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Abstract. Sleep slow waves are known to participate in memory consol-
idation, but slow waves also occur in anesthetized states, with no positive
effect on memory. Here, we shed light onto this paradox, based on a com-
bination of analysis of extracellular recordings in vitro and in in vivo and
computational models. We find two types of slow waves, based on an-
alyzing the temporal patterns of successive slow-wave events. The first
type of slow waves is seen during sleep, while the second type appears
to prevail in anesthetized states. Network models of spiking neurons pre-
dict that these two slow-wave dynamics correspond to different levels of
spike-frequency adaptation in excitatory cells. This prediction was tested
in vitro by varying adaptation strength using an agonist of acetylcholine
receptors, which demonstrated a neuromodulatory switch between the
two types of slow waves. Finally, we show that the first type of slow-
wave dynamics is more sensitive to external stimuli, which can explain
how slow waves in sleep and anesthesia differentially affect memory con-
solidation, as well as provide a link between slow-wave dynamics and
memory diseases.

Significance statement. During sleep, cortical neurons display slow
oscillations, which are believed to participate in memory consolidation.
However, it remains unknown why the apparently similar slow-wave dy-
namics seen under anesthesia do not produce the same effect on memory.
Here, we show distinctive features of slow oscillatory patterns in sleep
versus anesthesia, robust across species and anesthetics. Using compu-
tational modeling and in vitro preparations, we show that in anesthesia,
depressed neuromodulation stabilizes neural dynamics, limits communi-
cation between neural assemblies, and can explain why memory encoding
is prevented. Because the same neuromodulatory system is depressed in
both anesthesia and Alzheimers disease, our results offer a mechanis-
tic link between the sleep and memory symptoms of the disease, with
implications for the identification of novel therapeutics.
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1 Introduction

In both natural sleep and anesthesia, cortical dynamics are characterized by slow,
irregular oscillations (<1 Hz) [1]. However, certain cognitive processes, such as
those involved in memory formation [2—4], are specific to deep sleep (also known
as Slow-Wave Sleep, SWS), but not to anesthesia. While contrasts between sleep
and anesthesia are relatively well-studied at the whole-brain scale [5-7], any
underlying differences in the microscopic dynamics of cortical neural networks
and their potential mechanisms remain to be identified. In fact, while anesthesia
and sleep appear to produce similar collective dynamics, it it still unknown
whether any differences exist in the correlation structure of network dynamics
between the two states, and how they may affect the system’s ability to encode
and remember stimuli.

At the neural population level, in both sleep and anesthesia, slow oscilla-
tions emerge from the alternation between transients of high neural firing (UP
states) and transients of near silence (DOWN states) [1]. While certain regimes
of anesthesia present very regular UP and DOWN states [8-10], in obvious con-
trast with the irregular patterns observed during sleep slow waves [7], irregular
regimes also exist under anesthesia [10-12], and appear to present more ’sleep-
like’ dynamics. Additionally, UP-DOWN state activity has also been obtained
in slice preparations in vitro [13]. Due to their general similarity in collective
dynamics, slices and anesthesia, where direct pharmacological manipulation is
possible, have often been used as models of natural sleep, paving the way to
investigating mechanisms underlying UP-DOWN state activity.

Nevertheless, sleep and anesthesia present different levels of neuromodula-
tion, known to affect the electrophysiological properties of neurons and how
they respond to external inputs. In particular, as anesthesia is characterized
by lower concentrations of acetylcholine (ACh) compared to sleep [14, 15], the
net effect is an enhancement of spike-frequency adaptation driven by K+ chan-
nels [16]. Following the increasing electrophysiological detail available on single
neuron dynamics, computational models of spiking neurons have been employed
to model spike-frequency adaptation and account for UP-DOWN state dynam-
ics [17-19]. Indeed, comparison of models with neural recordings in anesthesia
has recently uncovered a mechanistic interpretation for the emergence of UP
and DOWN states, where background noise and neuromodulation, which con-
trols spike-frequency adaptation, can account for the transitions between UP
states and DOWN states [11]. While background noise is able to trigger a tran-
sition from a DOWN to UP state, spike-frequency adaptation on excitatory cells
produces a self-inhibition that, destabilizing the UP state, causes a reset to the
DOWN state [18]. However, it is plausible that subtle mechanistic particulari-
ties at the microscopic scale could be expressed as differences in the collective
network dynamics that underlie distinct computational properties of sleep and
anesthesia.

In the present paper, we find fundamental differences in correlation structure
in slow waves during sleep and anesthesia, that can explain the different capacity
for information encoding between the two states. We investigate computational
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models to search for plausible mechanisms underlying these differences. These
mechanisms will be subsequently tested in in vitro preparations displaying UP-
DOWN state dynamics, and where pharmacological manipulation is possible. In
sum, we will show in which ways slow-wave dynamics differ between anesthesia
and slow-wave sleep, robustly across different anesthetics, brain regions, and
species, and propose possible mechanisms and functional consequences of these
differences.

2 Results

To compare with previous anesthesia results [10, 11], we consider the activity
of a population of 10% neurons recorded from the temporal cortex of a human
patient (Fig. SIA-C) during sleep. The dynamics is characterized by slow waves,
as evident from Local Field Potentials (LFP) associated with an alternation of
low (DOWN) and high (UP) activity periods, as visible in spiking activity. In all
our analyses UP and DOWN states are defined based on neuron spiking activity
(see Supplementary Materials and Methods). The time duration of both DOWN
and UP states are variable, following an exponential, long-tailed distribution
(see Supplementary Materials and Methods), similar to what has been reported
for anesthesia recordings [11].

While the distributions of UP and DOWN state durations found in sleep and
anesthesia are similar, surprisingly, the temporal distribution of UP and DOWN
state durations is different in sleep compared to anesthesia. In anesthesia, DOWN
state and next UP state durations are positively correlated, in other words long
DOWN states are followed by long UP states, as shown in previous work [11].
However, we find that in sleep, DOWN state and next UP state durations are
negatively correlated, as long DOWN states are followed by short UP states (Fig.
1B). Indeed, during sleep, while long UP states can occur after short DOWN
states, UP states following long DOWN states are consistently short.

Because a difference in temporal correlation was found for adjacent UP and
DOWN epochs between sleep and anesthesia, we next explored whether the
network retains a memory of previous epochs further in time. To this end, corre-
lations between the n-th DOWN state and the (n+k)-th UP state duration were
explored. Here, k = 0 denotes the UP state following the nth DOWN state, as
studied so far, while k¥ = —1 denotes the UP state preceding the nth DOWN
state in time. As shown in Fig.1C, the length of time correlations remain between
DOWN and UP states lag k remains significantly negative up to a separation on
the order of five UP/DOWN cycles in sleep data. In contrast, the correlations
at lag k decay to zero immediately after one UP/DOWN state cycle in anes-
thesia [11]. Thus, the network retains a memory of previous cycles significantly
longer in SWS than anesthesia.

In order to investigate whether the correlation between UP-DOWN state
duration and its memory through time are specific to brain states across species
and regions of cortex, data from primary visual cortex of animals under different
anesthetics (monkey under sufentanil, rat under ketamine and medetomidine),
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Fig. 1. Different types of slow waves during sleep and anesthesia, across
species, brain regions and anesthetics. (A) LFP (top panel) and spiking data
(bottom) recorded by multi-electrode array implanted into a human patient’s tempo-
ral cortex. Slow oscillations (j1 Hz) visible in the LEP correspond to an alternation
between transients of high and low firing rate, i.e. UP and DOWN state dynamics,
evident in the spiking activity (grayed: UP state detection based on population spike
count, see Supplementary Materials and Methods). (B) UP state duration against pre-
vious DOWN state duration, showing a clear negative correlation. (C) Bar plot of
Pearson correlation C(Dyyk,U,) as a function of lag k. Two standard deviations of
the Pearson correlations when shuffling state durations (dashed lines) provide an inter-
val of confidence outside of which empirical correlations may be considered non-trivial.
The same analyses is reported for other species during sleep and anesthesia: sleep in
the monkey premotor cortex (D) and in the rat pre-frontal cortex (E), anesthesia in
the monkey (G) and rat V1 (H). Panels (F) and (I) report the lag-correlation during
sleep and anesthesia in the rat.

and several animals sleeping (human temporal cortex, monkey premotor cortex,
and rat prefrontal cortex) was analyzed.

The results of these analyses are reported in Fig.1 where in panels D-I we
show the scatter plot of DOWN against following UP state duration. In all the
sleep recordings a banana-shaped distribution is observed, indicating a robust
negative UP-DOWN state correlation (for sleeping rats, 5/5 of animals analyzed
showed a negative correlation, both before and after a navigation task).
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Conversely, in anesthetized recordings the results are consistent with previ-
ously published results [11], an either positive or non-significant correlation is
recorded (for anesthetized monkeys, 5/6 recordings presented a significant cor-
relation and 1/6 a non-significant correlation; for anesthetized rats, 4/7 animals
showed a significant positive correlation, 2/7 showed a positive non-significant
correlation and the remaining 1/7 showed a negative significant correlation.)

Moreover, comparing within the same species (Fig.1F, I), the lag-correlation
is verified to be different between sleep and anesthesia (we compare here the
same species for the sake of coherence), with a much longer memory during
sleep.

These observations suggest a clear difference in the correlation structure of
the network dynamics during sleep and anesthesia, revealing fundamental dif-
ferences in the dynamical mechanisms determining UP-DOWN state activity.

Spiking network model of UP and DOWN state dynamics

In order to investigate the mechanisms behind the UP and DOWN state dura-
tion correlations, we use a network of spiking neurons with conductance-based
(COBA) synapses. The network is composed of 80% RS (regular spiking) exci-
tatory and 20% fast spiking (F'S) inhibitory neurons. Every neuron is modeled
as an Adaptive Exponential integrate-and-fire cell (AdExp) [20]. In absence of
adaptation the system is characterized by two stable states: a near-silent state
(DOWN state) and a relatively high-activity state (UP state).

To allow for transitions between the two states, every neuron receives an
independent identically distributed (i.i.d.) zero-mean noise of amplitude o that
permits a jump from the DOWN to the UP state. The presence of spike-frequency
adaptation of strength b (see Supplementary Materials and Methods) for RS
neurons [21] allows the system to transition back to the DOWN state. Indeed,
RS neuron adaptation builds up as the neuron spikes, i.e. during UP states,
and consequently reduces the firing rate of the excitatory population, which
may cause the transition to a DOWN state. Adaptation decays exponentially
throughout time when the neuron is silent, for instance during DOWN states
(see Supplementary Materials and Methods for equations).

Such mechanisms for the emergence of UP and DOWN state dynamics has
been so far established in the literature (see e.g. [11,22]). We observed the same
mechanism in a spiking network model of Adaptive integrate and fire neurons
with voltage-dependent synapses and a different gain between excitatory and in-
hibitory cells following experimental insights (see Supplementary Materials and
Methods). The network dynamics is characterised by an alternation between UP
and DOWN states whose durations follow an exponential distribution, in accor-
dance with experimental data (see Fig 1C for data and Supplementary material
for the model). For a fixed value of noise amplitude o we observe a positive cor-
relation between UP-DOWN dynamics, where the adaptation strength b changes
the UP-DOWN duration, with no obvious effect on their correlation. The corre-
lation between UP and DOWN state duration remains positive or non-significant
over the all range of b values here investigated. This is consistent with adaptation
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Fig. 2. Interplay between spike-frequency adaptation strength and noise am-
plitude allows for a transition from sleep-like to anesthesia-like slow waves
in a spiking network model. UP and DOWN state duration vs amplitude of exter-
nal noise, for low (A) and high (B) adaptation strength in the spiking network model
(see text and Supplementary Materials and Methods). (B) UP state duration against
previous DOWN state duration for external noise amplitude varying throughout time
(see the inset for noise time course) in the range [—A, A]. Here, A = 3 pA, showing
a negatively correlated (r = -0.15, p jj 0.001), ’sleep-like’ durations for low adaptation
(left) and uncorrelated (r = -0.01, p j; 0.05), ’anesthesia-like’ correlations for high
adaptation (right). (C) Variation of next UP to previous DOWN state correlation as
a function of adaptation strength, for different ranges A of noise fluctuation (mark-
ers: significant correlations, dashed lines: confidence interval obtained by shuffling, see
Supplementary Materials and Methods).

having decayed after long DOWN states: following noise-triggered onset, the fol-
lowing UP state displays a high rate of activity that may sustain a long UP state.
Consequently, long DOWN states tend to be followed by long UP states, hence
the positive correlation. Exploring the parameter space by varying other param-
eters such as neurons’ excitability or synapses’ quantal conductances, positive
or non-significant correlations were also always obtained.

In accordance with previously reported results [11], the model discussed so
far is suitable for UP-DOWN dynamics during anesthesia but not for sleep,
where we have shown a clear and robust inverse relationship. This shows addi-
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tional elements are needed to accurately model the empirical UP-DOWN state
dynamics during sleep.

Interplay between external fluctuation and adaptation strength

In order to investigate the mechanism enterting into play during sleep we observe
that, additionally to adaptation strength, another natural parameter for affecting
UP-DOWN state durations is the amount of noise o. Indeed, the higher the
fluctuations in the system, the shorter the DOWN states and the longer the UP
states (Fig. 2A), implying that UP state and DOWN state durations vary in
an anti-correlated fashion with o. In other terms, if o were to vary throughout
time, a negative correlation could be observed between consecutive DOWN and
UP state durations.

It is important to note, at this point, that our analyses are performed on
relatively long recordings (from 20 minutes to several hours), and therefore one
could assume that the properties of the system may change throughout the
time of the recordings. The time scale T' over which such changes occur seems
relatively slow as compared to that of UP-DOWN dynamics (~ 1 s), i.e. in the
range of tens of seconds.

To account for correlation inversion in our model, we introduce a parameter A
describing the variability of noise amplitude o throughout time. Here, the noise
o takes successive values within a range A of amplitudes o (see Supplementary
Materials and Methods), where each value is held constant over a time interval
of duration T, as demonstrated in the inset of 2B. It should be noted that the
resulting UP-DOWN correlations do not depend on the specific choice of T, as
far as it is long enough to contain a sufficient number of UP-DOWN transitions
in order to obtain well-defined UP DOWN statistics (in the plots shown in Fig
2 T = 100s).

By introducing variation of noise amplitude in time, a banana shape is ob-
served in the scatter plot of UP and DOWN state duration, that disappears as
the adaptation strength b is increased (Fig. 2B). Accordingly, a negative cor-
relation between UP and DOWN state durations emerges increasing the range
A of variation of the noise amplitude o. Moreover, for sufficiently high A, an
increase in the adaptation strength b is able to induce a transition from negative
(sleep-like) to positive (anesthesia-like) correlation. In other words, adaptation
is able to filter out noise variability, thus determining a positive correlation.

Apparent in the scatter plots of panel 2B, when adaptation is low, vari-
ous values of noise amplitude o (indicated by colors) cluster together in the
scatter plot, altogether yielding a banana shape. Conversely, for high adapta-
tion strength, data representing different values of noise amplitude overlap in
the scatter plot, resulting in a non-significant or positive correlation. This can
be understood as strong adaptation limiting the duration of UP states (green
line in Fig. 2A, right), even in the presence of strong noise, and more generally
controlling the transitions between UP and DOWN states. In sum, the model
highlights the dominant mechanisms at work in each brain state, with the system
being strongly adaptation driven in anesthesia, and fluctuation driven in sleep.
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To investigate functional consequences of this difference in neuromodulation
between sleep and anesthesia, we perform simulations to evaluate to what ex-
tent a stimulus affects collective dynamics. As shown in Fig. 3, the stimulus
is simulated by delivering a spike train with Poisson statistics to all neurons,
and the spike count after the stimulation is compared in the presence and in
the absence of the stimulus (see Supplementary Materials and Methods). Im-
mediately after the stimulation, anesthesia-like network is more responsive: as
higher adaptation makes the network more silent, more spikes are evoked by
the stimulus, relative to spontaneous firing rates. However, in the sleep-like net-
work the difference between stimulated and non-stimulated dynamics diverges
significantly faster, as lower adaptation makes the dynamics more sensitive to
a stimulus. After tens of seconds, we therefore find that the difference between
stimulated and non-stimulated networks is larger for low adaptation, suggesting
a longer memory of the stimulus in the sleep-like case. This confirms that low
adaptation strength renders sleep-like networks more sensitive to external noise
and stimulations, thus allowing more encoding and memory of external inputs
than in anesthesia-like networks.
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Fig. 3. Higher sensitivity to perturbations in sleep-like versus anesthesia-like
networks (A) A stimulus is delivered during an UP state to all neurons in the network
(upper panel) and the dynamics is compared to the system without stimulation (lower
panel). (B) Absolute difference between population spike counts over time in stimulated
and non-stimulated networks, normalised by non-stimulated mean spike count, for two
values of adaptation strength b, averaged over trials (shaded area: error in the mean
over all trials, see Supplementary Materials and Methods). (C) Linear regression slope
for all trials, for the two different values of adaptation strength (error bars: error in
the mean over all trials). The slope is significantly larger (independent Student’s T-
test, p = 0.03) for lower adaptation, denoting less stable dynamics and longer network
memory in the sleep-like case.
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Model prediction on non-stationarity in UP and DOWN state
durations

A crucial ingredient of our model is the variability A in noise amplitude, espe-
cially in the sleep-like regime. Indeed, for lower adaptation strength, such as in
SWS, noise fluctuations may play a larger role in shaping UP-DOWN dynamics.
Accordingly, we expect to observe a higher variability in UP and DOWN state
durations (as a direct outcome of noise variability, see Fig. 1) during sleep with
respect to anesthesia. Comparing the mean empirical values of UP and DOWN
state durations over relatively long time windows of 100 UP-DOWN cycles (i.e.
102 s), we observe a higher variability, of the order of 200%, under sleep as
compared to under anesthesia, as predicted by the model (see Supplementary
Materials and Methods). To further characterize the time scale of noise fluctua-
tions, the time window size was varied, and the correlations across windows were
studied. By collecting UP and DOWN durations in each window during sleep,
we observe that, just as in our model, UP-DOWN state durations belonging to
different windows have different correlation values. For short time windows (up
to the order of 50 cycles), the Pearson coefficient is positive in the majority of
windows, but becomes negative when computed over longer windows (see Sup-
plementary Material). This suggests that fluctuations take place at a time scale
T that can be as fast as the order of 10 seconds.

It can be noted this confirms the previous assumption that the time scale T’
of fluctuations is longer than the UP-DOWN cycle duration (of the order of 1
second). Conversely, T is much shorter than the duration of all our recordings
(12 minutes to 3 hours) for either sleep or anesthesia, such that the absence
of a negative correlation during anesthesia cannot be explained by too short
recordings (unless T' in anesthesia is not the same as in sleep, but much longer
than the duration of the recordings studied here).

Additionally, the presence of background fluctuations at time scale T' during
sleep and not anesthesia is consistent with the apparent long memory of the UP-
DOWN state duration correlation in SWS. Indeed, one may consider a period of
time T" over which background noise may be approximated as constant. During
that period, if noise amplitude is high, UP states are long, and DOWN states
short, and conversely if noise amplitude is low. Then whatever the lag, UP state
durations are negatively correlated to the durations of DOWN states before or
after them, provided that they occur within the same period of duration T'. It is
verified that the order of magnitude of T" matches that of the time scale of the
memory in sleep (a few UP-DOWN cycles, Fig. 1C, F, I).

Effect of in vitro modulation of adaptation strength on UP/DOWN
correlation

Another strong prediction of our model is the ability of adaptation strength to
modulate the correlations in UP and DOWN state durations. Spike-frequency
adaptation models an effective action of activity-dependent potassium conduc-
tances, physiologically affected by neuromodulators [16].
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It has been observed that neuromodulation is depressed during anesthe-
sia [14], and thus the strength of adaptation should be increased [16]. This is
consistent with our model prediction, where a transition to anesthesia (higher
adaptation) yields a positive correlation between UP and DOWN states.

Nevertheless, a more direct experiment is preferable in order to validate our
prediction. To this purpose we performed extracellular recordings of neural ac-
tivity in acute slices of entorhinal cortex from wild type juvenile mice.
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Fig. 4. Blocking adaptation by addition of carbachol in mouse slice prepa-
rations produces a transition from anesthesia-like to sleep-like dynamics
(A) Hlustration of a horizontal mouse brain slice. Extracellular recording pipettes for
Multi-Unit Activity (MUA) were placed in layer 2/3 of the entorhinal cortex. (B) MUA
throughout time, recorded for different carbachol concentrations c for an example slice
(shaded: UP state detection). UP state frequency is observed to increase with carba-
chol concentration. (C) For the same example slice, UP state against previous DOWN
state duration for different carbachol concentrations, showing a positive correlation (r
= 0.64, p | 0.05) in the control condition (¢ = 0pM), non-correlated for an intermedi-
ary concentration (¢ = 0.025uM, r = 0.00), and a negative correlation (¢ = 0.05uM,
r = -0.37, p | 0.05) when the highest carbachol concentration is added. (D) For all
recorded slices, correlation between UP state and previous DOWN state duration as
a function of carbachol concentration. Consistent with model predictions on the effect
of adaptation strength, all slices exhibit a positive or non-significant, ’anesthesia-like’
correlation in the control condition (¢ = OuM) and a negative, ’sleep-like’ correlation
for the highest carbachol concentration (¢ = 0.05uM), when adaptation is blocked
(markers: significant correlations, colors: different slices, dashed lines: shuffles, see Sup-
plementary Materials and Methods).

In control conditions, a certain variability was observed in both UP and
DOWN state duration, sufficient to measure UP-DOWN states duration corre-
lation.

The great advantage of in vitro preparations is the possibility to pharmaco-
logically modulate adaptation [16] by dissolving neuromodulators in the artificial
cerebrospinal fluid (ACSF) in which the slice is recorded.

To stimulate an effective decrease of adaptation strength, carbachol, an ago-
nist of both nicotinic and muscarinic acetylcholine (ACh) receptors is used [16].
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By increasing concentrations of carbachol (0, 0.025, 0.05 uM), we observe
lengthening UP states and shortening DOWN states, Fig. 4, in accordance with
a lower amount of spike-frequency adaptation, as in the model.

Finally, we report a clear tendency to more negatively correlated, sleep-like
UP and DOWN states durations at higher carbachol concentrations. This con-
firms the predictions of our model, where an increase of adaptation strength
permits a more positive correlation between UP and DOWN states durations.

3 Discussion

In the present paper, we have shown two types of slow waves by analyzing
multi-electrode extracellular recordings in human and animal cerebral cortex.
This conclusion was reached based on the temporal patterns of UP and DOWN
states, an alternation of which causes slow waves to emerge. A first type of
slow waves shows positively correlated consecutive UP and DOWN states, such
as that found in previous work [11], while we find a second type of slow wave
displaying negatively correlated consecutive UP and DOWN states. The first
type of slow waves is seen during natural slow-wave sleep, while the second type
appears to prevail in anesthetized states. Using computational models, we show
that different levels of adaptation can explain the two different types of slow-
waves. This prediction was tested in cortical slices, where the level of adaptation
can be modulated by cholinergic agonists. These experiments demonstrate a
cholinergic switch between the two types of slow waves. We also find that the
two types of slow waves differ in their sensitivity to external inputs. We discuss
below the significance of these findings, and perspectives for future work.

The difference between slow-wave sleep and anesthesia was robust across
several species and brain regions. These results hold for slow waves produced
by two different anesthetics, in contrast to natural slow waves observed in sleep.
A larger effect of noise fluctuations throughout time on the network dynamics
is observed during sleep, yielding a negative, long-memory correlation between
UP and DOWN state durations. Conversely, during anesthesia the dynamics is
more stable and characterized by short-memory and positive correlation between
state durations. Employing a spiking neuron network model revealed that during
anesthesia such noise fluctuations produce much smaller effects on population
dynamics, as the fluctuations are filtered out by a strong modulatory effect
(e.g. spike-frequency adaptation, which is controlled by acetylcholine levels).
For the sake of simplicity, external noise was chosen to be the only effective
source of variability in the model. Nevertheless, this is not the only possible
choice: one could also consider variability in other parameters in time, that can
be tuned to produce longer UP states and shorter DOWN states, like inhibitory
conductance [23] or even adaptation strength (Fig. 4E). In sum, adaptation filters
out time variation in the system’s parameters, in anesthesia but not in sleep. This
mechanism is confirmed by modulation of spike-frequency adaptation strength
in acute cortical slices. Indeed, addition of charbachol, a cholinergic receptor
agonist, induced a switch between anesthesia-like and sleep-like slow-waves.
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In addition, we show the implications of a switch in slow wave type for the
network’s coding properties, with sleep-like slow waves associated with higher
sensitivity to stimuli and greater capacity for network memory. This may help
explain why key cognitive processes, such as memory consolidation, can take
place during sleep [2—4], while anesthesia causes amnesia and memory impair-
ment [24-26]. Our observation of two types of slow-waves suggests that slow-wave
dynamics may be important to explain these differences. For example for mem-
ory consolidation to occur, the cortex should encode information by changing
its dynamics upon receiving signals from the hippocampus. This implies that a
non-trivial change in external input should be able to modulate the statistics of
cortical activity. We showed (Fig. 3) that in anesthesia, unlike in sleep, strong
adaptation filters out the effects of external perturbations on UP-DOWN state
dynamics, so that any information encoded in the amplitude of inputs to the
neural assembly does not affect the network dynamics, and consequently will
not be encoded.

Finally, we emphasize that understanding the role of adaptation in filtering
out external variability may shed light on pathological conditions where adap-
tation is disturbed. For example, the cholinergic system, that modulates spike-
frequency adaptation [16], breaks down in Alzheimer’s disease [27]. A slowing
down of slow oscillatory patterns during SWS [28,29] and a loss of memory [30]
are also biomarkers of the disease. With loss of acetylcholine, spike-frequency
adaptation will be increased, similarly to under anesthesia, and it is conceivable
that the cortex of Alzheimer’s patients cannot encode fluctuating inputs from
the hippocampus during sleep due to anesthesia-like slow-wave dynamics. This
mechanism may contribute to explaining why new memories cannot be formed,
and to better comprehending how treatments restoring acetylcholine levels alle-
viate Alzheimer’s sleep and memory symptoms [31]. Our study directly predicts
that the anesthesia-type slow-wave dynamics should be observed in Alzheimer’s
patients during their natural sleep, and provides an approach to modulating and
quantifying the restoration of sleep type slow waves, perhaps a fruitful direction
to explore in the design of new therapies.
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5 Supplementary Information

Neural recordings

Human temporal cortex in deep sleep The data was recorded with intra-
cranial multi-electrode array recordings of 92 neurons in the temporal cortex of
an epileptic patient, the same data-set used by [32-36]. The record of interest
spans across approximately 12 hours, including periods of wakefulness as well as
several stages of sleep. Recordings were performed in layer II/III of the middle
temporal gyrus, in an epileptic patient (found to be far from the epileptic fo-
cus and not registering epileptic activity outside of generalized seizures). Data
acquisition in that region was enabled by implanting a multi-electrode array, of
dimensions 1 mm in thickness and 4x4 mm in area, with 96 micro-electrodes sep-
arated by 400 um spacings. The array was implanted to localize seizure foci. A
30-kHz sampling frequency was employed for recording. Switches in brain state
(wakefulness, SWS, REM, seizure, ...) throughout the recording were noted from
the patient’s behavioural and physiological parameters, yielding one hour of SWS
on which our analyses were focused. Using spike sorting methods on the obtained
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data, 92 neurons have been identified. Analysis of the spike waveforms for each
of these neurons allowed their classification as putative excitatory (E) and in-
hibitory (I) neurons. Using the spike times of each neuron, cross-correlograms
for all pairs of neurons were also computed to determine whether each neuron’s
spikes had an excitatory (positive correlation) or an inhibitory (negative corre-
lation) effect on other neurons through putative monosynaptic connections. It
should be noted that neurons found to be excitatory exactly corresponded to
those classified as regular spiking (RS), while all inhibitory neurons were also
fast spiking (F'S). We only retained neurons spiking throughout the recording
for our analyses, amounting to 71 neurons of which 21 were I neurons. Spikes
were binned into 1 ms wide time bins for all subsequent analyses. A statistical
analysis of UP DOWN states duration is presented in Fig.SS1 (panels A-D and
E left).

Monkey premotor cortex in deep sleep Spiking activity (the same data-
set as used in [33-36]) in layer III/IV of the premotor cortex of a macaque
monkey was recorded by multi-electrode arrays throughout a night. A 10-kHz
sampling frequency was employed for recording. Classification of brain states,
for extraction of SWS periods, was performed by visual inspection of the Local
Field Potential (LFP), over time periods of 5 s, by identifying as SWS periods
presenting large-amplitude oscillations in the 1-2 Hz frequency range [36], of
which 141 spiked throughout the whole recording, yielding three hours of SWS
data for subsequent analyses. All analyses in this work were performed with
spikes binned into 1 ms time bins.

Rat prefrontal cortex in deep sleep The analysis was performed on the
dataset of single unit activities previously employed in [4,37,38]. Here we provide
a short description only. Five Long-Evans male rats were chronically implanted
with tetrodes in the prelimbic subdivision of the medial prefrontal cortex and in
the intermediate-ventral hippocampus. Tetrodes in the hippocampus were used
for identification of non-REM sleep periods, through a clustering analysis of the
LFP power within the cortical delta band (1 — 4H z), hippocampal theta (5 —
10H z) and cortical spindles (10 — 20H z) together with estimates of the speed of
head movements. Tetrodes in the cortex were used for single unit recording. Spike
sorting has been performed using KlustaKwik [39]. Recordings were organized
in daily sessions, where the rat undergoes a first sleeping epoch, then a task
learning epoch, in which the rat performs an attentional set shift task on a Y
shaped maze, and finally a second sleeping epoch, each epoch lasting 30 mins.
In general, the neurons recorded differed from a session to another, with the
number of cells recorded per session varying between 10 and 50. For the analysis
of up/down state duration, the results from all session from the same rat were
joined together, but pre-task and post-task sleep were kept separated.

Monkey primary visual cortex in sufentanil anesthesia The data-set
may be found at [40], as described in [41]. Four adult macaque monkeys were
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recorded using a total of six multielectrode arrays implanted in the primary vi-
sual cortex. Sufentanil (4-18 pg/kg/hr) was used for anesthesia. Recordings were
obtained while animals viewed a uniform gray screen, over periods of between
20 and 30 minutes long. Spontaneous spiking activity from 70 100 neurons was
recorded and spike-sorted for each array. Spikes were binned into 1 ms time bins
for subsequent analyses. A statistical analysis of UP DOWN states duration is
presented in Fig.1E right.

Rat primary visual cortex in ketamine anesthesia 7 adult male Wistar
rats weighting 211 58 g (mean s.d.) were anesthetized via intraperitoneal in-
jection of ketamine (120 mg/kg) and medetomidine (0.5 mg/kg). Atropine (0.05
mg/kg) was injected subcutaneously to prevent respiratory secretions. Rectal
temperature was maintained at 37C. A craniotomy was performed to access the
primary visual (V1) cortex (7.3 mm AP, 3.5 mm ML) of the right hemisphere [42].

Recordings of cortical activity under anesthesia were obtained with a 16-
channel silicon probe (1 shank with 16 linearly spaced sites at 100um incre-
ments with impedances of 0.6 — 1M (2 at 1kHz (NeuroNexus Technologies, Ann
Arbor, MI)) introduced perpendicularly in V1 under visual guidance until the
most superficial recording site was aligned with the cortical surface. Signals
were amplified (Multi Channel Systems), digitized at 10kHz and acquired with
a CED acquisition board and Spike 2 software (Cambridge Electronic Design,
UK). Recordings had an average length of 951.46 +/-219.30 seconds. UP and
DOWN states were singled out by thresholding the multi-unit activity (MUA),
which was estimated as the power of the Fourier components at high frequen-
cies (200-1500 Hz) of the extracellular recordings (LFP) [12,23,43-45]. For each
experiment, we selected the channel with maximum MUA during the Up state,
whose location in depth corresponds to cortical layer 5 [12,45].

All experiments were supervised and approved by the local Ethics Committee
and were carried out in accordance with the present laws of animal care, EU
guidelines on protection of vertebrates used for experimentation (Strasbourg
3/18/1986) and the local law of animal care established by the Generalitat of
Catalonia (Decree 214/97, 20 July).

Mouse entorhinal cortex slice preparations We prepared brain slices ex-
hibiting spontaneous slow waves in entorhinal cortex using a method described
in [46]. The mice were of wild-type (C57BL/6J) and 11-18 days old.

The dissection and slice cutting were performed in an ice-cold cutting solution
containing (in mM): 85 NaCl, 75 sucrose, 3 KCl, 26 NaHCO3, 1.25 NaH5POy,
3.5 MgS0Oy, 0.5 CaCls, 10 glucose, 3 myo-inositol, 3 Na-pyruvate, 0.5 L-ascorbic
acid and aerated with 95% Os and 5% COs. Lower concentrations of Nat and
Ca?*, and a higher concentration of Mg?" in the cutting solution, compared to
a standard ACSF, are applied to minimize neuronal damage during cutting.

We cut slices at a 15° angle off the horizontal plane with the thickness of 310
pm. After cutting, slices were placed in a cutting solution at temperature of 35°
C for 30 min.
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The slices were then kept at room temperature in a storing solution contain-
ing (in mM): 126 NaCl, 3 KCl, 26 NaHCO3, 1.25 NaHPOy, 2 MgSOy, 2 CaCls,
10 glucose, 3 myo-inositol, 3 Na-pyruvate, 0.5 L-ascorbic acid.

For recording, the slices were transfered to a submersion chamber and placed
between nylon nets. The well oxygenated recording solution was flowing with the
speed of 4ml/min. The recording solution was similar to storing solution, with
only CaCly; and MgSO, concentrations reduced to 1.2 and 1 mM respectively.
The extracellular field was recorded with glass electrodes with a resistance of
2-3 M (2. The electrode was placed in layer 2/3 of the entorhinal cortex.

Electrophysiological data was acquired using the ELPHY software [47]. The
multi-unit activity was obtained from the signal by calculating the time-averaged
power of the signal in the frequency range (0.3 - 2 kHz).

Spiking network model

We consider a population of N = 10* neurons connected over a random directed
network with probability of connection p = 5%. We consider excitatory and
inhibitory neurons, with 20% inhibitory neurons. The dynamics of each of the
two types of neurons is based on the adaptive integrate and fire model, described
by the following equations

dvi
mat

Vi~ VYihr

=gr(ErL —v;) + grkee™ Fa —wi+lsyn+afi(t) (1)

dwi
T Wiy z(:)m—tsp + a(v; — Ep), (2)

where ¢, is the membrane capacity, v; is the voltage of neuron ¢ and when-
ever v; > Uy, at time tg,(7) , v; is reset to the resting voltage vyes; and fixed to
that value for a refractory time 7,.. The exponential term mimics activation of
sodium channels and parameter k, describes its sharpness. Inhibitory neurons
are modeled according to physiological insights [48] as fast spiking F'S neurons
with no adaptation while the strength b of spike-frequency adaptation in excita-
tory regular spiking RS neurons is varied. The synaptic current Iy, received by
neuron ¢ is the result of the spiking activity of all pre-synaptic neurons j € pre(i)
of neuron i. This current can be decomposed in the result received from excita-
tory E and inhibitory I pre-synaptic spikes Isy, = (Ee —v3)I¢,, + (Er —vi)Il,,.

Notice that we consider voltage dependent conductances. Finally, we model I,
as a decaying exponential function that takes kicks of amount @), at each pre-

synaptic spike, i.e.:

" v _t—tgp(i)
Isyn Z 5 t— t ) ™ (3)

exc.pre
where z represents the population type (x = E,I), 7, is the synaptic de-

cay time scale and @), the quantal conductance. We will have the same equa-
tion with £ — I for inhibitory neurons. Every neuron i receives an identically
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Fig.S1. UP DOWN states statistics in experimental data (A-B) Both UP and
DOWN state durations follow exponential long-tailed, distributions. (C-D) Averaged
population firing rate, aligned to UP state onset, after short (C) or long (D) DOWN
state durations. UP states following very long DOWN states, > 0.8s, are always short,
while UP states following the shortest DOWN states, < 0.3s, can be up to around
three times longer. (E) Mean UP and DOWN state durations in 100 UP-DOWN-cycle
windows in time, normalized by the mean duration over the whole recording, highlight
larger fluctuations across windows in sleep (human data, left) than anesthesia (rat
data, right). The mean in each window is represented by a full line, while the standard
error in the mean is represented by the shaded area.

distributed white noise £(t) of zero mean and instantaneously decaying auto-
correlation (&) = 0, (§(¢)&;(t + s)) = 6;,;0(t — s). The noise amplitude o is a
piecewise constant function of time, i.e. its value stays constant for a time win-
dow of length T and is extracted from a uniform distribution of amplitude A.
In our simulations A varies and we use T' = 100s, in accordance to the observed
variability of UP-DOWN states duration during sleep.

A transient of 1s after simulation onset is discarded from all analyses. An
example of the dynamics of this system is reported in Fig.S2A and statistics of
UP DOWN states durations obtained with the model are shown in Fig.S2B-E.
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Fig. S2. UP and DOWN states in computational model (A) Spikes and popula-
tion activity produced by a spiking model of RS (blue)-FS (red) neuron network with
spike-frequency adaptation on RS cells (blue, dashed line) exhibits UP-DOWN state
dynamics (grayed: UP state detection). (B) UP and DOWN state durations are ex-
ponentially distributed, consistently with empirical data in both sleep and anesthesia.
(C) UP state against previous DOWN state durations yield a significant positive corre-
lation (r = 0.16, p < 0.05) in this example simulation. (D) State durations in different
simulations with increasing adaptation strength, showing shortening UP states and
lengthening DOWN states (full line: mean, shaded area: standard error in mean). (E)
Modeled UP to previous DOWN state duration correlation against adaptation strength
reveals systematic positive or non-significant correlations and indicates an increase of
the correlation with adaptation level (markers: significant correlations, shaded: interval
of confidence obtained by shuffling). This is therefore a good model for anesthesia, but
not deep sleep.

To deliver a stimulus to the network, each neuron receives an external Pois-
sonian spike train of frequency 0.05 Hz for a duration of 50 ms. Stimuli are
delivered halfway through the first UP state after the discarded transient. To di-
rectly compare network dynamics in the presence and absence of a stimulus, the
network connectivity matrix and initial conditions are the same in both simula-
tions, such that dynamics before the stimulus onset are identical, and differences
in dynamics following the onset are only due to the stimulation. The cumulative
spike count is computed in each case, at each point in time. The normalized
distance between the spike counts with and without stimulus is defined by:

|8 =

D ;
<s >

(4)

where s is the spike count for the unstimulated network, s’ is the spike count
for the stimulated network, and < - > denotes time averaging. Each simula-
tion lasts 30s, and the procedure is repeated 50 times, each time with different
connectivity realization and initial condition set. In Fig. 3 of the main paper
we report the average value of D over different realizations, together with its
standard deviation.


https://doi.org/10.1101/430405
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/430405; this version posted December 31, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Cholinergic switch between two different types of slow waves... 21

Table 1. Model parameters

Neuron type|Parameter name Symbol|value
RS & FS Membrane Capacity Cm 150pF
RS & FS Leakage Conductance qgr 10nS
RS & FS Excitatory quantal conductance|Qg 1nS
RS & FS Inhibitory quantal conductance |Qr 5nS
RS & FS Spiking threshold Vthr -50mV
RS & F'S Resting voltage Vrest -65mV
RS & FS Excitatory synapses time decay |7g 5ms
RS & FS Inhibitory synapses time decay |77 5ms
RS & F'S Refractory time T 5ms
RS Sodium sharpness ke 2mV
RS Leakage reversal Er, -60mV
RS adaptation current increment |b varies
RS adaptation conductance a OnS
RS adaptation time constant Tw 500ms
FS Sodium sharpness ka 0.5mV
FS Leakage reversal Er -65mV
FS adaptation current increment |b OnS
FS adaptation conductance a OnS

Measures and UP DOWN states detection

The method to detect UP states ( [49], Section 1.3.3. of Suppl Mat.) considers
the sum of all cells’ spike trains (bin size of 1 ms), K(t) = >, 0;(t). The in-
stantaneous population activity m(t) is the smoothed K (t), by convolution with
a Gaussian density with width @ = 10 ms. Any period of time for which the
instantaneous population activity

m(t) > @ max(m(t)) is considered an UP state, where the threshold 6 was chosen
in terms of the sparseness and non-stationarity of each data-set (6 = 0.2 for most
data-sets, as in [49], except human SWS and the spiking model, where 6 = 0.02,
and slice preparations, for which 6 = 0.5.). States lasting less than 50 ms were
excluded by considering it a part of the previous sufficiently long state. States
longer than 5 s are discarded from the analysis. Parameters used for detection
were determined by visual inspection of the detection quality. It was also verified
that slight variation of these parameters did not qualitatively affect the results
presented in this work.

This method was tested against a different method where UP and DOWN
states were singled out by setting a minimum state duration of 80ms and a
threshold in log(MUA) values at 1/3 of the interval between the peaks of the
bimodal distribution of log(MUA) corresponding to the Up and Down states. The
algorithm, adapted from [12,18,44,50], yielded qualitatively identical results.

The Pearson correlation was then employed to evaluate how strong and sig-
nificant the correlation between UP state and previous DOWN state durations
are. As a further test for significance, the information present in time structure
was destroyed by shuffling all DOWN state durations, while leaving UP state
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durations in their empirical order, and computing the Pearson correlation again.
This procedure is repeated 1,000 times, and the mean and standard deviation
of the Pearson correlations obtained each time are calculated. The interval con-
tained within two standard deviations above and below the mean of correlations
obtained from shuffled is considered as a confidence interval. Indeed, a corre-
lation well outside of this interval is highly unlikely to have been produced by
a chance arrangement of UP and DOWN states in time, given the empirical
distribution of their durations, and implies a non-trivial structure in time.

This procedure is used to evaluate the correlation between each UP state and
the DOWN states surrounding it, C(Dy 4, Uyn ), with k = 0 denoting the previous
DOWN state to the considered UP state, negative k denoting previous DOWN
states more distant in time, and positive k denoting DOWN states following the
UP state of interest.
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