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Abstract

Background Several studies have focused on the microbiota living in en-
vironmental niches including human body sites. In many of these studies
researchers collect longitudinal data with the goal of understanding not just
the composition of the microbiome but also the interactions between the
different taxa. However, analysis of such data is challenging and very few
methods have been developed to reconstruct dynamic models from time series
microbiome data.
Results Here we present a computational pipeline that enables the integra-
tion of data across individuals for the reconstruction of such models. Our
pipeline starts by aligning the data collected for all individuals. The aligned
profiles are then used to learn a dynamic Bayesian network which represents
causal relationships between taxa and clinical variables. Testing our meth-
ods on three longitudinal microbiome data sets we show that our pipeline
improve upon prior methods developed for this task. We also discuss the
biological insights provided by the models which include several known and
novel interactions.
Conclusions We propose a computational pipeline for analyzing longitudi-
nal microbiome data. Our results provide evidence that microbiome align-
ments coupled with dynamic Bayesian networks improve predictive perfor-
mance over previous methods and enhance our ability to infer biological

IThese authors have contributed equally to this work.
∗Correspondence: Giri Narasimhan, giri@fiu.edu; Ziv Bar-Joseph, zivbj@cs.cmu.edu
1Computational Biology Department, School of Computer Science, Carnegie Mellon

University, Pittsburgh, Pennsylvania, 15213, USA
2Bioinformatics Research Group, Florida International University, Miami, Florida,

33199, USA

Preprint submitted to Journal Name October 1, 2018

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/430462doi: bioRxiv preprint 

https://doi.org/10.1101/430462
http://creativecommons.org/licenses/by-nc-nd/4.0/


relationships within the microbiome and between taxa and clinical factors.

Keywords: Dynamic interaction network inference, Longitudinal
microbiome analysis, Microbial composition prediction, Dynamic Bayesian
networks, Temporal alignment

1. Introduction1

Multiple efforts have attempted to study the microbiota living in environ-2

mental niches including human body sites. These microbial communities can3

play beneficial as well as harmful roles in their hosts and environments. For4

instance, microbes living in the human gut perform numerous vital functions5

for homeostasis ranging from harvesting essential nutrients to regulating and6

maintaining the immune system. Alternatively, a compositional imbalance7

known as dysbiosis can lead to a wide range of human diseases [1], and is8

linked to environmental problems such as harmful algal blooms [2].9

While many studies profile several different types of microbial taxa, it is10

not easy in most cases to uncover the complex interactions within the mi-11

crobiome and between taxa and clinical factors (e.g., gender, age, ethnicity).12

Microbiomes are inherently dynamic, thus, in order to fully reconstruct these13

interactions we need to obtain and analyze longitudinal data [3]. Examples14

include characterizing temporal variation of the gut microbial communities15

from pre-term infants during the first weeks of life, and understanding re-16

sponses of the vaginal microbiota to biological events such as menses. Even17

when such longitudinal data is collected, the ability to extract an accurate18

set of interactions from the data is still a major challenge.19

To address this challenge we need computational time-series tools that can20

handle data sets that may exhibit missing or noisy data and non-uniform sam-21

pling. Furthermore, a critical issue which naturally arises when dealing with22

longitudinal biological data is that of temporal rate variations. Given lon-23

gitudinal samples from different individuals (for example, gut microbiome),24

we cannot expect that the rates in which interactions take place is exactly25

the same between these individuals. Issues including age, gender, external26

exposure, etc. may lead to faster or slower rates of change between individ-27

uals. Thus, to analyze longitudinal data across individuals we need to first28

align the microbial data. Using the aligned profiles we can next employ other29

methods to construct a model for the process being studied.30
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Most current approaches for analyzing longitudinal microbiome data fo-31

cus on changes in outcomes over time [4, 5]. The main drawback of this32

approach is that individual microbiome entities are treated as independent33

outcomes, hence, potential relationships between these entities are ignored.34

An alternative approach involves the use dynamical systems such as the35

generalized Lotka-Volterra (gLV) models [6, 7, 8, 9]. While gLV and other36

dynamical systems can help in studying the stability of temporal bacterial37

communities, they are not well-suited for causality and probabilistic infer-38

ence over discrete time. Finally, probabilistic graphical models (e.g., hidden39

Markov models, Kalman filters and dynamic Bayesian networks) are ma-40

chine learning tools which can effectively model dynamic processes, as well41

as discover causal interactions [10].42

In this work we first adapt statistical spline estimation and dynamic time-43

warping techniques for aligning time-series microbial data so that they can44

be integrated across individuals. We use the aligned data to learn a Dynamic45

Bayesian Network (DBN), where nodes represent microbial taxa, clinical con-46

ditions, or demographic factors and edges represent causal relationships be-47

tween these entities. We evaluate our model by using multiple data sets48

comprised of the microbiota living in human body parts including gastroin-49

testinal tract, urogenital tract and oral cavity. We show that models for50

these systems can accurately predict changes in taxa and that they greatly51

improve upon models constructed by prior methods. Finally, we characterize52

the biological relationships in the reconstructed microbial communities and53

discuss known and novel interactions discovered by these models.54

2. Methods55

Data sets56

We collected multiple public longitudinal microbiome data sets for testing57

our method:58

Infant gut microbiome This data set was collected by La Rosa et59

al. [5]. They sequenced gut microbiome from 58 pre-term infants in neonatal60

intensive care unit (NICU). The data was collected during the first 12 weeks61

of life (until discharged from NICU or deceased) sampled every day or two62

on average. Following analysis 29 microbial taxa were reported across the63

922 total infant gut microbiome measurements. In addition to the taxa64

information, this data set includes clinical and demographic information for65

example, gestational age at birth, post-conceptional age when sample was66
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obtained, mode of delivery (C-section or vaginal), antibiotic use (percentage67

of days of life on antibiotic), and more (see Additional file 1: Table S1 for68

complete list of clinical features available).69

Vaginal microbiome The vaginal microbiota data set was collected by70

Gajer et al. [4]. They studied 32 reproductive-age healthy women over a71

16-week period. This longitudinal data set is comprised of 937 self-collected72

vaginal swabs and vaginal smears sampled two times a week. Analysis identi-73

fied 330 bacterial taxa in the samples. The data also contains clinical and de-74

mographic attributes on the non-pregnant women such as Nugent score [11],75

menses duration, tampon usage, vaginal douching, sexual activity, race and76

age. To test the alignment methods we further sub-divided the microbial77

composition profiles of each subject by menstrual periods. This resulted in78

119 time-series samples, an average of 3-4 menstrual cycles per woman. Ad-79

ditional file 2: Figure S1a shows four sub-samples derived from an individual80

sample over the 16-week period along with corresponding menses informa-81

tion.82

Oral cavity microbiome The cavity data was downloaded from the83

case-control study conducted by DiGiulio et al. [12] comprised of 40 pregnant84

women, 11 of whom delivered pre-term. Overall they collected 3, 767 samples85

and identified a total of 1, 420 microbial taxa. Data was collected weekly dur-86

ing gestation and monthly after delivery from four body sites: vagina, distal87

gut, saliva, and tooth/gum. In addition to bacterial taxonomic composition,88

these data sets report clinical and demographic attributes which include ges-89

tational status, gestational or postpartum day when sample was collected,90

race and ethnicity. In this paper, we solely focus on the tooth/gum samples91

during gestation from Caucasian women in the control group to reduce poten-92

tial confounding factors. This restricted set contains 374 temporal samples93

from 18 pregnant women.94

Additional file 1: Table S1 summarizes the three longitudinal microbiome95

data sets used in this study, including the complete list of clinical features96

available.97

Temporal alignment98

As mentioned in the Background, a challenge when comparing time series99

obtained from different individuals is the fact that while the overall process100

studied in these individuals may be similar, the rates of change may differ101

based on several factors (age, gender, other diseases, etc.). Thus, prior to102

modeling the relationships between the different taxa we first align the data103
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sets between individuals by warping the time scale of each sample into the104

scale of another representative sample referred to as reference. The goal of an105

alignment algorithm is to determine, for each individual i, a function fi(t)106

which takes as an input a reference time t and outputs the corresponding107

time for individual i. Using this function we can compare taxa values for108

all individuals sampled for the same time point. This approach effectively109

sets the stage for accurate discovery of trends and patterns, hence, further110

disentangling the dynamic and temporal relationships between entities in the111

microbiome.112

There are several possible options for selecting transformation function fi.113

Most methods used to date rely on polynomial functions [13, 14]. Prior work114

on the analysis of gene expression data indicated that given the relatively115

small number of time points for each individual simpler functions tend to116

outperform more complicated ones [15]. Therefore, we used a first degree117

polynomial: fi(t) = (t−b)
a

as the alignment function for tackling the temporal118

alignment problem, where a and b are the parameters of the function.119

Data pre-processing120

Since alignment relies on continuous (polynomial) functions while the121

data is sampled at discrete internals, the first step is to represent the sample122

data using continuous curves as shown by the transition from Fig. 1a to123

Fig. 1b. Following prior work [15], we use B-splines for fitting continuous124

curves to microbial composition time-series data, thus, enabling principled125

estimation of unobserved time points and interpolation at uniform intervals.126

To avoid overfitting we removed any sample that had less than nine measured127

time points, and estimated a cubic B-spline from the observed abundance128

profile for all taxa in remaining samples using splrep and BSpline from the129

Python function scipy.interpolate. Additional file 3: Figure S2 shows the130

original and cubic spline of a representative microbial taxa from a randomly131

selected individual sample across each data set.132

Aligning microbial taxon133

To discuss the alignment algorithm we first assume that a reference sam-134

ple, to which all other samples would be aligned, is available. We next discuss135

how to chose such reference.136

Formally, let sjr(t) be the spline curve for microbial taxa j at time t ∈
[tmin, tmax] in the reference time-series sample r, where tmin and tmax denote
the starting and ending time points of sjr, respectively. Similarly, let sji (t

′)
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be the spline for individual i in the set of samples to be warped for taxa
j at time t′ ∈ [t′min, t

′
max]. Next, analogously to Bar-Joseph et al. [13], the

alignment error for microbial taxa j between sjr and sji is defined as

ej(r, i) =

∫ β
α

(sji (fi(t))− sjr(t))2dt

β − α
,

where α = max{tmin, f−1
i (t′min)} and β = min{tmax, f−1

i (t′max)} correspond
to the starting and ending time points of the alignment. Observe that by
smoothing the curves, it is possible to estimate the values at any intermediate
time point in the alignment interval [α, β]. Finally, we define the microbiome
alignment error for a microbial taxon of interest S between individual samples
r and i as follows

EM(r, i) =
∑
j∈S

ej(r, i).

Given a reference r and microbial taxon S, the alignment algorithm task137

is to find parameters a and b that minimize EM for each individual sample i138

in the data set subject to the constraints: a > 0, α < β and (β−α)
(tmax−tmin)

≥ ε.139

The latter constraint enforces that the overlap between aligned interval [α, β]140

and reference interval [tmin, tmax] is at least ε, otherwise trivial solutions (for141

example, no overlap leading to 0 error) would be selected. Here we used142

ε = 0.3 though results remain the same with larger values of ε. Fig. 1c143

illustrates an aligned set of four samples where reference sample r is shown144

in orange. Alternatively, Additional file 2: Figure S1b shows the temporal145

alignment between the sub-samples of the vaginal microbiome sample shown146

in Figure S1a for taxa L. crispatus using the first menstrual period sub-147

sample as reference (shown in orange).148

Selecting a reference sample149

Finding a reference that jointly minimizes EM for all samples requires150

combinatorial analysis which takes time that is exponential in the number of151

individuals [13].152

Instead, we used a heuristic approach to find the best pairwise alignment153

function and, ultimately, select an optimal reference. In particular, we first154

find the best pairwise alignments via a grid-search parameter sweep between155

a ∈ (0, 4] with increments of 0.01 and b ∈ [−50, 50] with increments of 0.5 in156

the linear alignment function fi previously described. It is important to note157

that this restricted search space for parameters a and b may lead to some158
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sample pairs (r, i) without a temporal alignment because overlap constraint is159

not met. Additionally, we filtered out any microbial taxa j ∈ S for which the160

mean abundance in either sjr or sji was less than 0.1%, or had zero variance161

over the originally sampled time points. Lastly, an optimal reference for162

each data set is determined by generating all possible pairwise alignments163

between samples. To select the best reference r∗ we employed the following164

criteria: (1) at least 90% of the individual samples are aligned to r∗, and (2)165

the alignment error EM is minimized.166

Abnormal or noisy samples filtering As a post-processing step, we167

implemented a simple procedure which takes as input the resulting individual-168

wise alignments to identify and filter out abnormal and noisy samples. Given169

an aligned microbiome data set, we (1) computed the mean µ and standard170

deviation δ of the alignment error EM across all aligned individual samples,171

and (2) removed all samples from an individual where EM > µ + (2 × δ).172

Fig. 1d shows the filtered set for the aligned taxa in the previous step173

(Fig. 1c). This analysis can both, help to identify outliers and improves174

the ability to accurately reconstruct models for taxa interactions as we show175

in Results.176

Taxon selection from alignment As previously described, the micro-177

biome alignment error EM for a pairwise alignment is restricted to the set178

of microbial taxa S which contributed to the alignment. However, this set179

of microbes can vary for different pairwise alignments even with the same180

reference. Therefore, we focused on the subset of taxa which contributed to181

at least half of the pairwise alignments for the selected reference.182

Additional file 4: Table S2 lists alignment information for each data set183

such as reference sample, number of aligned samples and selected taxa.184

Model construction185

Using the aligned taxa, we next attempted to learn graphical models186

that provide information about the causal impacts of taxa and clinical or187

demographic variables on other taxa. For this, we used Dynamic Bayesian188

Networks (DBNs) which have been widely used to model sequential data,189

including speech [16, 17], biological [18, 19, 10], or economic sequences [20,190

21]. A DBN is a directed acyclic graph where, at each time slice (or time191

instance), nodes correspond to random variables of interest (e.g., taxa, post-192

conceptional age, or Nugent score) and directed edges correspond to their193

conditional dependencies in the graph [22]. These time slices are not modeled194

separately. Instead a DBN contains edges connecting time slices known as195
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inter edges that are repeated for each time point modeled as depicted in196

Fig. 1e. In summary, the model learns the transition probability from one197

time point to the next as a stationary conditional probability. DBNs are198

considered generative models, therefore, ideal for modeling the compositional199

interactions and dynamics of the microbiota given the first time point.200

Here, we use a “two-stage” DBN model in which only two slices are201

modeled and learned at a time. Throughout this paper, we will refer to the202

previous and current time slice with suffix ti and ti+ 1, respectively. Fig. 1e203

illustrates a skeleton of the general structure of a two-stage DBN in the204

context of a longitudinal microbiome study. In this example, for each time205

slice, the nodes correspond to random variables of observed quantities for206

different microbial taxa (T1, T2, T3, T4) or clinical factors (C1, C2, C3) shown207

as circles and diamonds, respectively. These variables can be connected by208

intra edges (dotted lines) or inter edges (solid lines). In this DBN model,209

the abundance of a particular microbe in the current time slice is determined210

by parameters from both intra and inter edges, thus, modeling the complex211

interactions and dynamics between the entities in the microbial community.212

Typically, analysis using DBNs is divided into two components: learning213

the network structure and parameters and inference on the network. The214

former can be further sub-divided into (i) structure learning which involves215

inferring from data the causal connections between nodes (i.e., learning the216

intra and inter edges) while avoiding overfitting the model, and (ii) param-217

eter learning which involves learning the parameters of each intra and in-218

ter edge in a specific network structure. There are only a limited number219

of open software packages which support both learning and inference with220

DBNs [23, 24] in the presence of discrete and continuous variables. Here we221

used CGBayesNets package [23, 10] which is freely available software package222

for learning the network structure and performing inference for Conditional223

Gaussian Bayesian models [25]. While useful, CGBayesNets does not support224

several aspects of DBN learning including the use of intra edges, searching225

for a parent candidate set in the absence of prior information and more. We226

have thus extended the structure learning capabilities of CGBayesNets to227

include intra edges while learning network structures and implemented well-228

known network scoring functions for penalizing models based on the number229

of parameters such as Akaike Information Criterion (AIC) and Bayesian In-230

formation Criterion (BIC) [26].231

Learning DBN model parameters Let Θ denote the set of param-
eters for the DBN and G denote a specific network structure over discrete
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and continuous variables in the microbiome study. In a similar manner to
McGeachie et al. [10], we can decompose the joint distribution as

P (∆)F (Ψ|∆) =
∏
x∈∆

p(x |PaG(x))
∏
y∈Ψ

f(y |PaG(y))

where P denotes a set of conditional probability distributions over discrete
variables ∆, F denotes a set of linear Gaussian conditional densities over
continuous variables Ψ, and PaG(X) denotes the set of parents for variable
X in G. Since we are dealing with both, continuous and discrete nodes in the
DBN, in our method, continuous variables (i.e., microbial taxa compositions)
are modeled using a Gaussian with the mean set based on a regression model
over the set of continuous parents as follows

f(y |u1, · · · , uk) ∼ N(λ0 +
k∑
i=1

λi × ui, σ2)

where u1, · · · , uk are continuous parents of y; λ0 is the intercept; λ1, · · · , λk are
the corresponding regression coefficients for u1, · · · , uk; and σ2 is the standard
deviation. We point out that if y has discrete parents then we need to
compute coefficients L = {λi}ki=0 and standard deviation σ2 for each discrete
parents configuration. For example, the conditional linear Gaussian density
function for variable T4 ti+1 in Fig. 1e denoted as f(T4 ti+1 |T4 ti, C3 ti, T2 ti+1)
is modeled by

N(λ0 + λ1 × T4 ti + λ2 × C3 ti + λ3 × T2 ti+1, σ
2),

where λ1, λ2, λ3 and σ2 are the DBN model parameters. In general, given232

a longitudinal data set D and known structure G, we can directly infer the233

parameters Θ by maximizing the likelihood of the data given our regression234

model.235

Learning DBN structure Learning the DBN structure can be ex-
pressed as finding the optimal structure and parameters

max
Θ,G

P (D |Θ, G)P (Θ, G) = P (D,Θ |G)P (G),

where P (D |Θ, G) is the likelihood of the data given the model. Intuitively,236

the likelihood increases as the number of valid parents PaG(·) increases,237

thus, making it challenging to infer the most accurate model for data set238
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D. Therefore, the goal is to effectively search over possible structures while239

using a function that penalizes overly complicated structures and protects240

from overfitting.241

Here, we maximize P (D,Θ |G) for a given structure G using maximum
likelihood estimation (MLE) coupled with BIC score instead of Bayesian
Dirichlet equivalent sample-size uniform (BDeu) metric used in CGBayesNets.
The BDeu score requires prior knowledge (i.e., equivalent sample size priors)
which are typically arbitrarily set to 1; however, multiple studies have shown
the sensitivity of BDeu to these parameters [27, 28], as well as the use of
improper prior distributions [29]. Alternatively, BIC score does not depend
on the prior over the parameters, thus, an ideal approach for scenarios where
prior information is not available or difficult to obtain. Next, in order to
maximize the full log-likelihood term we implemented a greedy hill-climbing
algorithm. We initialize the structure by first connecting each taxa node at
the previous time point (for example T1 ti in Fig. 1e) to the corresponding
taxa node at the next time point (T1 ti+1 in Fig. 1e). We call this setting the
baseline model since it ignores dependencies between taxa’s and only tries
to infer taxa levels based on its levels in the previous time points. Next,
we added nodes as parents of a specific node via intra or inter edges de-
pending on which valid edge (i.e., no cycles) leads to the largest increase of
the log-likelihood function beyond the global penalty incurred by adding the
parameters as measured by the BIC3 score approximation

BIC(G,D) = logP (D |Θ, G)− d

2
logN,

where d = |Θ| is the number of DBN model parameters in G, and N is the242

number of time points in D. Additionally, we imposed an upper bound limit243

on the maximum number of possible parents (maxParents ∈ {1, 3, 5}) for244

each bacterial node X (i.e., |PaG(X)| ≤ maxParents).245

Inferring biological relationships246

Microbial ecosystems are complex, often displaying a stunning diversity247

and a wide variety of relationships between community members. These bi-248

ological relationships can be broadly divided into two categories: beneficial :249

3We also computed AIC score (i.e., AIC(G,D) = logP (D |Θ, G) − d) but it was
consistently outperformed by BIC score.
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(including mutualism, commensalism and obligate), or harmful (including250

competition, amensalism and parasitism). Although the longitudinal data251

sets considered in this study do not provide enough information to further252

sub-categorize each biological relationship (e.g., mutualism vs. commensal-253

ism), we use the learned DBN model from each microbiome data set and254

inspect each interaction as a means for inferring simple to increasingly com-255

plex relationships. For example, consider variable T4 ti in Fig. 1e. Given that256

ti and ti+1 represent the previous time point and the current time point (re-257

spectively), the possible inference in this case is as follows: Edges from T4 ti258

and C3 ti (inter edges), and from T2 ti+1 (intra edge) suggest the existence259

of a temporal relationship in which the abundance of taxa T4 at a previous260

time instant and abundance of taxa T2 at the current time instant, as well261

as condition C3 from the previous time instant impact the abundance of T4262

at the current time. We previously stated that f(T4 ti+1 |T4 ti, C3 ti, T2 ti+1)263

is modeled by N(λ0 + λ1 × T4 ti + λ2 × C3 ti + λ3 × T2 ti+1, σ
2). Therefore,264

inspecting the regression coefficients λ1, λ2, λ3 immediately suggests whether265

the impact is positive or negative. In this example, the regression coefficients266

λ1, λ2 are positive (λ1, λ2 > 0) while coefficient λ3 is negative (λ3 < 0), thus,267

variables T4 ti and C3 ti exhibit positive relationships with microbial taxa268

T4 ti+1 shown as green edges in Fig. 1e, whereas taxa T2 ti exhibits a negative269

interaction with T4 ti+1 shown as a red edge (Fig. 1e). This simple analytic270

approach enables us to annotate each biological relationship with directional271

information.272

Network visualization273

All the bootstrap networks4 shown are visualized using Cytoscape [30]274

version 3.6.0, using Attribute Circle Layout with Organic Edge Router. An275

in-house script is used to generate a custom style XML file for each network,276

encoding the following information in the graph:277

• Time ti nodes colored in orange278

• Time ti+ 1 nodes colored in blue279

• Number of incoming edges directly proportional to node size280

4For each data set, we ran 500 bootstrap realizations and only reported edges with
bootstrap support of at least 50% in the consensus DBN.
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• Taxa abundance directly proportional to node transparency281

• Clinical and demographic nodes represented with diamond shaped nodes282

• Taxa nodes represented with circle shaped nodes283

• Solid edges represent inter edges (i.e., from time slice ti to ti+ 1)284

• Dashed edges represent intra edges285

• Positively weighted edges are colored in green286

• Negatively weighted edges are colored in red287

• Regression coefficient directly proportional to edge thickness288

• Bootstrap value directly proportional to edge transparency289

Also the regression coefficients corresponding to edge thickness were nor-
malized as follows: Let y be a microbial taxa node with continuous taxa
parents u1, · · · , uk modeled by

f(y |u1, · · · , uk) ∼ N(λ0 +
k∑
i=1

λi × ui, σ2)

where λ1, · · · , λk are the corresponding regression coefficients for u1, · · · , uk
as previously described in this section. The normalized regression coefficients
{λNi }ki=1 are defined as

λNi =
λi × ūi∑k

j=1 |λj × ūj|
,

where ūi is the mean abundance of taxa ui across all samples.290

3. Results291

Fig. 1 presents the computational pipeline we developed for aligning and292

learning DBNs for microbiome and clinical data. We start by estimating a293

cubic spline from the observed abundance profile of each taxa (Fig. 1b). Next,294

we determine an alignment which allows us to directly compare temporal data295

across individuals (Fig. 1c), as well as filter out abnormal and noisy samples296

(Fig. 1d). Finally, we use the aligned data to learn causal dynamic models297
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that provide information about interactions between taxa, their impact, and298

the impact of clinical variables on taxa levels over time (Fig. 1e-f).299

We applied our methods to study longitudinal data sets from three human300

microbiome niches: infant gut, vagina and oral cavity (see Methods for full301

descriptions). In addition to the differences in the taxa they profile, these302

data sets vary in the number of subjects profiled (ranging from 18 to 58,303

in the number of time points they collected, the overall number of samples304

and time series that were studied, etc. Thus, they provide a good set to test305

the generality of our methods and their usefulness in different microbiome306

studies.307

Infant gut alignments captures gestational age at birth308

Below, we discuss in detail the improved accuracy of the learned dynamic309

models due to use of temporal alignments. However, even before using them310

for our models, we wanted to test whether the alignment results agree with311

biological knowledge. For this, we used the infant gut data. Infant gut mi-312

crobiota goes through a patterned shift in dominance between three bacterial313

populations (Bacilli to Gammaproteobacteria to Clostridia) in the weeks im-314

mediately following birth. La Rosa et al. [5] reported that the rate of change315

is dependent on maturation of the infant highlighting the importance of post-316

conceptional age as opposed to day of life when analyzing bacterial compo-317

sition dynamics in preterm infants. We found that our alignment method318

is able to capture this rate of change without explicitly using gestational or319

post-conceptional age.320

Fig. 2 shows the relationship between alignment parameters a and b (from321

the transformation function fi(t) = (t−b)
a

described in Methods) and the ges-322

tational age at birth for each infant in the gut microbiome data set. Each323

aligned infant sample is represented by a blue circle where the x-axis shows324

−b
a

and y-axis shows the gestational age at birth. As can be seen, the align-325

ment parameters are reasonably well correlated with gestational age at birth326

(Pearson’s correlation coefficient = 0.35) indicating that this method can327

indeed be used to infer differences in rates between individuals.328

Resulting dynamic Bayesian network models329

We next applied the full pipeline to learn DBNs from the three micro-330

biome data sets under study. In particular, we use longitudinal data sets331

from three human microbiome niches: infant gut, vaginal and oral cavity as332

described in Methods. In this section, we highlight the overall characteristics333
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of the learned DBN for each aligned and filtered microbiome data set (Fig-334

ure 3 and Additional file 5: Figure S3). In these figures the nodes represent335

taxa and clinical (or demographic) variables and the directed edges represent336

temporal relationships between them. Several triangles were also observed in337

the networks. In some of the triangles, directed edges to a given node were338

linked from both time slices of another variable. We will refer to these as339

directed triangles.340

Infant gut The learned DBN model for the infant gut microbiota data set341

at a sampling rate of 3 days and maxParents = 3 was computed. It contains342

19 nodes per time slice (14 microbial taxa, 4 clinical and 1 demographic343

variable nodes) and 39 directed edges (31 inter edges and 8 intra edges) with344

no directed triangles as shown in Fig. 3a. Since we only learn temporal345

conditional dependence (i.e., incoming edges) for taxa nodes at time slice346

i+ 1, the maximum number of possible edges is 14×maxParents = 42, thus,347

most of the taxa nodes (11 out of 14) have reached the maximum number of348

parents allowed (i.e., maxParents = 3). Additionally, the majority of these349

temporal relationships are between microbial taxa. In particular, the model350

includes several interactions between the key colonizers of the premature351

infant gut: Bacilli, Clostridia and Gammaproteobacteria. Furthermore, the352

only negative interactions learned by the model comprise these microbes353

which are directly involved in the progression of the infant gut microbiota.354

Also, the nodes for gestational age at birth and post-conceptional age at355

birth are not shown because they are isolated from the rest of the network,356

without any single edge. Overall, these trends strongly suggest that the DBN357

is capturing biologically relevant interactions between taxa.358

Vaginal As with the gut microbiome data set, we learned a DBN model359

for the vaginal microbiome data at a sampling rate of 3 days and maxParents =360

3 (Fig. 3b). The resulting DBN is comprised of 24 nodes per time instance361

(23 taxa and 1 clinical) and 58 edges (40 inter edges and 18 intra edges). Ad-362

ditionally, 12 directed triangles involving taxa nodes were observed. In pre-363

liminary analyses, additional clinical and demographic attributes (e.g., Nu-364

gent category, race and age group) resulted in networks with these variables365

connected to all taxa nodes, thus, removed from further analysis. Specif-366

ically, we estimated the degree of overfitting of these variables by learn-367

ing and testing DBN models with and without them. This resulted in the368

DBN shown in Fig. 3b which exhibited lowest generalization error. In this369

case, the maximum number of potential edges between bacterial nodes is370

24 × maxParents = 72; however, only 16 out of 24 taxa nodes reached the371
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threshold on the maximum number of parents. Among all the 58 edges, only372

one interaction Day Period ti+1 to L. iners ti+1 involves a clinical node373

whereas the remaining 57 edges (including 15 negative interactions) cap-374

tured temporal relationships among microbial taxa. This mixture of positive375

and negative interactions between taxa provides evidence of the DBNs ability376

to capture the complex relationships and temporal dynamics of the vaginal377

microbiota.378

Oral cavity We learned a DBN with the longitudinal tooth/gum mi-379

crobiome data set with a sampling rate of 7 days and maxParents = 3.380

Additional file 5: Figure S3 shows the learned DBN which contains 20 nodes381

for each time slice (19 taxa and 1 clinical) and 52 edges (33 inter edges and382

19 intra edges) out of 57 possible edges. In addition 2 directed triangles383

were observed involving taxa nodes. Here, the DBN model includes multiple384

positive and negative interactions among early colonizers (e.g., Veillonella385

and H. parainfluenzae) and late colonizers (e.g., Porphyromonas) of the oral386

microbiota which are supported by previous experimental studies [31].387

Comparisons to prior methods388

To evaluate the accuracy of our pipeline and to compare them to models389

reconstructed by prior methods published in the literature [32, 10], we used390

a per-subject cross-validation with the goal of predicting microbial taxon391

abundances using the learned models. In each iteration, the longitudinal mi-392

crobial abundance profile of a single subject was selected as the test set, and393

the remaining profiles were used for building the network and learning model394

parameters. Next, starting from the second time point, we used the learned395

model to predict an abundance value for every taxa in the test set at each396

time point using the previous and current time points. Predicted values were397

normalized to represent relative abundance of each taxa across the microbial398

community of interest. Finally, we measured the average predictive accuracy399

by computing the mean absolute error (MAE) for the selected taxon in the400

network. We repeated this process (learning the models and predicting based401

on them) for several different sampling rates, which ranged from 1 up to 28402

days depending on the data set. The original and predicted microbial abun-403

dance profiles can be compared as shown in Fig. 1f. The average MAE for404

predictions on the three data sets are summarized in Fig. 4(a-c). For each405

data set, error plots are shown for ten different methods. Along with two of406

our DBNs (one with and one without alignments), four methods with and407

four without alignments were compared. These are further described below.408
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First, we compared the DBN strategy to a naive (baseline) approach. This409

baseline approach makes the trivial prediction that the abundance value for410

each taxa A at any given point is exactly equal to the abundance measured411

at the previous time point. Given that measured abundances are continuous412

variables, this turns out to be an extremely competitive method and per-413

forms better than most prior methods for the data sets we tested on. Next,414

we compared our DBNs to three other methods suggested for modeling in-415

teractions among taxa: (a) McGeachie et al. [10] developed a different DBN416

model where network learning is estimated from the BDeu scoring metric [23]417

(instead of MLE), (b) McGeachie et al.++ an in-house implementation that418

extends McGeachie et al.’s method to allow for intra edges during structure419

learning, and (c) MTPLasso [32] that models time-series microbial data us-420

ing a gLV model. In all cases, we used the default parameters as provided in421

the original publications.422

As can be seen, our method outperforms the baseline and previous meth-423

ods for the infant gut data. It also performs favorably when compared to424

baseline on the other two data sets. Temporal alignments improved the425

predictive performance over unaligned samples across gut and vaginal mi-426

crobiomes by about 1-4 percentage points. In particular, a two-tailed t-427

test indicates significant (denoted by *) performance improvements for most428

sampling rates (infant gut : p− value = 0.043* for 1d, p− value = 0.034*429

for 3d, p− value = 0.109 for 5d, and p− value < 1.00E − 05* for 7d;430

vaginal : p− value < 1.00E − 06* for 1d, p− value < 1.00E − 05* for431

3d, p− value = 5.50E − 05* for 5d, p− value = 3.10E − 03* for 7d, and432

p− value = 0.097 for 14d). On the other hand, alignments did not show433

significant predictive performance improvements on the oral data set and is434

consistent with previous analysis on the same data set [12]. Surprisingly,435

the simple baseline approach outperforms all previously published methods:436

McGeachie et al. [10] and MTPLasso [32] across the three data sets. Finally,437

Fig. 4d highlights the MAE results for a sampling rate that most closely438

resembles the originally measured time points.439

Anomaly detection using alignment440

When analyzing large cohorts of microbiome data, it is important to441

implement a strategy to remove outliers as these can affect our ability to442

generalize from the collected data. As discussed in Methods, we can use our443

alignment error EM score to identify such subjects and remove them prior to444

modeling. In the context of the gut data set, this resulted in the identification445
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of two infant samples: Subjects 5 and 55 (highlighted in red within Additional446

file 6: Figure S4a) which are likely processing errors, contaminated samples,447

or just natural anomalies. Sample 55 has been previously identified as a448

likely abruption event by McGeachie et al. [10] using a different approach.449

Similarly, Additional file 6: Figure S4b shows the distribution of alignment450

errors EM for the vaginal microbiome data. In this case, we remove 6 sub-451

samples from 4 different women (highlighted in red). We note that there were452

no outliers identified in the oral cavity microbiome data set. When learning453

DBNs following the filtering we obtain even better models. Additional file 7:454

Figure S5 compares the average MAE results of our proposed DBN model455

between the unfiltered and filtered samples for the gut and vaginal data sets.456

As can be seen, a large performance improvement is observed for the gut data457

while a slight improvement is observed for the vaginal data when removing458

the outliers. These results suggest that even though the method uses less459

data to learn the models, the models that it does learn are more accurate.460

4. Discussion461

The power of temporal alignments462

We developed a pipeline for the analysis of longitudinal microbiome data463

and applied it to three data sets profiling different human body parts. To464

evaluate the reconstructed networks we used them to predict changes in taxa465

abundance over time. Interestingly, ours is the first method to improve upon466

a naive baseline (Fig. 4). While this does not fully validate the accuracy of467

the models, it does mean that the additional interactions determined by our468

method contribute to the ability to infer future changes and so at least some469

are likely true.470

As part of our pipeline we perform temporal alignment. While ground471

truth for alignments is usually hard to determine, in one of the data sets we472

analyzed we could compare the alignment results to external information to473

test its usefulness. In the context of the infant gut data, it has been shown474

that using day of life as the independent variable hinders the identification of475

associations between bacterial composition and day of sampling. Therefore,476

previous work have re-analyzed the premature gut microbiota with post-477

conceptional age, uncovering biologically relevant relationships [5]. By using478

alignment we were able to correct for this difference without the need to479

rely on the external age information. In addition to the results presented in480
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Fig. 2, the learned DBN in Fig. 3a does not show any relationships to post-481

conceptional age or gestational age at birth indicating that our alignment482

was able to successfully compensate for. While for this data such correction483

could have been made using post-conceptional age, in other cases the reason484

for the rate change may not be obvious and without alignment it would be485

hard to account for such hidden effects.486

Uncovering biological relationships487

We next discuss in more detail the learned DBN models.488

Infant gut As mentioned in Results, the only negative relationships iden-489

tified supports the known colonization order, that is, a shift in dominance490

from Bacilli to Gammaproteobacteria to Clostridia) [5], as the infant goes491

through the first several weeks of life. These edges show incoming negative492

relationships to Bacilli from Gammaproteobacteria and Clostridia. In partic-493

ular, an increase in the abundance of the parents is associated with a decrease494

in the abundance of the child. The negative edge from Gammaproteobacte-495

ria to Clostridia agrees with previous findings where Clostridia’s abundance496

is found to increase at a gradual rate until it peaks at post-conceptional497

age between 33 and 36 weeks whereas Gammaproteobacteria decreases as498

infants age [5, 10]. This relationship is also confirmed by the edges from499

Day of life to Gammaproteobacteria and Clostridia (Fig. 3b). Moreover, the500

DBN model indicates a relationship between breastfeeding and Actinobacte-501

ria, Bacteroidia, and Alphaproteobacteria. These bacteria are known to be502

present in breast milk which is known to heavily influence and shape the503

infant gut microbiome [33].504

Vaginal It has been established that microbial composition can change505

dramatically during the menses cycle and later return to a ‘stable’ state be-506

fore the next menstrual period [34, 35]. Previous studies have identified a507

subset of individuals in this data set as exhibiting a microbial composition508

dominated by L. crispatus with a notable increase of L. iners around the509

start of each menstrual period [4, 34] (Additional file 2: Figure S1a). These510

interactions were also captured by the learned DBN model in the form of a511

directed triangle involving L. crispatus and L. iners (Fig. 3b). On the other512

hand, subjects from another group were characterized as dominated by L.513

gasseri coupled with shifts to Streptococcus during menstruation [4]. These514

relationships were also captured by the DBN. The edge from the Day Period515

to L. iners strengthens this relationship. Furthermore, while L. iners has516

a lower protective value than the other Lactobacillus [36], the negative edge517
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between L. iners and Atopobium suggests a relationship related to environ-518

ment protection. Also, the positive edge from Atopobium to Gardnerella is519

supported by the synergy observed between these two taxa in bacterial vagi-520

nosis [37]. Finally, it is important to note that the shifts and composition of521

the vaginal microbiome vary considerably between each subject.522

Oral For oral microbiomes, several Streptococcus species, including S.523

oralis, S. mitis, S. gordonii, and S. sanguis are well known as early colo-524

nizers lying close to the tooth pellicle [31]. While our DBN cannot identify525

specific species, it suggests interactions between some species of Streptococ-526

cus and other later colonizers in the oral microbiome such as Porphyromonas527

and Prevotella. The DBN also provided novel predictions, for example taxa528

Granulicatella is interacting with Veilonella.529

Triangles in DBNs530

An interesting aspect shared by all of the DBNs discussed above is the531

fact that they contain triangles or feed-forward loops. In particular many of532

these directed triangles are created from nodes representing both time slices533

of another variable, but with different signs (one positive and the other neg-534

ative). For example, microbial taxa L. crispatus displays a directed triangle535

with another taxa L. iners in the vaginal DBN (Fig. 3b). In this triangle, pos-536

itive edges from L. iners ti interact with L. iners ti+1 and L. crispatus ti+1537

whereas a negative edge connects L. iners ti+1 to L. crispatus ti+1.538

The triangles in the DBNs represent a relationship where the abundance539

of a child node cannot be solely determined from the abundance of a parent at540

one time slice. Instead, information from both the previous and the current541

time slices is needed. This can be interpreted as implying that the child node542

is associated with the change of the abundance values of the parents rather543

than with the absolute values which each node represents.544

Limitation and future work545

While our pipeline of alignment followed by DBN learning successfully546

reconstructed models for the data sets we looked at, it is important to under-547

stand the limitation of the approach. First, given the complexity of aligning548

a large number of individuals, our alignment method is based on a greedy549

algorithm, thus, it is not guaranteed to obtain the optimal result. Even if550

the alignment procedure is successful, the DBN may not be able to reflect551

the correct interactions between taxa. Issues related to sampling rates can552
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impact the accuracy of the DBN (missing important intermediate interac-553

tions) while on the other hand if not enough data is available the model can554

overfit and predict non-existent interactions.555

Given these limitations we would attempt to improve the alignment method556

and its guarantees in future work. We are also interested in studying the557

ability of our procedure to integrate additional molecular longitudinal infor-558

mation including gene expression and metabolomics data which some studies559

are now collecting in addition to the taxa abundance data [38]. We believe560

that our approach for integrating information across individual in order to561

learn dynamic models would be useful for several ongoing and future studies.562

5. Conclusions563

In this paper, we propose a novel approach to the analysis of longitudi-564

nal microbiome data sets using dynamic Bayesian networks with the goal of565

eliciting temporal relationships between various taxonomic entities and other566

clinical factors describing the microbiome. The novelty of our approach lies in567

the use of temporal alignments to normalize the differences in pace of biolog-568

ical processes inherent within different subjects. Additionally, the alignment569

algorithm can be used to filter out abruption events or noisy samples. Our re-570

sults show that microbiome alignments improve predictive performance over571

previous methods and enhance our ability to infer known and potentially572

novel biological and environmental relationships between the various entities573

of a microbiome and the other clinical and demographic factors that describe574

the microbiome.575
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Figure 1: Computational pipeline proposed in this work. Figure shows microbial
taxa Gammaproteobacteria at each step in the pipeline from a set of five representative
individual samples (subjects 1, 5, 10, 32 and 48) of the infant gut data set at a sampling
rate of 1 day. a — Raw relative abundance values for each sample measured at (potentially)
non-uniform intervals even within the same subject. b — Cubic B-spline curve for each
individual sample. Sample corresponding to subject 1 (dark blue) contains less than pre-
defined threshold for measured time points, thus, removed from further analysis. The
remaining smoothed curves enable principled estimation of unobserved time points and
interpolation at uniform intervals. c — Temporal alignment of each individual sample
against a selected reference sample (subject 48 shown in orange). d — Post-alignment
filtering of samples with alignment error higher than a pre-defined threshold. Sample
corresponding to subject 5 (grey) discarded. e — Learning a dynamic Bayesian network
(DBN) structure and parameters. Let nodes (T1, T2, T3, T4) represent microbial taxa and
(C1, C2, C3) represent clinical factors shown as circles and diamonds, respectively. Figure
shows two consecutive time slices ti and ti + 1, where dotted lines connect nodes from
the same time slice referred to as intra edges, and solid lines connect nodes between time
slices referred to as inter edges. Biological relationships are inferred from edge parameters
in the learned DBN which can be positive (green) or negative (red). f — Original and
predicted relative abundance across four infant gut taxa for subject 48 at sampling rate of
1 day. Performance is evaluated by average mean absolute error (MAE) between original
and predicted abundance values (MAE = 0.011).
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Figure 2: Relationship between alignment parameters and gestational age at
birth. Figure shows the relationship between alignment parameters a and b and gesta-
tional age at birth for the aligned infant gut microbiome data set. Each blue dot rep-
resent an aligned infant sample i where x-axis shows −b

a from transformation function

fi(t) = (t−b)
a and y-axis shows the gestational age at birth of infant i. Pearson correlation

coefficient = 0.35.
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a b

Infant gut Vaginal

Figure 3: Dynamic Bayesian network for two representative data sets. Figure
shows two consecutive time slices ti (orange) and ti + 1 (blue), where nodes are either
microbial taxa (circles) or clinical factors (diamonds). Nodes size is proportional to in-
degree whereas taxa nodes transparency indicates mean abundance. Additionally, dotted
lines denote intra edges (i.e., directed links between nodes in same time slice) whereas solid
lines denote inter edges (i.e., directed links between nodes in different time slices). Edge
color indicates positive (green) or negative (red) temporal influence and edge transparency
indicates strength of bootstrap support. Edge thickness indicates statistical influence of
regression coefficient as described in Network visualization. a — Learned DBN for the
aligned infant gut microbiome data at a sampling rate of 3 days and maxParents = 3. b
— Learned DBN for the aligned vaginal microbiome data at a sampling rate of 3 days and
maxParents = 3.
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Figure 4: Comparison of average predictive accuracy between methods on the
filtered data sets. Figure shows the average MAE of our proposed DBN models against
a baseline method and previously published approaches as a function of sampling rates
where d denotes day(s). Additionally, each method is run on the unaligned and aligned
data sets. a — Performance results for infant gut microbiome data. b — Performance
results for vaginal microbiome data. c — Performance results for oral cavity microbiome
data. d — Performance results for each data set for a sampling rate (sr) that most closely
resembles the originally measured time points.
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