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Abstract	

	

The	neurobiology	of	heterogeneous	neurodevelopmental	disorders	such	as	autism	

spectrum	disorders	(ASD)	are	still	unclear.	Despite	extensive	efforts,	most	findings	are	

difficult	to	reproduce	due	to	high	levels	of	individual	variance	in	phenotypic	expression.	

To	quantify	individual	differences	in	brain	morphometry	in	ASD,	we	implemented	a	

novel	subject‐level,	distance‐based	method	on	subject‐specific	attributes.	In	a	large	

multi‐cohort	sample,	each	subject	with	ASD	(n=100;	n=84	males;	mean	age:	11.43	years;	

mean	IQ:	110.58)	was	strictly	matched	to	a	control	participant	(n=100;	n=84	males;	

mean	age:	11.43	years;	mean	IQ:	110.70).	Intrapair	Euclidean	distance	of	MRI	brain	

morphometry	and	symptom	severity	measures	were	entered	into	a	regularised	machine	

learning	pipeline	for	feature	selection,	with	rigorous	out‐of‐sample	validation	and	

bootstrapped	permutation	testing.	Subject‐specific	structural	morphometry	features	

significantly	predicted	individual	variation	in	ASD	symptom	severity	(19	cortical	

thickness	features,	p=0.01,	n=5000	permutations;	10	surface	area	features,	p=0.006,	

n=5000	permutations).	Findings	remained	robust	across	subjects	and	were	replicated	in	

validation	samples.	Identified	cortical	regions	implicate	key	hubs	of	the	salience	and	

default	mode	networks	as	neuroanatomical	features	of	social	impairment	in	ASD.	

Present	results	highlight	the	importance	of	subject‐level	markers	in	ASD,	and	offer	an	

important	step	forward	in	understanding	the	neurobiology	of	heterogeneous	disorders.	
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Introduction	

The	autism	spectrum	disorders	(ASD)	are	a	group	of	neurodevelopmental	conditions	

characterized	by	impairments	in	social	communication	and	restricted	and	repetitive	

behaviours	(Wing,	1997).	Definitive	neurobiological	mechanisms	underlying	ASD	or	

other	heterogeneous	neurodevelopmental	disorders	have	yet	to	be	clearly	

delineated	due	to	significant	heterogeneity	within	and	between	individuals	(Hahamy,	

Behrmann,	&	Malach,	2015).	Magnetic	Resonance	Imaging	(MRI)	offers	an	in	vivo	

method	to	assay	neurobiological	abnormalities,	and	has	led	to	some	promising	

findings	of	brain	dysfunction	in	ASD	neuroimaging	(Uddin,	Dajani,	Voorhies,	

Bednarz,	&	Kana,	2017).	However,	group	differences	in	brain	structure	or	function	

in	ASD	remain	frequently	misidentified	because	of	high	levels	of	variability	between	

and	within	individuals,	giving	rise	to	poor	reliability	and	reproducibility	of	findings	

(Ecker,	2017).	

In	addition	to	the	large	phenotypic	variation	in	individuals	with	ASD,	

neuroimaging	studies	are	confounded	by	a	number	of	methodological	factors	related	

to	differences	in	image	acquisition	sites,	anatomical	sex,	IQ,	as	well	as	age‐dependent	

perturbations	of	neurodevelopment	(Pua,	Bowden,	&	Seal,	2017).	For	example,	age‐

related	whole	brain	volume	alterations	(Lange	et	al.,	2015),	cortical	thinning	(Wallace,	

Dankner,	Kenworthy,	Giedd,	&	Martin,	2010),	and	atypical	surface	area	development	

(Mensen	et	al.,	2017)	in	ASD	are	associated	with	continuous	shifts	throughout	the	

lifespan.	Identifying	altered	neurodevelopmental	trajectories	in	ASD	becomes	even	

more	complex	as	cortical	volume	can	be	further	delineated	into	separable	sub‐

components	of	cortical	thickness	and	cortical	surface,	each	with	distinct	genetic	

influences	on	development	(Panizzon	et	al.,	2009).	Previous	reports	of	cortical	

measures	of	brain	structural	morphometry	in	ASD	have	been	inconsistent,	such	as	
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increased	regional	cortical	thickness	(Ecker	et	al.,	2013;	Hardan,	Muddasani,	

Vemulapalli,	Keshavan,	&	Minshew,	2006;	Raznahan	et	al.,	2013),	decreased	(Hardan,	

Libove,	Keshavan,	Melhem,	&	Minshew,	2009),	or	with	significant	cortical	thinning	in	

frontal,	temporal	or	parietal	regions	(Hadjikhani,	Joseph,	Snyder,	&	Tager‐Flusberg,	

2005).	Similarly,	surface	area	in	ASD	has	been	reported	to	be	increased	(Hazlett	et	al.,	

2011),	decreased	(Ecker	et	al.,	2013),	or	not	significantly	different	from	neurotypical	

peers	(Raznahan	et	al.,	2013;	Wallace	et	al.,	2013).	Alterations	in	grey	matter	volume	

in	ASD	have	also	been	reported	to	be	driven	by	the	absence	of	typical	age‐related	

cortical	thinning	(Smith	et	al.,	2016).	These	mixed	findings	suggest	that	the	expression	

of	ASD	in	atypical	brain	structure	is	likely	to	differ	between	individuals	with	the	

condition,	and	across	different	age	cohorts.	Consequently,	research	efforts	to	identify	

consistent	differences	in	the	brain	in	individuals	with	ASD	have	remained	inconclusive.	

Given	the	diverse	nature	of	the	condition,	there	is	an	increasing	need	for	predictive	

brain‐based	markers	that	are	sensitive	to	heterogeneity	in	the	neurobiology	and	

symptom	expression	of	ASD	(Jack	&	Pelphrey,	2017).	

Emerging	work	suggests	that	individual‐specific	variation	in	brain	architecture	

may	be	a	critical	factor	underlying	idiosyncrasies	in	ASD	symptom	characteristics	

(Chen,	Nomi,	Uddin,	Duan,	&	Chen,	2017;	Dickie	et	al.,	2017).	As	conventional	

neuroimaging	investigations	typically	rely	on	broad	between‐group	comparisons	

without	sufficient	consideration	of	subject‐specific	effects,	such	approaches	have	been	

of	limited	yield	in	ASD	research.	Additionally,	high‐dimensional	neuroimaging	data	

with	a	large	number	of,	often	co‐linear,	features	relative	to	small	sample	sizes	pose	

further	issues	with	increased	risk	of	false	positives.	In	particular	for	such	a	

heterogeneous	population	as	ASD,	these	challenges	suggest	that	investigations	of	brain	
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structure	and	function	in	ASD	should	incorporate	appropriate	subject‐level	modelling,	

with	adequate	consideration	for	common	problems	associated	with	large‐scale	high‐

dimensional	neuroimaging	data	analysis	(Bzdok	&	Yeo,	2017;	Mwangi,	Tian,	&	Soares,	

2014).	

Drawing	from	multi‐disciplinary	methodologies	in	ecology	and	twin	modelling	

(Carlin,	Gurrin,	Sterne,	Morley,	&	Dwyer,	2005),	we	developed	a	novel	subject‐level,	

distance‐based	method	to	test	the	hypothesis	that	neuroanatomical	differences	

between	subjects	can	explain	individual	differences	in	symptom	severity.	Using	this	

approach	on	carefully	matched	case‐control	pairs	at	the	individual	rather	than	group	

level,	we	compared	subject‐specific	differences	in	brain	structural	morphometry	on	

MRI	to	associated	intrapair	differences	in	individual	symptom	severity.	Specifically,	we	

hypothesized	that	intrapair	differences	in	cortical	thickness	and	surface	area	features	

could	predict	individual	variation	in	ASD	symptom	severity.	By	investigating	relative	

individual	differences	within	conservatively	matched	subjects,	confounding	effects	

related	to	inter‐subject	or	cohort	differences	such	as	age,	sex,	intelligence	and	image	

acquisition	site	are	also	implicitly	controlled	for.	Importantly,	our	approach	

implements	well‐validated	and	sophisticated	machine	learning	and	feature	reduction	

techniques	to	ensure	reproducibility	of	findings	with	reduced	likelihood	of	false	

positives.	
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Results	

	
Using	machine	learning	to	predict	subject‐specific	differences	in	symptom	severity	

from	differences	in	MRI	features	(Figure	1	and	2),	we	applied	regularised	linear	

regression	with	elastic	net	penalty	to	achieve	a	sparse	solution	and	select	important	

features	from	the	full	imaging	dataset.	After	training,	the	model	significantly	

predicted	differences	in	symptom	severity	between	cases	and	controls	in	the	out‐of‐

sample	dataset	(R2=0.153;	p=0.01,	5000	permutations).	Based	on	1000	iterations	of	

the	training	loop,	nineteen	cortical	thickness	features	were	retained	as	predictors	of	

individual	differences	in	symptom	severity	(Figure	3A;	Supplementary	Table	1).	The	

above	procedure	was	repeated	for	cortical	surface	area	measurements	to	predict	

differences	in	symptom	severity.	Ten	surface	area	features	were	selected	in	the	

training	dataset,	with	a	favourable	out‐of‐sample	model	fit	(R2=0.18,	p=0.006;	Figure	

3B;	Supplementary	Table	2).		

	

We	validated	our	approach	against	more	conventional	methods	of	group‐level	

prediction	less	robust	to	heterogeneity	across	individuals.	As	expected,	without	

accounting	for	subject‐level	within‐pair	differences,	regression	model	training	to	

predict	symptom	severity	based	on	group‐level	MRI	features	demonstrated	a	poor	fit	in	

out‐of‐sample	validation	tests	(Cortical	thickness	model	fit:	R2=	0.0000434;	surface	

area	model	fit:	R2=0.0158)	by	comparison.	Comparisons	of	model	fit	performance	for	

both	approaches	are	shown	in	Supplementary	Figure	1	and	Supplementary	Table	3.	
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Discussion	

	

By	implementing	a	strict	matching	procedure	combined	with	subject‐level	distance‐

based	prediction	of	variation	in	ASD	symptom	severity,	we	demonstrated	that	

individual‐specific	differences	in	cortical	morphology	were	associated	with	subject‐

level	variation	in	ASD	symptom	severity.	Key	cortical	features	implicate	abnormal	

morphometry	of	frontal	and	temporal‐parietal	cortices,	fusiform	gyri,	anterior	and	

posterior	cingulate	regions,	and	the	insula.		

Cortical	surface	area	features	identified	in	the	present	study	were	strikingly	

consistent	with	previous	findings	of	altered	surface	area	underlying	increased	grey	

matter	volume	in	3‐year	old	boys	with	ASD	(Ohta	et	al.,	2016).	Cortical	surface	area	in	8	

of	the	10	cortical	regions	identified	in	the	present	study	(Supplementary	Table	2)	were	

reported	by	Ohta	and	colleagues	to	be	significantly	increased	in	ASD	compared	to	

controls,	with	the	exception	of	the	bilateral	isthmus	cingulate.		Specific	regions	

reported	in	both	studies	were	the	left	caudal	middle	frontal,	left	rostral	middle	frontal,	

right	entorhinal,	left	inferior	parietal,	left	supramarginal,	bilateral	rostral	anterior	

cingulate,	and	the	left	insula.	Given	the	known	inconsistencies	across	investigations	on	

ASD	structural	morphometry,	the	similarity	in	reports	of	atypical	surface	area	features	

across	both	studies	that	independently	identified	the	same	set	of	cortical	regions	and	

laterality	is	remarkable.	Compared	to	the	study	of	Ohta	et	al.	(2016)	that	investigated	

males	at	the	age	of	3	years,	present	findings	were	derived	from	independent	samples	of	

an	older	age	cohort	(age	range	5	–	25	years)	that	also	included	females,	and	utilised	a	

different	analysis	method	with	the	novel	subject‐level	distance‐based	approach.	The	

consistent	results	across	different	age	cohorts	and	samples	suggest	that	differences	in	

the	identified	surface	area	features	may	be	a	stable	feature	of	ASD	over	time.	
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Similarly,	Wee,	Wang,	Shi,	Yap,	and	Shen	(2014)	reported	that	morphological	

abnormalities	in	a	set	of	cortical	regions	were	the	most	discriminative	features	for	the	

classification	of	ASD	between	5	to	23	years	of	age.	Using	a	multi‐kernel	learning	

strategy	for	feature	selection,	classification	based	on	regional	and	interregional	

features	in	unseen	samples	achieved	a	sensitivity	of	95.5%	and	specificity	of	97%,	with	

an	accuracy	of	96.27%	and	area	under	receiver	operating	characteristic	curve	(AUC)	of	

0.995,	suggesting	acceptable	predictive	utility.	Similar	cortical	regions	underlying	

individual	differences	in	ASD	were	identified	in	the	present	study	in	the	surface	area	of	

the	left	caudal	middle	frontal,	left	supramarginal,	right	rostral	anterior	cingulate	gyrus,	

and	cortical	thickness	of	the	right	inferior	temporal	gyrus,	right	cuneus,	left	middle	

temporal	and	right	fusiform	gyrus.		

Other	neuroimaging	investigations	in	ASD	have	also	implicated	the	identified	

cortical	regions	in	either	or	both	hemispheres	in	the	anterior	cingulate	(Haznedar	et	al.,	

1997;	Jiao	et	al.,	2010;	Prigge	et	al.,	2018),	posterior	cingulate	(Hyde,	Samson,	Evans,	&	

Mottron,	2010;	Prigge	et	al.,	2018;	Yang,	Beam,	Pelphrey,	Abdullahi,	&	Jou,	2016),	

isthmus	cingulate	(Caeyenberghs	et	al.,	2016;	Doyle‐Thomas	et	al.,	2013;	Yang	et	al.,	

2016),	insula	(Doyle‐Thomas	et	al.,	2013),	rostral	middle	frontal	gyrus	(Hyde	et	al.,	

2010),	pars	orbitalis	(Caeyenberghs	et	al.,	2016),	pars	triangularis	(Jiao	et	al.,	2010),	

medial	orbitofrontal	(Hyde	et	al.,	2010;	Jiao	et	al.,	2010),	middle	temporal	gyrus	(Abell	

et	al.,	1999;	Yang	et	al.,	2016),	inferior	temporal	gyrus	(Abell	et	al.,	1999;	Prigge	et	al.,	

2018;	Yang	et	al.,	2016),	fusiform	gyrus	(Hyde	et	al.,	2010),	inferior	parietal	lobule	

(Hyde	et	al.,	2010),	supramarginal	gyrus	(Zielinski	et	al.,	2014),	lingual	gyrus	(Hyde	et	

al.,	2010;	Prigge	et	al.,	2018;	Zielinski	et	al.,	2014),	cuneus	cortex	(Zielinski	et	al.,	2014),	

and	pericalcerine	cortex	(Prigge	et	al.,	2018).	Together	with	previous	reports	of	similar	
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clusters	of	cortical	features	(e.g.	Ohta	et	al.,	2016;	Wee	et	al.,	2014)	identified	in	the	

present	study,	convergent	results	across	multiple	independent	investigations	suggest	

that	atypical	structural	morphometry	in	these	specific	regions	may	be	characteristic	of	

altered	neurodevelopment	in	ASD.	

These	distributed	cortical	regions	facilitate	key	aspects	of	social,	language,	and	

sensory	functioning,	deficits	of	which	are	consistent	with	clinical	features	in	ASD.	For	

example,	the	middle	temporal	and	inferior	temporal	gyri	subserve	language	and	

semantic	processing,	and	visual	perception	(Chao,	Haxby,	&	Martin,	1999;	Herath,	

Kinomura,	&	Roland,	2001).	The	right	middle	temporal	gyrus	and	right	insula	are	part	

of	a	distributed	cortical	network	for	modulating	attention	to	salient	features	of	the	

multimodal	sensory	environment	(Downar,	Crawley,	Mikulis,	&	Davis,	2000).	The	right	

fusiform	gyrus	and	occipital‐temporal	are	highly	specialised	for	face	perception,	

recognition,	and	representation	of	facial	features	such	as	eye	gaze	and	facial	

expressions	that	are	necessary	for	social	communication	(Kanwisher,	McDermott,	&	

Chun,	1997;	Rossion	et	al.,	2003;	Rossion,	Schiltz,	&	Crommelinck,	2003).		Notably,	the	

identified	cortical	regions	in	the	cingulate	and	insula	implicate	hub	regions	of	the	

salience	network	(SN)	and	default	mode	network	(DMN)	that	have	been	increasingly	

suspect	to	be	aberrant	in	ASD	(Anderson	et	al.,	2011).	The	SN	primarily	anchored	to	the	

anterior	insular	and	dorsal	anterior	cingulate	cortex	contributes	to	cognitive	and	

affective	processes	such	as	social	behaviour	and	communication,	and	the	integration	of	

sensory,	emotional	and	cognitive	information	(Menon,	2015).	The	DMN	comprising	the	

posterior	cingulate,	medial	prefrontal	and	parietal	cortices	typically	demonstrates	

reduced	activity	on	task	initiation,	and	functions	to	support	self‐referential	and	

introspective	states	and	social	cognition	(Mak	et	al.,	2017).	Altered	function	of	the	
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salience	network	and	DMN	are	highly	consistent	with	ASD	symptomatology,	and	

emerging	evidence	suggests	that	specific	features	of	cortical	regions	comprising	these	

networks	may	discriminate	ASD	from	neurotypical	development	(Uddin	et	al.,	2017).	

A	subject‐level	distance‐based	framework	
	

Morphometry	of	the	frontal,	temporal,	fusiform	and	insular	cortices	have	been	

suggested	to	be	important	classification	features	in	ASD.	However,	findings	were	

inconsistent	due	to	high	variability	in	symptom	severity,	age	and	IQ	across	

heterogeneous	ASD	subgroups.	Classification	accuracy	became	poorer	as	subgroup	

differences	along	these	variables	increased,	but	was	significantly	improved	by	matching	

subgroups	on	subject	demographics	(Katuwal,	Baum,	Cahill,	&	Michael,	2016).	Between‐

group	differences	in	cortical	thickness	in	ASD	have	also	been	reported	to	become	non‐

significant	after	controlling	for	IQ,	further	highlighting	the	importance	of	matching	on	

key	confound	variables	(Hardan	et	al.,	2009).	Present	findings	support	the	hypothesis	of	

Katuwal	and	colleagues	that	increasing	homegeneity	between	case	and	control	

populations	can	reduce	noise	and	improve	precision	in	classification.	Further,	similar	

cortical	regions	were	also	implicated	in	ASD	in	cortical	thickness	of	occipital‐temporal	

regions	and	the	anterior	cingulate.	By	modelling	individual	differences	in	well‐matched	

subgroups,	consistent	patterns	of	abnormalities	across	cortical	regions	and	subjects	may	

emerge	or	become	more	distinct.	For	example,	intrapair	differences	between	cases	and	

controls	in	structural	morphometry	of	certain	regions,	such	as	the	anterior	cingulate,	

appear	to	exceed	differences	observed	in	other	cortical	regions	in	a	large	proportion	of	

the	sample	(Figure	2).	To	qualify	as	potential	candidate	markers	in	the	neurobiology	of	

ASD	however,	such	putative	features	must	necessarily	demonstrate	significant	

associations	with	ASD	symptomatology	based	on	rigorous	analysis	and	validation	(Pua,	
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Malpas,	Bowden,	&	Seal,	2018).	Using	the	subject‐level	distance‐based	framework	in	the	

current	study,	we	demonstrated	that	individual	differences	in	the	structural	

morphometry	of	identified	cortical	regions	also	predicted	subject‐level	variation	in	

symptom	severity	(Figure	3).		

Present	results	suggest	that	as	neuroanatomy	diverges	between	ASD	and	control	

subjects,	individual	differences	in	symptom	severity	increase	within	matched	case‐

control	pairs.	Conversely,	negative	coefficient	weights	reflect	an	increase	in	symptom	

severity	differences	as	regional	cortical	features	becomes	more	similar	between	ASD	

and	controls.	While	this	may	appear	counterintuitive,	the	direction	of	differences	in	

altered	brain	morphometry	in	ASD	have	been	observed	to	shift	across	development,	

due	to	age‐dependent	changes	in	the	neurodevelopmental	trajectory	of	ASD	that	differs	

from	controls	(Lin,	Ni,	Lai,	Tseng,	&	Gau,	2015).	Previous	longitudinal	findings	suggest	

that	the	expected	typical	age‐related	decline	in	cortical	surface	area	(Mensen	et	al.,	

2017)	or	cortical	thickness	(Smith	et	al.,	2016)	may	be	absent	in	ASD.	Group	differences	

in	cortical	thickness	also	varied	across	development	stages,	with	region‐specific	

differences	in	age‐related	trajectories	between	ASD	and	controls	(Zielinski	et	al.,	2014).	

A	dynamic	pattern	of	age‐specific	abnormalities	has	also	been	reported	with	increased	

cortical	thickness	in	children	with	ASD.	However,	no	differences	were	observed	in	adult	

cohorts	due	to	an	accelerated	rate	of	cortical	thinning	in	ASD	compared	to	controls	

(Khundrakpam,	Lewis,	Kostopoulos,	Carbonell,	&	Evans,	2017).	As	a	consequence	of	the	

different	developmental	trajectories	between	groups,	atypical	cortical	developmental	

trajectories	in	ASD	may	intersect	with	that	of	typically	developing	peers	at	certain	

stages	of	development.	At	such	time‐points,	group	differences	in	abnormally	

developing	cortical	regions	in	ASD	may	not	be	detected	cross‐sectionally,	despite	a	
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concomitant	difference	in	symptom	severity.	The	presence	of	group‐dependent	

developmental	trajectories	that	are	dynamic	over	time	could	explain	the	high	

prevalence	of	inconsistent	findings	in	ASD.	With	our	proposed	framework,	we	were	

able	to	identify	distinct	patterns	of	abnormalities	associated	with	symptom	severity	in	

ASD	that	were	not	dependent	on	detecting	mean	differences	at	the	group	level.	Notably,	

our	approach	based	on	cross‐sectional	data	identified	structural	differences	in	ASD	in	

the	same	regions	reported	in	the	longitudinal	study	of	(Mensen	et	al.,	2017)	in	surface	

area	of	the	anterior	cingulate,	insula,	supramarginal	gyrus	and	inferior	parietal	lobe,	

and	cortical	thickness	of	the	bilateral	inferior	temporal	gyri.	

Importantly,	a	dimensional	approach	based	on	continuous	measures	allows	for	a	

more	precise	quantification	of	sub‐threshold	ASD	traits	in	individuals	who	do	not	meet	

the	criteria	for	clinical	diagnosis,	otherwise	known	as	the	broader	autism	phenotype	

(Dawson	et	al.,	2002).	For	example,	a	broader	phenotype	individual	in	the	control	

group	may	display	a	high	degree	of	similarity	in	symptom	severity	to	an	individual	with	

a	milder	presentation	of	ASD	(Bishop,	Maybery,	Wong,	Maley,	&	Hallmayer,	2006).	This	

is	consistent	with	overlapping	distributions	of	SRS	scores	in	children	with	or	without	

ASD	observed	in	a	large	nation‐wide	population	sample,	such	that	a	proportion	of	

controls	displayed	higher	SRS	scores	than	individuals	with	ASD,	and	vice	versa	(Kamio	

et	al.,	2013).		In	the	present	study,	a	similar	pattern	is	observed	with	overlapping	

symptom	severity	scores	ranges	between	cases	and	controls.	Investigating	group	

differences	in	ASD	based	on	group‐averaged	variables	between	cases	and	controls	are	

thus	likely	to	obscure	important	subject‐specific	effects,	and	could	explain	inconsistent	

findings	from	previous	studies.		
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Indeed,	present	results	suggest	that	subject‐level	modelling	significantly	

outperforms	group‐difference	methods	of	symptom	severity	prediction	in	ASD.		We	

show	that	individual	variability	in	brain	morphometry	and	symptom	severity	can	be	

modelled	with	a	subject‐level	distance‐based	approach.	Dimensional	approaches	to	

symptom	measurement	as	such	could	be	more	effective	in	delineating	the	association	

between	properties	of	the	brain	and	symptom	severity.	Individual	differences	in	

neurodevelopment	were	also	accounted	for	based	on	confound	matching	at	the	

individual	level	(rather	than	group)	to	improve	inter‐subject	homogeneity.	With	the	

robustness	of	present	findings,	such	methodological	considerations	may	be	important	

for	improved	characterisation	of	heterogeneity	in	ASD	brain	morphometry	that	better	

reflects	the	continuous	spectrum	of	symptom	severity	in	this	population.	

Future	directions	

In	the	current	study,	individual	differences	in	cortical	thickness	between	ASD	and	

controls	were	more	prevalent	in	the	right	hemisphere,	with	a	left	hemisphere	bias	for	

differences	in	surface	area	features.	Cortical	features	that	were	implicated	bilaterally	

were	the	surface	area	of	the	rostral	anterior	cingulate	and	isthmus	cingulate,	and	

cortical	thickness	of	the	middle	temporal,	inferior	temporal	and	fusiform	gyrus.	ASD	

has	been	related	to	a	loss	or	inversion	of	typical	patterns	of	brain	asymmetry	or	

lateralisation,	with	abnormal	asymmetry	in	brain	morphometry	and	connectivity	

associated	with	symptom	deficits	in	ASD	(Conti	et	al.,	2016;	Floris	et	al.,	2016;	Herbert	

et	al.,	2002).	For	example,	the	study	of	Wee	et	al.	(2014)	noted	significantly	more	

abnormalities	in	the	right	hemisphere	than	the	left	in	ASD,	in	agreement	with	previous	

reports	of	a	right‐hemisphere	bias	in	brain	structural	and	functional	asymmetry	in	ASD	

(Chiron	et	al.,	1995;	Herbert	et	al.,	2004;	Wei,	Zhong,	Nie,	&	Gong,	2018).	In	contrast,	a	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2019. ; https://doi.org/10.1101/430355doi: bioRxiv preprint 

https://doi.org/10.1101/430355
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

leftward	lateralisation	of	abnormalities	in	ASD	was	reported	for	cortical	thickness	

(Khundrakpam	et	al.,	2017)	and	surface	area	(Dougherty,	Evans,	Katuwal,	&	Michael,	

2016).	Distinct	patterns	of	lateralisation	between	different	morphological	features	in	

ASD	may	be	related	to	the	independent	growth	trajectories	of	cortical	thickness	and	

cortical	surface	area,	each	regulated	by	discrete	genetic	mechanisms	(Panizzon	et	al.,	

2009).	Further,	the	direction	of	atypical	asymmetry	in	structural	morphometry	has	

been	shown	to	shift	throughout	development	in	ASD	with	decreasing	leftward	

asymmetry	with	age,	or	differ	between	high	and	low	functioning	individuals	with	ASD	

(Dougherty	et	al.,	2016;	Khundrakpam	et	al.,	2017).	Mixed	findings	of	structural	

asymmetry	or	direction	of	effects	in	ASD	could	thus	be	due	to	the	diverse	aetiology	or	

distinct	subtypes	in	the	condition,	as	well	as	relative	differences	to	control	that	vary	

across	developmental	stages	due	to	altered	developmental	trajectories	(Moreno‐De‐

Luca	et	al.,	2013).	While	we	have	shown	that	individual	differences	in	specific	cortical	

features	are	strongly	implicated	in	ASD,	the	complex	expression	of	age‐dependent	

changes	in	ASD	that	are	dynamic	over	time	requires	further	investigation	beyond	

cross‐sectional	studies.	

Together,	present	results	derived	from	rigorous	testing	and	validation	

techniques	suggest	that	subject‐level	variation	in	brain	properties	are	important	

characteristics	in	the	expression	of	ASD.	Present	findings	were	limited	to	cortical	

thickness	and	surface	area	features,	and	other	properties	across	different	measures	of	

brain	structure	and	function	could	account	for	larger	proportions	of	variance	in	

symptom	severity.	The	robustness	of	the	subject‐level	distance‐based	approach	is	

nevertheless	promising.	Given	that	complex	neurodevelopment	conditions	such	as	ASD	

likely	stem	from	perturbations	of	anatomically	distributed	and	interconnected	neural	
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systems,	future	applications	of	the	subject‐level	distance‐based	approach	to	

investigations	of	intrinsic	brain	networks	may	reveal	more	sophisticated	insights	into	

atypical	neural	mechanisms	in	ASD	(Fornito,	Bullmore,	&	Zalesky,	2017).	As	brain	

structural	connectivity	constrains	the	development	of	functional	networks	across	the	

lifespan,	validation	across	different	imaging	modalities	will	be	necessary	to	elucidate	

distinct	neurobiological	mechanisms,	such	as	network	analysis	of	white	matter	

microstructure	and	functional	connectivity	investigations	(Grayson	&	Fair,	2017).	

We	strongly	encourage	continued	multimodal	subject‐level	distance‐based	

investigations	to	further	challenge	this	hypothesis	in	large	multi‐site	cohorts.	As	we	

have	shown,	investigations	in	ASD	must	necessarily	demonstrate	generalizability	

beyond	in‐sample	modelling,	given	the	high	levels	of	inter‐	and	intra‐individual	

heterogeneity	in	this	population.	It	is	likely	that	the	reliable	identification	of	neural	

correlates	in	ASD	strongly	depends	on	quantifying	individual	variation	in	the	

phenotypic	expression	of	ASD	or	the	broader	autism	phenotypes.	Such	individualised	

approaches	will	be	important	for	the	development	of	clinical	applications	to	aid	

management	or	personalized	intervention	strategies	for	each	unique	patient	at	the	

individual	level.	

Conclusion	

	

The	robustness	and	generalisability	of	present	findings	is	important	progress	in	the	

search	for	neural	correlates	of	heterogeneous	disorders	such	as	ASD,	and	offers	a	

promising	insight	into	the	neurobiology	of	ASD	symptomatology.	Based	on	present	

results	with	out‐of‐sample	predictions,	cortical	hubs	of	the	salience	and	DMN	networks	

are	likely	to	be	implicated	as	potential	neuroanatomical	markers	of	ASD	
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symptomatology.	Increased	reliability	and	validity	of	evidence	for	subject‐specific	

alterations	in	brain	structure	and	function	will	be	necessary	to	advance	current	

knowledge	about	the	aetiology	of	ASD,	where	individual	variability	should	be	carefully	

modelled,	rather	than	discarded	as	noise.		

Methods	

Participants	

Data	was	obtained	from	the	Autism	Brain	Imaging	Database	Exchange	(ABIDE‐II)	

cohort	across	17	independent	imaging	sites	(Di	Martino	et	al.,	2017)	.	Protocols	specific	

to	each	imaging	site	for	diagnosis,	behavioural	and	cognitive	assessment,	and	Magnetic	

Resonance	Imaging	(MRI)	acquisition	are	publicly	available1.	The	Social	

Responsiveness	Scale	(SRS;	Constantino	&	Gruber,	2012)	was	used	as	a	phenotype	

measure	of	ASD	symptom	severity	.	The	SRS	has	been	established	to	be	a	reliable	and	

valid	quantitative	measure	of	ASD	traits,	demonstrating	convergent	validity	with	the	

gold	standard	Autism	Diagnostic	Observation	Schedule	and	Autism	Diagnostic	

Interview,	and	is	able	to	discriminate	ASD	from	other	psychopathologies	(Bölte,	

Poustka,	&	Constantino,	2008;	McConachie	et	al.,	2015).	The	instrument	is	commonly	

used	for	both	screening	and	as	a	tool	to	aid	clinical	diagnosis.	

Based	on	the	multivariate	genetic	matching	method	of	Ho,	Imai,	King,	and	Stuart	

(2011),	each	ASD	case	was	individually	matched	to	the	nearest	control	participant	in	

age	and	IQ,	restricted	to	a	maximum	distance	of	0.25	standard	deviations	for	each	

variable	within	each	pair.	For	categorical	variables,	exact	matching	criteria	were	set	for	

participant	sex	and	image	acquisition	site.	The	genetic	search	algorithm	(Diamond	&	

                                                            
1 http://fcon_1000.projects.nitrc.org/indi/abide/	
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Sekhon,	2013)	aims	to	achieve	optimal	balance	after	matching	by	finding	a	set	of	

weights	for	each	covariate	of	interest.	Matching	balance	was	evaluated	by	univariate	

and	paired	t‐tests	for	dichotomous	variables	and	the	Kolmogrov‐Smirnov	test	for	

continuous	or	multinomial	variables.	The	process	selected	n=100	individuals	with	ASD	

to	100	controls	eligible	for	inclusion	(see	Table	1).	

Image	processing	and	quality	control	

Pre‐processing	and	analysis	of	T1‐weighted	(MRI)	was	performed	using	FreeSurfer	

(v6.0.0;	http://surfer.nmr.mgh.harvard.edu/).	Visual	inspection	for	movement	

artefacts	were	conducted	for	every	subject	to	ensure	data	quality	control.	We	inspected	

images	for	characteristic	ring	artefacts	caused	by	in‐scanner	head	motion,	and	

evaluating	grey/white	matter	and	grey	matter/CSF	boundaries.	Briefly,	the	FreeSurfer	

cortical	surface	reconstruction	pipeline	performs	the	following	steps	in	sequence:	non‐

uniform	intensity	correction,	skull	stripping,	segmentation	into	tissue	type	and	

subcortical	grey	matter	structures,	cortical	surface	extraction	and	parcellation.	Manual	

editing	was	performed	on	the	white	matter	mask	images	to	avoid	false‐positive	errors	

in	estimated	surfaces	and	to	ensure	accurate	masking	of	the	dura.	We	further	inspected	

images	for	topological	errors	during	cortical	reconstruction	by	inspecting	surface	

outputs	and	parcellations	for	each	subject.	Cortical	morphometric	statistics	based	on	

the	Desikan–Killiany–Tourville	(DKT)	brain	anatomical	atlas	were	used	to	estimate	

cortical	thickness	(mm)	and	surface	area	measurements	(mm2)	for	each	brain	region.	

An	advantage	of	the	DKT	atlas	is	that	labelling	is	performed	on	a	per‐subject	basis	

rather	than	the	projection	of	a	single	parcellation	onto	every	cortex,	and	is	well‐suited	

for	the	present	subject‐level	analyses.	Given	that	participants	with	high	motion	in	one	

scan	are	also	likely	to	move	more	in	other	scans	during	the	same	session	(Savalia	et	al.,	

2017),	we	further	evaluated	head	motion	parameters	in	each	subject’s	resting‐state	
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functional	MRI	(fMRI)	scan	using	framewise	displacement	(FD)	as	an	estimate	of	

volume‐to‐volume	head	movement.	Inter‐subject	mean	FD	was	not	significantly	

associated	with	differences	in	SRS	scores	within	matched	subject	pairs	(t=1.54,	

p=0.125),	suggesting	that	individual	variation	in	symptom	measures	were	not	likely	

explained	by	differences	in	in‐scanner	head	motion.	

Subject‐level	distance‐based	analysis	

Within‐pair	Euclidean	distances	were	computed	for	every	matched	pair	on	clinical	(SRS	

score)	and	demographic	(age	and	IQ)	continuous	variables	and	brain	structural	

morphometry	measures	(cortical	thickness	and	surface	area).	Age	and	total	intracranial	

volume	were	regressed	out	using	standardised	residual	adjustment	to	adjust	for	inter‐

subject	disparity	in	age	and	head	size	(O'Brien	et	al.,	2011).	By	measuring	the	

anatomical	difference	between	matched	brains	at	the	level	of	individual	subjects,	we	

can	investigate	brain‐behaviour	associations	underlying	symptom	severity	by	testing	

whether	differences	in	brain	structure	can	explain	differences	in	symptom	severity	

between	paired	subjects.	Subjects	were	also	strictly	matched	at	the	individual	level	on	

key	neurodevelopmental	and	demographic	factors	such	as	age,	sex,	IQ,	and	MRI	

acquisition	site.	This	improves	subgroup	equivalence	(Stout,	Wirtz,	Carbonari,	&	Del	

Boca,	1994),	and	reduces	the	likelihood	of	significant	differences	on	these	confound	

covariates	influencing	observed	outcomes	between	subjects.	Figure	1	provides	a	

summary	of	the	analysis	pipeline.	Regularised	regression	with	elastic	net	penalization	

(Zou	&	Hastie,	2005)	was	used	to	test	the	hypothesis	that	selected	case‐control	

differences	in	cortical	morphometry	were	associated	with	variation	in	symptom	

severity	(α	=0.5,	λ=100,	k‐fold	cross‐	validation=10,	n	iterations	=1000).	In	machine	

learning,	we	aim	to	use	data	to	train	a	model	to	make	accurate	predictions	on	new,	

unseen	or	held‐out	datasets.	Elastic	net	is	an	embedded	technique	that	combines	
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machine	learning	and	feature	reduction	functions	by	implementing	a	regularization	

framework	to	obtain	a	reduced	subset	of	selected	features.	Elastic	net	has	been	

previously	applied	in	machine	learning	for	neuroimaging	in	Alzheimer’s	disease	

classification	and	treatment	outcome	predictions	in	ADHD	cohorts	(Mwangi	et	al.,	

2014).	In	regularised	regression,	λ	is	a	parameter	controlling	for	the	strength	of	

regularization.	The	higher	the	value	of	λ,	the	more	likely	coefficients	will	be	estimated	

towards	zero	with	an	increased	penalty.	α	is	the	mixing	parameter	(0<	α<1)	and	

determines	the	relative	quantities	of	L2	norm	penalized	regression	(ridge	regression)	

and	L1	norm	penalized	regression	(LASSO	regularised	penalization).	Elastic	net	is	an	

approach	that	combines	both	the	L1	and	L2		penalties	of	the	LASSO	and	ridge	methods.	

A	subset	of	the	matched‐pairs	sample	(33%)	was	held	out	as	an	out‐of‐sample	

test	set	independent	of	the	subject	data;	that	is	these	data	were	not	used	in	the	cross‐

validation	steps	(training	set),	and	only	examined	as	an	independent	validation	of	the	

model	(test	set).	The	remaining	data	was	used	as	a	training	set	to	obtain	optimal	model	

weights	for	selected	features.	In	the	training	set,	we	employed	a	strict	k‐fold	cross‐

validation	loop	(10	folds,	1000	iterations)	to	train	the	model	to	predict	differences	in	

symptom	severity	between	matched	cases	and	controls	in	the	out‐of‐sample	test	set.	

The	model	was	trained	within	a	k‐fold	cross‐validation	loop	(k=10).	The	training	set	is	

first	randomly	partitioned	into	k	subsamples	of	equal	size.	For	each	fold,	one	

subsample	is	withheld	for	internal	validation	to	test	the	model	trained	on	k‐1	

subsamples.	Each	of	the	k	subsamples	were	used	as	the	validation	set	once	per	fold.	

Results	from	each	fold	were	averaged	to	obtain	a	single	estimation.	Due	to	intrinsic	

randomness	of	model	building,	estimated	coefficients	may	vary	after	each	run.	To	

account	for	stochastic	error	and	to	ensure	robustness	of	estimates,	the	process	was	
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repeated	for	n=1000	iterations,	and	the	averaged	coefficient	weights	used	to	generate	

predictions	in	the	out‐of‐sample	test	set.	

	

Model	goodness‐of‐fit	was	assessed	by	constructing	a	null	distribution	of	

symptom	severity	outcome.	To	generate	a	null	distribution,	the	symptom	severity	

(difference)	variable	was	randomized	across	every	sample	observation	of	cortical	

thickness	or	surface	area	features	using	5,000	permutations.	For	each	iteration,	model	

parameters	were	obtained	using	the	same	machine	learning	pipeline	with	regularised	

regression	with	elastic	net	penalty.	The	p‐value	of	the	initial	model	fit	in	the	out‐of‐

sample	test	set	was	computed	as	the	proportion	of	iterations	in	the	null	distribution	

with	model	performance	exceeding	that	of	the	initial	model	fit.		Application	and	

validation	of	recommended	best	practice	for	the	regularised	regression	protocol	are	

detailed	elsewhere	(Hendricks	&	Ahn,	2017;	Vilares	et	al.,	2017).		The	entire	procedure	

was	repeated	for	cortical	thickness	and	surface	area	measures.	Final	model	weights	

were	obtained	by	fitting	selected	features	on	the	entire	dataset	to	allow	independent	

model	testing.	To	validate	our	approach	against	group‐level	prediction	methods,	we	

repeated	the	entire	machine	learning	pipeline	on	the	same	matched	ASD	cohort	but	at	

the	group‐level	without	within‐pair	distance	computations,	adjusted	for	age,	sex,	site,	

IQ	and	intracranial	volume	effects.		

	

Analyses	were	performed	in	the	R	environment	(Team,	2014)	using	the	MatchIt	

and	boot	wrapper	tools	(Ho	et	al.,	2011;	McArtor,	Lubke,	&	Bergeman,	2016)	.	

Visualizations	were	generated	with	in‐house	scripts.	
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Tables	

Table	1.	Descriptive	statistics	of	matched	samples	
	
Group	 n	 Sex	 Age	 IQ	 SRS	

ASD	 100	 n=84	
males	

11.45 (3.51);
Range:	5.92‐24.58	

110.58	 (13.18);	
Range:	80‐149	

91.7	(28.42);	
Range:	11‐162	

Controls	 100	 n=84	
males	

11.43	(3.55);	

Range:	5.89‐23.92	

110.70	(13.18);	

Range:	79‐148	

19.7	(13.0);	
Range:	1‐57	

	

Note.	SRS:	Social	Responsiveness	Scale	raw	scores.	Higher	score	indicates	more	severe	ASD	
symptoms.	
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Figure	1.	Subject‐level	distance‐based	pipeline.	A: Each	ASD	case	was	individually	matched	to	one	control	participant	in	
age,	sex,	IQ	and	acquisition	site.	B:	For	every	matched	pair,	within‐	pair	Euclidean	distances	(Δ)	on	symptom	severity	variables	
and	morphometry	of	brain	region‐of‐interests	(ROI)	were	computed.	C:	Using	a	machine	learning	approach,	regularised	
regression	with	elastic	net	penalization	was	implemented	to	test	the	association	between	within‐pair	ΔROI	and	Δsymptom	
severity.	A	subset	of	the	sample	(33%)	was	held	out	as	an	independent	out‐of‐	sample	test	set.	Remaining	data	was	used	as	a	
training	set	to	obtain	cross‐validated	model	weights	for	feature	selection.	The	trained	coefficient	weights	were	then	used	to	
generate	predictions	and	model	fit	parameters	in	the	held‐out	test	set.	D:	Finally,	out‐of‐sample	model	
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Figure	2.	Exploratory	data	visualisation	of	intrapair	differences for cortical	thickness (A)
and	surface	area	(B).	Rows	represents	the	within‐pair	percentage	difference	in	each	cortical	
region	(columns).	Brighter	heatmap	colours	(yellow)	indicates	higher	intrapair	difference	in	
structural	morphometry	features.	Neutral	regions	(grey)	indicate	a	percentage	difference	
exceeding	100%.	Neutral	regions	(grey)	indicate	a	percentage	difference	exceeding	100%.	
Subject‐level	differences	in	structural	morphometry	of	specific	regions,	such	as	the	anterior	
cingulate,	appear	to	be	higher	than	other	cortical	regions	across	most	subjects.	
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Figure	3.	Cortical	features	selected	using	regularised	regression	models.	Colour	bars	represent	
mean	beta	coefficients	of	cortical	regions	associated	with	individual	differences	in	symptom	severity	
in	ASD.	A:	Cortical	thickness	features	associated	with	symptom	severity	variation	in	ASD	B:	Surface	
area	features	associated	with	symptom	severity	variation	in	ASD.	Note.	CAC:	caudal	anterior	
cingulate	gyrus;	CUN:	cuneus;	ENT:	entorhinal;	FUS:	fusiform	gyrus;	INFP:	inferior	parietal	gyrus;	INS:	
insula;	ISTC:	isthmus	cingulate	gyrus;	IT:	inferior	temporal	gyrus;	LH:	left	hemisphere;	LIN:	lingual	
gyrus;	MORB:	medial	orbitofrontal;	MT:	middle	temporal	gyrus;	PCAL:	pericalcerine;	PC:	posterior	
cingulate	gyrus;	PORS:	pars	orbitalis;	RH:	Right	hemisphere;	PTRI:	pars	triangularis;	RMF:	rostral	
middle	frontal	gyrus.	
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