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Abstract 

Neurobiological mechanisms underlying heterogeneous neurodevelopmental disorders 

such as autism spectrum disorders (ASD) are still poorly defined. Despite extensive 

efforts to delineate the link between brain morphometry and ASD symptomatology, 

majority of findings are not reproducible due to high levels of individual variance in 

phenotypic expression. To investigate if individual differences in brain morphometry 

are important features in ASD symptom severity, we implemented a novel subject-level, 

distance-based method using subject-specific attributes of cases and controls. In a large 

multi-cohort sample, each subject with ASD (n=100; n=84 males; mean age: 11.43 years; 

mean IQ: 110.58) was strictly matched to a control participant (n=100; n=84 males; 

mean age: 11.43 years; mean IQ: 110.70) to ensure homogeneity on age, IQ, sex and 

image acquisition site. The intrapair Euclidean distance of MRI brain morphometry and 

symptom severity measures were entered into a regularized machine learning pipeline 

for feature selection modelling, with rigorous out-of-sample validation and 

bootstrapping for permutation testing. Subject-specific cortical thickness (19 features; 

p=0.01, n=5000 permutations) and surface area (10 features; p=0.006, n=5000 

permutations) features significantly account for individual variation in ASD symptom 

severity. The association between unique variation in brain features and symptom 

severity remained robust across subjects and were replicated in validation samples. 

Identified cortical regions strongly implicate the involvement of key hubs of the salience 

and default mode networks as neuroanatomical features of social impairment in ASD. 

The new findings highlight the importance of subject-level markers in ASD, and offers 

important step forward in understanding the neurobiology of heterogeneous disorders.  
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Introduction 

Definitive aetiologies in neurodevelopmental disorders such as autism spectrum 

disorders (ASD) remain poorly defined due to significant heterogeneity within and 

between individuals1. ASD are a group of neurodevelopmental conditions characterized 

by impairments in social communication and restricted and repetitive behaviours. 

Magnetic Resonance Imaging (MRI) offers an in vivo method to assay neurobiological 

abnormalities, and has produced promising findings of brain dysfunction in ASD2. 

However, group differences in brain structure or function in ASD are still frequently 

misidentified because of the high levels of variability between and within individuals, 

resulting in poor reliability and reproducibility of findings 3.  

In addition to the large phenotypic variation in individuals with ASD, neuroimaging 

studies are confounded by a number of methodological factors related to differences in 

image acquisition sites, anatomical sex, IQ, as well as age-dependent perturbations of 

neurodevelopment 4. Alterations in brain structure and function in ASD relative to 

neurotypical peers demonstrate a continuous shift throughout the lifespan, and the 

nature or trajectory of these abnormalities are also likely differ between individuals 

with the condition 5. Consequently, efforts to identify consistent differences in the brain 

in individuals with ASD have thus remained largely unsuccessful, and there is a need for 

predictive brain-based biomarkers that are sensitive to heterogeneity in the 

neurobiology and symptom expression of ASD 6 

Emerging work suggests that individually specific variation in brain architecture may be 

a critical factor underlying idiosyncrasies in ASD symptom characteristics 7,8. 

Conventional neuroimaging investigations have been of limited yield in ASD research, as 

such approaches typically rely on group-averaged between-group effects and do not 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 29, 2018. ; https://doi.org/10.1101/430355doi: bioRxiv preprint 

https://doi.org/10.1101/430355
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

allow inferences on individual subjects. High-dimensional neuroimaging data with a 

large number of, often co-linear, features relative to small sample size pose further 

problems with increased risk of false positives. To overcome these roadblocks, analysis 

techniques must sufficiently account for these issues associated with large-scale 

neuroimaging data as well as subject-level predictions 9,10. 

Drawing from multi-disciplinary methodologies in ecology and twin modelling 11, we 

developed a novel subject-level, distance-based method to test the hypothesis that 

neuroanatomical differences between subjects can explain individual differences in 

symptom severity.  Using this approach on carefully matched case-control pairs, we 

compared subject-specific differences in brain structural morphometry on MRI to 

differences in individual symptom severity. Importantly, our approach implements 

well-validated and sophisticated machine learning and feature reduction techniques to 

reduce the likelihood of false positives, and to ensure the reproducibility of analyses 

results. 
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Methods  

Participants  

Data was obtained from the Autism Brain Imaging Database Exchange (ABIDE-II) cohort 

across 17 independent imaging sites 12. Protocols specific to each imaging site for 

diagnosis, behavioural and cognitive assessment, and Magnetic Resonance Imaging 

(MRI) acquisition are publicly available1. The Social Responsiveness Scale (SRS-2) was 

used as a phenotype measure of ASD symptom severity. The instrument is commonly 

used for both screening and as a tool to aid clinical diagnosis. The SRS has been 

established to be a reliable and valid quantitative measure of ASD traits, demonstrating 

convergent validity with the gold standard Autism Diagnostic Observation Schedule and 

Autism Diagnostic Interview, and is able to discriminate ASD from other 

psychopathologies 13,14.  

Based on the multivariate genetic matching method of Ho et al. 2011; 15, each ASD case 

was individually matched to the nearest control participant in age and IQ, restricted to a 

maximum distance of 0.25 standard deviations for each variable within each pair. For 

categorical variables, exact matching criteria were set for participant sex and image 

acquisition site. The genetic search algorithm 16 aims to achieve optimal balance after 

matching by finding a set of weights for each covariate of interest. Matching balance was 

evaluated by univariate and paired t-tests for dichotomous variables and the 

Kolmogrov-Smirnov test for continuous or multinomial variables. The process selected 

n=100 individuals with ASD to 100 controls eligible for inclusion (see Table 1).   

                                                           
1
 http://fcon_1000.projects.nitrc.org/indi/abide/  
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Image processing  

Pre-processing and analysis of T1-weighted (MRI) was performed using FreeSurfer (v 

6.0.0; http://surfer.nmr.mgh.harvard.edu/) for all ABIDE subjects. Briefly, the 

FreeSurfer cortical surface reconstruction pipeline performs the following steps in 

sequence: non-uniform intensity correction, skull stripping, segmentation into tissue 

type and subcortical grey matter structures, cortical surface extraction and parcellation. 

Visual inspection for movement artefacts were conducted for every subject to ensure 

data quality control. Manual editing was performed on the white matter mask images to 

avoid false-positive errors in estimated surfaces. Cortical morphometric statistics based 

on the Desikan–Killiany–Tourville (DKT) brain anatomical atlas were used to estimate 

cortical thickness (mm) and surface area measurements (mm2) for each brain region. 

An advantage of the DKT atlas is that labelling is performed on a per-subject basis 

rather than the projection of a single parcellation onto every cortex, and is well-suited 

for the present subject-level analyses. 

Subject-level distance-based analysis 

Within-pair Euclidean distances were computed for every matched pair on clinical and 

demographic continuous variables of interest and cortical thickness measures. Age and 

intracranial volume normalization was used to obtain mean standardized residuals to 

adjust for age and head size disparity. By measuring the difference between matched 

brains at the level of individual subjects, we can examine brain-behaviour associations 

underlying variation in symptom severity, while increasing homogeneity by directly 

controlling for key neurodevelopmental confounds. Figure 1 provides a summary of the 

analysis pipeline. Regularized regression with elastic net penalization 17 was used to 

test the hypothesis that selected case-control differences in cortical morphometry were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 29, 2018. ; https://doi.org/10.1101/430355doi: bioRxiv preprint 

http://surfer.nmr.mgh.harvard.edu/
https://doi.org/10.1101/430355
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

associated with variation in symptom severity (α =0.5, λ=100, k-fold cross-

validation=10, n iterations =1000). In machine learning, we aim to use data to train a 

model to make accurate predictions on new, unseen or held-out datasets. Elastic net is 

an embedded technique that combines machine learning and feature reduction 

functions by implementing a regularization framework to obtain a reduced subset of 

selected features. Elastic net has been previously applied in machine learning for 

neuroimaging in Alzheimer’s disease classification and treatment outcome predictions 

in ADHD cohorts 10. In regularized regression, λ is a parameter controlling for the 

strength of regularization. The higher the value of λ, the more likely coefficients will be 

estimated towards zero with an increased penalty. α is the mixing parameter (0< α<1) 

and determines the relative quantities of L2 norm penalized regression (ridge 

regression) and L1 norm penalized regression (LASSO regularized penalization). Elastic 

net is an approach that combines both the L1 and L2  penalties of the LASSO and ridge 

methods.  

A subset of the matched-pairs sample (33%) was held out as an out-of-sample test set 

independent of the subject data; that is these data were not used in the cross-validation 

steps (training set), and only examined as an independent validation of the model (test 

set).  The remaining data was used as a training set to obtain optimal model weights for 

selected features.  In the training set, we employed a strict k-fold cross-validation loop 

(10 folds, 1000 iterations) to train the model to predict differences in symptom severity 

between matched cases and controls in the out-of-sample test set. The model was 

trained within a k-fold cross-validation loop (k=10). The training set is first randomly 

partitioned into k subsamples of equal size. For each fold, one subsample is withheld for 

internal validation to test the model trained on k-1 subsamples. Each of the k 
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subsamples were used as the validation set once per fold. Results from each fold were 

averaged to obtain a single estimation. Due to intrinsic randomness of model building, 

estimated coefficients may vary after each run. To account for stochastic error and to 

ensure robustness of estimates, the process was repeated for n=1000 iterations, and the 

averaged coefficient weights used to generate predictions in the out-of-sample test set. 

Model goodness-of-fit was assessed by constructing a null distribution of symptom 

severity outcome. To generate a null distribution, the symptom severity (difference) 

variable was randomized across every sample observation of cortical thickness or 

surface area features using 5,000 permutations. For each iteration, model parameters 

were obtained using the same machine learning pipeline with regularized regression 

with elastic net penalty. The p-value of the initial model fit in the out-of-sample test set 

was computed as the proportion of iterations in the null distribution with model 

performance exceeding that of the initial model fit.  Application and validation of  

recommended best practice for the regularized regression protocol are detailed 

elsewhere 18,19.  The entire procedure was repeated for cortical thickness and surface 

area measures. Final model weights were obtained by fitting selected features on the 

entire dataset to allow independent model testing. To validate our approach against 

group-level prediction methods, we repeated the entire machine learning pipeline on 

the same matched ASD cohort but at the group-level without within-pair distance 

computations, adjusted for age, sex, site, IQ and intracranial volume effects.  

Analyses were performed in the R environment 20 using the MatchIt and boot wrapper 

tools 18,21,22. Visualizations were generated with in-house MATLAB scripts.  
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Results 

Using regularised linear regression to predict differences in symptom severity from 

differences in MRI features (Figure 2), we applied an elastic net penalty to achieve a 

sparse solution and select important features from the full imaging dataset. After 

training, the model significantly predicted differences in symptom severity between 

cases and controls in the out-of-sample dataset (R2=0.153; p=0.01, 5000 permutations). 

Based on 1000 iterations of the training loop, nineteen cortical thickness features were 

retained as predictors of individual differences in symptom severity (Figure 3A; 

Supplementary Table 1).  

The above procedure was repeated for cortical surface area measurements to predict 

differences in symptom severity. Ten surface area features were selected in the training 

dataset, with a favourable out-of-sample model fit (R2=0.18, p=0.006; Figure 3B; 

Supplementary Table 2). Mean coefficient weights for the selected model features for 

both cortical thickness and surface area data are shown in Supplementary Figure 1. 

Our approach was validated against conventional methods of group-level prediction 

less robust to heterogeneity across individuals. As expected, without accounting for 

subject-level within-pair differences, regression model training to predict symptom 

severity based on group-level MRI features achieved a poor fit in out-of-sample 

validation tests (Cortical thickness model fit: R2= 0.0000434; surface area model fit: 

R2=0.0158) by comparison. Overall, the results indicate that subject-level modelling 

significantly outperforms group-difference methods of symptom severity prediction in a 

heterogeneous disorder such as ASD. Comparisons of model fit performance for both 

approaches are shown in Supplementary Figure 2 and Supplementary Table 3. 
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Discussion 

By implementing a strict matching procedure combined with subject-level distance-

based prediction of variation in ASD symptom severity, we demonstrate that individual-

specific differences in cortical morphology are associated with subject-level variation in 

ASD symptom severity. Key features implicate abnormal morphometry of frontal and 

temporal-parietal cortices, fusiform gyri, anterior and posterior cingulate regions and 

the insula. Features with the strongest coefficient weights were the right inferior 

temporal gyrus thickness and the left insula area.  

The identified cortical regions constitute hub regions of the salience network and 

default mode network (DMN) that have been increasingly suspect to be aberrant in ASD 

23. The salience network (SN) primarily anchored to the anterior insular and dorsal 

anterior cingulate cortex contributes to cognitive and affective processes such as social 

behaviour and communication, and the integration of sensory, emotional and cognitive 

information 24. The DMN comprising the posterior cingulate, medial prefrontal and 

parietal cortices typically demonstrates reduced activity on task initiation, and 

functions to support self-referential and introspective states and social cognition 25. 

Altered function of the salience network and DMN are highly consistent with ASD 

symptomatology, and emerging evidence suggests that specific features of cortical 

regions comprising these networks may discriminate ASD from neurotypical 

development 2.  

Regions of the frontal, temporal, fusiform and insular cortices were previously reported 

to be important classification features in ASD, but inferences have been limited as 

findings were inconsistent due to high variability in symptom severity, age and IQ 

across heterogeneous ASD subgroups. Classification accuracy became poorer as 
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subgroup differences along these variables increased, but was significantly improved by 

matching on subject demographics 26. Present findings identified similar cortical 

features, and support the hypothesis that homogeneity between subjects can reduce 

noise and improve precision in ASD investigations. By modelling individual variability, 

patterns of abnormalities that are stable across cortical regions and subjects may 

emerge or become more distinct (Figure 2). To qualify as potential candidate markers in 

the neurobiology of ASD, it is essential that such features demonstrate significant 

associations with ASD symptomatology based on rigorous analysis and validation 27. 

Here we go further to demonstrate that individual variation in identified cortical 

regions also explain differences in symptom severity at the level of the individual 

(Figure 3). 

Importantly, a dimensional approach as such offers a more precise quantification of 

sub-threshold ASD traits in individuals do not meet the criteria for clinical diagnosis, 

otherwise known as the broader autism phenotype 28. Investigating group differences in 

ASD by comparing group-averaged variables collapsed within patient and control 

groups are likely to obscure important subject-specific effects. For example, a broader 

phenotype individual in the control group may display a high degree of similarity in 

symptom severity to an individual with a milder presentation of ASD 29. This pattern is 

observed in the current sample with overlapping symptom severity scores ranges 

between cases and controls. Even when matched at the group level on confounding 

variables, our results suggest that group-level differences are not as useful in predicting 

symptom severity compared to the individual distance model, at least in ASD cohorts. As 

we have shown, individual variability in brain morphometry and symptom severity can 

be identified with a subject-level distance-based approach, while also accounting for 

individual differences in neurodevelopment based on matching of confounds at the 
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individual level (rather than at the group-level) to ensure homogeneity between 

matched subjects. Such an approach allows for improved characterization of the 

heterogeneous nature of ASD that respects the continuous spectrum of symptom 

severity in the population. 

Findings suggest that as neuroanatomy diverges between ASD and control subjects, 

differences in symptom severity increase. Conversely, negative coefficient weights 

reflect an increase in symptom severity as regional cortical features becomes less 

different between ASD and controls. While this may appear counterintuitive, 

longitudinal investigations suggest that the expected linear decline in cortical regions 

seen in typical development may be absent in ASD 30. The result is an intersection of 

atypical cortical developmental trajectories in ASD with that of typically developing 

peers. At such time-points in development, group differences in abnormally developing 

cortical regions in ASD would fail to be observed cross-sectionally, despite a 

concomitant difference in symptom severity. This phenomenon may  likely explain the 

high frequency of inconsistent findings in ASD as most studies do not adequately 

consider differences at the individual level.  

Together these findings suggest that subject-level variation in brain properties are 

potentially important markers of ASD symptom severity.  The present study is limited to 

cortical thickness and surface area features, and other properties of brain structure and 

function may account for larger proportions of variance in symptom severity. Complex 

neurodevelopment conditions such as ASD likely stem from perturbations of 

anatomically distributed and interconnected neural systems 31. As brain structural 

connectivity constrains the development of functional networks across the lifespan, 

validation across different imaging modalities will be necessary to elucidate distinct 
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neurobiological mechanisms, such as network analysis of white matter microstructure 

and functional connectivity 32. Based on the robustness and reliability of present results, 

cortical hubs of the salience and DMN networks are likely to be strong candidates as key 

neuroanatomical markers of ASD symptomatology. We strongly encourage continued 

multimodal subject-level distance-based investigations to test this hypothesis for ASD in 

large multi-site cohorts. Individual variability in heterogeneous populations such ASD 

should be carefully treated, rather than discarded as noise. 

Conclusion 

The robustness and generalizability of present findings is important progress in the 

search for neural correlates of heterogeneous disorders such as ASD, and offers a 

promising insight into the neurobiology of ASD symptomatology. Given that the 

endeavour is frequently hindered by problems with inconsistent replication due to 

inter- and intra-individual heterogeneity, investigations of heterogeneous populations 

such as ASD must necessarily demonstrate generalization beyond in-sample modelling 

as we have shown. Accounting for individual differences at the subject level allows for 

the reliable identification of neural correlates associated with variation in symptom 

severity to quantify individual variation in ASD or the broader autism phenotype. 

Reliable and valid evidence of subject-specific alterations in brain structure and 

function based on such approaches will be necessary to advance current knowledge 

about the aetiology of ASD, with potential applications to aid management or 

personalized intervention strategies for each unique patient at the individual level. 
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Tables 
Table 1. Descriptive statistics of matched samples 

Group n Sex Age IQ SRS 

ASD 100 n=84 males 11.43 (3.55) 110.58 (13.18) 91.7 (28.42); 

Range: 11 - 162 

Controls 100 n=84 males 11.43 (3.55) 110.70 (13.18) 19.7 (13.0); 

Range: 1-57 

Note. SRS: Social Responsiveness Scale. Higher score indicates more severe ASD symptoms. 

 

Figure Legends 
 

Figure 1. Subject-level distance-based pipeline. A: Each ASD case was individually matched to 

one control participant in age, sex, IQ and acquisition site. B: For every matched pair, within-

pair Euclidean distances (Δ) on symptom severity variables and morphometry of brain region-

of-interests (ROI) were computed. C: Using a machine learning approach, regularized regression 

with elastic net penalization was implemented to test the association between within-pair ΔROI 

and Δsymptom severity. A subset of the sample (33%) was held out as an independent out-of-

sample test set. Remaining data was used as a training set to obtain cross-validated model 

weights for feature selection. The trained coefficient weights were then used to generate 

predictions and model fit parameters in the held-out test set. D: Finally, out-of-sample model 

fits were evaluated against a null distribution of 5,000 permutations. 

Figure 2. Individual intrapair differences for cortical thickness (A) and surface area (B). 

Rows are cortical features, columns are matched subject pairs. Each row represents intrapair 

distance data for a specific cortical region across all subjects. Each column represents intrapair 

distance data for a specific subject pair across all cortical regions. Brighter heatmap gradient 

(yellow) indicates higher intrapair distance. 

Figure 3. Individual differences in brain regions underlying subject-level symptom severity 

variation in ASD. Color bars represent mean beta coefficients of selected cortical features from 

the machine-learning trained regularized regression model. A: Cortical thickness features 

associated with symptom severity variation in ASD B: Surface area features associated with 

symptom severity variation in ASD. Note. CAC: caudal anterior cingulate gyrus; CUN: cuneus; 

ENT: entorhinal; FUS: fusiform gyrus; INFP: inferior parietal gyrus; INS: insula; ISTC: isthmus 

cingulate gyrus; IT: inferior temporal gyrus; LH: left hemisphere; LIN: lingual gyrus; MORB: medial 

orbitofrontal; MT: middle temporal gyrus; PCAL: pericalcerine; PC: posterior cingulate gyrus; 

PORS: pars orbitalis; RH: Right hemisphere; PTRI: pars triangularis; RMF: rostral middle frontal 

gyrus. 
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Figure 1. Subject-level distance-based pipeline.  
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Figure 2. Individual intrapair differences for cortical thickness (A) and surface area (B).  
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Figure 3. Individual differences in brain regions underlying subject-level symptom severity 

variation in ASD.  
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