GPUs in total, 3 in each computer using a mixture of GeForce653

GTX 980, 980 Ti, Titan Black and Titan Z cards).654

Simulations655

Simulations of hypothetical neurons allowed us to study the robustness of model selection, by656

providing data for which the true generative model was known.657

We used the implementation of the DDM “ramp” model (Equations 5–9) provided by Latimer et al.658

(2015b) as the basis of all the simulations, introducing variations to the core model as described in659

the following. For simplicity, we generally simulated two sets of trials for each hypothetical neuron:660

one with a relatively strong positive drift rate, and the other most often with zero drift. While this661

represented fewer conditions than in the real neural data, it was sufficient to explore the potential662

brittleness of model selection to underdispersion, non-monotonicity, and parameter variation within a663

dataset. We also performed some simulations using four different drift rates.664

Except where indicated, the default variance of the DDM (ω2) was 10−2. This value was typical of665

the DDM model parameters fit to our LIP data, as well as those reported by Latimer et al. (2015b).666

Based on the analysis of the LIP data, we assumed a decision-formation period of 500 ms. When667

binned using 10 ms bins we obtained a total of 50 time points.668

Underdispersed responses669

We simulated underdispersed DDM responses by first generating time-varying firing rates according670

to the unchanged DDM (Equations 5–7). Then, rather than generating spike counts from the Poisson671

distribution assumed during model selection, we instead applied time rescaling to a gamma-interval672
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renewal process to generate spike counts with smaller variance. Specifically, for each trial, we first673

generated a list of event times g0, g1, g2, . . . with g0 = 0 and each interval gi − gi−1 for i ≥ 1674

drawn independently from a gamma distribution with mean 1 and shape parameter varying from 1675

(corresponding to a Poisson process) to 6 in different simulations. We then set yj,t to the number of676

these events that fell between ∑t−1
k=1 rj,k∆t (exclusive) and

∑t
k=1 rj,k∆t (inclusive). The empty sum677

in the lower limit when t = 1 was defined to be 0. When the shape parameter is greater than 1,678

counts generated in this way will have lower variance than a Poisson process. Indeed, this process679

generated Fano factors for 10ms-binned counts that ranged from about 0.65 (for shape parameter 6)680

to 1 (for shape parameter 1, corresponding to Poisson; Supp. Fig. 4A). The trial-to-trial Fano factors681

for DDM simulations with gamma-interval renewal spiking were somewhat larger as they included682

variance arising from the latent process.683

For these simulations we took γ=45 spikes/s, and x0=0.2, 0.3, 0.35, 0.4, or 0.55. Drift rates for684

condition 1, ranged from 0.004 to 0.015. For condition 2 drift rate was usually zero and for a small685

subset of hypothetical neurons was -0.002 to induce a slow decrease in firing rate.686

Mixed responses687

We used two sets of simulations to mimic the complex firing rate profiles found for the PMd neurons.688

In the first, we assumed no diffusion noise. Thus the latents of the hypothetical neurons were of the689

form of a simple deterministic ramp for one condition (condition 1) and a flat level for the other690

condition (condition 2). Once we obtained latents for each condition, we multiplied them by a691

non-monotonic function (Fig. 4A), f(t), that was defined as follows.692

g(t) = 1
Γ(k)θk (T − t)k−1exp

(
−(T − t)

θ

)
(10)

f(t) = g(t)
sg(T − (k − 1)θ) −

t

100 (11)

xj,t = x0 + xj,tf(t) (12)

We assumed T=55, k=5, s=1.1, and θ=4 and that the time variable t was 50 time points long693

starting from t=1.694

In the second set of simulated non-monotonic neurons, we assumed both drift and diffusion (again695

with ω2 = 10−2). Once we had simulated initial latents from the DDM, we then again used the696

function defined in Eqn. 11 above to create a non-monotonic firing rate profile. These latents were697

then converted into spike counts after being mapped into firing rates using equation 9.698

We also assumed for some simulations of hypothetical neurons, four stimulus levels, instead of just699

two stimulus levels.700

Non-stationary parameters701

To explore brittleness in the face of non-stationarity we generated data from a DDM in which diffusion702

noise varied with condition. The common parameters γ=45 spikes/s and x0 = 0.4 were shared by all703
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simulations. We varied ω2 and βc for the two choices. We again assumed non-zero drift rates for704

trials from condition 1 (range from 0.0035 – 0.0190) and a 0 drift rate for condition 2. Condition 1705

trials were simulated with a diffusion variance ω2 = 10−2. The diffusion variance on condition 2 trials706

was set either one or two orders of magnitude smaller: ω2 = 10−3 or 10−4. Given these parameters,707

spike counts were generated using the DDM model (Equations 5–9).708

Hybrid model709

Finally, we considered hypothetical neurons that ramp under one condition (corresponding to PREF710

choices) but step in another. For simulation of PREF-choice firing rates, we assumed the following711

parameters for the DDM: γ = 50, x0 = 0.25, ω2 = 10−2, and β ranging from 0.0045 to 0.0160.712

For the NONPREF-choice firing rates, we assumed a step model with negative binomial parameters713

p = 0.92, r = 2; φ = 0.9; α0 = α2 = 12.5 spikes/s and α1 = 15 spikes/s or 10 spikes/s.714

Deviance Information Criterion for model selection715

Latimer et al. (2015b) performed model selection using the deviance information criterion (DIC), which716

provides a Bayesian estimate of the divergence error of a model (Gelman et al., 2014; Spiegelhalter717

et al., 2002). Despite its Bayesian formulation, DIC is closer in spirit to Akaike’s (1974) Information718

Criterion (AIC) than to the Bayesian Information Criterion (BIC; Schwarz, 1978) in that it seeks719

to find the closer of the models to the data rather than choosing the one most likely to be correct720

(an effort of debatable utility when the answer is almost certainly “neither”). Unlike AIC, DIC721

incorporates prior information and provides an estimate that should be useful outside an asymptotic722

limit. It is well-suited for use with Markov chain Monte-Carlo fitting methods, which draw samples723

from the posterior over the model parameters even when the exact posterior density cannot be724

computed. Nonetheless, it is open to criticism (Spiegelhalter et al., 2014). We employed it here to725

maintain compatibility with the earlier study, and our central point concerned the interpretation of726

model selection methods in general rather than any particular criterion.727

The DIC for a modelM with parameters ΘM is defined as:

DIC(M) = −2 logP
(
Data|Θ̄M,M

)
+ 2pD(M) (13)

pD(M) = 2 logP
(
Data|Θ̄M,M

)
− 2EΘM|Data,M [logP(Data|ΘM,M)] , (14)

where Data represents the available observations and Θ̄M denotes the posterior mean of the model728

parameters given these data.729

The first term in Equation 13 is the deviance: twice the negative log-likelihood, usually measured730

relative to a baseline model although we have omitted that term here as it does not affect the731

outcome of model selection. A lower value indicates a better fit. The quantity pD is an estimate732

of the discrepancy between the deviance of the mean parameters and the expected posterior of the733

“true deviance”. It acts as a form of data-dependent model complexity penalty.734

Both the mean parameters Θ̄M and the expectation in the second term of pD (Equation 14) can be735

estimated by taking the corresponding empirical averages over Monte-Carlo samples from the posterior736
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distributions P(ΘM|Data,M). Evaluaton of the likelihoods also require a numerical estimate of the737

implicit integral over the latent parameters. For the DDM, we used the code from (Latimer et al.,738

2015b) that computed Monte-Carlo estimates with 300 sample trajectories for each trial and each739

parameter value. For the step model, we truncated the possible step times to a maximum of 1500ms740

and evaluated the likelihood using a grid-based numerical integral.741

DIC score742

For model selection, DIC is computed separately for the DDM and step models. Larger DIC values
mean that the model is a poorer fit to the data. We compared the models using a relative DIC
“score”, which was the difference between the DIC values for the two models:

∆DIC = DIC(DDM)−DIC(Step) (15)

A DIC score > 0 suggests that the step model describes single-trial firing rates better than the DDM,743

and a DIC score < 0 implies the opposite.744

DIC contributions from PREF and NONPREF745

Under some circumstances, it is useful to understand the contribution of different types of trials
to the DIC value for a given model. In this study the data were binned spike counts recorded in
independent trials. Thus the log probabilities in Equations 13–14 can be written as sums of single-trial
probabilities, giving:

DIC(M) = 2
∑
j

logP
(
yj|Θ̄M,M

)
− 4

∑
j

1
S

S∑
1

logP
(
yj|Θ(s)

M,M
)

where yj represents the binned spike counts on trial j. Thus, we can define a “single-trial DIC
contribution” for the jth trial by

DICj(M) = 2 log p
(
yj|Θ̄M,M

)
− 4 1

S

S∑
1

logP
(
yj|Θ(s)

M,M
)

Note however that the mean parameter Θ̄M and samples Θ(s)
M are still computed using all trials so

this is not a DIC value in itself – rather it measures a contribution to the overall value obtained from
this trial. Such single trial contributions can be summed over subsets of trials—for example those
corresponding to PREF or NONPREF choices—to examine the net contributions from these different
trial types; and the difference of these contributions assessed for the two different models provides a
useful measure of relative impact of different trial types on ranking. For example

∆PREF
DIC =

∑
j∈PREF

DICj(DDM)−
∑

j∈PREF
DICj(Step)

Systematic differences in these contributions across different trial types may suggest a fundamental746

incompatibility in both models.747
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Figure 1: Examples of LIP neurons

Fi
rin

g 
ra

te
 (S

pk
s/

s)
Fa

no
 fa

ct
or

Figure 1: Single neurons in LIP show choice selectivity and sub-Poisson Fano factors
during the decision-formation period.

A: Example of a typical decision-related LIP neuron with robust firing rate modulation during the749

decision-formation period, and super-Poisson variability.750

B, C, D: Examples of LIP neurons that show modest to robust choice selectivity for the PREF751

direction, and sub-Poisson variability. For each neuron, the upper plot shows firing rate in spikes/s and752

the lower plot the time-varying Fano factor. Trials are aligned to the onset of the 500ms-long random753

dot stimulus, and separated by whether the saccade was to the PREF (solid lines) or NONPREF754

(dashed lines) direction for each neuron. Firing rates are shown for the "LL" reward condition where755

each correct choice is rewarded with one drop of juice, and computed by smoothing spike trains with756
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a 50 ms causal box car filter and then averaging over ∼ 65 trials. Fano factors for the same groups757

of trials were estimated in non-overlapping bins of 10 ms each.758
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Figure 2 - Subpoisson Firing rates impact results of model comparison
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Figure 2: Simulated neurons with DDM dynamics and sub-Poisson spiking statistics are
misleadingly classified as stepping.

A: Dynamics of latent variable (including absorbing upper bound) for a simulated neuron from the759

drift diffusion model. 10 trials are shown for each condition: non-zero drift rate (condition 1, green760

lines) and zero drift rate (condition 2, gray lines).761

B: Trial averaged firing rates for the same simulation as in A. Firing rates are averaged over 150762

trials in non-overlapping 10 ms bins. Spike trains were generated using sub-Poisson statistics with a763

gamma order (shape parameter) of 5.764

C: Fano factors for the simulated neuron in A, B. Fano factors were estimated using spike counts765

in non-overlapping 10 ms bins. A value below one shows that overall spiking statistics remain766

sub-Poisson even after diffusion variability across trials is included. The DIC score for this simulated767

neuron favors the step model even though the underlying latent dynamics corresponsed to the DDM.768

D-E: Firing rates (D) and Fano factor (E) for another example hypothetical neuron with sub-Poisson769

spiking statistics (generated with a gamma order of 3). and DDM latent dynamics but identified by770

model selection as consistent with the step model.771

F: Box plot of the DIC score as a function of the gamma-interval shape parameter. Higher values of772

this shape parameter induce increased spiking regularity and thus sub-Poisson Fano factors. DIC773

scores for simulated DDM neurons with Poisson statistics (shape parameter 1: no model mismatch)774

were correctly identified as consistent with the DDM. However, even a minor departure to a neuron775

with DDM dynamics and sub-Poisson spiking statistics often led many simulations to be identified as776

consistent with the step model. Gray dots denote outlier DIC scores either in favour of the DDM or777
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the step model.778
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Figure 3: Examples of PMd neurons

Figure 3: Example neuronal responses in PMd reflect both canonical decision-related
activity and mixed responses.

A: Firing rates of an example increased neuron in PMd during the decision task, sorted by coherence779

and arm-movement choice and aligned to checkerboard onset (CUE, top panel) or movement onset780

(MOVE, bottom panel). Colors label coherence conditions from easy (purple) to difficult (orange).781

Solid lines show movements to the PREF-direction; dashed lines show the NONPREF-direction.782

Firing rate traces are obtained using 75ms causal boxcar filters, and, in the CUE-aligned upper panels,783

truncated at the center point of the reaction-time range for each coherence. Gray shading denotes784

standard error of the mean over trials (SEM); not visible in most traces due to large numbers of785

trials. This neuron shows a clear covariation of firing rate with choice and coherence. Over 1800786

trials were used in total for computing the firing rates for this neuron and for each trace more than787

100 trials were used for computing the average and the standard errors.788

B: Firing rates of the same neuron shown in A grouped by reaction time. Color now represents789

average reaction time, from fast (purple) to slow (orange). Other conventions as in A.790

C, D: Firing rates of another neuron in PMd, showing consistent choice selectivity and covariation791

with coherence (C) and reaction time (D). Conventions for C are the same as A. Conventions for D792

are the same as in B. This neuron also shows non-monotonicitythat may arise due to the mixing of793

various signals such as decision-formation and motor preparation associated with a decision-making794
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Figure 4: Hypothetical neurons with mixed non-monotonic firing rates are misleadingly
classified as stepping.

A: Schematic of the analysis using principal components to describe the components of trial-averaged796

firing rates for the PMd neurons during the decision-making task. PCA provides access to the factors797

(shown in B) and the loadings on the factors.798

B: The first two factors estimated via PCA on the PREF and NONPREF firing rates for PMd neurons.799

PC1 (X1) explains ∼ 74% of the variance and PC2 (X2) explains ∼ 19% of the variance. X1 has a800

monotonic increase in firing rate that is consistent with the DDM and the step models whereas X2801
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is essentially inconsistent with both models.802

C: Latent dynamics of a hypothetical neuron meant to mimic the non-monotonic firing rate patterns803

observed in PMd with components involving both increases and decreases in firing rate resembling804

the shape of X2. Two conditions are plotted in green and grey, respectively. For this hypothetical805

neuron, the latents are identical for every trial and thus plotted on top of one another. Hypothetical806

arm movements are assumed to occur at t=700 ms. Data are aligned to the stimulus onset.807

D: Trial-averaged firing rates of the hypothetical neuron shown in C. For each trial spike trains were808

generated using a Poisson model output process with latent dynamics given in C. Firing rates were809

obtained by averaging over trials for each choice. DIC scores for the neuron shown in C, D supported810

the step model. Note that no steps were involved in the simulation but the model selection method811

returns DIC scores that identify the neuron as better described by the step model.812

E: Histogram for the combined DIC score for all 155 neurons simulated with complex firing rates.813

This distribution also includes neurons simulated with multiple conditions (i.e., multiple drift rates).814

The distribution is heavy tailed with neurons that arbitrarily get assigned extreme DIC scores both in815

favor of the DDM and the step model. The median DIC score was in favor of the step model even816

though no steps were included in the hypothetical neurons.817
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PREFNONPREF

Fi
rin

g 
ra

te
 (s

pk
s/

s)

Time (ms)

Figure 5: Non-monotonic firing rates in PMd are often labeled as stepping.

Classification of neurons as ramping or stepping as a function of firing rate loadings on principal818

components 1 (X1) and 2 (X2). Each colored square represents neurons that fall within a single819

bin in the two-dimensional loading space. The hue of the square represents the proportion of these820

neurons classified as ramping from blue (none) to red (all). The saturation varies with the number of821

units in the bin. Empty bins are shown in white. Blue and red dashed ellipses are drawn to indicate822

regions of consistency with the step model and the DDM respectively. Dots represent individual823

neurons colored red or blue depending on whether they are consistent with the DDM or the step824

model. Insets show firing rates of example neurons for PREF (solid) and NONPREF (dashed) trials,825

leading up to movement onset at 0 ms.826

Higher loadings on X1, which is broadly consistent with a monotonic increase in firing rate, lead to827
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greater consistency with the DDM (red ellipse and insets 1-3). Higher loadings on the non-monotonic828

X2 are associated with more frequent assignments to the step model (blue ellipse and insets 4-6).829
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Figure 6: Hypothetical neurons with non-stationary diffusion noise are classified as step-
ping.

A: Dynamics of latent variable (including absorbing upper bound) for a hypothetical neuron830

with DDM dynamics and condition-dependent diffusion variance. Condition 1 (green traces) had831

ω2 = 10−2; condition 2 (gray traces) had ω2 = 10−3.832

B: Firing rate for the simulated neuron shown in A. DIC score for this hypothetical neuron was833

consistent with the step model even though no steps were introduced.834

C: Firing rates of another example simulated DDM-based neuron with condition-dependent diffusion835

variance as in A and B, classified as stepping.836

D: For the majority of the neurons simulated from the DDM with condition-dependent diffusion837

variance DIC scores favoured the step model. Variance for condition 1 was set at 10−2; for condition838

2 it was either 10−3 or 10−4.839
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Figure 7: Hypothetical neurons with different models for different choices are identified
as stepping.

A: Latent dynamics of a hypothetical neuron with PREF direction latents described by a DDM and840

NONPREF direction latents described by the step model.841

B: Trial-averaged firing rates of the hypothetical neuron shown in A. PREF choice trials are shown842

in solid lines and NONPREF choice trial are shown in dashed lines. For each trial spike trains were843

generated using a Poisson model output process with latent dynamics given in A for the two different844

choices. Firing rates were obtained by averaging over trials for each choice. DIC scores for the neuron845

supported the step model.846
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C Firing rates of another hypothetical neuron with DDM latent dynamics for PREF choices and847

step for NONPREF choices but identified by model selection as consistent with the step model.848

Conventions as in B.849

D: Histogram for the combined DIC score for all 198 neurons simulated with DDM for the PREF850

direction and the step model for the NONPREF direction. The median DIC score overwhelmingly851

favored the step model even though the units had large PREF direction decision-related responses852

that involved ramping.853

E: Plot of contributions to the DIC score from PREF trials and NONPREF trials for each pseudo-854

independent neuron in the LIP dataset. For 49/117 neurons, the DIC scores from the PREF and855

NONPREF trials did not agree. The number of neurons consistent with each combination of PREF856

and NONPREF DIC contribution is provided as text in each quadrant.857

F: Same as E except for PMd data. 125/311 units had DIC score contributions that were different858

between PREF and NONPREF trials. Again, many PMd units have DIC score contributions more859

consistent with the DDM for PREF compared to NONPREF conditions. DIC score contributions860

outside ± 1000 are clamped at ± 1000 to highlight structure for other units.861
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Figure 8: A fruit analogy summarizing the challenges in model selection.

A: A cartoon summary of the use of model selection applied to complex natural systems. Conceptual862

model classes must be exemplified by a mathematical model. In the analogy, the model classes863

of citrus and pome fruits are represented by oranges and apples respectively – each only a single864

instance of the wide range spanned by the corresponding family.865

B: Model selection applied to data (here a banana) that lie outside both model classes can produce866

uninterpretable results. Answers to the question “Is a banana more like an apple or an orange” are867

unlikely to be helpful.868

C: Misleading results can arise when legitimate members of one model class (here a blood orange)869

happen to appear closer to the exemplar of the other one (the apple). Such brittleness depends870

partly on the metric chosen (here, one that weights similarity of color over form) and partly on the871

narrowness of defined exemplars (here, an orange class that allows little variation in color). However,872

these issues are systemic to model selection.873

D: Our simulations examined the results of model selection assigning neural firing dynamics to the874

conceptual classes of “ramps” and “steps”, using the exemplars of a particular drift-diffusion model875

and negative-binomial step-time model respectively. Simulated neurons with mixed responses imposed876

over an otherwise DDM-consistent generative process were consistently assigned to the step model.877

A similar outcome emerged for neurons generated from a hybrid model with steps for one set of trials878
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and the DDM for another set of trials. Other simulations derived from the DDM were more clearly879

within the “ramps” class: modifying only the form of spiking noise, or allowing condition-dependent880

diffusion variance. These were misleadingly assigned to the “steps” class.881
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Supplementary Figures882
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Supp. Figure 1 - Task Details

Supplementary Figure 1: Tasks performed by monkeys for recording of LIP neurons and
PMd neurons.

A: Sequence of events comprising a typical trial in the oculomotor fixed-duration discrimination task883

used in Rorie et al. (2010). Figure adapted from Figure 1 of Rorie et al. (2010). From left to right,884

trials begin with the onset of a fixation point. Shortly after the monkey fixates its gaze on the fixation885

point, two saccade targets appear and then change color indicating the magnitude of the reward886

available for correctly choosing that target. A blue color target indicates a low magnitude (L) reward,887

while a red color target indicates a high magnitude (H) reward. The four reward conditions are888

depicted vertically—HL, LH, HH, LL, from top to bottom. The visual motion stimulus is centered on889
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the fixation point. Following offset of the motion stimulus, the animals wait for a short randomized890

delay period (300 – 550 ms), and then the fixation point extinguishes and the animal is free to make891

its choice. A successful trial is rewarded with a drop of juice.892

B: An illustration of the setup for the behavioral task used for recording decision-related activity in893

the reaction time visual discrimination task used for PMd. We gently restrained the arm the monkey894

was not using with a plastic tube and cloth sling. We tracked a reflective IR bead taped on the895

middle digit of the hand to mimic a touch screen and to provide an estimate of instantaneous arm896

position. Eye position was tracked using an infra-red reflective mirror placed in front of the monkey’s897

nose.898

C: Time line of the somatomotor reaction time discrimination task used for recording of PMd data in899

Chandrasekaran et al. (2017). From left to right, trials begin with the onset of a central hold target900

and a fixation cross. Shortly after the monkey places his hand on the central hold and fixates on the901

cross, two reach targets appear on either side of the central target. The targets are red and green902

in color. On some trials the left target is red and the right target is green and vice versa. After a903

brief holding period, a central static checkerboard composed of red and green squares appears. The904

task is a reaction time task and thus the monkey is free to initiate a reach whenever he feels he has905

sufficient evidence to report his decision.906

D: Examples of different stimulus ambiguities used in the experiment parameterized by the color907

coherence of the Checkerboard cue defined as SC=100×(R-G)/(R+G). Positive values of signed908

color coherence denote more red than green squares and vice-versa.909
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Supp. Fig 2-Average FR of PMd neurons aligned to checkerboard

Cue

Supplementary Figure 2: Average firing rate of increased PMd units aligned to checker-
board onset, organized by reaches into the PREF or NONPREF direction, and sorted by
either coherence or reaction time.

A: Average firing rate across all 429 increased units considered in this study sorted by the coherence910

of the checkerboard and the choice made by the animal. Colors label coherence conditions from easy911

(purple) to difficult (orange). Solid lines show movements to the PREF-direction; dashed lines show912

the NONPREF-direction. firing rate traces are obtained using 50ms causal boxcar filters, and, in913

the CUE-aligned upper panels, truncated at the center point of the reaction-time range for each914

coherence.915

B: Average firing rate across all 429 increased units considered in this study sorted by the reaction916

time of the animals and the choice made by the animals. Solid lines depict reaches for the PREF917

direction; dashed lines depict the NONPREF direction. Colors denote different reaction time bins.918
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Supplementary Figure 3: Both step model and DDM assume that Fano factor is super-
Poisson (or overdispersed)

A: Average firing rate for a condition with strong drift rates or large firing rate step (solid lines) or919

modest drift rates or steps (dashed lines) directions of 50 hypothetical neurons simulated either from920

the DDM (red line) or the step model (blue line) variant described in Latimer et al. (2015b). The921

magnitudes of the various parameters for the DDM and the step model were chosen so that rates of922

the hypothetical step neurons and hypothetical DDM neurons roughly matched.923

B: Average Fano Factor for the same neurons shown in A. Figure conventions as in A. Fano Factor924

for both the step model and the DDM are super-Poisson. We also note that Fano factor for modest925

firing rates, which usually emerges from small drift rates, steadily increases with time for neurons926

simulated from the DDM as defined by Latimer et al. (2015b). The shaded grey rectangle is to draw927

the reader to the rapid increase in Fano factor for modest drift rates when simulated from the DDM.928
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Supplementary Figure 4: Sub-Poisson firing rates impact results of model selection even
with multiple coherences.

A: Shows the simulated Fano factor for the gamma-interval renewal process. Data are averages over929

100 trials simulated at 30 Hz for 1 second each, binned in 10 ms bins. As the shape parameter for930

the gamma distribution increases, the Fano factor decreases from 1.931

B: Box plot of DIC score distribution for DDM simulations with 4 different drift rates and with932

gamma-interval renewal process spiking, as a function of the shape parameter of the gamma-interval933

distribution. Higher values of shape parameter lead to increasing spiking regularity and thus sub-934

Poisson Fano factors. DIC scores for simulated neurons with DDM dynamics were increasingly935

identified as consistent with the step model when the firing rates became more sub-Poisson. Large936

outlier DIC scores (grey dots) sometimes support the DDM for these neurons, but the DIC scores937

for a majority of these underdispersed neurons are consistent with the step model. Each box plot is938

estimated from the DIC scores of 45 neurons. Only neurons with robust firing rate modulation were939

considered for this plot and panel B.940

C: Fraction of neurons consistent with the DDM decreases as the shape parameter of the gamma-941

interval renewal process increases. A neuron was considered consistent with the DDM if DIC was942

less than 0 for the purposes of this study. Note that neurons quickly become inconsistent with the943

DDM even with minor levels of underdispersion.944
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Supp. Fig. 5 - Additional Examples of PMd neurons

Supplementary Figure 5: Additional examples of PMd units that show non monotonicity
in their firing rates as a function of time.

A-E: PREF and NONPREF firing rates for five other PMd units aligned to movement onset. Solid945

lines show PREF firing rates, dashed lines show NONPREF choice firing rates. Colors from purple to946

orange show different reaction time bins. Dashed black line denotes movement onset. Gray shading947
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is provided to orient the eye to the non-monotonicity in the firing rates.948
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Supplementary Figure 6: Another example of a hypothetical PMd neuron with non-
monotonic firing rate profile being identified as consistent with the step model.

A: A plot of f(t), the non-monotonic function (see Eqn. 11) used for simulation of hypothetical949

neurons that mimic the responses of PMd neurons. f(t) is typically multiplied by xj(t) to give rise to950

nonmonotonic latent profiles that are in turn converted into firing rates.951

B: Latent dynamics of another example of a hypothetical neuron meant to mimic the firing rate952

patterns observed in PMd. The existence of many more traces in A compared to Fig. 4Care due to953

the latents initially being generated from a DDM and then multiplied by a non-monotonic profile.954

Green traces reflect one condition and gray traces reflect another condition.955

C: Trial-averaged firing rates of the hypothetical neuron shown in A. For each trial spike trains were956

generated using a Poisson model output process with latent dynamics given in A. Firing rates were957

obtained by averaging over trials for each choice. Note that no steps were involved in the simulation958

but the model selection method returns DIC scores that identify the neuron as better described by959

the step model.960
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