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Abstract

Bacterial populations that colonize a host can play important roles in host health,
including serving as a reservoir that transmits to other hosts and from which invasive
strains emerge, thus emphasizing the importance of understanding rates of acquisition
and clearance of colonizing populations. Studies of colonization dynamics have been
based on assessment of whether serial samples represent a single population or distinct
colonization events. With the use of whole genome sequencing to determine genetic
distance between isolates, a common solution to estimate acquisition and clearance rates
has been to assume a fixed genetic distance threshold below which isolates are
considered to represent the same strain. However, this approach is often inadequate to
account for the diversity of the underlying within-host evolving population, the time
intervals between consecutive measurements, and the uncertainty in the estimated
acquisition and clearance rates. Here, we present a fully Bayesian model that provides
probabilities of whether two strains should be considered the same, allowing us to
determine bacterial clearance and acquisition from genomes sampled over time. Our
method explicitly models the within-host variation using population genetic simulation,
and the inference is done using a combination of Approximate Bayesian Computation
(ABC) and Markov Chain Monte Carlo (MCMC). We validate the method with
multiple carefully conducted simulations and demonstrate its use in practice by
analyzing a collection of methicillin resistant Staphylococcus aureus (MRSA) isolates
from a large recently completed longitudinal clinical study. An R-code implementation
of the method is freely available at:
https://github.com/mjarvenpaa/bacterial-colonization-model.git.
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Author summary

As colonizing bacterial populations are the source for much transmission and a reservoir
for infection, they are a major focus of interest clinically and epidemiologically.
Understanding the dynamics of colonization depends on being able to confidently
identify acquisition and clearance events given intermittent sampling of hosts. To do so,
we need a model of within-host bacterial population evolution from acquisition through
the time of sampling that enables estimation of whether two samples are derived from
the same population. Past efforts have frequently relied on empirical genetic distance
thresholds that forgo an underlying model or employ a simple molecular clock model.
Here, we present an inferential method that accounts for the timing of sample collection
and population diversification, to provide a probabilistic estimate for whether two
isolates represent the same colonizing strain. This method has implications for
understanding the dynamics of acquisition and clearance of colonizing bacteria, and the
impact on these rates by factors such as sensitivity of the sampling method, pathogen
genotype, competition with other carriage bacteria, host immune response, and
antibiotic exposure.

Introduction 1

Colonizing bacterial populations are often the source of infecting strains and 2

transmission to new hosts [1–5], making it important to understand the dynamics of 3

these populations and the factors that contribute to persistent colonization and to the 4

success or failure of clinical decolonization protocols. The study of colonization 5

dynamics is based on inferring whether bacteria from samples collected over time 6

represent the same population or distinct colonization events, thereby permitting 7

calculation of rates of acquisition and clearance [6, 7]. Whole genome sequencing has 8

provided a detailed measure of genetic distance between isolates, which can then be 9

used to infer the relationship between them [8–11]. While to date most studies have 10

used genetic distance thresholds as the basis for determining the relationship between 11

isolates [8, 10], here we improve on these heuristic strategies and present a robust and 12

accurate fully Bayesian model that provides probabilities of whether two strains should 13

be considered the same, allowing us to determine bacterial clearance and acquisition 14

from genomes sampled over time. 15

An example of a typical individual-level longitudinally sampled data set from a 16

study population is shown in Fig 1: each ’row’ represents a patient, x-axis is time, and 17

dots are the genomes sampled at multiple time points. Dot color refers to different, 18

easily distinguishable, sequence types (ST). The coloured number between two 19

consecutive samples reflects the distance between the genomes, and we see that even 20

within the same ST the distances may vary considerably, and, therefore, determining 21

whether the changes can be explained by within-host evolution only, is challenging. 22

Intuitively, if two genomes are very similar, we interpret this as a single strain colonizing 23

the host. On the other hand, two very different genomes, even if the same ST, are 24

interpreted as two different strains, obtained either jointly or separately as two 25

acquisitions. With these data, we would like to address questions including: to what 26

extent are people persistently colonized, cleared, and recolonized? If recolonized, what 27

is the likelihood that it is the same or a distinct strain? To address these questions, 28

previous works have relied on using a threshold number of single nucleotide 29

polymorphisms (SNPs) to define a strain. Optimally, however, the SNP distance 30

between the genomes observed and the interval between the sampling time defines a 31

probability that the two genomes represent the same strain. Such data are critical for 32

understanding within-host dynamics, response to interventions, and transmission. 33
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Fig 1. Illustration of a subset of the data used in the study. Each row
corresponds to one patient and only the first 30 patients are shown. R0 is the initial
hospital visit and V1, V2 etc. are the further visits. Red colour refers to ST5 and blue
to ST8 and the coloured numbers are the amount of mutations di. Yellow colour
highlights the cases where the ST changes from ST 5 to ST 8.

Previously, transitions between different colonizing bacteria have been modeled using 34

hidden Markov models [12] with states corresponding to different colonizing STs. 35

However, this approach is not suitable for modeling within a single ST, where 36

acquisition and clearance must be determined based on a small number of mutations. 37

Crucial for interpreting such small differences is a model for within-host variation [8,13], 38

specifying the number of mutations expected by evolution within the host. Population 39

genetic models can be used for understanding the variation in an evolving 40

population [14]. A major difficulty in fitting such models to data like those shown in 41

Fig 1 is that the information contained by the data is extremely limited regarding the 42

variation within the host: a single time point is summarized with just a single (or a few) 43

genomes, and must serve to represent the whole within-host population. While some 44

studies use genome sequence from multiple isolates to achieve a more complete 45

characterization of within-host diversity [3, 10], these tend to be limited in terms of the 46

number of time points and/or patients. 47

The Bayesian statistical framework can be used to combine information from 48

multiple data sources. In the Bayesian approach, a prior distribution is updated using 49

the laws of probability into a posterior distribution in the light of the observations, and 50

this can be repeated multiple times with different data sets [15,16]. Approximate 51

Bayesian computation (ABC) is particularly useful with population genetic models, 52

where the likelihood function may be difficult to specify explicitly, but simulating the 53

model is straightforward [17,18]. ABC has recently been introduced in bacterial 54

population genetics [19–22]. Here, we present a Bayesian model for determining whether 55

two genomes should be considered the same strain, enabling a strategy grounded in 56

population genetics to make inferences about acquisition and clearance from data of 57

closely related genomes. Benefits of the fully Bayesian analysis include: rigorous 58

quantification of uncertainty, explicit statement of modeling assumptions (open for 59

criticism and further development when needed), and straightforward utilization of 60

multiple data sources. We demonstrate these benefits by analyzing a large collection 61
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longitudinally collected methicillin resistant Staphylococcus aureus (MRSA) genomes, 62

obtained through a clinical trial (Project CLEAR) to evaluate the effectiveness of an 63

MRSA decolonization protocol [23]. This method for identifying strains with explicit 64

assessment of uncertainty will enable studies of the characteristics–both host and 65

pathogen–that impact colonization in the presence and absence of interventions. 66

Methods 67

Overview of the model 68

One input data item for our model consists of a pair of genomes that are of the same 69

ST, sampled from the same individual at two consecutive time points (or possibly with 70

an intervening time point with no samples or a sample of a different ST). Each of these 71

data items (i.e. pairs of consecutive genomes) is summarized in terms of two quantities: 72

the distance between the genomes and the difference between their sampling times (see 73

Fig 1). Hence, the observed data D can be written as consisting of pairs (di, ti), 74

i = 1, . . . , N , where ti > 0 is the time between the sampling of the genomes, 75

di ∈ {0, 1, 2, . . .} is the observed distance, and N the total number of genome pairs that 76

satisfy the criteria (i.e. same patient, same ST, consecutive time points or possibly with 77

an intervening time point with no samples or a sample of a different ST). The 78

restriction to genome pairs of the same ST stems from the fact that different STs will 79

always be considered different strains anyway. 80

There are two possible explanations for the observed distances. If the genomes are 81

from the same strain, we expect their distance to be relatively small. If the genomes are 82

from different strains, we expect a greater distance. Below we define two probabilistic 83

models that represent these two alternative explanations. These models are then 84

combined into one overall mixture model, which assumes that the distance between a 85

certain pair of genomes is generated either from the ’same strain’ model or the ’different 86

strain’ model, and enables calculation of the probabilities of these two alternatives for 87

each genome pair, rather than relying on a fixed threshold to distinguish between them. 88

An essential part of our approach is a population genetic simulation which allows us 89

to model the within-host variation, and hence make probabilistic statements of the 90

plausibilities of the ’same strain’ vs. ’different strain’ models. For this purpose, we 91

adopt the common Wright-Fisher (W-F) simulation model, see e.g. [24], with a constant 92

mutation rate and population size, which are estimated from the data. The simulation 93

is started with all genomes being the same, which corresponds to a biological scenario 94

according to which a colonization begins with a single isolate multiplying rapidly until 95

reaching the maximum ’capacity’, followed by slow diversification of the population. 96

This assumption is supported by the fact that in the distance distribution, in cases 97

where the acquisition time was known and had happened recently, very little variation 98

was observed in the population. See the Discussion section for more details on the 99

modeling assumptions. Overview of the approach, including data sets, models, and 100

methods for inference, is outlined in Fig 2 and discussed below in detail. 101

Model pS: Same strain 102

Let (si1, si2) denote a pair of genomes with distance di, sampled from a patient at two 103

consecutive time points (see the previous section) with time ti between taking the 104

samples. Here we present a model, i.e., a probability distribution pS(di | ti, neff, µ), 105

which tells what kind of distances we should expect if the genomes are from the same 106

strain. The parameter neff is the effective population size and µ is the mutation rate. 107

We model di as 108

di = di1 + di2 (1)
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Fig 2. Overview of the modeling and data fitting steps. In Phase 1 we update
our prior information on parameters (neff, µ) based on external data D0. In phase 2 we
estimate all the parameters of the (mixture) model using MCMC, precomputed distance
distributions pS and the information obtained in Phase 1. The fitted model can be used
to e.g. obtain the same strain probability for a new (future) measurement.

where we have defined 109

di1 = dist(si1, si∗) and di2 = dist(si∗, si2), (2)

where dist(·, ·) is a distance function that tells the number of mutations between its 110

arguments, and si∗ is the unique ancestor of si2 that was present in the host when si1 111

was sampled, and which has descended within the host from the same genome as si1 112

(see Fig 3A). The Equation 1 is valid when mutations between si1 and si∗, and si∗ and 113

si2 have occurred in different sites, which is true with a high probability when the 114

genomes are long (millions of bps) compared to the number of mutations (dozens or a 115

few hundred at most). The probability distribution of di1 which we will denote by 116

psim(di1 |neff, µ), and which is not available analytically and does not depend on ti, 117

represents the within-host variation at a single time point, and we approximate it as 118

psim(di1 |µ, neff) = WF-simulator(di1 |µ, neff). (3)

The distribution of di2 is assumed to be 119

di2 |µ, ti ∼ Poisson(di2 |µti), (4)

that is, mutations are assumed to occur according to a Poisson process with the rate 120

parameter µ. 121

Model pD: Different strains 122

Model pD represents the case that the genomes si1 and si2 are from different strains, 123

which we define to mean that their most recent common ancestor (MRCA), denoted by 124
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Fig 3. Outline of the ’same strain’ and ’different strain’ models. Model pD
on the left (panel A) represents the situation where the genomes denoted by si1 and si2
are of the same strain. Model pS on the right (panel B) shows the case where these
genomes are of different strains. Time flows from left to right in the figures, the dots
represent individual genomes, and the edges parent-offspring relationships.

siA, resided outside the host. The time between siA and si1 is denoted by t0i (see 125

Fig 3B). Under model pD, we assume that the distribution of the distance di is 126

pD(di |µ, ti, t0i) = Poisson(di |µ(2t0i + ti)), (5)

where the values of t0i are unknown and will be estimated, but let us assume for now 127

that they are known. One difference between the same strain model pS (defined by 128

Equations 1, 3, 4) and the different strain model pD (Equation 5) is that the former 129

uses Wright-Fisher simulation, whereas the latter does not. The reason is that the 130

within-host variation is bounded, occasionally increasing and decreasing, which is 131

reflected by the constant population size of the Wright-Fisher simulation in the same 132

strain model. On the other hand, in the different strain model the distance between si1 133

and si2 can in principle increase without bound, given enough time since their common 134

ancestor, because they diverged and evolved outside the host. 135

Mixture model 136

With the two alternative models for the distance, we can write the full model, which 137

assumes that each distance observation is distributed according to 138

p (di | ti,θ) = ωSpS(di | ti, neff, µ) + ωDpD(di | ti, t0i, µ), i = 1, . . . , N, (6)

where θ denotes jointly all the parameters of the models, i.e., 139

θ = (neff, µ, ωS , ωD, t01, . . . , t0N ). The parameter ωS represents the proportion of pairs 140

from the same strain and ωD is the proportion of pairs from different strains, such that 141

ωS + ωD = 1. To learn the unknown parameters θ, we need to fit the model to data, 142

but before going into details, we discuss how to use an external data set to update the 143

prior distribution about the mutation rate µ and the effective sample size neff. This 144

updated distribution will itself be used as the prior in the mixture model. 145
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ABC inference to update the prior using external data 146

Simulations with the W-F model are used in our approach for two purposes: 1) to 147

incorporate information from an external data set to update the prior on the mutation 148

rate µ and the effective sample size neff, and 2) to define empirically the distribution 149

pS(di|ti, neff, µ) required in the mixture model. Here we discuss the first task. 150

As external data we use measurements from eight patients colonised with MSSA [3], 151

comprising nasal swabs from two time points for each patient, such that the acquisition 152

is known to have happened approximately just before the first swab. Multiple genomes 153

were sequenced from each sample, and the distributions of pairwise distances between 154

the genomes provide snapshots to the within-host variability at the two time points for 155

each individual, and these distance distributions are used as data. We exclude one 156

patient (number 1219) because according to [3] this patient was likely infected already 157

long before the first sample. The data set also contains observations from an additional 158

13 patients from [13], denoted by letters from A to M in [3]. For these patients, distance 159

distributions from only one time point are available, and the acquisition times are 160

unknown. The data comprising the distance distributions from the 7 patients (two time 161

points) and the additional 13 patients (a single time point) are jointly denoted by D0. 162

To learn about the unknown parameters neff and µ, we first note that their values 163

affect the distance distribution of a population resulting from a W-F simulation with 164

the specified values (Fig. 4). To estimate these parameters, we try to find such values 165

for them which make the output of the W-F similar to the observed distance 166

distributions D0. Since the corresponding likelihood function is unavailable, standard 167

statistical techniques for model fitting do not apply. Therefore, we use Approximate 168

Bayesian Computation (ABC), a class of methods for Bayesian inference when the 169

likelihood is either unavailable or too expensive to evaluate but simulating the model is 170

feasible, see [17,18,25,26] for an overview on ABC. The basic ABC rejection sampler 171

algorithm for the model fitting consists of the following steps: 172

1. Simulate a parameter vector (neff, µ) from the prior distribution p(neff, µ). 173

2. Generate a pseudo-data similar to the observed data D0 by running the W-F 174

model separately for each patient using the parameter (neff, µ). 175

3. Accept the parameter (neff, µ) as a sample from the (approximate) posterior 176

distribution if the discrepancy between the observed and simulated data is smaller 177

than a specified threshold ε. 178

The quality of the resulting ABC approximation depends on the selection of the 179

discrepancy function, the threshold ε and the number of accepted samples. Broadly 180

speaking, if the discrepancy summarizes the information in the data completely (e.g. it 181

is a function of the sufficient statistics) and ε is arbitrarily small, the approximation 182

error becomes negligible and the samples are generated from the exact posterior. In 183

practice, choosing ε very small makes the algorithm inefficient since many simulations 184

are needed to obtain an accepted sample even with the optimal value of the parameter. 185

Also, finding a good discrepancy function may be difficult because sufficient statistics 186

are typically unavailable. Many sophisticated ABC variants exist, see e.g. [18, 26] and 187

the references therein, but as we need to estimate only two parameters (one of which is 188

discrete) and because running the simulations in parallel is straightforward with the 189

basic algorithm, we use a the ABC rejection sampler outlined above, with details 190

discussed below. 191

In [13], MRSA evolution was simulated using parameters derived from the following 192

estimates: 8 mutations per genome per year and generation length of 90 minutes (the 193

whole year is thus 5840 generations). This gives mutation rate of 0.0019 per genome per 194
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generation, approximately 6.3× 10−10 mutations per site per generation assuming the 195

genome length of 3 Mbp. We also use the generation time of 90 minutes, originally 196

derived by [13] from the estimated doubling time of Staphylococcus aureus [27]. We use 197

independent uniform priors for the parameters of the W-F model, so that 198

neff ∼ U({20, 21, . . . , 10000}), µ ∼ U([aµ, bµ]) (7)

with aµ = 0.00005 and bµ = 0.005 mutations per genome per generation. 199

We argue that reasonable parameters should produce populations with similar 200

histograms of the pairwise distances compared to the observations at the corresponding 201

times. Consequently, we use the discrepancy ∆ defined as 202

∆ =
7∑
i=1

2∑
j=1

l1(p̂ij(neff, µ), p̂obsij ) +
∑

i∈{A,B,...,M}

min
j
{l1(p̂ij(neff, µ), p̂obsi1 )}, (8)

where p̂ij(neff, µ) and p̂obsij are the simulated and observed empirical distributions of 203

pairwise distances for patient i with time point j, respectively, and l1(·, ·) denotes the L1
204

distance between the distributions. In principle, the unknown acquisition times for the 205

13 patients (A-M) could be estimated by making each of them an additional parameter. 206

However, ABC in the resulting 15 dimensional parameter space would be difficult due to 207

the curse of dimensionality. Instead, as shown in the Eq 8, we use these data such that 208

we supplement the unknown times with values that produce the minimum discrepancy. 209

This way, parameters that never produce enough variability to match the observations 210

will increase the discrepancy, allowing us to gain evidence against such unreasonable 211

values, even if the exact times are unknown and too computationally costly to infer. 212

Instead of simulating (neff, µ) samples from the prior we perform equivalent 213

grid-based computations. That is, we consider an equidistant 50× 50 grid of (neff, µ) 214

values and simulate the model 1, 000 times at each grid point. However, in preliminary 215

experiments we noticed that if neff and µ are simultaneously large, the amount of 216

mutations produced by the model increases rapidly and it is clear that the simulated 217

pairwise distances are always greater than in the observed data, and also the 218

computation time and memory usage become prohibitive. Thus, we do not run the full 219

set of 1000 simulations in this parameter region because it is clear that the posterior 220

density would be negligible. Finally, the threshold ε is chosen such that 5, 000 out of the 221

total of almost 1 million simulations are below the threshold, corresponding to the 222

acceptance probability of 0.0057. 223

Details of the mixture model 224

We now discuss the mixture model in detail and then derive an efficient algorithm to 225

estimate its parameters. Because the values of t0i in Eq 5, denoting the times to the 226

MRCAs in case the sequences are different strains, are unknown, we model them as 227

random variables and give each of them a prior distribution 228

t0i | k, λ ∼ Gamma(k, λ), i = 1, . . . , N. (9)

We further specify a weakly informative prior for λ such that 229

λ ∼ Gamma(α, β). (10)

The parameter λ is thus shared between different t0i which allows us to learn about its 230

distribution. 231

If k = 1, then the Gamma distribution in Eq 9 reduces to the Exponential, which, 232

however, does not reflect our prior understanding of reasonable value of t0i because the 233
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Fig 4. Distributions of pairwise distances for populations simulated with
different parameters. The histograms show the estimated probability mass functions
p̂sim(di1 |neff, µ) with selected parameter vectors (neff, µ). Increasing µ and/or neff tends
to increase the distances. The distance distribution can also be bimodal as the subfigure
in lower right corner shows. Each histogram represent variability in a simulated
population at a single time point 6,000 generations after the beginning of the simulation.

mode of the resulting distribution is at zero, corresponding to a very recent common 234

ancestor for genomes considered to be from different strains. Instead, we set k = 5, 235

α = 2.5, and β = 1600, which approximately correspond to the mean and standard 236

deviation of 5800 and 8400 generations, respectively. This weakly informative prior 237

reflects the notion that different strains diverged on average approximately a year ago, 238

but with a large variance. Furthermore, if the time between samples, ti, is three months, 239

the prior translates to an expectation that, if the sampled genomes are from different 240

strains, they are on average 30 mutations apart, with a large standard deviation of 50 241

mutations. Moreover, the density has a heavy tail to account for some possibly much 242

greater distances. The formulas used to compute these values and other useful facts 243

about the prior are provided in the supplementary material. 244

An equivalent way of writing the mixture model in Eq 6, which also simplifies the 245

computations, is to introduce hidden labels which specify the component which 246

generated each observation di, see [28]. We thus define latent variables 247

zi = (zi1, zi2)T =

{
(1, 0)T , if di has distribution pS
(0, 1)T , if di has distribution pD.

(11)

The prior density for the latent variables z is 248

p(z |ω) =
N∏
i=1

p(zi |ω) =
N∏
i=1

ωzi1S ωzi2D , (12)

where we have used vector notation t = (t1, . . . , tN )T , d = (d1, . . . , dN )T , 249

z = (z1, . . . , zN )T , t0 = (t01, . . . , t0N )T and ω = (ωS , ωD)T . We augment the parameter 250

θ to represent jointly all model parameters in Eq 6 and the prior densities specified in 251

Eq 9 and 10, i.e., θ = (neff, µ,ω, z, t0, λ)T . To complete the model specification, we 252

must specify the prior for ω, neff and µ. We use 253

ω ∼ Dir(γ), (13)
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that is, a Dirichlet distribution with parameter γ = (1, 1)T . We use the posterior 254

p(neff, µ |D0), obtained by ABC using the external data D0 as discussed in the previous 255

section, as the (joint) prior for (neff, µ). 256

Bayesian inference for the mixture model 257

We now show how the mixture model can be fit efficiently to data. The joint probability 258

distribution for the data d and the parameters θ can be now written as 259

p(d,θ | t, D0) = p(d, neff, µ,ω, z, t0, λ | t, D0)

= p(d, z |neff, µ,ω, t0, λ, t) p(neff, µ,ω, t0, λ |D0) (14)

=
N∏
i=1

p(di | zi, neff, µ, t0i, λ, ti) p(zi |ω) p(neff, µ |D0) p(ω)
N∏
i=1

p(t0i |λ) p(λ) (15)

We use Gibbs sampling, which is an MCMC algorithm, to sample from the posterior 260

density. The algorithm exploits the hierarchical structure of the model and it proceeds 261

by iteratively sampling from the conditional density of each variable (or a block of 262

variables) at a time [29]. In the following we derive the conditional densities for the 263

Gibbs sampling algorithm. We observed that some of the parameters θ are highly 264

correlated which causes slow mixing of the resulting Markov chain and thus inefficient 265

exploration of the parameter space. To make the algorithm more efficient, we 266

reparametrise the model by defining new parameters θ′ = (neff, µ,ω, z,η, λ) via the 267

transformation η = µt0 and we use the Gibbs sampler for the transformed parameters 268

θ′. This common strategy [29] resolves the problem arising from correlations between 269

t0i and µ, because the magnitudes of all ηi can now be changed simultaneously by a 270

single µ update. The original variables t0i can be obtained from the generated samples 271

as t0i = ηi/µ. 272

The joint probability in Eq 15 for the transformed parameters then becomes 273

p(d, neff, µ,ω, z,η, λ | t, D0)

=
N∏
i=1

p(di | zi, neff, µ, µ−1η, λ, ti) p(zi |ω) p(neff, µ |D0) p(ω)
N∏
i=1

p(µ−1η |λ) p(λ)µ−N

=
N∏
i=1

[ωzi1S pS(di | ti, neff, µ)zi1ωzi2D pD(di | ti, ηi/µ, µ)zi2 Gamma(ηi/µ | k, λ)]

·Gamma(λ |α, β) Dir(ω |γ)p(neff, µ |D0)µ−N , (16)

where µ−N is the determinant of the Jacobian of the inverse transformation. 274

Computing the conditional density of parameter ω is straightforward. We neglect those 275

terms in Eq 16 that do not depend on ω and recognise the resulting formula as an 276

unnormalised Dirichlet distribution. We then obtain 277

p(ω | z, D) = Dir(ω |n + γ), (17)

with n = (n1, n2)T , where n1 =
∑N
i=1 zi1 and n2 =

∑N
i=1 zi2. Next we consider the 278

latent variables zi. We see that the conditional distribution of zi for any i = 1, . . . , N 279

does not depend on other latent variables zj , j 6= i. Specifically, we obtain 280

P(zi1 = 1 |neff, µ,ω,η, D) ∝ ωSpS(di | ti, neff, µ), (18)

P(zi2 = 1 |neff, µ,ω,η, D) ∝ ωD
(2ηi + µti)

die−(2ηi+µti)

di!
. (19)

PLOS 10/24

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/429464doi: bioRxiv preprint 

https://doi.org/10.1101/429464
http://creativecommons.org/licenses/by/4.0/


We expect the effective sample size neff and the mutation parameter µ to be 281

correlated a posteriori so we include them to the same block and update them together. 282

We also include λ to this block as it also tends to be correlated with neff and µ. It is 283

convenient to replace the sampling step from p(neff, µ, λ |ω, z,η, D,D0) with the 284

following two consecutive sampling steps: first sample from 285

p(neff, µ |ω, z,η, D,D0) =
∫
p(neff, µ, λ |ω, z,η, D,D0) dλ and then sample from 286

p(λ |neff, µ,ω, z,η, D,D0). From Eq 16 we observe that 287

p(neff, µ, λ | z,η, D,D0) ∝
N∏
i=1

[
pS(di | ti, neff, µ)zi1(2ηi + µti)

zi2di
] e−µ∑N

i=1 zi2ti

µNk

· p(neff, µ |D0)λNk+α−1e−λ(µ
−1 ∑N

i=1 ηi+β). (20)

The above formula is recognised to be proportional to a Gamma density as a function of 288

λ. We can thus marginalise λ easily to obtain the following density for the first step 289

p(neff, µ | z,η, D,D0)

∝
N∏
i=1

[
pS(di | ti, neff, µ)zi1(2ηi + µti)

zi2di
] e−µ

∑N
i=1 zi2tip(neff, µ |D0)

µNk(µ−1
∑N
i=1 ηi + β)Nk+α

. (21)

In the second step, we sample λ from the probability density 290

p(λ |µ,η, D) = Gamma

(
λ

∣∣∣∣∣Nk + α, β +
1

µ

N∑
i=1

ηi

)
. (22)

This formula follows directly from Eq 20. 291

Sampling from Eq 21 and sampling z using Eq 18 are challenging because pS is 292

defined implicitly via the W-F simulation model. Consequently, we will consider an 293

approximation that allows to compute pS(di | ti, neff, µ) for any proposed point (neff, µ) 294

and all values of di and ti in the data. Since di = di1 + di2, we can use the convolution 295

formula for a sum of discrete random variables to see that 296

pS(di | ti, neff, µ) =

di∑
j=max{0,di−dm}

Poisson(j |µti)psim(di − j |neff, µ), (23)

where psim specifies the distribution for a distance between two genomes as in Eq 3 and 297

dm is the maximum distance that can be obtained from psim. 298

Since psim(di1 |neff, µ) is not available analytically, we estimate this probability mass 299

function by simulation. A special case is if we know that there is no variation in the 300

population at the time of taking the first sample si1, which can happen if we know that 301

the acquisition happened just before the first sample. In this case, di1 = 0, and we do 302

not need the simulation. Since this is usually not the case, we use a general solution as 303

follows: for each (neff, µ) value, we sample independently d
(j)
i1 ∼ psim(· |neff, µ) by 304

simulating the W-F model, sample a pair of genomes at a fixed time t from the 305

simulated population, and compute their distance d
(j)
i1 . This is repeated for j = 1, . . . , s. 306

Since di1 is discrete, we approximate 307

psim(di1 |neff, µ) ≈ p̂sim(di1 |neff, µ) =
1

s

s∑
j=1

1
d
(j)
i1 =di1

, (24)

for all i. Since in data D we do not know the acquisition times, we set t = 6000 308

generations and use this same value for all i. This large value represents a steady state 309
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of the simulation, where the variation in the population occasionally increases and 310

decreases as new lineages emerge and old ones die out, which can be seen as 311

corresponding to a reasonable default expectation about population variability when the 312

true acquisition time is unknown. While this assumption was introduced for 313

computational necessity, it can be justified by considering its impact on the inferences: 314

the simplification may cause slightly overestimated distances di1 if many acquisitions in 315

reality happened very recently. The consequence is that the criterion for reporting new 316

acquisitions becomes more conservative, because now the ’same strain’ model will place 317

some probability mass on occasional greater distances, and hence better accommodate 318

also distant genomes which might otherwise have been considered as different strains. 319

Some of the resulting probability mass functions p̂sim(di1 |neff, µ) were already 320

shown in Fig 4. In practice, the computations above are done using logarithms and the 321

fact log
∑
i e
ai = maxi{ai}+ log

∑
i e
ai−maxi{ai}, to avoid numerical underflow, which 322

can occur whenever ai � 0. The finite sample size s causes some numerical error, but, 323

because the distances are usually small enough that the number of values we need to 324

consider is limited, s can be made large enough without too extensive computation, 325

making this error small in general. The above procedure allows computation of the 326

conditional density in Eq 21 for any (neff, µ), and we can use a Metropolis update for 327

(neff, µ). We marginalised λ in Eq 21 to improve the mixing of the chain and to be able 328

to use the analytical formula in Eq 22, and in the supplementary material we justify 329

that this algorithm is valid under the assumption that a new λ parameter is sampled 330

only if the corresponding proposed value (neff, µ) has been accepted. 331

Whenever a new (neff, µ)-parameter is proposed, we need to compute psim at this 332

point to check the acceptance condition. This value is also needed when sampling z. 333

However, computing psim on each MCMC iteration as described earlier makes the 334

algorithm slow. Consequently, we instead precompute the values of psim in a dense grid 335

of (neff, µ)-points which can be done in a parallel manner on a computer cluster. Given 336

the grid values, we use bilinear interpolation to approximate psim at each proposed 337

point (n∗eff, µ
∗). We proceed similarly also with the prior density p(neff, µ |D0). This 338

approach also allows one to fit the mixture model using different modelling assumptions 339

or different data sets without need to repeat the costly W-F simulations. 340

Finally, we see that the probability density of ηi conditioned on the other variables 341

does not depend on ηj , j 6= i. Specifically, we obtain 342

p(ηi |µ, zi, λ,D) =

{
Gamma(ηi | k, λ/µ), if zi2 = 0∑di
j=0 wj Gamma(ηi | k + j, 2 + λ/µ), if zi2 = 1

(25)

for i = 1, . . . , N . Derivation of this result, the formula for the mixture weights wj and a 343

special algorithm (Algorithm 2) to generate random values from this density are shown 344

in the supplementary material. 345

The resulting Gibbs sampler is presented as Algorithm 1. It could be alternatively 346

called a Metropolis-within-Gibbs sampler since some of the parameters (neff and µ) are 347

sampled using a Metropolis-Hastings step using a proposal density that is denoted as q. 348

Because neff is a discrete random variable, (neff, µ) is a mixed random vector and we 349

cannot use the standard Gaussian proposal. Instead, we consider the distribution 350

q((n∗eff, µ
∗) | (neff, µ)) ∝

∑
n∈Z

exp

(
− (µ∗ − µ)2

2σ2
q,µ

− (n∗eff − neff)2

2σ2
q,neff

)
δ(n− n∗eff), (26)

where σ2
q,µ and σ2

q,neff
are chosen to produce acceptance probability of the Metropolis 351

step close to 0.25 and δ(·) is the Dirac delta function. The first element of a random 352

sample from q in Eq 26 is an integer, and this proposal is also symmetric. We truncate 353

the tails of q with respect to neff to be able to sample the discrete element from q 354
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efficiently. In practice we then use a proposal q that is a mixture density where the 355

components are as in Eq 26 but with different variance parameters σ2
q,µ and σ2

q,neff
to 356

occasionally propose large steps to increase the exploration of the parameter space. 357

Algorithm 1 MH-within-Gibbs sampling algorithm for the mixture model

select an initial parameter θ′(0) (e.g. by sampling from the prior p(θ′)), proposal q
and the number of samples s
for i = 1, . . . , s do

sample (n∗eff, µ
∗) ∼ q(· | (n(i−1)eff , µ(i−1))) and u ∼ U([0, 1])

compute ρ = min

{
1,

p(n∗
eff,µ

∗ | z(i−1),η(i−1),D,D0)q((n
(i−1)
eff ,µ(i−1)) | (n∗

eff,µ
∗))

p(n
(i−1)
eff ,µ(i−1) | z(i−1),η(i−1),D,D0)q((n∗

eff,µ
∗) | (n(i−1)

eff ,µ(i−1)))

}
us-

ing Eq 21
if ρ < u then

set (n
(i)
eff , µ

(i))← (n∗eff, µ
∗)

sample λ(i) ∼ p(· |µ(i),η(i−1), D) using Eq 22
else

set (n
(i)
eff , µ

(i), λ(i))← (n
(i−1)
eff , µ(i−1), λ(i−1))

end if
for j = 1, . . . , N do

sample η
(i)
j using the Algorithm 2 with µ = µ(i), z = z(i−1), λ = λ(i)

end for
for j = 1, . . . , N do

sample z
(i)
j ∼ p(· |n

(i)
eff , µ

(i),ω(i−1),η(i), D) using Eq 18
end for
sample ω(i) ∼ p(· | z(i), D) using Eq 17

end for
return samples {(n(i)eff , µ

(i),ω(i), z(i),η(i), λ(i))}si=1

Posterior predictive distribution 358

Given a new (future) data point (d∗, t∗) from a new patient, we would like to compute 359

the probability of whether this case is of the same strain. This can be computed from 360

the posterior of the model fitted to data D,D0 as follows. We denote the original 361

parameter vector with θ as before and additional parameters related to the new data 362

point D∗ = {(d∗, t∗)} as z∗ ∈ {(1, 0), (0, 1)} and t∗0 > 0. The updated posterior after 363

considering the new data point D∗ is then 364

p(z∗, t∗0,θ |D∗, D,D0) ∝ p(z∗, t∗0,θ)p(D∗, D,D0 |θ, z∗, t∗0) (27)

= p(θ)p(z∗, t∗0, |θ)p(D,D0 |θ)p(d∗ | t∗, z∗, t∗0,θ) (28)

∝ p(d∗ | t∗, z∗, t∗0,θ)p(z∗, t∗0 |θ)p(θ |D,D0), (29)

where p(θ |D,D0) is the posterior based on our original data D,D0. We marginalise the 365

set of parameters least contributory to the aim to obtain 366

p(z∗ |D∗, D,D0) ∝
∫
θ

∫
t∗0

p(d∗ | t∗, z∗, t∗0,θ)p(t∗0 |λ)p(z∗ |ω)p(θ |D,D0) dt∗0 dθ (30)

≈ 1

s

s∑
i=1

(
ω
(i)
S pS(d∗ |n(i)eff , µ

(i), t∗)
)z∗1 (

ω
(i)
D pD(d∗ |µ(i), t∗

(i)

0 , t∗)
)z∗2

, (31)
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Fig 5. ABC posterior distribution for (neff, µ). The ABC posterior distribution
i.e. the updated prior for parameters (neff, µ), the effective population size and
mutation rate, given data D0. Panel A shows the result with the full data and panel B
the corresponding result with only a subset of the data (see text for details).

where (t∗
(i)

0 ,θ(i)) ∼ p(t∗0 |λ)p(θ |D,D0) for i = 1, . . . , s. The probability of the new 367

measurement point (d∗, t∗) being of the same strain, based on the previously observed 368

data D,D0 is obtained from Eq. 31. 369

Results 370

In this section we fit the W-F model to the external data D0 as discussed in Section 371

ABC inference to update the prior using external data. We then verify that the 372

proposed Gibbs sampling algorithm for fitting the mixture model from Section Bayesian 373

inference for the mixture model is consistent based on experiments with simulated data. 374

Subsequently, we fit the mixture model to the MRSA data and discuss the results. 375

Finally, we assess the quality of the model fit. 376

Updating the prior using ABC inference 377

The ABC posterior based on the external data D0 and the discrepancy in Eq 8, is 378

shown in Fig 5A. We also repeated the computations so that we omitted a subset, 379

patients A-M, from the analysis i.e. the second summation term in Eq 8 was set to zero. 380

This was done to assess the effect of patients A-M, which have measurements from one 381

time point only, and an unknown time since acquisition. This extra analysis resulted in 382

an ABC posterior approximation shown in Fig 5B. We see that in both cases large parts 383

of the parameter space have been ruled out as having negligible posterior probability. 384

As expected, the posterior distribution based on the subset (Fig 5B) is slightly more 385

dispersed than with the full data D0 (Fig 5A). Using the full data causes the estimated 386

mutation rate to be slightly greater than with the subset, likely because the model 387

needs to accommodate the higher variability in the patients A-M. In addition, small 388

effective sample sizes (neff < 2000) are less probable based on the full data D0. 389

Overall, we see that the effective sample size neff cannot be well identified based on 390

the external data D0 alone. We also see that if the upper bound of the prior density of 391

neff was increased from 10, 000, higher values would likely have non-negligible posterior 392

probability also; however, this constraint will have a negligible impact on the resulting 393

posterior from the mixture model as is seen later. The mutation rate µ, on the other 394
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hand, is smaller than 0.001 mutations per genome per generation with high probability 395

and cannot be arbitrarily small. 396

Validation of the mixture model using simulated data 397

To empirically investigate the identifiability of the mixture model parameters and the 398

correctness and consistency of our MCMC algorithm under the assumption that the 399

model is specified correctly, we first fit the mixture model to simulated data. We 400

generate artificial data from the mixture model with parameter values similar to the 401

estimates for the observed data D from the next section. Specifically, we choose 402

neff = 2, 137, µ = 0.0011, ωS = 0.8, λ = 0.0001 and we repeat the analysis with various 403

data sizes N . We use otherwise similar priors as for the real data in the next section 404

except that, for simplicity, instead of using the prior obtained from the ABC inference, 405

we use a uniform prior in Eq 7. We then fit the mixture model to the simulated data 406

sets to investigate if the true parameters can be recovered (identifiability) and whether 407

the posterior becomes concentrated around their true values when the amount of data 408

increases (consistency). 409

Results are illustrated in Fig 6. We see that the (marginal) posterior of (neff, µ) is 410

concentrated around the true parameter value that was used to generate the data (green 411

diamond in the figure). Also, despite the fact that the number of parameters increases 412

as a function of data size N (because each data point (di, ti) has its own class indicator 413

zi and time to the most recent common ancestor t0i parameter), the marginal posterior 414

distribution of (neff, µ) can be identified and appears to converge to the true value as N 415

increases. On the other hand, we cannot learn each t0i accurately since essentially only 416

the data point to which the parameter corresponds provides information about its value. 417

However, precise estimates of these nuisance parameters are not needed for using the 418

model or obtaining useful estimates of the other unknown parameters as demonstrated 419

in Fig 6. 420

The panel in the lower right corner of Fig 6 shows results from an additional 421

simulation experiment where the mixture model is fitted to data generated with 422

different values for the ωS parameter, which represents the proportion of pairs that are 423

from the same strain. Other than that and the fact that we fixed N = 150, the 424

experimental design is the same as above. The results show that the estimated ωS 425

values generally agree well with the true values. Interestingly, ωS is slightly 426

overestimated when its true value is close to 0, and slightly underestimated when the 427

true value is close to 1, which may reflect the regularizing effect of the prior, drawing 428

the estimates away from the extreme values. Furthermore, when the true value of ωS is 429

around 0.5, the variance of the estimate tends to be higher than with ωS values close to 430

0 or 1. This observation may be explained by the fact that there are more data points 431

that overlap both mixture model components when ωS is around 0.5 which makes the 432

inference task more challenging and causes higher posterior variance. 433

Analysis of the Project CLEAR MRSA data 434

The following settings are used to analyse longitudinally-sampled S. aureus nares 435

isolates from the control arm of Project CLEAR [23]. We generate 4 MCMC chains, 436

each of length 25, 000, initialized randomly from the prior density, whose first halves are 437

discarded as “burn-in”. We use the Gelman and Rubin’s convergence diagnostic in 438

R-package coda and visual checks to assess the convergence of the MCMC algorithm. 439

We use 100× 100 equidistant grid for numerical computation with the (neff, µ) values 440

and s = 10, 000 in Eq 24. The ABC posterior obtained in Section Updating the prior 441

using ABC inference and visualised in Fig 5A is used as the prior for (neff, µ). 442

PLOS 15/24

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/429464doi: bioRxiv preprint 

https://doi.org/10.1101/429464
http://creativecommons.org/licenses/by/4.0/


●
●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●●

●

●

●

●●●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●
●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●●

●

●● ●

●●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●●●

●●

●

●

● ●

●●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

● ●●

●●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●●●●

●●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●●

●

●●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

1000 2000 3000 4000 5000 6000 7000

0.
00

05
0.

00
10

0.
00

15
0.

00
20

neff
µ

N=50

●●

●

●
●●

●

●

●

●

●

●

●●

●

●●●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●

●●●

●

●●

●

●●

●●● ●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●●

●

●
●

●

●●
● ●

●●

●

●

●●●

●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●
●

●

●●

●●●

●

●

●

●●

●

●●

●
●●

●

●

●

●

●

●

●●

●●●

●
●

●●

●●

●●●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●

●●
●●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●●●

●●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●
●●●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●
●

●

●●●●●●

●

●●

●●●●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●●●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●●●●
●●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●●●

●

●

●●●●●●

● ●

●

●
●

●

●●●

●

●●

●

●

●●

●

●
●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●● ●

●

●

●

●

●●
●

●●

●

●

●

●●●●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●

●●●

●

●

●●

●●

●

●●●

●●

●

●

●

●●●

●

●

●

●
●●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●● ●

●

●

●●●

●●●

●

●

●

●●

●

●
●

●●●

●

●

●

●●

● ●

●

●

●●

●

●

●

●

●●

●●●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●●●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●●

● ●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●

●●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●●
●

● ●

●●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●●

●

●

●●

●●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●● ●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●●● ●

●

●

●●

●

●
●

●●

●

●●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●●

●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●
●●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

● ●

●●
●●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●●

●●

●●

●

●●
●● ●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●●

●●●

●

●●

●

●●●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●● ●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●● ●

●●●

●

●●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ● ●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●●●

●

●

●

●●

●●

●

●

●●●
●●●

●

●

●

●

●

●
●

●●●

●

●

●●●

●

●

●●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●
●

●

●●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●●●

●

● ●●

●

●●●

●

●●

●●●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●●

●●●●

●
●●●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●
●

●
●●●

●

●

●●

●●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

1000 2000 3000 4000 5000 6000 7000

0.
00

05
0.

00
10

0.
00

15
0.

00
20

neff

µ

N=200

●●

●●

●

●

●

●
●

●

●

●

●●

●●●

●●

●

●●

●

●

●

●

●

●

●

●●

●●●●

●

● ●●●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●
●

●

●

●
●

●

●●●●

●

●

●●●

●

●●●●●

●
●

●●

●

●

●

●●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●●

●●
●●●●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●●●●

●

●
●

●

●●

●●

●●●

●

●●

●●

●●

●

●

●●●

● ●●

●●●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●

●
●●●

●●

●

●

●●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●●●

●

●

●●●●●

●

●

●

●●

●●●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●●
●

●

●
●

●●●

●

●

●●

●●
●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●●●
●

●

●●

●

●

●●

●

●●

●●

●

●
●

●

●

●

●

● ●

●

●

●●●

●

●

●●

●●

●

●●

●

●●

●

●●

●

●●●●

●●

●

● ●●
●●

●

●

● ●

●

●

●
●●● ●

●

●

●●
●●●●

●
●

●

●●

●
●

●

●

●

●●

●

●●

●●

●

●

●●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●●

●
●

●

●●
●

●

●

●

●●

●

●

●●

●●

●●

●●

●
●

●

●

●●

●

●

●

●●

●
●

●

●●

●
●

●

●●

●●●

●●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●●

●●

●●

●
●

●

●

●●
●

●●●

●

●

●

●

●●●

●●●

●
●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●

●
●●

●

● ●●●
●

●

●
●

●●●

●●
●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●
●●●●

●

●

● ●●●

●

●

●●

●

●

●●

●●●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●●●●

●

●●

●

●
●

●●

●

●

●●
●

●

●
●●●

●

●

●

●

●●●●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●●●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●●

●●●

●

●

●

●●

●●
●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

● ●

●
●

●

●

●●

●●

●

●●

●●●●●●

●

●●●

●

●
●

●●● ●

●

●

●●●●

●●

●

●
●●

●

●

●●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●●
●●●

●●●

●
●●

●●

●

●

●●●●

●●

●

●

●●

●

●

●

●●

●●

●

●

●●

●
●●●

●

●

●●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●●●●

●●●●●

●●

●

●

●●●●
●

●●
●

●

●●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●●●

●
●

●

●●

●

●●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●●

●

●●

●●

●●●●

●

●

●
●●●●

●●●

●

●

●

●

●

● ●●

●

●●

●●

●●

●

●
●

●
●

●

●

●●

●

●
●

●●

●●

●●

●

●●

●
●

●
●

●

●

●
●

●

●

●●

●
●●

●

●

●

●●●

●●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

● ●
●●

●

●●●

●●

●

●●

●●
●

●

●●
●

●●

●

●●

●

●

●●

●●

●

●

●●

●

●●

●

●

● ●●

●

●

●

●
●●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●
●

●

●

● ●

●●●

●
●

●
●

●

●

●

●

●●

● ●

●

●● ●
●●

●

●

●

●

●●

●●●●●●

●●●

●

●
●

●●

●●●

●

●

●●

●

● ●●

●●●●●

●

●
●

●

●●

●
●

●

●●●

●●●

●

●●

●

●

●

● ●●

●
●●

●

●

●

●●●

●●

●

●● ●●

●●●●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●
●
●

●

●●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●●●

●

●

●

●

●
●●●●● ●

●

●●

●●

●

●●

●

●●

●
●

●

●

●

●●●

●

●

●●●

●

●●

●●
●●

●

●●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

●

●●

●

●

●

●

●●

●

●

●●●

●

● ●●

●

●●● ●●
● ●

●

●●

●

●
●

●

●

●
●

●

●

●
●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●●

●●

●●●●●

●

●

●

●
●

●

●●●
●

● ●

●

●●

●

●●●● ●
●

●

●

●

● ●

●
●

●

●●●

●

●●

●

●●
●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●
●●

●
●

●●

●

●●●

●●●●

●

●

●●●

●

●●
●

● ●

●

●●

●●●●

●

●●

●

●

●

●●
●

●

●●

●

●

●

●●

●
●●

●

●

●

●●

●

●
●

●

● ●

●●

●●

●●

● ●●

●●●

●●

●

●

●●●

●●●●●

●

●

●

●

●

●●

●

●●

●

●● ●

●

●●

●
●

●

●

●●●●●

●

●●●
●●

●

●

●

●

●

●

●
●

●●

●

●●●

●
●

●●●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●●●●

●

●

●●

●
●

●

●●●

●

●
●●

●

●
●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●●

●●

●

●

●

●●

●

●

●

●●●

●●

●●

●●

●

●

●●● ●

●●

●

●

●

● ●●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

1000 2000 3000 4000 5000 6000 7000

0.
00

05
0.

00
10

0.
00

15
0.

00
20

neff

µ

N=500

●
●●

●
●

●

●

●
●

●
●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ωS,true
ω

S
,e

st
im

Fig 6. Accuracy and consistency with synthetic data. The first three panels
show the estimated posterior distributions for parameters (neff, µ) of the mixture model
using simulated data of different sizes N . The green diamond shows the true value used
to generate the simulated data and the light grey dots denote the grid point locations
needed for numerical computations. The bottom right panel shows the estimated vs.
the true ωS parameter in a set of additional simulation experiments.

The parameter vector θ consists of the ’global’ parameters neff, µ,ω, λ, as well as a 443

large number of nuisance parameters (z and t0) related to each data point. The 444

estimated global parameters are presented in Table 1. We also repeated the analysis 445

using a uniform prior on (neff, µ). While the uniform prior is non-informative about the 446

parameters (neff, µ), the results are nevertheless surprisingly similar (Table 1). In other 447

words, the additional data D0 used to update the prior has only a small effect on the 448

estimated parameters of the mixture model. This was unexpected because the data set 449

D used to train the mixture model has only one genome per sampled time point, and 450

yet, impressively, the model is able to learn about the parameters (neff, µ) which 451

effectively define the variability in the whole population. This further demonstrates the 452

robustness of the mixture model to the prior used. We observe, however, that 453

incorporating the prior from the ABC slightly shifts the probability distribution for neff 454

towards larger values, although there is no clear conflict between the two results. For 455

example, as seen in Table 1, the 95% credible interval (CI) for neff, [1200, 2200], gets 456

updated to [1300, 2200] when the extra prior information is included. 457

Fig 7 shows the posterior predictive distribution for the probability of the same 458

strain case for a (hypothetical future) observation with distance d∗ and time difference 459
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Table 1. Posterior mean and 95% credible interval (CI) for the ’global’
parameters of the mixture model.

Informative prior (ABC, data D0) Uniform prior

parameter mean 95% CI mean 95% CI

neff 1700 [1300, 2200] 1700 [1200, 2200]
µ 0.00076 [0.00060, 0.00092] 0.00080 [0.00064, 0.00095]
ωS 0.87 [0.83, 0.91] 0.88 [0.83, 0.92]
ωD 0.13 [0.09, 0.17] 0.12 [0.08, 0.17]
λ (×105) 7.3 [5.8, 9.0] 7.5 [5.9, 9.3]
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Fig 7. Results for the Project CLEAR MRSA data. Contour plot for same
strain probability of a distance d∗ and time interval t∗ based on the fitted model. The
coloured points denote the observations that were used to fit the model. Blue colour
indicates large same strain probability. Distances greater than 50 are not shown and are
classified as different strains with probability one. 6, 000 generations on the y-axis
correspond to approximately one year.

t∗. Blue colour in the figure denotes high probability of the same strain. The 460

corresponding 50% classification curve is (almost) a straight line with a steep positive 461

slope. This is as expected since the same strain model can explain a greater number of 462

mutations when more time has passed. Approximately 20 mutations draws the line 463

between the same strain and different strains cases within the time difference up to 6000 464

generations. The uncertainty in the classification occurs because there is overlap in the 465

two explanations (around d∗ ≈ 20) and because of the posterior uncertainty in the 466

model parameters θ. 467

We also analysed explicitly all observed patterns where: 1) two genomes of the same 468

ST from the same patient are interleaved with a missing observation, i.e. the 469

colonization appears to disappear and then re-emerge, and 2) two genomes of the same 470

ST from the same patient are interleaved with an observation of a different ST. The 471

numbers for the two genomes being from the same or different strain in these patterns 472

are shown in Table 2. The credible intervals for the ’same strain’ proportion combine 473

uncertainty from the limited number of samples with the posterior uncertainty of 474

whether a sample is from the same strain or not (see the Supplementary material for 475

further details). From Table 2 we see that approximately 58% of genome pairs in 476

pattern 1) are from the same strain. This is only a little smaller than the same strain 477

proportion when there are no missing observations in between (84%). Therefore, a 478

plausible explanation for most of the missing in-between observations is that in reality 479
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the same strain has been colonizing the patient throughout, and the missing observation 480

reflects the limited sensitivity of the sampling, rather than a clearance followed by a 481

novel acquisition. Similarly, even if interleaved with a different ST (pattern 2), the 482

surrounding genomes often, in 63% of cases, appear to be from the same strain. This 483

suggests that in these cases the patient has been colonized by the surrounding strain 484

throughout, and co-colonized by two different STs at the time of observing the 485

divergent ST in the middle. 486

Table 2. The estimated numbers (mean, 95% CI in parenthesis) of cases
with genomes in the beginning and in the end of the pattern being from the
same or different strain, for three different patterns in the Project CLEAR
MRSA data, and the estimated proportion of the same strain cases.

same strain/n diff. strain/n same strain prop.

ST A → ST A 190(187, 192)/224 34(32, 37)/224 0.84(0.78, 0.89)
ST A → ∅ → ... → ST A 17(16, 19)/29 12(10, 13)/29 0.58(0.36, 0.76)
ST A → ST B → ... → ST A 12(10, 12)/18 6(6, 8)/18 0.63(0.34, 0.81)

“ST A → ST A” denotes the case where the ST does not change between two genomes
at consecutive samples, “ST A → ∅ → ... → ST A” is the pattern 1) where one or more
negative samples are seen between the same ST and “ST A → ST B → ... → ST A” is
the pattern 2) where a sample with different ST is observed between two samples of the
same ST. n denotes the number of data points in each alternative.

Finally, we compute acquisition and clearance rates using our model, and compare 487

those to the ones obtained with the common strategy of using a fixed distance threshold. 488

For the purposes of this exposition, we define the acquisition racq and clearance rates 489

rclear informally as 490

racq =
B + C + E

G
, rclear =

D

A+B + C +D
, (32)

where the quantities A,B,C,D and E denote the numbers of possible events in 491

consecutive samples (e.g. acquisition, replacement, clearance, or no change) defined in 492

detail in Table 3. Also, G is the total number of possible events over the whole data. 493

The quantities A,B,D and E are random variables that depend on the same/different 494

strain posterior probabilities and, consequently, we also compute the uncertainty 495

estimates for these quantities in Eq 32. Number C is a constant because an observed 496

change of ST always indicates an actual change of ST as well. For cases with one or 497

more negative samples (denoted by ∅) between two positive samples, we do not know 498

when the clearance and acquisition events took place and whether the negative samples 499

are “false negatives”. To handle these cases, we parsimoniously assume that a missing 500

observation between two positive samples that are inferred to come from the same 501

strain is a false negative (i.e. that the same strain was present also in the middle, even 502

if it was not detected), and record these events in the groups A-E accordingly. Details 503

on how we unambiguously determine the group for all special cases is provided in the 504

Supplementary material. 505

The estimated acquisition and clearance rates with 95% credible intervals are shown 506

on the last two lines of Table 3. For comparison, we also computed these rates otherwise 507

similarly but using a fixed distance threshold of 40 mutations, a value used in [10], to 508

determine if two genomes are from the same strain or not. We see that the 509

threshold-based estimates are relatively similar to, and only slightly smaller than the 510

estimates from our model. The explanation for the similarity of summaries such as the 511
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acquisition and deletion rates is that, when estimating these quantities across the whole 512

data set, the uncertainty gets averaged out, even if individual data points exhibit a lot 513

of uncertainty regarding whether they are the same strain or not (see Fig 7). 514

Importantly, while being consistent with the previous results, our model bypasses the 515

task of heuristically choosing a single threshold and adds uncertainty estimates around 516

the point estimates, crucial for drawing rigorous conclusions. 517

Table 3. Estimated numbers (posterior means) of different patterns A-E of
consecutive samples and the estimated acquisition and clearance rates
(mean, 95% CI in parenthesis).

event expected number

A: ST A, str X → ST A, str X 231
B: ST A, str X → ST A, str Y 34
C: ST A → ST B 45
D: ST A, str X → ∅ 104
E: ∅ → ST A, str X 21

rate parameter post. estimate threshold-based estimate

acquisition rate racq 0.18(0.17, 0.19) 0.16
clearance rate rclear 0.25(0.24, 0.25) 0.24

Above, ST denotes sequence type as before, str denotes the strain and symbol ∅ denotes
a negative sample i.e. no bacteria detected.

Assessing the goodness-of-fit of the model for the Project 518

CLEAR MRSA data 519

As the last part of our analysis, we use posterior predictive checks to assess the quality 520

of the model, see e.g. [15] for further details. Briefly, this consists of simulating 521

replicated data sets Drep,(j) from the fitted mixture model and comparing these to the 522

observed data D for any systematic deviations. Any discrepancies between the observed 523

and simulated data can be used to criticise the model and understand how the model 524

could be improved. In practice, simulating replicate data is done by simulating a 525

parameter vector θ(j) from the posterior (by using the existing MCMC chain) and 526

simulating a new set of distance-time difference pairs (d̃
(j)
i , t̃

(j)
i ), i = 1, . . . , N in Drep,(j)

527

from the model using θ(j). To obtain M replicates this procedure is repeated for 528

j = 1, . . . ,M . 529

Example replicate data sets are shown in Fig 8. Overall, the simulated distances are 530

similar to the corresponding observations. There is a clear peak at di = 0, and as the 531

distance is increased the frequency starts to decrease. Occasional large distances 532

(di > 20) occur only rarely, in keeping with the observed data. A minor discrepancy is 533

that the fitted model tends to underestimate the frequency of distance zero while small 534

positive distances tend to occur more frequently than observed. This could happen 535

because we estimated the empirical densities psim(di1 |neff, µ) using a constant time of 536

6, 000 (i.e. 1 year) since the acquisition (as discussed in Section Bayesian inference for 537

the mixture model), which may lead to a slight overestimation of the distances. To 538

explore the impact of this assumption further, we repeated the analysis so that we 539

computed the densities psim(di1 |neff, µ) at a constant time of 1, 000 generations. 540

However, the mismatch did not disappear completely and the estimated mutation rate 541

increased as a result to compensate for the occurrence of greater distances, in 542
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disagreement with the prior density from the ABC analysis and data D0. We thus 543

believe that the current model is adequate. 544
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Fig 8. Model validation using posterior predictive checking. The histogram in
the upper left corner shows the observed distance distribution in the Project CLEAR
MRSA data, the other figures in the top two rows show the corresponding distances in
replicate data sets simulated from the fitted model. The bottom two rows show the
same histograms zoomed to range [0, 50]. The replicate data sets look overall similar to
the observed data, demonstrating the adequacy of the model. However, the amount of
zero distances is underestimated and the frequencies of small positive distances tend to
be slightly overestimated.

Discussion 545

We presented a new model for the analysis of clearance and acquisition of bacterial 546

colonization, which, unlike previous approaches, does not rely on a heuristic fixed 547

distance threshold to determine whether genomes observed at different times points are 548

from the same or different acquisition. Fully probabilistic, the model automatically 549

provides uncertainty estimates for all relevant quantities. Furthermore, it takes into 550

account the variation in the time intervals between pairs of consecutive samples. 551

Another benefit is that the model can easily incorporate additional external data to 552

inform about the values of the parameters. To fit the model, we developed an 553
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innovative combination of ABC and MCMC, based on an underlying mixture model 554

where one of the component distributions was formulated empirically by simulation. 555

We demonstrated the model using data on S. aureus genomes sampled longitudinally 556

from multiple patients. Our analysis provided evidence for occasional co-colonization 557

and identified likely false negative samples. The output of the model consists of the 558

same vs. different strain probability for any pair of genomes, and, by using this 559

information to decide (probabilistically) when and where the colonizing strain had 560

changed, the acquisition and clearance rates were easy to calculate. Estimates of these 561

parameters were found to be in agreement with previous estimates derived using a fixed 562

threshold, but now we were able to provide confidence intervals, essential for drawing 563

rigorously supported conclusions. We believe such analyses are common enough that 564

our method should be useful for many, and, consequently, we provide it as an 565

easy-to-use R-code. The code includes tools for both the ABC-inference to incorporate 566

external data of distance distributions between multiple samples at a given time point 567

(or two time points), and the MCMC-algorithm. We note that our method does not 568

assume recombination, which was not relevant with the present data. If this is an issue, 569

we recommend removing recombinations by preprocessing the genomes with one of the 570

standard methods [30–32]. While our analysis demonstrated that the external data may 571

reduce uncertainty in the resulting posterior, we also saw that the method may work 572

without such data. In the latter case the input is simply a list of distance-time 573

difference pairs for genomes sampled from the same patient at consecutive time points, 574

and it is sufficient to run the MCMC, which is efficient and fast in typical cases. 575

A central component of our approach is a model for within-host variation, required 576

to determine how much variation can be expected if the genomes at different time points 577

have evolved from the same strain obtained in a single acquisition. We selected for this 578

purpose the basic Wright-Fisher model assuming constant population size and mutation 579

rate with the understanding that these assumptions are expected to be violated to some 580

extent in any realistic data set, but the benefits of simplicity include robustness of the 581

conclusions to prior distributions and identifiability of the parameters from the available 582

data. More complex models have been fitted to the distance distributions (our external 583

data D0), assuming the population size first increases and then decreases [13]. However, 584

our model can fit the same data with fewer parameters, which justifies the simpler 585

alternative. Furthermore, the constant population size may also be seen as a sensible 586

model for persistent colonization. An interesting future research question is what 587

additional data should be collected in order to be able to fit one of the possible 588

extensions of the basic model. Another direction that we are currently pursuing is to 589

extend the model to cover genomes sampled from multiple body sites. 590

Supporting information 591

S1 File. Derivations and further details of the model. We provide some 592

further derivations and details related to our MCMC algorithm. To guide the selection 593

of prior hyperparameters, we also derive the explicit prior distribution and some of its 594

summaries for the parameter t0 and the mean and variance for the prior predictive 595

distribution for the distance. We also describe further details on computing the 596

acquisition and clearance rates. 597
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