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Abstract 

 Neuronal number varies by several orders of magnitude across species, and 
has been proposed to predict cognitive capability across species. Remarkably, 
numbers of neurons vary across individual mice by a factor of 2 or more. We 
directly addressed the question of whether there is a relationship between 
performance in behavioral tests and the number of neurons in functionally relevant 
structures in the mouse brain. Naïve Swiss mice went through a battery of 
behavioral tasks designed to measure cognitive, motor and olfactory skills. We 
estimated the number of neurons in different brain regions (cerebral cortex, 
hippocampus, olfactory bulb, cerebellum and remaining areas) and crossed the 
two datasets to test the a priori hypothesis of correlation between cognitive abilities 
and numbers of neurons. As previous evidence indicates that environmental 
enrichment may increase neurogenesis and improve neuronal survival, we added a 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/428607doi: bioRxiv preprint 

https://doi.org/10.1101/428607
http://creativecommons.org/licenses/by-nd/4.0/


control group that did not undergo cognitive testing to rule out the possibility that 
our test battery could alter the neuronal number. We found that behavioral testing 
did not change numbers of neurons in the cerebral cortex and in the hippocampus. 
Surprisingly, performance in the behavioral tasks did not correlate strongly with 
number of neurons in any of the brain regions studied. Our results show that 
whereas neuronal number is a good predictor of cognitive skills across species, it 
is not a predictor of cognitive, sensory or motor ability across individuals within a 
species, which suggests that other factors are more relevant for explaining 
cognitive differences between individuals of the same species. 

 

Keywords: number of neurons, cognition, brain evolution, cognitive enrichment, 
isotropic fractionator, memory 

 

List of abbreviations: 

g, general intelligence factor  

NeuN, neuronal nuclear antigen 

  

Introduction 

 Brain size varies by more than 100,000-fold across species (Haug, 1987), 
and it has long been expected that this variation is related to the animal's cognitive 
skills and behavioral flexibility. For example, behavioral innovation rate, a measure 
derived from a systematic collection of field notes of previously unreported 
behaviors, shows a positive correlation with forebrain size across bird species 
(Overington et al., 2009). Deaner and colleagues (2007) found that within the 
primate order, absolute brain size is a good predictor of a global cognition index 
extracted from meta-analyses. In a large, multi-group, coordinated effort to study 
many different species (from elephants to birds), MacLean and colleagues (2014) 
showed that absolute brain size is the best neuroanatomical predictor of 
performance in a task of self-control, the ability to inhibit a prepotent but ultimately 
counterproductive behavior. Across carnivoran species, problem-solving ability is 
also correlated with brain size (Benson-Amram et al., 2016).    

  There is evidence that brain size may also be an indicator of cognitive 
ability across individuals within a same species. For instance, it has been reported 
that in rats, a measure of a general intelligence factor (g) correlates positively with 
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brain size (Anderson, 1993). Even within humans, a large meta-analysis showed 
that brain size correlates with IQ, albeit explaining only ~6% of the variance 
(McDaniel, 2005). Another study found that brain volume explains ~34% of the 
variance in general verbal ability in women (Witelson et al., 2006). A cross-
sectional study showed that cerebellum volume explains some of the variance in g, 
even after controlling for frontal lobe volume (Hogan et al., 2011). And if we do not 
restrict ourselves to measures of cognition, still, in general, there is evidence that 
the size and cellular composition of functionally relevant structures are related to 
behavioral performance. One study found evidence that the size and number of 
cells in the frontal lobe of humans decrease with aging, mirroring motor function 
deterioration (Andersen et al., 2003). In a different context, one study found that 
the number of neurons in two song-related regions of the zebra finch brain 
correlates with their song repertoire size (Ward et al., 1998). 

Brain size was once considered a proxy for the number of brain neurons 
both across and within species, based on assumptions about universal scaling 
rules of neuronal density and uniform surface densities of neurons within and 
across cortical areas (Rockel et al., 1980; Carlo and Stevens, 2013). More 
neurons, in turn, would determine larger information processing capacity, learning 
and flexibility (Williams and Herrup, 1988; Dicke and Roth, 2016). Recent evidence 
suggests that brain mass and number of neurons do not scale in the same way 
across species (reviewed in (Herculano-Houzel et al., 2014)) and that within a 
species, they are not correlated at all (Herculano-Houzel et al., 2015b). In light of 
these findings, it has been proposed that numbers of neurons in the cerebral cortex 
- and not brain size as a proxy for them - are the main neuroanatomical 
determinant of cognitive skills and flexibility across species (Harrigan and 
Commons, 2014; Dicke and Roth, 2016; Herculano-Houzel, 2017). The question 
then arises as to whether the same relationship holds true within a species. 

Similarly aged individuals of a non-isogenic mouse strain exhibit variation by 
a factor of 1.33-fold in brain size and 1.63-fold in number of brain neurons (ratio 
between maximum and minimum values; (Herculano-Houzel et al., 2015b)). Until 
recently (Herculano-Houzel and Lent, 2005), it was impractical to estimate 
numbers of neurons in large numbers of individuals, and few studies addressed 
directly the relationship between an animal's cognitive performance and its number 
of neurons. The ones that did address it made use of induced changes in the 
number of neurons, such as maternal treatments with growth hormone (Block and 
Essman, 1965; Zamenhof et al., 1966) and induced tetraploidy in salamander 
embryos (Vernon et al., 1955; Vernon and Butsch, 1957). Although such studies 
showed that manipulations resulting in altered number of neurons also changed 
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cognitive performance, they did not address whether numbers of neurons are a 
predictor of cognitive or motor ability in healthy and normally developed animals. 

Here, we sought to address this question directly: is there a relationship 
between naïve (untrained) performance in behavioral tests and the number of 
neurons in functionally relevant structures of the brain? To this end, we took Swiss 
mice through a series of behavioral tasks designed to measure cognitive, motor 
and olfactory skills and then we used the isotropic fractionator method to estimate 
the number of neurons in their brain regions. Specifically, we tested the following a 
priori hypotheses: that performance in an olfactory test and in the rotarod test 
correlates with number of neurons in the olfactory bulb and cerebellum, 
respectively; that performance in the Morris water maze (a navigation learning 
task) correlates with number of neurons in the hippocampus and cerebral cortex; 
that performance in operant training and in the puzzle-box (two tasks that require 
perceptual and executive functions) correlates with number of neurons in the 
cerebral cortex and hippocampus. In addition, as evidence indicates that 
environmental enrichment may increase neurogenesis and improve neuronal 
survival (Clemenson et al., 2015), we compared numbers of neurons in those 
animals to a control group of animals that did not undergo cognitive testing to rule 
out the possibility that the test battery could alter the brain cellularity.  

 

 

Methods 

Behavioral testing 

All experiment procedures used in this study were approved by the Animal 
Care and Use Committee at Universidade Federal do Rio de Janeiro (protocol 
number 01200.001568/2013-87).� 

Male mice were aged 2 months at the beginning of behavioral testing, and 
were naïve (inexperienced) in any type of behavioral tasks. All mice were housed 
in groups of 2 to 5 per cage. We performed the tests in the following order: 
olfactory test, rotarod, Morris water maze, puzzle-box and operant conditioning. To 
control for the effects of human manipulation and physical exercise, the control 
group underwent the physical part of each test, without the cognitive challenge, as   
explained below for each task. Mice were euthanized at the end of the behavioral 
testing when they were 4 months old. 
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Olfactory Test 

 We used a modified version of the hidden peanut butter finding test (de 
Souza et al., 2011). On the first day, mice were food-deprived and given one 
peanut each to prevent bait shyness. On the next day, we exposed them to an 
arena of 40 x 40 cm filled with bedding, and a buried peanut in it. In three trials 
starting at different positions, we allowed mice 15 minutes to find the peanut. The 
latency to find the peanut in each of the three trials was recorded and summed, 
giving the total latency used as a score, so smaller scores indicate better 
performance. We exposed control animals to the same procedure but without the 
buried peanut in the arena. 

 

Rotarod 

 To assess balance and motor learning, we measured the latency to fall from 
a mouse rotarod (Insight Equipamentos, Brazil). On the first day, we exposed mice 
to a rotating rod starting at 14 RPM and accelerating until 35 RPM for a maximum 
of 4 minutes for trial. Mice underwent 5 trials and we recorded the latency to fall in 
three trials, after discarding the highest and lowest latencies. On the next day, mice 
underwent the same experiment for three trials, and the final score was the sum of 
the latency to fall over 6 trials in the first and second days. Control mice were 
exposed to the rotarod at a constant 14 RPM for a similar duration.  

 

Morris Water Maze 

The maze (circular tub, 110 cm diameter) was filled with water at 22ºC made 
opaque by the addition of milk powder. All testing occurred under dim lighting. On 
the first day, we placed the animals on the hidden platform 3 times for 30 seconds 
each. On the second day, we added the extra-maze cues and gave the mice 6 
opportunities to locate the platform (6 trials of 90 seconds maximum each). If a 
mouse did not find the platform during this time, we led it to the platform. In each 
trial, the mice stayed on the platform for 30 seconds, and the inter-trial interval was 
10 min, in which we dried each animal briefly under a warm light before returning 
them to their cages. On the third day, each mouse had four more opportunities to  
find the platform. After 90 minutes of the last trial, we returned each mouse to the 
maze for 90 seconds, this time without the platform. Anymaze Video Tracking 
Software was used to record swimming patterns, and we divided the maze into four 
quadrants. The “goal” quadrant was the one in which the platform was located. The 
score was calculated by subtracting the amount of time a mouse spent on the goal 
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quadrant from the time it spent in the opposite quadrant. We lost the data from 6 
mice because of a technical problem with the video camera. We allowed control 
mice to swim in similar intervals without the cues and the platform. 

 

Puzzle-box 

The test was adapted from (Ben Abdallah et al., 2011). Briefly, the arena 
consisted of a wooden white box divided by a removable barrier into two 
compartments: a brightly-lit start zone (58 cm long, 28 cm wide) and a smaller 
covered goal zone with bedding and food (15 cm long, 28 cm wide). Lightly food-
deprived mice always started in the brightly-lit zone, and were given a 5 minute 
opportunity to go to the goal zone three times per day, undergoing a total of nine 
trials (T1–T9) over 3 consecutive days. Over the nine trials, they were challenged 
with obstructions of increasing difficulty placed at the underpass. On day 1, the 
underpass was unblocked in T1, and the barrier had an open door over the 
location of the underpass. In T2 and T3 the barrier had no doorway and mice 
entered via the small underpass. On day 2, T4 was identical to T2 and T3, but on 
T5 and T6, however, the underpass was filled with sawdust and mice had to dig 
their way through (burrowing puzzle). On day 3, T7 was a repetition of T5 and T6, 
and on T8 and T9, mice were presented with the plug puzzle, with the underpass 
obstructed by a cardboard plug that mice had to pull with teeth and paws to enter 
the goal zone. This sequence allowed assessing problem-solving ability (T5 and 
T8), learning/short-term memory (T3, T6, and T9), while the repetition on the next 
day provided a measure of long-term memory (T4 and T7). The total latency was 
used as a readout of the puzzle-box test, so smaller scores indicate better 
performance. Data from one mouse was excluded because it did not reach the 
goal zone in T1, which indicated lack of motivation to complete the task. Control 
mice were exposed to the arena and lightly food-deprived as in T1. 

 

 

 

Operant Conditioning 

For 32 days, testing consisted of different phases that involved the following 
cognitive capacities: auditory tone discrimination, attention, memory, problem 
solving and cognitive flexibility. All testing sessions consisted of 1 hour per day, 
except the second phase, which consisted of two sessions of 30 minutes per day. 
To motivate mice to participate, they were lightly food-deprived in order to maintain 
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around 90% of the baseline weight. In the first phase of testing, they got a food 
reward for making a “go” response. The reward consisted of a 20 mg food pellet 
(BioServe, Frenchtown, NJ). After making more than 40 responses for two 
sequential days, the mice went to the second phase, in which they had to make a 
go response only during a 3 s window after the presentation of a 600 ms tone. 
Mice graduated after making a correct go response at least 70% of the time again 
for two sequential days, which was the same criteria for the following phases. On 
the next phase, there were 3 different sounds and mice had to figure out the 
correct one. In the fourth phase, mice had to find a correct tone in a new set of 3 
different sounds of 200 ms each. Finally, the fifth phase consisted of a 1-back, in 
which mice had to perform a go response when a 200 ms tone A was played 
following another specific 200 ms tone B. All tones were presented at 70 dB SPL. 
Testing was performed in an acoustically transparent operant training chamber 
contained within a sound-attenuated chamber. The performance was calculated 
multiplying the number of days spent on each phase by its number and summing 
the results (if an animal stayed 16 days in phase 1 and 16 days in phase 2, the 
score would be (16*1) + (16*2) = 48). Therefore, mice that reached higher phases 
faster over the 32 days of testing got higher scores. 

 

Perfusion 

We analyzed the cellular composition of the brain of 32 mice that performed 
the behavioral testing (in four batches spaced a few months apart), and 27 mice in 
the control condition. Animals were 4 months old at the time of death. Animals 
were killed by an overdose of ketamine through an IP injection and perfused 
through the heart with a 0.9% saline solution followed by 4% phosphate-buffered 
paraformaldehyde (PFA). All animals from the same batches were killed and 
perfused on the same day. 

 

 

Dissection 

The brains were removed from the skull, cleaned of dura-mater and major 
vasculature and then left immersed in PFA for exactly two weeks of post-fixation. 
After this, they were dissected into cerebral cortex, hippocampus, cerebellum, 
olfactory bulb and remaining areas (brainstem, diencephalon and basal ganglia). 
The cerebral cortex was further divided into anterior and posterior regions. The 
anterior cortex was defined as the regions anterior to the genu of the corpus 
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callosum on the anterior-posterior axis. All structures were weighed immediately 
after dissection. The left and right halves of the cerebral cortex (anterior and 
posterior) and hippocampus were processed separately, while for the cerebellum, 
remaining areas and olfactory bulb, both halves were processed together. 

 

Isotropic Fractionator 

After post-fixation, brains were processed to obtain estimates on their 
number of neuronal and non-neuronal cells, using the isotropic fractionator 
(Herculano-Houzel and Lent, 2005). The method consists of using mechanical 
dissociation to transform heterogeneous brain tissue into a suspension of cell 
nuclei that can be kept homogeneous by agitation. Nuclei can then be counted in 
samples from the suspension and stained by immunocytochemistry. The isotropic 
fractionator has been shown by two independent groups to give estimates 
comparable to stereological estimates (Bahney and von Bartheld, 2014; Miller et 
al., 2014; Herculano-Houzel et al., 2015a). 

Structures were mechanically dissociated in Triton X-100 1% in a 40 mM 
solution of sodium citrate. The resulting suspension with all nuclei was stained with 
the fluorescent DNA marker DAPI (4'-6-diamidino-2-phenylindole dihydrochloride, 
Invitrogen, USA) diluted 1:20 from a stock solution of 20 mg/L and brought up to a 
readable volume in a graduated tube with phosphate-buffered saline (PBS). The 
density of nuclei in the suspension was estimated by counting at least 4 samples of 
the suspension in a Neubauer counting chamber under a fluorescence microscope. 
The coefficient of variation between samples was typically below 0.10. Once the 
estimates for cell number were obtained, a small sample of 1 mL was taken from 
the suspension to undergo immunocytochemistry for a neuronal nuclear antigen 
(NeuN, Millipore mab377), expressed in the nuclei of most neuronal cell types and 
not in non-neuronal cells (Mullen et al., 1992; Gittins and Harrison, 2004). This 
allowed us to estimate the absolute number of neuronal cells in the tissue. The 
number of non-neuronal cells was determined by subtraction. All counts were 
made in the same day or the next after the immunocytochemistry, to preserve the 
fluorescence and avoid one source of variability in the estimates. 

Statistics 

All statistical analyses were performed in R 3.4.1 (R Core Team, 2017). 
Performance in the behavioral tasks was ranked and the ranks were considered in 
the analyses. Pairwise correlations between the cellular composition of brain 
structures and the performances in the behavioral tasks were calculated using 
Spearman rank correlation, allowing us not to miss non-linear associations 
between the variables. We chose an alpha level of 5% for statistical significance. 
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Results 

First, we investigated whether performance between tasks was correlated. 
We hypothesized a priori that the three tasks that depend the most on higher 
cognitive functions (puzzle-box, operant conditioning and Morris water maze) 
would have positively correlated performances. However, all correlations were non-
significant, except for Hidden Peanut Butter Test x Puzzle Box (Table 1). 
Therefore, in the analysis, we used the individual scores. 

We then looked at the variation in our measures: behavioral performance 
and neuronal numbers, to guarantee that any lack of correlation is not an artifact of 
low variance in our sample. In (Figure 1) we show the variation in the behavioral 
performances. They all vary by more than one standard deviation around the 
mean. For neuronal numbers, besides investigating the variation in the sample, we 
also compared our results with a previous study of our group that measured the 
intraspecific variation in neuronal numbers, in the same lineage of mice (Swiss; 
Herculano-Houzel et al., 2015). As shown in (Figure 2), the mass of the mice brain 
structures in these two studies largely overlap. The larger amount of variation in 
the olfactory bulb in both studies is attributed to variation in dissection and 
weighing of this very small structure. (Figure 3) shows that numbers of neurons 
are also similar between the two studies. We performed F-tests to compare the 
variances between them. A significant difference was found only for the cerebellum 
(F = 0.310, p < 0.001) and rest of brain (F = 0.215, p < 0.001), where the variance  
in our study was smaller than that of Herculano-Houzel and colleagues (2015b). 
These results indicate that there are no systematic differences in both studies. 

The large variability across individual mice in performance in the various 
behavioral tests together with the large variability in numbers of neurons in the 
different brain structures allowed us to test our a priori hypotheses regarding the 
number of neurons and performance in functionally-relevant brain regions. We 
found no significant correlations between the number of neurons in the olfactory 
bulb and the latency to find the peanut in the olfactory test (Figure 4), number of 
neurons in the cerebellum and latency to fall in the rotarod task (Figure 5), number 
of neurons in the hippocampus and performance in the Morris Water Maze (Figure 
6), and number of neurons in the cerebral cortex and performance in the Morris 
Water Maze (Figure 7), number of neurons in the hippocampus (Figure 8) and the 
cerebral cortex (Figure 9) with performance in the puzzle-box (Figure 10) and with 
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performance in operant training (Figure 11). Taken together, these results indicate 
that the number of neurons is not a predictor of individual performance in mice (see 
Table 2 for all correlations). Similarly, we did not find any correlation between 
behavioral performance and numbers of non-neuronal cells in the relevant 
structures above (Table 3). 

To rule out the possibility that exposing mice to our battery of cognitive tests 
could alter the numbers of neurons, we compared the number of neurons of control 
and tested mice in two brain regions more likely to be affected by manipulations 
resulting in cognitive enrichment, namely the cerebral cortex and the hippocampus. 
Importantly, we did not find significant differences between control and tested 
animals in the number of neurons in the cortex (Figure 12A) and in the 
hippocampus (Figure 12B). 

 

Discussion 

 Although it is established that neuronal death is accompanied by worse 
behavioral performance across many tasks (Walker and Tesco, 2013; Kalaria et 
al., 2016), to our knowledge, our study is the first that attempts to investigate 
whether the number of neurons in normally-developed mice is associated with 
individual variation in behavioral performance. Our results suggest that naturally 
occurring variation in neuron number is not associated with variation in 
performance at the level of inexperienced individual animals within a species.  

It could be argued that exposing mice to our cognitive battery changed 
neuronal numbers in ways that masked initial individual differences associated with 
behavioral performance. Indeed, many cognitive enrichment protocols have shown 
increased neurogenesis (Kempermann et al., 1998) and increased volume in 
specific brain regions (Maguire et al., 2000). However, it is unlikely that this played 
a role in our results, because going through our battery of behavioral tests did not 
influence neuronal number in the cortex (Figure 12A) nor in the hippocampus 
(Figure 12B) compared with untrained mice. 

While we focused on neurons, it is known that other cell types, such as 
astrocytes and oligodendrocytes, also influence behavior. Han and colleagues 
(2013) investigated the effect of astrocytes on cognition, using a chimeric mouse 
model with grafted human astrocytes. They report that the chimeric mice perform 
better than control mice in an object location memory test and fear conditioning 
tasks. Moreover, myelination has been proposed as a correlate of intelligence 
(Miller, 1994). In any case, we did not find any correlation between individual 
behavioral performance and numbers of non-neuronal cells (Table 3). 
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 It remains possible that the number of neurons does correlate with 
behavioral performance, albeit weakly, and we did not find any significant 
correlation because of lack of statistical power. The confidence interval for some 
correlations include somewhat high values (e.g. number of neurons in the 
cerebellum and performance on the rotarod task shows a correlation of 0.18, with a 
95% confidence interval going from -0.18 to 0.49). Conceivably, many factors are 
likely to influence the individual performance in a given task, such as stress 
reactivity and motivation to complete the task, multiple factors may compound 
where each one explains a small degree of the variance observed. However, the 
power for the sample size in our study is 80% for a linear correlation of about 0.5; 
for the sake of comparison, the statistical power is 35% for a correlation as weak 
as the one found for human brain volume and IQ in McDaniel, 2005 (a correlation 
of 0.29). In our study, however, we expected a correlation larger than that, for two 
main reasons: (1) as we have argued before, neuron number is more strongly 
correlated with behavioral performance across species than brain volume and (2) 
greater variability of subjects in human studies should add noise to the estimate, 
compared to the present study with lab mice. 

Precise measures are essential to detect small effects. Regarding the 
behavioral measures, it is known that typically uncontrolled variables can have 
effects in animal behavior (Mandillo et al., 2008). The other indicator of interest, 
number of neurons, was measured using the isotropic fractionator, which relies on 
counting nuclei - stained with DAPI for total cells and with anti-NeuN for neurons - 
under a microscope (see Methods). The isotropic fractionator (see (Herculano-
Houzel et al., 2015a)) is precise enough for detecting differences in numbers of 
brain neurons between closely related species that differ in behavioral 
performance: for instance, rats, which have just over twice as many cortical 
neurons as mice, learn operant conditioning tasks faster than mice (Jaramillo and 
Zador, 2014). The method also works for detecting differences in variance - 
isogenic C57BL/6 mice show less variation in neuron number between individuals 
than non-isogenic Swiss mice (unpublished observations). Nevertheless, the 
method has intrinsic error from the counting procedure and from sampling for 
immunocytochemical staining that makes estimates of neuron number vary around 
10%-15% (unpublished results). Added together, the methodological variation 
could make small differences undetectable. 

One could say, though, that whatever correlation might exist between the 
quantities analyzed here is likely to be small. Whereas the number of neurons is a 
strong predictor of cognitive performance across species (Harrigan and Commons, 
2014; Dicke and Roth, 2016; Herculano-Houzel, 2017), our study suggests that this 
is not the case within a species. It may be simply that the magnitude of the 
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differences within a species is not large enough to have a consistent, detectable 
impact on cognitive abilities.  

A small or nonexistent correlation between behavioral performance and 
neuron number at the individual level invites a number of other possible 
explanations. First, we might not have tested the abilities for which having more 
neurons is beneficial. One recent study reviewed the literature in search of 
measures of cognitive performance of three animals - pigeons, corvids, and apes, 
as a function of increasing neuron number - on different tasks (Güntürkün et al., 
2017). They found that the maximum level of performance is the same for all three 
animals in some of the tasks (e.g. short-term memory and abstract numerical 
competence). Remarkably, while pigeons do reach the same level of performance 
as primates and corvids on some tasks, they are slower to learn and have difficulty 
generalizing and transferring the associations to new contexts (Güntürkün et al., 
2017). This suggests that the number of neurons might matter for the speed of 
learning, storage or generalization, but not to the final level of performance. 
Although the measures extracted from the cognitive tasks used in this study do 
take into account the learning rate, they also depend on the final level of 
performance. 

One possibility is that having more neurons makes a larger difference for 
sensorimotor abilities, but not higher-order ones: more neurons could result in 
more precision in stimuli representation. Having more neurons available would 
decrease interference and overlap between stored patterns, reducing confusion in 
retrieval. Some studies lend support to this idea. A training-induced increase in the 
number of auditory neurons that respond preferentially to a given sound frequency 
correlates positively with a rat’s ability to identify said sound frequency (Polley et 
al., 2006). A similar relationship is observed between the primary motor area and 
motor skill in the corresponding areas of the body (Nudo et al., 1996). Remarkably, 
a manipulation that increases the number of neurons in the primary visual cortex of 
mice improves their visual discrimination (Fang and Yuste, 2017). However, we 
could not determine the number of neurons in sensorimotor cortices because their 
dissection is not reliable.  

 Another possibility is that what accounts for variation in behavioral 
performance is not variation of the number of neurons, but of their subcomponents 
- such as numbers of synapses, dendrites or channels - that determine information 
processing capacity. These components, in contrast to the number of neurons, are 
supposedly more plastic across the lifetime of an individual. It is likely that the way 
the brain is molded by experience is at least as important as more fixed 
biological/neuroanatomical parameters such as number of neurons for determining 
the cognitive skills of an individual. It is also possible that subcellular elements 
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such as synapses and channels could process information by themselves, for 
example, by storing below-threshold voltage information (Sarpeshkar, 1998; 
Debanne et al., 2013) or a record of past firing activity in the channel’s state 
(Forrest, 2014). 

Whatever the role of synaptic components in behavioral performance, 
neurons are a limiting resource for information processing. Dendrites, synapses 
and sodium-potassium pumps are all parts of neurons and theoretical predictions 
from information theory and biophysics suggest that is not possible to make these 
components more efficient: neural information processing already happens close to 
the minimum cost allowed by thermodynamics (Sterling & Laughlin, 2015). To the 
extent that a brain could have larger numbers of dendrites, synapses and pumps, 
those numbers would be limited by how many neurons the brain has. 

In contrast, it is unlikely that numbers of glial cells are limiting to behavioral 
performance. These cells are only added in significant numbers, and very stable 
densities, to nervous tissue late in development, filling the neuronal parenchyma, 
which may account for the universality of the relationship between the glia/neuron 
ratio and neuronal density across mammals (Herculano-Houzel et al., 2014; 
Herculano-Houzel and Dos Santos, 2018). If that is the case, the number of glial 
cells depends on the number and size of neurons. Similarly, numbers of synapses 
might be an emergent property of the distribution of neurons and glial cells in the 
tissue, rather than under strong genetic control. The limited evidence available on 
synaptic densities across species suggests that they are fairly constant (Cragg, 
1967; Schüz and Palm, 1989). In summary, most of the potential variation in the 
brain’s processing capacity across species and individuals comes from variation in 
the number and density of neurons. This contrasts with our results, which indicate 
that if a correlation does exist between neuronal number and individual cognitive 
capabilities in normally developed mice, then that the correlation is weak, at best. 

In humans, intelligence is highly heritable (Plomin and von Stumm, 2018) 
and there is evidence that intraspecific brain size variation is heritable (Logan et 
al., 2016). Artificial selection experiments where changes in brain size are obtained 
in relatively few generations have successfully been conducted with rodents and 
fish (Kolb et al., 2013; Kotrschal et al., 2015). It would be informative to perform 
artificial selection studies for high or low cognitive performance in behavioral tasks 
and determine whether numbers of neurons in the corresponding brain structures 
respectively increased or decreased across generations.  

Our finding of no obvious correlation between number of neurons and 
individual behavioral performance across many tasks in naive mice suggest that 
artificial selection for behavioral performance should not modify the average 
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numbers of neurons that compose the brain of individuals in a population over 
time. This poses an interesting paradox for understanding the driving forces behind 
the evolution of larger brain size, for the lack of correlation undermines the 
customary prediction that brains with more neurons are adaptive and 
advantageous due to the presumably ensuing cognitive advantage that they bring 
about, and thus there should be positive selection pressure for larger numbers of 
neurons. If it is indeed the case that larger numbers of neurons are not predictive 
of any intrinsic cognitive individual advantage, then explaining mammalian brain 
evolution will require a major paradigm change in which the main driving force 
behind brain expansion is not cognitive performance directly, but possibly other 
factors such as decreased sleep requirement and a resulting alleviation in feeding 
pressure (Herculano-Houzel et al., 2015b). Future studies should aim to identify 
good predictors of variation in behavioral performance across individuals of the 
same species, such as genetic differences, numbers of synapses, numbers of 
specific glial cell subtypes, degree of myelination or dendritic arborization. We 
expect that, at the individual level, these variables may better predict the 
experience-dependent plasticity that underlies learning according to the individual 
history of interaction with the environment. Given that the brain is such a plastic 
organ, it seems plausible that activity-dependent self-organization could act as a 
stabilizing mechanism that buffers the brain against biological insults and other 
sources of variation that are likely to affect the number of brain neurons with which 
an individual is born. 
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Hidden Peanut 
Butter Test 

Morris Water 
Maze 

Operant 
Conditioning 
AUC Puzzle Box Rotarod 

Rotarod 0.23 
[-0.13, 0.54] 

-0.34 
[-0.64, 0.05] 

0.13 
[-0.23, 0.46] 

-0.03 
[-0.37. 0.32] 1 

Puzzle Box 0.50 
[0.18, 0.73] 

0.02 
[-0.37, 0.40] 

0.14 
[-0.23, 0.47] 1 -0.03 

[-0.37. 0.32] 

Operant Conditioning 
AUC 

-0.11 
[-0.45, 0.25] 

0.17 
[-0.24, 0.52] 1 0.14 

[-0.23, 0.47] 
0.13 
[-0.23, 0.46] 
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Morris Water Maze -0.10 
[-0.47, 0.30] 1 0.17 

[-0.24, 0.52] 
0.02 
[-0.37, 0.40] 

-0.34 
[-0.64, 0.05] 

Hidden Peanut Butter 
Test 1 -0.10 

[-0.47, 0.30] 
-0.11 
[-0.45, 0.26] 

-0.50 
[0.18, 0.73] 

0.23 
[-0.13, 0.54] 

 
Table 1. Correlations between individual performance across different tasks. 
Each cell in the table shows the Spearman correlation and 95% confidence interval 
between behavioral performance of the same animal on two different tasks. No 
correlations but one (Hidden Peanut Butter Test x Puzzle Box) were significant at 
the 5% level. Sample size is 26-32, depending on the comparison. 
 
 
 
 
 
 
            

  Number of Neurons 

 Cerebellum 

Cerebral 
Cortex, 
anterior 

Cerebral 
Cortex, 
posterior 

Cerebral 
cortex, 
total Hippocampus 

Olfactory 
Bulb 

Rest of 
Brain 

Rotarod 0.18 
[-0.18, 0.49] 

0.3 
[-0.05, 
0.58] 

0.35 
[0.01, 0.62] 

0.33 
[-0.01. 
0.61] 

-0.09 
[-0.42, 0.26] 

0.03 
[-0.32, 
0.37] 

-0.16 
[-0.48, 
0.19] 

Puzzle Box 0.05 
[-0.3, 0.38] 

-0.2 
[-0.51, 
0.15] 

-0.16 
[-0.47, 0.2] 

-0.17 
[-0.49, 
0.18] 

-0.11 
[-0.43. 0.24] 

-0.13 
[-0.45, 
0.22] 

0.00 
[-0.34, 
0.34] 

Operant 
Conditioning 
AUC 

0.16 
[-0.19, 0.48] 

-0.05 
[-0.39, 0.3] 

-0.13 
[-0.45, 
0.23] 

-0.21 
[-0.52, 
0.14] 

-0.14 
[-0.46, 0.21] 

0.06 
[-0.29, 
0.4] 

-0.19 
[-0.5, 
0.16] 

Morris Water 
Maze 

0.17 
[-0.18, 0.49] 

0.03 
[-0.32, 
0.37] 

-0.32 
[-0.6, 0.03] 

-0.29 
[-0.58, 
0.06] 

0.03 
[-0.32, 0.37] 

-0.03 
[-0.37, 
0.32] 

0.03 
[-0.32, 
0.37] 

Hidden Peanut 
Butter Test 

-0.27 
[-0.56, 0.08] 

-0.26 
[-0.55, 
0.09] 

-0.23 
[-0.53, 
0.13] 

-0.19 
[-0.5, 0.16] 

0.06 
[-0.29, 0.39] 

-0.13 
[-0.45, 
0.22] 

-0.24 
[-0.54, 
0.12] 
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Table 2. Correlations between behavioral performance in the tasks and 
number of neurons in different structures. Each cell in the table shows the 
Spearman correlation and 95% confidence interval between behavioral 
performance and number of neurons for the various tasks and brain regions. No 
correlations but one, which was not an a priori hypothesis (Cerebral cortex, 
posterior x Rotarod) were significant at the 5% level. Sample size is 26-32, 
depending on the comparison. 
 
 
 
 
 
 
 
 
 
 
            

  Number of Other Cells 

 Cerebellum 

Cerebral 
Cortex, 
anterior 

Cerebral 
Cortex, 
posterior 

Cerebral 
cortex, 
total 

Hippocampu
s 

Olfactory 
Bulb 

Rest of 
Brain 

Rotarod 0.27 
[-0.08, 0.56] 

0.23 
[-0.13, 
0.53] 

0.24 
[-0.11, 
0.54] 

0.33 
[-0.01. 
0.61] 

0.02 
[-0.32, 0.36] 

0.11 
[-0.24, 
0.43] 

-0.17 
[-0.48, 
0.19] 

Puzzle Box 0.12 
[-0.24, 0.44] 

-0.22 
[-0.52, 
0.13] 

-0.06 
[-0.39, 
0.29] 

-0.21 
[-0.52, 
0.15] 

-0.11 
[-0.44. 0.24] 

-0.06 
[-0.39, 
0.58] 

0.23 
[-0.12, 
0.53] 

Operant 
Conditioning 
AUC 

0.09 
[-0.27, 0.42] 

-0.02 
[-0.36, 
0.33] 

0.02 
[-0.32, 
0.36] 

0.06 
[-0.28, 
0.40] 

0.00 
[-0.34, 0.35] 

0.30 
[-0.05, 
0.58] 

-0.13 
[-0.45, 
0.22] 

Morris Water 
Maze 

-0.47 
[-0.7, -0.15] 

0.00 
[-0.34, 
0.35] 

-0.16 
[-0.48, 
0.19] 

-0.14 
[-0.46, 
0.22] 

0.07 
[-0.28, 0.41] 

-0.10 
[-0.43, 
0.26] 

0.36 
[-0.63, -
0.02] 

Hidden Peanut 
Butter Test 

-0.20 
[-0.51, 0.16] 

-0.13 
[-0.46, 
0.22] 

-0.16 
[-0.48, 
0.19] 

-0.17 
[-0.49, 
0.18] 

0.05 
[-0.30, 0.38] 

-0.01 
[-0.36, 
0.33] 

-0.11 
[-0.44, 
0.24] 
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Table 3. Correlations between behavioral performance in the tasks and 
number of other cells (non-neuronal) in different structures. Each cell in the 
table shows the Spearman correlation and 95% confidence interval between 
behavioral performance and number of neurons for the various tasks and brain 
regions. No correlations but two (Morris Water Maze x Cerebellum and Morris 
Water Maze x Rest of Brain) were significant at the 5% level. Sample size is 26-32, 
depending on the comparison. 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 1: Variation in behavioral performance for each task, within our 
sample. Shown are the scores for each mouse in each task, standardized by 
subtracting the mean and dividing by the standard deviation. All of the scores show 
a variation of at least one standard deviation around the mean. 
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Figure 2. Comparison of structure mass in each structure in this and in a 
previous study. The range of the mass of the brain structures from the two 
studies overlap. CB, cerebellum; CXT, cerebral cortex; OB, olfactory bulb; RoB, 
rest of the brain. The larger amount of variation in the olfactory bulb in both studies 
is attributed to variation in dissection and weighing. 
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Figure 3. Comparison of number of neurons in each structure in this and in a 
previous study. Again, the range of number of neurons in brain structures from 
the two studies mostly overlap. CB, cerebellum; CXT, cerebral cortex; OB, 
olfactory bulb; RoB, rest of the brain. A significant difference was found only for the 
cerebellum (F = 0.31, p < 0.001; smaller in the current dataset) and rest of brain (F 
= 0.25; p < 0.001; larger in the current dataset). 
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Figure 4. Lack of correlation between performance in the olfactory task and 
number of neurons in the olfactory bulb. (N = 30, ρ = -0.13, p = 0.98). 
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Figure 5. Lack of correlation between performance in the rotarod and number 
of neurons in the cerebellum. (N = 32, ρ = 0.18, p = 0.22). 
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Figure 6. Lack of correlation between performance in the Morris water maze 
and number of neurons in the hippocampus. (N = 26, ρ = 0.03, p = 0.97) 
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Figure 7. Lack of correlation between performance in the Morris water maze 
and number of neurons in the cerebral cortex. (N = 26, ρ = -0.29, p = 0.06). 
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Figure 8. Lack of correlation between performance in the puzzle box and 
number of neurons in the hippocampus. (N = 31, ρ = -0.11, p = 0.87). 
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Figure 9. Lack of correlation between performance in the puzzle-box and 
number of neurons in the cerebral cortex. (N = 31, ρ = -0.17, p = 0.32). 
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Figure 10. Lack of correlation between performance in the operant training 
and number of neurons in the hippocampus. (N = 32, ρ = -0.14, p = 0.07). 
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Figure 11. Lack of correlation between performance in the operant training 
and number of neurons in the cerebral cortex. (N = 32, ρ = -0.21, p = 0.15). 
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Figure 12: Testing mice through our cognitive battery does not change the 
number of neurons. Control and tested mice have similar number of neurons in 
the (A) cortex (n = 27 control and n = 31 tested, p = 0.43) and (B) in the 
hippocampus (n = 27 control and n = 32 tested, p = 0.49). 
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