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ABSTRACT9

By comparing computational model output to BOLD signal changes model-based fMRI has the potential
to offer profound insight into what neural computations occur when. If this potential is to be fully realized,
statistically significant outcomes must imply specific outcomes. That is, we must have a clear idea of
how often a model not present in the BOLD signal but present in the predictor set will reach significance.
We ran Monte Carlo simulations of reinforcement learning to examine this kind of specificity, focusing
in on two aspects. One, to what degree can we tell related but theoretically distinct predictors apart.
About 40% of the time the studied predictors were indistinguishable. Two, how well can we separate
out different parameterizations of the same reinforcement learning terms. Nearly all parameter settings
were indistinguishable. The lack of specificity between models and between parameters suggests a
uncertain relation between significance and specificity. Follow up analyses suggest the temporally slow
and prototyped nature of the haemodynamic response (HRF) can substantially increase correlations,
ranging from -0.16 to 0.73 with an average of 0.27. Though we focused on a single case study, i.e.,
reinforcement learning, specificity concerns are potentially present in any design which does not account
for the slow prototyped nature of the HRF. We suggest more specific conclusions can be reached by
moving from null hypothesis testing approach to a model selection or model comparison framework.
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INTRODUCTION25

The neural model implicit in many fMRI analyses is a simple switch. Regions of the brain turn on then off.26

As an example consider a simple learning experiment with two reward levels. To compare large rewards27

(e.g. “Win $10!”) to small rewards (e.g. “Win $0.01!”) one typically forms a “impulse”-based GLM28

design matrix with two columns. In the first column large rewards get coded as 1, while small rewards are29

coded as 0. In the second column small rewards have the opposite code, i.e., “Win $0.01!” gets coded as 1.30

Each impulse-based column is then convolved with a haemodynamic response function (HRF), regressed31

onto each voxel’s blood oxygen level dependent (BOLD) time course followed by a statistical contrast of32

the two reward conditions, along with a multiple comparison correction. This is the standard statistical33

parametric mapping (SPM) routine (Josephs et al., 1997) and it is relatively simple to understand and to34

implement. It is also robust to noise and other natural (e.g. regional) HRF shape variation (Henson et al.,35

2001; Friston et al., 1998), as thousands of reports empirically demonstrate (Bandettini, 2007).36

In reality however the neural response and the resulting HRF is not an all or none function. The37

HRF changes in size and shape as function of stimulus, e.g. as a function of visual contrast (Boynton38

et al., 1996). In fact, stimulus and context dependent changes seem to be the norm. Reward valence and39

magnitude (Delgado et al., 2003, 2000), motivation (Delgado et al., 2004), response accuracy (Seger and40

Cincotta, 2005), strength of recall (Wais, 2008), degree of regret (Fujiwara et al., 2008), and many other41

tasks and conditions all show distinct variations in HRF shape.42

Model-based fMRI tries to predict such shape variations by replacing impulse codes, where the HRF43

shape representing each trial’s response is identical, with varying trial-level estimates. We focus solely44

here on estimates derived from computational modeling efforts. These model-based designs are therefore45

specific hypotheses about what mathematical computation happened when. By comparing biologically46
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plausible model implementations, model-based fMRI can be extend to examine how a computation47

occurred (O’Doherty et al., 2007; Mars et al., 2010). But to meaningfully estimate what, when, and how in48

an SPM framework, significant outcomes should imply specific outcomes. That is, there should be strong49

relationship between a p value crossing the significance threshold and the model data closely resembling50

the real data.51

Predicting fMRI BOLD changes with modeling is implicitly a shift from qualitative methods, those52

focused on ’neural signatures’ and broad task-related regional differences, to a quantitative method set53

capable of contributing to the crucial and ongoing theoretical discussions of regional neural computation.54

But for that shift to be fully realized, when a model-based predictor is significant that significance must55

also imply only numerically very similar alternative predictors would also be significant. Put another way,56

model-based designs must be able to reliably distinguish between theoretically distinct co-variates.57

Impulse codes work well in practice because they act as a correlational catchall. In reality trial-by-trial58

HRFs vary, but most if not all those variations still correlate with the convolved impulse time course59

(Baumgartner et al., 2000). This is an extremely useful property for analyses focused on qualitative60

neural signatures of where activity occurred. But the success of impulse codes suggests a problem for61

model-based predictors. While model-based designs try to make specific trial-level magnitude predictions,62

the slow prototypical nature of the HRF may lead any given model-based predictor to mistakenly “catch”63

theoretically distinct signals, just like impulse designs. To better understand and quantify this potential64

specificity problem, we ran several Monte Carlo simulations of model-based fMRI.65

We chose to focus on reinforcement learning models, making them a case study. Reinforcement66

learning measures are one of the most studied model-based predictors. Evidence for a conserved set67

of neural reinforcement learning signals comes from electrophysiological studies in multiple species68

(Mirenowicz and Schultz, 1994; Hollerman et al., 1998; Roesch et al., 2007), genetic variation studies69

(Frank et al., 2007) and causal modalities (Pessiglione et al., 2006; Pizzagalli et al., 2008; Frank and70

O’Reilly, 2006), and of course model-based fMRI studies (Glimcher, 2011; Montague et al., 2006;71

D’Ardenne et al., 2008; McClure et al., 2003; Seger et al., 2010; Garrison et al., 2013). This strength72

of evidence allows us to focus not on the truth of reinforcement learning theory per se, but instead on73

potential limits of model-based analyses using a well established body of work as our starting place.74

MATERIAL & METHODS75

We conducted a series of Monte Carlo simulations to examine the specificity of model-based fMRI.76

We employed Rescorla-Wagner reinforcement learning models, and other reward-related regressors,77

as a case study. First we will describe the construction of the simulated behavioral data. Second is78

reinforcement learning model construction and parameter fitting. Third we describe the mechanics of the79

fMRI simulations.80

In the course of this and other work we developed a new fMRI simulation package for Python81

dubbed “modelmodel” (http://www.robotpuggle.com/code/). This library is unique both in its focus on82

model-based simulations and its ability to seamlessly intermix simulations with ROI analyses of real83

fMRI data. All other simulation code is available for download and (re)use. Each simulation consisted of84

1000 iterations. Visualization and other post-simulation analysis was completed in R language.85

Simulating behavioral data86

Behavioral data consisted of N = 60 simulated trials over a single condition c intermixed with 30 “baseline”87

jitter periods sampled from the the uniform distribution, U(1,6). Jitter periods are short random pauses88

that allow for rapid event-related fMRI designs, i.e. designs whose trials are shorter than the ∼30 seconds89

it takes for the BOLD response to return to its baseline level.90

We simulated two types of behavior - learning and guessing. During learning, behavior was modeled91

as guessing (i.e. p∼U(0,1)) until some trial k after which learning began. Learning was simulated by92

sequential sampling of the cumulative normal distribution Pr ∼CDF(N (µ,σ)). The mean (µ) was itself93

sampled from N (3,0.3) with the standard deviation (σ ) fixed at 1. The transition point k shifted the94

onset of learning behavior, while µ modulated the slope of the learning curve. Parameter k was drawn95

from U(0,59), matching the (jitter-excluded) trial index (i = {0,1,2, · · ·N−1}). Sample guess was drawn96

only from the uniform distribution (i.e. Pr ∼U(0,1)). Accuracy data for trial A(i) was generated for97

both learn and guess using Pr and the binomial distribution (e.g., Alearn(i)∼ B(1, plearn(i)), Figure 1A98

and B). The parameters k and µ were adjusted until Pr was broadly similar to learning curves we’ve99
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observed in previous empirical studies of stimulus-response and reinforcement learning (Lopez-Paniagua100

and Seger, 2011; Seger et al., 2010; Seger and Cincotta, 2005) (Figure 1A). guess time courses had no101

notable dynamics; accuracy and Pr fluctuated around 0.5 (Figure 1B). Trial counts ranging from 20 to 100102

(N) were initially examined, but had no substantive impact on our results.103

Reinforcement learning models104

Two approaches for generating reinforcement learning data were employed. The first, the confusion105

approach, assessed how likely different performance, reward probability, and reinforcement learning106

regressors might be confused in a GLM context. In the confusion analysis the learning rate α and response107

volatility parameter β were fit by maximum log-likelihood, as is typical in the behavioral literature108

(Glimcher, 2011; Montague et al., 2006; D’Ardenne et al., 2008; McClure et al., 2003; Seger et al., 2010).109

For the confusion data, model parameters were exhaustively searched, in 0.01 increments. The learning110

rate α spanned (0,0.01,0.02 · · ·1). The choice parameter β spanned (0,0.01,0.02, · · ·5). Log-likelihood111

estimates were calculated based on a softmax transform of trial-wise values Vt(c) into the log of choice112

probabilities followed by a summation (Eq 3). The best parameter set was the one that maximized113

log-likelihood (maxl(L )). For example time courses see Figure 1A and B.114

In the second approach, α values were selected a priori. This separation design assessed to what115

degree different parameterizations of the same reinforcement learning measures can be reliably separated116

in a model-based design. In the separation set α was iteratively set to 0.1,0.3,0.5,0.7,0.9 (see Figure 1B117

and C). As there was no search, no softmax transform was required and no β settings were considered.118

Only guessing behavioral models were employed for the separation analyses.119

In both confusion and separation we examined two classic reinforcement learning measures. First was120

value, denoted Vi(c), and calculated as in Eq 2. Value is an estimate of total future rewards, a measure121

closely tied to the expected value (Sutton and Barto, 1998). Second was the reward prediction error122

(denoted as δ or RPE, see Eq 1). RPEs result from the comparison of the current estimate of value to the123

received reward (Eq 1). The learning rate (α) controls how much the current value update is influenced124

by past updates. With lower α settings current learning is strongly affected by past values, leading to a125

slower progression. Large α values have the opposite effect; learning is fast but volatile and history has126

little effect (compare the leftmost and rightmost columns in Figure 1C). The salience parameter (denoted127

as γ here) was set to 1 for all analyses.128

δ ← r(t)−Vi(c) (1)

Vt+1(c)←Vt(c)+αγδ (2)

L = ∑
t∈T

log

 e(βVt (c0))

∑
c∈C

e(βVt (c0))+ e(βQt (c1))+ · · ·

 . (3)

fMRI simulations129

FMRI data was constructed from behavioral and reinforcement learning time-series. Each series was130

convolved with the “canonical SPM” HRF. The canonical HRF is an impulse response characterized by131

two gamma functions, one for the peak and one for the post-peak undershoot. It is parameterized by a132

peak delay of 6 s, an undershoot of 16 s. The peak/undershoot amplitude ratio is 6 (Penny et al., 2006).133

BOLD data was simulated by combining these HRF-convolved series with white noise ∼N (µ,σ)).134

Several other noise sources were examined, including 1/ f , autocorrelated white noise (AR(1)), white135

noise plus respiration confounds, and white-noise plus low frequency drifts. Each of these alternate136

noise sources reduced specificity more than white noise. In some cases (e.g. the low frequency drift137

and respiration models) the reduction was large, >25%. The qualitative pattern of results was, however,138

unaltered by noise. We went with the conservative choice of white noise. If specificity was low with white139

noise, the problem would only worsen with more realistic noise choices.140

For the confusion analyses the model-based predictors were value and RPE. The behavioral predictors141

were Pr and accuracy. We also included a randomly fluctuating predictor (∼ U(0,1))) as a control142

condition. It was denoted as random. Each predictor took a turn as the “BOLD signal” (above) onto which143
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Figure 1. Randomly selected examples of the four simulated reinforcement learning measures - accuracy
(acc), reward probability Pr, an estimate of expected value, and reward prediction error RPE. A and B
represent time courses for the confusion analysis and were determined, in part, based on the maximum
likelihood fitting procedure described in the text. A is examples of behavioral learning. B shows simulated
guessing behavior. Note how the value graphs show a general rise across trials as subjects learn, whereas
RPE decreases in variability across learning as fewer errors are made. The bottom two panels are from
the separation analysis and demonstrate how RPE (C) and value (D) change with learning rate (α). Each
column in the bottom two panels matches a value of α ranging from 0.1 to 0.9 in 0.2 steps. In C and D all
example data is from the learn behavioral models.
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Figure 2. Distribution of t-values for all confusion analyses, which examined the specificity of model-
based fMRI between theoretically distinct trial-level predictors shown in Figure 1A. The five predictors
were accuracy (red), Pr (yellow), RPE (green), value (blue) , and random (violet, ‘rand’). In the left
column is guessing behavior, on the right is the learning. Each row represents a different true BOLD
signal (see labels on the right). That is, each predictor (with noise added) was used to form the simulated
BOLD signal that the predictors were fit to. Note that, as expected, there was good correspondence
between the actual underlying BOLD signal and the best fitting predictor. Note also the high degree of
overlap between the actual predictor and the other predictors across all conditions except random. The red
and orange vertical lines represent two common statistical cutoffs, p < 0.0001 and p < 0.05 respectively.
For example, in the top row, where accuracy (‘acc’) is the true signal, a large proportion of the distribution
for all other predictors other than random falls to the right of the p value thresholds, indicating a lack of
specificity and a high degree of confusion. The top panel (A) represents the model-only approach to GLM
regression, while the bottom (B) represents the impulse-and-model approach, a commonly recommended
procedure for model-based analyses.
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all predictors were separately regressed. This round robin procedure allowed us to assess the degree to144

which each predictor covaried with the others, or was specific. For example, if the first iteration’s BOLD145

signal was to be RPE, the raw RPE trace was convolved with the HRF and white noise (as separate steps).146

Each of the other confusion predictors (i.e. value, Pr accuracy, impulse and random) would then be HRF147

convolved (without noise) and regressed onto the newly anointed RPE-BOLD signal, in turn. That is,148

each confusion predictor was regressed separately and independently. The regression constants, t and p149

for each independent iteration were harvested and retained for later analysis. That is each round robin150

yielded 5 sets of regression statistics. It is these statistics that are presented in the results. On the next step151

of the round robin, for example, Pr could be anointed. The raw Pr would then undergo white noise and152

HRF convolution, and separate regressions by the remaining five predictors (i.e. value, RPE accuracy,153

impulse and random). And so on, until all 6 predictors were once anointed as BOLD signals. Once all 6154

had their turn that iteration of the simulations terminated, leading to either new random generation of155

behavioral data or program termination.156

For the separation analysis we focused on the comparing value, RPE over a range of α values.157

Regressions were similarly round robin, but within predictor, e.g. every RPE at every α took a turn as158

the BOLD signal, where it was predicted by every other RPE, itself included. A random condition was159

included as well.160

We took two approaches to the design matrix. In the first, model-based predictors were regressed161

directly onto the BOLD signal, akin to a simple correlation. This model-only approach serves as a162

worst-case specificity scenario. The second impulse-and-model design improves specificity by including163

both an impulse and a model-based regressor, but orthogonalizing the former with respect to the latter.164

Computational model and impulse regressors are often correlated or collinear, violating the indepen-165

dence assumptions implicit in the Ordinary Least Squares (OLS) algorithm we used in our SPM procedure.166

To rectify this we orthogonalized the model-based predictor with respect to the impulse predictor. The167

orthogonalization procedure is regression-based, wherein the computational model’s predictor is regressed168

onto the impulse, returning the residuals. These residuals therefore contain only variance present in the169

computational model. So when this residualized model-based predictor and the impulse are combined170

into a single design matrix (thus creating our “impulse-and-model” matrix) the impulse regressor captures171

binomial (i.e. on/off) activity while the other, model-based, regressor picks the computational models172

contribution. In our results using both impulse and model predictors we present t-values from the model173

predictor, consistent with the model-only results.174

This impulse-and-model is an often recommended strategy for doing model-based fMRI. But the175

model-only design has significant expositional value. First, it is the simplest and most direct route to176

carrying out a model-based design. This makes it worth examining on its own. Second, its presence serves177

to highlight the degree of the specificity problem before any corrective action is taken.178

In some reward learning analyses stimulus/response and outcome are separated by a short pause,179

typically 1-4 seconds. While we did not include such a break in the simulated behavioral data we did180

examined the effect of shifting value and RPE predictors by up to 3 TRs. A delay between the two181

regressors did increase specificity. It did not do so in a way that qualitatively changed our results. We’d182

expect even longer delays to have more pronounced effects, but such delays are not common in current183

designs and would represent a significant experimental temporal opportunity cost when other specificity184

increasing methods are available (see Discussion).185

If a researched is concerned with covariates effecting the specificity of there result, it would be typical186

to included such regressors in the analysis. We don’t do so here because the specificity we’re concerned187

with isn’t the known co-variates, but instead the many unknown or unconsidered (to the researcher)188

theoretical alternatives which happen to be weakly collinear with a known (and included in the model)189

covariate. In such a situations a researcher might mistakenly conclude in favor of the known covariate.190

This is akin to the inference, upon achieving significance with, say, the ”value” covariate, that it is the191

”correct” model of activity in a given voxel, and so implicitly other models are wrong.192

Defining specificity193

As noted in the introduction, the success of impulse-based designs suggests imperfect specificity. So at194

what point should non-specificity become a concern? We could find no prior work assessing fMRI model195

specificity. So we pragmatically chose two conservative cut-offs – the 50% and 25% marks. If 50% of196

the simulations were significant for “false” predictors (i.e. significant when the BOLD signal was not197
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the same as the predictor) we believe these should be considered “indistinguishable”. If five times the198

standard false positive rate (5%) were falsely significant (i.e., 25%) we posit this should be considered199

“non-specific”.200

RESULTS201

The specificity of model-based fMRI was examined in two analyses. Confusion analyses examined202

the specificity between theoretically distinct (covariate) regressors. The second, separation, analyses203

examined specificity as function of model parameter selection.204

Confusion205

Tabulating over all 40 confusion analyses, including both modes of simulated learning, the five trial-level206

predictors were indistinguishable 48% of time and non-specific 52% of time, when using the model-only207

type design matrix and the p < 0.05 cutoff (see Methods for details). For the impulse-and-model design208

overall specificity did improve approximately 15% compared to the model-only design; 34% of the time209

predictors were indistinguishable and 42% they were non-specific (p < 0.05 cutoff).210

Overall the impulse-and-model approach does increase specificity. This increase comes at the cost of211

power. In the model-only design when BOLD signal and predictor match percent significant was ∼100%.212

But in impulse-and-model this self-recovery percentage drops to between 15 and 100%, averaging213

∼80% (compare A to B, Figures 2 and 3). This reduction in power is despite a uniform decrease in214

variance between model-only and impulse-and-model distributions (average difference was 1.01SD,215

SDimpulse−and−model = 2.97, SDmodel−only = 3.69) (compare A and B in Figure 2).216

Discussing the model-only results in detail, BOLD models based on accuracy and Pr were indistin-217

guishable for all other predictors, all that is but the random predictor (Figures 2A and 3A). The random218

was and should have been specific in all cases because it contains no trial-level information, sampled as it219

was from U(0,1), the uniform distribution. It worth noting however that the random BOLD model was220

significant 15-20% of time (see Discussion). The RPE BOLD model was indistinguishable from Pr and221

accuracy under guessing behavior and indistinguishable and non-specific during learning while value was222

specific (compare left and right columns, Figures 2A and 3A). When instead value acted as the BOLD223

signal, both Pr and accuracy were indistinguishable for both behavior types (Figures 2A and 3A). Overall,224

the behavioral model had little effect on specificity (compare columns in Figures 3, see exceptions above).225

In the impulse-and-model design, like the model-only design, accuracy and Pr BOLD models were226

non-specific or indistinguishable to all other predictors (Figures 3B). RPE was indistinguishable from both227

accuracy and Pr. Finally, under the impulse-and-model design only value displayed consistent specificity228

under the guessing behavior (right column, Figure 3B). Under learning behavior though specificity was229

identical to the model-only condition; Pr and accuracy were indistinguishable (left column, Figures 2B230

and 3B).231

Separation232

The separation analysis examined specificity between reinforcement learning model learning rate (α)233

parameterizations. No parameter setting was specific. Only the extreme settings of RPE were merely234

non-specific (column 0.1 compared to 0.9, and its complement, Figure 4A and B). All other RPE and235

value predictors were indistinguishable (Figure 4A and B). The RPE values did show an ordering, percent236

significance increased as predictor and BOLD parameters approached each other. Except for 0.1, value237

showed essentially no such ranking (Figure 4A and B).238

Before and after HRF239

To separate intrinsic covariance between regressors and HRF induced correlations we measured the240

Pearsons correlations between 100 randomly selected predictors before and after HRF convolution. In the241

left column of A and B in Figure 5 are distribution estimates for raw reward and reinforcement predictors.242

In the right column are those same predictors after HRF convolution. Following convolution, overlap243

between distributions increases substantially, while the unique character of the distributions is abolished.244

For example, compare the bimodal shape RPE before convolution to its shape after (Figure 5A and B).245

Nor are experiment-level trends in the time courses preserved. Experiments using guess behavior were as246

non-specific as learning behavior (compare Figure 5A and B).247
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Figure 3. Percent of confusion analyses that were significant at the 0.05 level in Figure 2. The two grey
lines at 25 and 50% demarcate the cutoffs used to define non-specific (25%) and indistinguishable (50%)
results.
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Figure 4. Distribution of t-values for both RPE and value as a function BOLD signals defined using a
range of learning rates (see column labels). As in the confusion analyses, every alpha value was used
in turn to form the underlying BOLD signal, in round-robin fashion. The red and orange vertical lines
represent two common statistical cutoffs, p < 0.0001 and p < 0.05 respectively. B Percent of tests from
A that were significant at 0.05 for each alpha value. The two grey lines at 25 and 50% demarcate the
cutoffs we used to define non-specific (25%) and indistinguishable (50%) results. Only guess behavioral
models and model-only designs were employed in this analysis.
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Figure 5. The distribution of 100 randomly selected reinforcement learning time courses, before and
after HRF convolution. These are raw data, not distributions of t values as in the above figures. The four
predictors were accuracy (red), Pr (yellow), RPE (green), and value (blue).
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The HRF increased correlations in the majority of pairs, covering a range -0.16 to 0.73 with an average248

of 0.27 (see Fig 7) The HRF increased correlations among all predictor pairs up until their pre-HRF249

correlation approached 0.5, after which the correlation began to decline slightly (Fig 6 and Fig 7). When250

the correlations were broken down into quartiles (Fig 6B), each set of lines had similar slopes (excepting251

the transition near 0.5) which suggests the HRF has a consistent effect independent of predictor pair.252

Linear regression analyses supported this conclusion, indicating that rbe f ore could significantly predict253

rdi f f ), the difference in correlation before and after, (F(1,498) = 713.4, p < 2.2e−16) accounting for254

0.58 % of the variance. However by including a ’pair’ dummy predictor (facet labels in Fig 6A), a255

combined pair-rbe f ore model could account for 0.9207 of the variance (F(5,494) = 1160, p < 2.2e−16)256

and was a significant improvement over the model using only rbe f ore (F(2,494) = 523.5, p < 2.2e−16).257

In total then, the initial correlation between predictors does play a significant role in predicting the change258

induced by the HRF, however there is a pair (and therefore model) specific component as well (estimated259

here to be 38% of the total explained variance). A similar analyses of the separation analyses data showed260

a nearly identical pattern (not shown). Follow up analyses of the pair-specific contribution was without261

significant result.262

DISCUSSION263

Using reinforcement learning models as a case study we examined the specificity of model-based fMRI.264

In the first analysis, dubbed confusion, we examined how reliably we could distinguish between related265

but theoretically distinct predictors. About half the time, the different predictors were indistinguishable266

(see Figure 2A and Figure 3A). In the second analysis, dubbed separation, we determined that nearly all267

reinforcement learning model parameter settings were indistinguishable (Figure 4).268

Minimum specificity269

In both model-only and model and impulse design matrices 15-20% of guessing behavioral trials were270

significant (Figure 3A and B; percents calculated using the p < 0.05 threshold). Predictor type had little271

to no effect on this rate (compare y-axis of row ’rand’, Figure 3). As the random predictor contains272

no consistent trial-level information we would expect essentially no correlation, and in fact the average273

correlation between random and the other time courses was less than 0.04. Based on this, we conclude274

that HRF convolution reduces specificity by a minimum of 15%. It should be noted however that 15% is a275

minimum estimate. By acting as a low-pass filter the HRF may amplify any trial-level covariance (see276

Figures 6 and 7 for examples and caveats).277

The impact of the design matrix278

Randomization, slow-event related designs, and inter-trial jitter are routinely employed in impulse-based279

designs to ameliorate correlated regressor issues. The continuous valued and the generative process-280

derived nature of model-based data limits randomization options. The correlation analysis in Fig 6281

suggest that the limited specificity we report is not due to undersampling, or detection power, but is an282

intrinsic property of HRF convolution implying slow-event related designs would offer little improvement.283

Likewise, inter-trial jitter works by randomly separating out conditions, allowing for the independent284

estimation of each condition’s response. However the continuous nature of model-based predictors doesn’t285

fit well into a condition oriented analysis.286

Alternatives to OLS287

In these simulations it was often the case that the true model was significant more often than the288

alternatives, even though all were frequently significant (Figure 2). As a result, a model selection or289

comparison approach to model-based fMRI should be fruitful. Model selection is the process of finding a290

family of models that best predict a given dataset (Rao et al., 2001). This can be a simple as comparing the291

explained variance (i.e. R2) between model options. More sophisticated techniques though will attempt292

to balance parsimony with increasing fit (i.e., solving the bias versus variance dilemma (Geman et al.,293

1992)). Examples include Stepwise, LASSO, or Ridge (Tikhonov) regression. Ridge regression is of294

particular interest as it is capable of selecting among covariate or collinear predictors, as was the case for295

our reinforcement and reward-related predictors. As an alternative to algorithmic selection procedures,296

and the sometimes stronger assumptions they entail, candidate models could be directly compared using297

standard model comparison metrics, such as Akaike Information Criterion (AIC) weights (Wagenmakers298
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Figure 6. A. Correlations between each unique pair of predictors (labels in parenthesis) for 100 randomly
selected simulations. B. The same pairs now binned by quartiles derived from the before HRF convolution
set (column labels indicate quartile). The red dot represents the average for that condition.
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and Farrell, 2004). In doing to model comparisons however, it is crucial that one selects suitable and299

viable alternate models, specifically avoiding “stacking the deck” in favor of a preferred option.300

Problems for parameters301

Given that reinforcement learning parameters are typically set based on behavioral data, one might first302

assume it is not important that the GLM procedure cannot distinguish between parameters. However,303

further reflection suggests the lack of parameter sensitivity is important for three reasons. First, given a304

significant result it would normally be tempting to conclude that, “our model was a significant predictor305

of the BOLD changes under parameters {α,β ,θ} therefore neural activity may reflects these models306

and parameters”. But given our results it quite possible a very different set of parameters, {α ′,β ′,θ ′}’,307

would also be significant. Without specificity all a finding of significance can guarantee is that, “Some308

(unspecified) set of parameters near our parameters {α,β ,θ} were significant predictors of BOLD309

activity”, which seems a deeply unsatisfying best case conclusion. Second, parameter changes can310

considerably alter model behavior. For example, in Figure 1D the choice of the learning rate parameter α311

affected both qualitative (compare 0.1 with 0.9) and quantitative (compare 0.1 with 0.3) behavior. Thirdly,312

model-based designs are often used in the clinical literature to examine neural correlate differences313

between patient and control populations (Castro-Rodrigues and Oliveira-Maia, 2013; Deserno et al., 2013).314

Without specificity, such comparisons are meaningless.315

Consider again the separation data (Figure 4); it would be difficult for any method to separate the316

overlapped distributions observed, unless a very large number of samples were available or only extreme317

parameters settings are considered. If true beyond our case-study (as may be the case, see Fig 6), reliable318

parameter separation in model-based fMRI may prove quite difficult. Computational models are useful, in319

part, because they make quantitative predictions, predictions which depend on parameter settings. If you320

can’t distinguish between parameters, you can’t distinguish between quantitative predictions.321

Limitations and generalizations322

The kind of specificity we study here is most relevant when two or more theoretical models are compared,323

and when predictions depend on parameter choices. This does not mean that the specificity issues are324

limited to computational modeling. Any parametric design, for example one derived from reward value,325

reaction time, or subjective scoring, like happiness or emotional salience, may also have it’s trial-level326

specificity diminished by convolution with the HRF. In that sense, our case study of reinforcement learning327

may have much broader potential implications. A reduction in specificity may happen whenever the328

predictor changes faster then the BOLD response, which acts akin to a low-pass filter.329
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While low-pass filtering by the HRF is always possible, specificity will matter less when when models330

or parametric regressors are being used as stand-ins for latent psychological states. Specificity doesn’t331

matter in cases where parametric responses are estimated from repeated measurements of fixed conditions,332

such the recent retinotopy-based image reconstruction work ?. That is, the specificity problem we begin to333

demonstrate is not present when the goal is estimate the expectation of some consistent response function,334

but is present when we the aim is to account for as much trial-level variability as possible. Finally, if335

several models were compared to the BOLD response and their response were averaged, this would336

implicitly lessen the importance of any one model’s specificity.337

Conclusions338

To study the relation between significance and specificity in model-based fMRI we made a case study of339

reinforcement learning. Being a case study, and an idealized one at that, the generality of these results to340

other models and past empirical work is unproven. But what we have found urges caution. The prototyped341

shape and long temporal evolution of the haemodynamic response function can induce strong positive342

correlations between predictors. In our worst case, the HRF more than doubled the correlation between343

predictors, about halving specificity. We urge researchers to consider carefully the interpretation of their344

significant model-based results and perhaps to move from a null hypothesis testing framework to model345

comparison framework.346
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