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Abstract 
 
The laminar organization of the cerebral cortex is a fundamental characteristic of the brain, with 

essential implications for cortical function. Due to the rapidly growing amount of high-

resolution brain imaging data, a great demand arises for automated and flexible methods for 

discriminating the laminar texture of the cortex. Here, we propose a combined approach of 

unsupervised and supervised machine learning to discriminate the hierarchical cortical laminar 

organization in high-resolution 2-photon microscopic neural image data without observer bias, 

that is, without the prerequisite of manually labeled training data. For local cortical foci, we 

modify an unsupervised clustering approach to identify and represent the laminar cortical 

structure. Subsequently, supervised machine learning is applied to transfer the resulting layer 

labels across different locations and image data, to ensure the existence of a consistent layer 

label system. By using neurobiologically meaningful features, the discrimination results are 

shown to be consistent with the layer classification of the classical Brodmann scheme, and 

provide additional insight into the structure of the cerebral cortex and its hierarchical 

organization. Thus, our work paves a new way for studying the anatomical organization of the 

cerebral cortex, and potentially its functional organization.   
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Introduction 
 

Although the mammalian cerebral cortex is not particularly thick, its laminar structure is 

remarkably complex1-5. More than a century ago, the classical Brodmann scheme identified six 

cortical layers, followed more recently by findings of sub-layers within them6,7, indicating the 

existence of a hierarchical (encapsulated) organization.  

 

A hierarchical organization exists on many levels in the brain, for instance with regard to the 

anatomical connectivity of cortical areas8,9, their functional connectivity10, or intrinsic time 

scales across primate cortex11. The motivation to study such a hierarchical neural organization 

ultimately derives from the desire to understand brain function. With respect to the cerebral 

cortex, a number of studies have shown functionally discriminable properties of cortical layers. 

For instance, in rat primary somatosensory cortex, the response latency to external stimuli in 

layer Va is significantly different from layers Vb, IV and VI12; and in mouse cortex, memory 

trace neurons are found primarily in layer II/III rather than layer IV13. From a technical point 

of view, calcium imaging or gene expression imaging in brain tissue achieves a spatial 

resolution in the micrometer range14-23, allowing detailed analysis of, for instance, the mouse 

cortex (thickness around 1 mm24). The use of modern imaging techniques for further 

investigation of the laminar hierarchy of cerebral cortex, therefore, promises further insights 

into brain function, but corresponding analysis approaches have to be able to deal with, and 

take advantage of, currently recorded massive high-resolution neural imaging data. 

 

The conventional way of manually labelling cortical layers according to a classical atlas clearly 

faces problems in this era of massive high-resolution neuroimaging data25. Cortical laminar 

patterns vary from area to area, from species to species, and even from individual to individual 

within the same species. Whereas the increasing availability of a large amount of data is 

potentially a great advantage for research, it is too labor and time intensive to label the cortical 

layers for every location in every animal and research project. Moreover, manual labelling 

entails an observer-specific bias, particularly in areas without clearly visible traits for 

differentiating the layers, or when going beyond classically established layers to identify 

potential sub-layers. In addition, although the classical definition of laminar layers and their 

hierarchy contributed much to cortical research, by grouping neurons for comparable data 

analysis and computational modeling, it sometimes appears overly restrictive. For instance, it 

suggests that, in terms of hierarchical organization, Brodmann’s six layers can be considered to 

reside on the same hierarchy level, and further sub-layers on the levels below. However, 

particularly with respect to the cytoarchitecture of rodents, it has been found that Brodmann’s 

layers II and III display high anatomical similarity25, whereas Brodmann’s layer Va 

significantly differs from other sub-layers of layer V1,26-30. Thus, there is a great demand for 

neuroimaging data processing solutions that can address these challenges, by providing an 

automatic and objective differentiation, but also flexible definition of cortical laminar 

hierarchies. 

 

Machine learning is a very promising approach in this regard, and existing findings of studies 

on conventional layer labelling and laminar properties of cortical neurons, such as 

morphological31, physical32-36, or functional37 properties of the neurons, already provide a range 

of well-characterized features that can be employed for machine learning-based laminar pattern 

discrimination.  
 

Some efforts have already been made to automatically and objectively discriminate neurons 

belonging to different layers by supervised machine learning approaches38-41, yielding 

appealing laminar classifications; yet, the training data sets and methods are still limited by the 
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framework of conventional atlases. The existing methods can, therefore, address the issue of 

labor intensity, but do not yet contribute to the other challenges. In contrast, unsupervised 

learning and clustering algorithms42 allow, in principle, for more flexibility. So far, however, 

existing work in this context still requires the predefinition of a desired number of layers and 

this aspect, in turn, limits the required layer and sub-layer definition flexibility. In the present 

work, we, therefore, propose combining unsupervised and supervised machine learning to 

discriminate the hierarchical organization of cortical layers. To illustrate the feasibility of the 

approach, the developed methodology is applied to 2-photon microscopic image data from 

mouse cortex. For small cortical foci, we use unsupervised clustering to identify the laminar 

cortical structure. During clustering, we do not demand a particular number of layers per 

hierarchical level, but automatically set up the level-specific layer structure. Supervised 

machine learning is then used to bridge the hierarchical clustering results obtained at different 

cortical locations and animals, that is, to ensure existence of a consistent layer labelling system 

across cortical locations. Manual labelling is, therefore, not required for the discrimination 

process. We, nevertheless, compare the classification results with existing laminar cortical 

schemes as part of an extensive evaluation to demonstrate plausibility of our layer 

discrimination results. In particular, using neuro-biologically meaningful features, we illustrate 

that our discrimination results are consistent with the classical Brodmann scheme of cortical 

layers, and in addition provide useful information on the hierarchical laminar organization in 

different cortical areas.  
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Materials and Methods 
 

Imaging data description  
 

Data acquisition 
 

The used data was high-resolution 2-photon imaging mouse data previously described by Xie 

et al13. Specifically, the mouse strain is BAC-EGR-1-EGFP (Tg(Egr1-

EGFP)GO90Gsat/Mmucd from the Gensat project, distributed from Jackson Laboratories. 

Animal care was in accordance with the institutional guidelines of Tsinghua University. 3-5 

months old mice received cranial window implantation as previously described13; recording 

began one month later. To implant the cranial window, the animal was immobilized in custom-

built stage-mounted ear bars and a nosepiece, similar to a stereotaxic apparatus. A 1.5 cm 

incision was made between the ears, and the scalp was reflected to expose the skull. One circular 

craniotomy (6-7 mm diameter) was made using a high-speed drill and a dissecting microscope 

for gross visualization. A glass-made coverslip was attached to the skull. For surgeries and 

observations, mice were anesthetized with 1.5% isoflurane. EGFP fluorescent intensity (FI) was 

imaged with an Olympus Fluoview 1200MPE with pre-chirp optics and a fast AOM mounted 

on an Olympus BX61WI upright microscope, coupled with a 2 mm working distance, 25x water 

immersion lens (numerical aperture, 1.05).  

 

Data characteristics 
 

For each mouse, usually 10 to 20 cortical locations were monitored. Each location was 510 µm 

× 510 µm broad and scanned until a depth of between 300 µm and 800 µm (see, for example, 

in Fig. 1), containing a few to over ten thousand neurons. The image resolution in z direction 

was always 2 µm; in-plane resolution was 0.996 µm × 0.996 µm. Each mouse was scanned 

once per day, for between a few and up to tens of days. In this study, we randomly chose sixty 

locations from eight mice, including 10 in motor areas, 7 in Posterior parietal (PTLp) areas, 18 

in retrosplenial cortex (RSC) areas, 7 in primary somatosensory (SSp) areas, 6 in anterior 

medial visual (VISam) areas, 8 in primary visual (VISp) areas, 2 in unspecified visual (VIS) 

areas, 1 location on the boundary between Motor and SSp and 1 location around the junction of 

PTLp, SSp and RSC. Each location was named in such a way that it was distinguishable. Neuron 

positions in the images were automatically detected with high accuracy using the neuron 

network model described by Xie et al13. 

 

Manual labelling of Brodmann layers 
 

For all sixty cortical locations, an experimental expert (G.W.) labelled those Brodmann layers 

(B-Layers) that could be unambiguously discriminated by eye in the location-specific image 

data. The labels were assigned to entire x-y image slices. Depending on the particular locations, 

the assigned Brodmann layers included (1) the superficial layer, (2) Brodmann layers II/III, (3) 

Brodmann layer IV, (4) Brodmann layer Va, (5) Brodmann layer Vb, (6) Brodmann layer VI, 

and (7) deeper parts. Each location was labelled with between four and seven of the Brodmann 

layers, depending on the area type and imaging specifics. For instance, some areas did not 

contain a visible layer IV or layer Va, and some image data sets did not cover all layers due to 

limited scanning depth. The manually assigned Brodmann layers were used for evaluation 

purposes of the automatic layer discrimination results. According to our experience, manual 

labelling uncertainty was approximately ±5 slices. 
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Combined super- and unsupervised layer discrimination: principle 
 

The overall pipeline of the proposed approach to discriminate the hierarchical laminar structure 

of the acquired data was shown in Fig. 2. The input observations were 3-dimensional image 

stacks 𝐼: (𝑥, 𝑦, 𝑧) ∈ 𝛺 ⊂ ℤ3 ↦ 𝐼(𝑥, 𝑦, 𝑧)  with 𝐼(𝑥, 𝑦, 𝑧)  as image intensity at pixel location 

(𝑥, 𝑦, 𝑧). Further, 𝐼𝑧 denoted the image slice at depth z and 𝐼[𝑧1,𝑧2] = 𝐼|𝛺[𝑧1,𝑧2]
 the restriction of 

𝐼 to 𝛺[𝑧1𝑧2] ≔ {(𝑥, 𝑦, 𝑧) ∈ 𝛺 | 𝑧1 ≤ 𝑧 < 𝑧2}, that was, all slices between z1 and z2. The overall 

aim was to discriminate layers 𝐼[1,𝑧1], 𝐼[𝑧1,𝑧2], etc. and to represent their hierarchical organization 

in an objective and meaningful manner for all studied cortical locations. To this end, we 

developed a machine learning-based approach inspired by the human’s recognition process of 

cortical layers, consisting of two main parts. Within each cortical location, the discrimination 

of the laminar hierarchical structure was first obtained via clustering (i.e., unsupervised machine 

learning). The clustering results for the individual locations were then combined using 

supervised learning in order to transfer layer labels on particular hierarchical levels that were 

obtained for specific reference locations to the other locations. Thus, the supervised learning 

step ensured consistent layer labelling across different locations.  

 

Terminology 
 

The terminology layer referred to several but different concepts in this study. On an abstract 

level, layer simply meant a collection of z-slices 𝐼[𝑧1,𝑧2]. In this work, the layers that were 

manually labelled according to Brodmann’s atlas were referred to as Brodmann layers (B-

layers). During unsupervised hierarchical clustering, we further obtained a certain number of 

layers on each hierarchical level, which were called c-layer (c is short for clustering), followed 

by an Arabian number that indicated the vertical order from superficial to deep. When c-layers 

were used as training data in the supervised learning part, they would be denoted as reference 

c-layers. Those c-layers, to which the layer labels have to be transferred to, were denoted as 

target c-layers. The results of this final discrimination would be called d-layers (d for 

discriminated), followed by an Arabian number, indicating its corresponding position in the 

reference c-layer dataset.  

 

Part 1: Hierarchical clustering for unsupervised layer definition 
 

For each cortical location, an iterative procedure was applied to compute the hierarchical 

structure of the data. Briefly speaking, we iteratively performed feature-based clustering of the 

z-slices of 𝐼, refined the clustering results in order to define iteration-specific c-layers and 

successively decreased the maximum possible number of clusters, with the maximum possible 

number of clusters subsequently denoted as MC (see the unsupervised learning panel in Fig. 2). 

The entire iteration process resulted in a global hierarchical tree, with the individual hierarchical 

levels representing the clustering results after the different iterations.  

 

In detail, for each iteration, we first applied a classical hierarchical tree clustering. For the first 

iteration, MC was initialized by MC0. MC0 can, in principle, be chosen arbitrarily, but not be 

too small. In our work, we chose MC0=10. Each clustering iteration then resulted in a certain 

number of clusters, with the clusters distributing along the z-direction of the image data set. 

Yet, depending on the considered features, different isolated c-layers might be assigned to the 

same cluster (e.g. layer 𝐼[𝑧1,𝑧2] to cluster 1, 𝐼[𝑧2,𝑧3] to cluster 2, and 𝐼[𝑧3,𝑧4] again to cluster 1 with 

𝑧1 < 𝑧2 < 𝑧3 < 𝑧4). As this was not the desired output, every isolated part of a cluster was 

defined as a specific c-layer, which meant that one cluster might be divided into more than one 

c-layer and the overall number of c-layers was larger or equal to the number of clusters MC (see 
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again Fig. 2). After defining the c-layers for a specific iteration, the feature values for the 

individual z slices were replaced by the average values of the features corresponding to all the 

z-slices of the c-layer encompassing the considered z-slice. With these updated feature values 

and MC decreased by one, the next clustering iteration was initiated. This procedure was 

repeated until MC had a value of ‘one’. Thus, after each iteration, a series of new c-layers was 

computed that emerged from merging the c-layers of the previous iteration, i.e. the last lower 

hierarchical level. 

  

From an implementation point of view, clustering was performed using the linkage algorithm 

of the MATLAB Statistics and Machine Learning Toolbox, with the Euclidean distance 

measure in feature space and the minimum variance algorithm (ward) as parameters. 

 

Part 2: Across-location-consistent labelling of c-layers by supervised learning  
 

To provide c-layer labels and a layer discrimination that was consistent for the different 

locations, we proposed combining the unsupervised clustering results with a supervised 

learning procedure (see the supervised learning panel and combination panel in Fig. 2). To this 

end, we first chose a reference dataset with rich laminar pattern, so as to cover the laminar 

characteristics and across-layer differences of as many layers as possible. Here, the reference 

data sets and respective reference c-layers were therefore selected from either VISp or SSp 

areas, that was, areas known to have well differentiable laminar layers2,5. The hierarchical levels 

on which reference and target c-layers were chosen for combination were in principle arbitrary, 

but the level should be similar for reference and target data set. In this study, for evaluation 

purposes, we always selected the 8th hierarchical level for the reference location and the 7th level 

in the target locations, as on those levels, the c-layer numbers were most similar to the number 

of expert-delineated B-layers. 

 

To establish correspondence between the target and the reference c-layers, we first trained an 

ensemble of support vector machines (SVMs) based on the z-slices and slice-wise computed 

features of the reference data set. In total, 𝑚 SVMs (in this work: 𝑚 = 200 for each reference 

data set and each feature set) were trained, based on randomly selected slices of the reference 

data set and respective features. 

  

The SVMs were then, individually for each target c-layer, applied to determine the 

corresponding reference c-layer. Let the reference c-layer labels be denoted by index 𝑟 =
1, … , 𝑟𝑚𝑎𝑥 and the target c-layers by 𝑡 = 1, … , 𝑡𝑚𝑎𝑥 . Each target c-layer 𝑡 further consisted of 

𝑛𝑡 image slices 𝐼1, … , 𝐼𝑛𝑡
 and respective features. Applied to each target c-layer slice, the SVM 

ensemble resulted in 𝑚 slice-specific reference c-layer votes; repeating SVM application for all 

slices 𝐼1, … , 𝐼𝑛𝑡
 yielded in total 𝑚 ⋅ 𝑛𝑡 votes. Let 𝑛𝑟 be the number of votes for reference c-layer 

𝑟, the probability 𝑝(𝑟) = 𝑛𝑟/(𝑛𝑡 ⋅ 𝑚) was interpreted as similarity measure between target c-

layer 𝑡  and reference c-layer 𝑟 . The reference c-layer with maximum similarity was then 

assigned to the target c-layer and referred to as d-layer.  

 

The supervised machine learning part was also implemented in MATLAB, using the package 

LIBSVM43, using linear kernel SVMs with cost parameter = 1. 

 

Definition of used features and feature sets 
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The following features were considered in this work and computed for the individual image 

slices 𝐼𝑧 , 𝑧 = 1, … , 𝑧𝑚𝑎𝑥 of the 60 areas and corresponding image data sets described in section 

Image data description. 

 

 Neuron density: Neuron density was the number of neurons per slice, normalized by the 

area of the slice (i.e., 510 µm × 510 µm). Neuron density was evaluated based on the 

automatic neuron detection described in the Imaging data description section. 

 

 Neuron size and neuron shape: Precise computation and representation of neuron size and 

neuron shape required accurate segregation of the cell bodies, which is challenging by itself 

at the moment44,45 (see also, for instance, the 2018 Data Science Bowl challenge from the 

Kaggle competition46) and beyond the scope of this paper. Instead, we only used rough 

measures that reflect mean neuron size and 2D shape for the individual slices 𝐼𝑧. As a result 

of the automated neuron detection, the locations of the neuron centres were known for the 

individual slices, and each neuron centre location was associated with a local maximum of 

the image intensity. To determine neuron size, the neuron soma boundary was estimated 

based on intensity, using half the image intensity value at the neuron centre relative to the 

background image intensity as a threshold; the sought size was defined as the number of the 

enclosed pixels, multiplied by the pixel spacing. To avoid negative influence of outlier 

values, the robust fitting function in MATLAB was used to finally calculate the average 

size of the neuron somata across all days of scanning for the particular location and image 

slice.  

 

To represent neuron shape, we computed a shape measure that reflected the difference of 

the shape of the 2D neuron soma area and a circle. Based on the soma delineation described 

above, the maximum soma diameter 𝑑  was determined. The shape measure was then 

defined by (𝜋𝑑2)/(4𝐴), with 𝐴 denoting the soma size. Mean neuron shape measures were 

again computed as averages over all scanning days and neurons.  
 

 Neuron type: Accurate discrimination of various types of neurons is currently also a topical 

challenge40,47 and, once  again, not a direct target of this work. Instead, we only classified 

the detected neurons based on their shape and size (see definition above) into two groups, 

corresponding potentially to granule and pyramidal neurons. The classification was 

performed using a two-class Gaussian mixture model. 

 

 Image texture features: To compare the performance of the neuron-related features for 

layer discrimination to other typical image-based features without direct relation to a neuro-

biological meaning, we also computed and analysed the intensity co-occurrence matrices 

corresponding to the image slices. The following four image texture measures were 

considered (using the MATLAB function graycoprops): Contrast (average intensity 

difference between neighbouring pixels), Correlation (average correlation of intensity 

values of neighbouring pixels), Energy (also known as uniformity of an image), and 

Homogeneity. 

 

Considered feature sets 
 

In total, we defined six sets of features to demonstrate and compare their performance for layer 

discrimination: Feature set F1 (only neural density; i.e. one feature), F2 (neural density and 

mean neuron size; two features), F3 (neural density, the proportions of the two neuron classes, 

and the mean neuron sizes of the two classes; in total five features), F4 (F3, plus the mean size 
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of all neurons; six features), F5 (neural density, mean neuron size, and the four image texture 

features; in total six features), and F6 (only the four image texture features). 

 

Evaluation strategies 
 

In line with the structure of the proposed layer discrimination approach, the evaluation consisted 

of two parts: to evaluate the performed unsupervised clustering and to evaluate the supervised 

learning-based labelling of the target data c-layers. Methodologically, this leads to the tasks of 

measuring (P1) similarity between two computed laminar hierarchies, (P2) measuring similarity 

between a hierarchical clustering result and a (manually labelled) layer discrimination, and (P3) 

the direct comparison of two layer discrimination results, either manually or automatically 

obtained. The applied procedures are shown in Fig. 3 and detailed below.  
 

Evaluation of unsupervised hierarchical clustering 
 

To evaluate the results of the unsupervised hierarchical clustering, procedures (P1) and (P2) 

were used.   

 

Procedure (P1) was applied to study the influence of the introduced feature sets on the hierarchy 

trees obtained by clustering. As shown in Fig. 3 (left panel), we first introduced a layer boundary 

function 𝛥𝐿𝐹 that, for a given hierarchical tree after clustering based on a feature set 𝐹, assigns 

the particular tree level (traversing the tree in bottom-up direction) to each pair of consecutive 

slices (𝐼𝑧 , 𝐼𝑧+1) of the image data and area at hand, on which the slices for the first time were 

assigned to the same cluster. For example, in Hierarchy X in the left panel of Fig. 3, the first 

and the second slice merged at the first hierarchical level and, consequently, 𝛥𝐿(𝐼1, 𝐼2) = 1. 

The resulting layer boundary array  

𝛥𝐿𝐹(𝐼) = (𝛥𝐿𝐹(𝐼1, 𝐼2), 𝛥𝐿𝐹(𝐼2, 𝐼3), … , 𝛥𝐿𝐹(𝐼𝑍𝑚𝑎𝑥−1
, 𝐼𝑧𝑚𝑎𝑥

))
𝑇

∈ ℤ𝑧𝑚𝑎𝑥−1 

was Gaussian-smoothed (here: span of 5 elements). This smoothed boundary array 𝛥𝐿̃𝐹(𝐼) was 

the basis for subsequent evaluation steps. In particular, for each of the 60 areas, we evaluated 

the similarity κ of the boundary arrays 𝛥𝐿̃𝐹(𝐼)  obtained for two different feature sets by 

calculating the linear correlation coefficient of the two boundary arrays.  

 

Procedure (P2) was applied to measure the similarity between a hierarchical clustering result 

for a specific area and the manual layer labelling of the area. The manual labelling could be 

interpreted as a single-level hierarchy; thus, the boundary array 𝛥𝐿𝑚𝑎𝑛(𝐼) given by the manual 

labelling only contained the elements 0 and 1 (see Fig. 3, middle panel). To, nevertheless, derive 

a similarity measure between 𝛥𝐿𝑚𝑎𝑛(𝐼) and a feature set-specific hierarchical clustering result, 

we calculated a set of binary boundary arrays, one for each level of the hierarchical tree. If 𝑙 
denoted the hierarchical level considered, the corresponding binary boundary array 𝛥𝐿𝑙

𝐹  was 

defined by 

𝛥𝐿𝑙
𝐹(𝐼𝑧, 𝐼𝑧+1) = {

1, 𝛥𝐿𝐹(𝐼) > 𝑙

0, 𝑒𝑙𝑠𝑒
 

Similar to procedure (P1), after smoothing the binary boundary arrays, we calculated the linear 

correlation between 𝛥𝐿̃𝑚𝑎𝑛(𝐼) and the individual 𝛥𝐿̃𝑙
𝐹(𝐼) for all levels 𝑙. Finally, the maximum 

correlation coefficient κm of the coefficients obtained for the individual levels 𝑙 was used to 

quantify the similarity between the laminar hierarchy and the manual labelling. 
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Evaluation of reference-based layer discrimination and label transfer 
 

The technical procedure (P3) to evaluate the supervised learning-based transfer of layer labels 

from a reference to target data sets is described in the right panel of Fig. 3. Different to (P1) and 

(P2), we now assumed a specific layer discrimination and labelling result for an image data set 

𝐼 to be given that was to be compared to a ground truth layer discrimination of 𝐼. With 𝑀𝑋: ℤ →
𝐿𝑋 mapping an image slice 𝐼𝑧 to a layer label 𝑀𝑋(𝑧) =: 𝑀𝑧

𝑋 of an ordered label set 𝐿𝑋 that was 

specific to the discrimination result X and a similar function 𝑀𝑌: ℤ → 𝐿𝑌 for the ground truth 

layer discrimination, the goal was to define a similarity measure between 𝑀𝑋 and 𝑀𝑌. As a first 

step, the potentially different label sets 𝐿𝑋 and 𝐿𝑌 were mapped to a common label set 𝐿𝑋𝑌. For 

example, in the right panel of Fig. 3, 𝐿𝑋 represented the d-layer numbers 1, 2, etc, while 𝐿𝑌 

denoted Brodmann layers, indicated by Roman numerals. The different labels were mapped to 

the joint label set 𝐿𝑋𝑌  and the respective labels A, B, etc. With  𝑀̂𝑋: ℤ → 𝐿𝑋𝑌  as X-specific 

mapping of 𝐼𝑧 into 𝐿𝑋𝑌 (and analogously for the manually labelled ground truth Y), a similarity 

array was defined by 

𝑑𝑀(𝐼, 𝑋, 𝑌) = (𝑑𝑀𝑋,𝑌(𝐼1), … , 𝑑𝑀𝑋,𝑌(𝐼𝑧𝑚𝑎𝑥
))

𝑇

∈ ℤ𝑧𝑚𝑎𝑥  

with 

𝑑𝑀𝑋,𝑌(𝐼𝑧) = {
1, 𝑀𝑧

𝑋 = 𝑀𝑧
𝑌

0, 𝑀𝑧
𝑋 ≠ 𝑀𝑧

𝑌 

that served as the basis of the performed evaluation. In detail, the respective evaluation covered 

three aspects: 

 

Analysis of reference data and reference c-layers:  In a first step, we studied the properties 

and the quality of the reference data and reference c-layers, which served as the basis of the 

label transfer to different target data sets. As motivated above, the considered reference data 

were the 8 VISp and 7 SSp areas and the c-layers extracted after the 8th iteration of unsupervised 

clustering using the F1 feature set. To alleviate interpretability of subsequent evaluation results 

(i.e. to ensure that d-layers assigned to target data sets could directly be compared to the target 

data set B-layers), we visually inspected the consistency of the reference c-layers and the 

manually assigned reference data B-layers. If necessary, reference c-layers were merged and 

apparent inconsistencies corrected. In Fig. 4F (data set M248L1), it could, for instance, be seen 

that c-layers 6 and 7 did not merge at the selected hierarchy level (the 8th level), and both layers 

corresponded to the manually assigned layer 6 (i.e. B-layer VI); the two c-layers were therefore 

merged. The final mapping between the VISp reference c-layers and the manually assigned 

labels is summarized in Table 1; analogous information for SSp can be found in Table S1.  

 

Based on the refined reference c-layers and the refined B-layers labels, two quality measures, 

𝑛𝐵 and 𝑓𝑐=𝐵, were introduced and evaluated for the individual reference data sets. 𝑛𝐵 denoted 

the total number of the manually labelled layers that the data set covered, which should be close 

to seven. Yet, due to limited scanning depth, the reference data sets did not necessarily cover 

all possible layers (see section Image data description), resulting in a smaller number, and 

limiting its usability as a reference data set. 𝑓𝑐=𝐵 represented the number of slices where both 

the assigned refined c-layer and the assigned B-layer pointed to the same cluster, divided by the 

total number of slices of the data set. Referring to the aforementioned definitions, 𝑓𝑐=𝐵 equaled 

the averaged value of the entries of the similarity array 𝑑𝑀(𝐼, 𝑐, 𝐵); here, 𝑐 indicated reference 

c-layer-based and 𝐵 the B-layer-based discrimination of the data set 𝐼. Thus, 𝑓𝑐=𝐵 reflected the 

performance of the unsupervised clustering of 𝐼, with 𝑓𝑐=𝐵 = 1 as ideal performance. 
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Table 1: Refined maps between Reference c-layers from VISp areas (F1 feature set and the 8th level on the 

hierarchy) and the manually labelled layers. Layer numbers grouped in parentheses were layers that were 

considered as one single layer during evaluation; see respective explanations for details. 

 

Reference location name Reference c-layer structure Manually labelled layer structure 

M226L5* [1, 2], [3], [4, 5] [1, 2], [3], [5] 

M248L1 [1], [2], [3], [4], [5], [6, 7] [1], [2], [3], [4], [5], [6] 

M248R3** [1], [2, 3], [4], [5] [1], [2, 3], [4], [5] 

M262L2 [1], [2], [3], [4], [5], [6, 7], [8, 9] [1], [2], [3], [4], [5], [6], [7] 

M262L3 [1], [2], [3], [4], [5], [6], [7] [1], [2], [3], [4], [5], [6], [7] 

M262R3 [1], [2], [3], [4], [5] [1], [2], [3], [4], [5] 

M339R5 [1], [2], [3], [4, 5], [6, 7] [1], [2], [3], [5], [6] 

M339R6 [1], [2], [3], [4] [1], [2], [3], [5] 

 

* Visual inspection reveals that the reference c-layer 1 looked more like a combination of Brodmann’s superficial 

layer and layer II, and c-layer 2 like the layer III. Therefore, c-layers 1 and 2 were merged, and analogously the 

manually labelled layers 1 and 2 were merged. 

** The transition locations between, on the one hand, reference c-layers 2 and 3 and, on the other hand, the 

manually labelled layers 2 and 3 were far apart (see Fig. S1). To ensure labelling consistency, we merged layers 2 

and 3 in both cases.   

 

Comparison of d- and B-layers (all locations): To further evaluate the performance of 

supervised label transferring and the influence of the feature sets thereon, we transferred the 

refined reference c-layers to all locations and data sets. Thus, for each of the 15 reference data 

sets and 6 feature sets, 60 target datasets were considered and corresponding d-layers 

determined. This final d-layer definition was evaluated by slice-wise comparison of the d-layer- 

and the manually assigned B-layer-based discrimination, that was, by means of the measure 

𝑓𝑑=𝐵 that represented the fraction of the target data set slices with agreement of its associated 

d- and B-layers. 

 

Re-labelling of reference data: As a third aspect, we constrained the aforementioned 

comparison to the reference datasets themselves serving as target datasets, but still using the 

different feature sets F1-F6. To measure the performance, we introduced the index 𝑓𝑑=𝑐
ref  that 

represented the ratio of the number of reference dataset slices for which the original refined c-

layers and the assigned d-layer were identical, and the total number of slices, i.e. the mean value 

of 𝑑𝑀(𝐼, 𝑐, 𝑑). Ideally, that was, if all slices within one reference c-layer had uniform but unique 

feature expressions, 𝑓𝑑=𝑐
ref  equals 1. Yet, this was not necessarily the case because, for instance, 

the unsupervised clustering approach comprised spatial connectivity constrains, while the 

supervised learning did not. The index 𝑓𝑑=𝑐
ref  could, therefore, be understood as a measure to 

evaluate the relevance of individual features and appropriateness of the considered feature sets 

for supervised learning-based label transfer.   

 

Analysis of cross-location similarity of discrimination results 
 

As final part of the evaluation, we analysed the similarity of layer discrimination results 

between any pair of locations (i.e., in total 60 × 60 pairs) for unsupervised clustering as well as 

supervised learning and the different feature sets. From a neuro-biological perspective, image 

data from locations of the same area type could be expected to have more similar hierarchical 

laminar patterns than images from different area types; this should be reflected by automatic 

layer discrimination and appropriate features sets. For unsupervised clustering, we again 

calculated hierarchical laminar similarity using procedure (P1) and the linear correlation 

coefficient κ. For supervised learning, the d-layers were computed as described above. d-layer-

based discrimination results computed for two (different) image data sets were then compared 

by means of the index 𝑓𝑑1=𝑑2
 that resembled the introduced measure 𝑓𝑑=𝐵 but using the d-layers 
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of the first image (denoted by 𝑑1) and the d-layers of the second image (indicated by 𝑑2). Yet, 

the image data sets acquired at different locations contained in parts a different number of slices. 

If so, we applied a sliding-window approach as illustrated in Fig. 3, left and right panels: The 

smaller boundary array was compared with all possible chunks of the longer array; the 

maximum similarity index was finally regarded as the desired measure of similarity. 
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Results  
 
Unsupervised clustering 
 

Figure 4 shows an unsupervised clustering result example for a VISp location, using the 

simplest neuro-biological feature set F1, that was, only neuron density. The feature values for 

the different z-slices are shown in panel E of the figure. Panels A and B illustrate the distribution 

of the clusters and panels C and D the c-layers after the 7th and 8th iteration of the clustering 

algorithm and the corresponding hierarchical laminar levels, respectively. Panels F and G 

further represent an overview of the entire iterative clustering process. Specifically, panel F 

depicts the process in terms of the iteration-specific c-layer distribution, while panel G 

represented the corresponding global hierarchical tree. Comparing panels F and G to the manual 

labelling result (shown between panel F and G), it can be seen that our hierarchical tree and 

especially levels 7 and 8 were in accordance with Brodmann’s classification scheme. Yet, 

corresponding B-layers merged at different hierarchical levels of our tree. For instance, B-layers 

IV and Va merged at the second last level, whereas B-layers Vb and VI merged at the last level. 

In addition, the hierarchical tree also indicated the existence of sub-layers that eventually 

merged with different 7th or 8th level c-layers compared to B-layers. Figure S1 contains, for 

instance, a thin c-layer before the 7th level, which, according to manual labelling, should belong 

to B-layers II/III, but merged with more superficial c-layers at the 7th level. These examples 

illustrate the potential of the proposed clustering approach to allow deeper insight into the layer 

structure and its hierarchical organization when compared to the classical approach of manual 

labelling.  

 

The influence of the feature sets on the clustering and the similarity of the resulting hierarchies 

are summarized in Fig. 6, using a VISp area data set. It can be seen that feature sets that shared 

features resulted in more similar trees (Figs. 6A and 6C). Further, regarding κm, the feature sets 

F1, F2, F3 and F4 yielded much more similar results compared to the manual labelling than 

feature sets F5 or F6 (p<0.001, t-test with Bonferroni correction); see Figs. 6B and 6D. 

Compared to F1, the similarity to the manual labelling was, however, only slightly increased 

for F2, F3, or F4, with the differences not being significant (p>0.2); see Fig. 6D. This, in turn, 

illustrate that already neuron density alone, among all features investigated, appears to contain 

most of the information that guided the manual labelling (see also the also the last Results 

section). 

 

Supervised learning and layer transfer 
 

Similar to the unsupervised clustering results, assignment of d-layers was sensitive to the 

selection of the applied feature set. In addition, the d-layers depended on the selected reference 

data set and the reference c-layers, respectively. Yet, the example shown in Fig. 5 illustrated 

that, if appropriate, neuro-biologically meaningful feature sets were used, the assigned d-layers 

were similar to the manual labelling results. In the specific case, the VISp data set of Fig. 4 

served as reference data set; the respective reference c-layers were to be transferred to a RSC 

location data set. The unsupervised learning results (using feature set F1) for the RSC data set 

are shown in panel B of Fig. 5, and the supervised learning results (using feature set F3; results 

shown for all 200 SVMs) in panel A. The final d-layers were presented in panel D and well 

agreed with the B-layers indicated to the right of the d-layers.  

 

Different to unsupervised clustering, in the supervised learning part, the single feature neuron 

density was not sufficient to ensure high similarity between d-layers and manual labels. This 
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finding was reflected in the evaluation of the quality measures 𝑛𝐵, 𝑓𝑐=𝐵, 𝑓𝑑=𝑐
ref , and 𝑓𝑑=𝐵, with 

the results summarized in Figs. 7 (VISp reference data sets) and S2 (SSp reference data sets). 

In particular, panels A to H in Fig. 7 and panels A to G in Fig. S2 represented the feature set-

specific performance in terms of the index 𝑓𝑑=𝐵, i.e. the fraction of slices with agreement of the 

d-layers and the manually assigned B-layers, for the individual VISp and SSp reference data 

sets. It could be seen that F3 and F4 resulted in higher 𝑓𝑑=𝐵 values than F1 for all reference data 

sets, with the differences being significant (p<0.01) for, e.g., six of the eight VISp reference 

data sets. However, F4 did not result in a significantly better performance than F3 (p>0.4 in all 

eight cases), even though F4 included the mean size of all neurons as additional feature. Similar 

observations held also true for 𝑓𝑑=𝑐
ref .  

 

Neuro-biological vs. image texture features 
 

Figs. 6, 7 and S2 further reveal that the neuro-biologically inspired features and features sets 

F1 to F4 clearly outperformed the direct image-based texture features and feature sets F5 and 

F6 in terms of κm and 𝑓𝑑=𝐵. Thus, every feature and feature set leaded to a hierarchical tree, but 

the results were not necessarily neuro-biologically meaningful and comparable to classical layer 

discrimination patterns. 

 

This observation is further supported by Fig. 8, which represents cross-location similarity of d-

layer-based discrimination results. Here, feature set F1 was used for clustering, F3 for 

supervised learning and an SSp area was chosen as reference data set. The resulting pattern 

revealed high similarity between image data from locations of the same area type, and thereby 

resembled the expected results and the corresponding pattern obtained by the manual labels (see 

supplemental Fig. S3), although corresponding observations after unsupervised clustering and 

hierarchy comparison were not that obvious (Fig. S4). Comparison of Fig. 8 and Fig. S5 further 

demonstrate that the results were also sensitive to the selection of the reference c-layers, but, 

more importantly, application of the direct image-based features did not lead to a (neuro-

biologically) meaningful pattern at all (Fig. S6). 
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Discussion 
 
Machine learning methods that are able to discriminate cortical laminar patterns and their 

hierarchy are of high demand in the field of neuroscience38-41. In this study, we demonstrate 

that combining unsupervised clustering and supervised learning is well suited for such tasks. 

The main ideas are that iterated unsupervised clustering allows appropriately describing the 

laminar hierarchical structure for individual cortical locations, and supervised learning 

employing “rich structure” reference locations enables to bridge those hierarchical patterns 

between different locations. Last but not least, our results also illustrate that selecting 

neurobiologically meaningful feature sets is an important prerequisite for obtaining 

neurobiologically meaningful layer discrimination results. Subsequently, some more specific 

advantages as well as interesting aspects and potential shortcomings of our approach are 

discussed in more detail.  

 

No need for manual labelling 

 
One significant advantage of our layer discrimination procedure is that there is no need to 

manually identify and label the layers. Therefore, the method is less limited by subjective 

perception and related potential observer bias. Simultaneously, the procedure provides extended 

information on the hierarchy of laminar cortical organization and opens up more flexible ways 

to study cortical structure-function relations. Naturally, human interaction is still required to 

select the hierarchical level and reference locations and layers, depending on the particular 

research interest, but this is inevitable and not considered as a shortcoming of the method itself. 

 

Slice- versus (individual) neuron-based layer discrimination 

 
In this work, we use vertical image slices as objects of interest to perform the discrimination 

task, which is different from alternative approaches that detect and then assign individual 

neurons to different layers40. In comparison, assigning neurons to layers usually requires quite 

a number of elaborated features, whereas in this work we eventually used five or fewer features 

(F1 has one feature; F3 has five features) to obtain promising results. In addition, the number 

of neurons is naturally larger than that of the image slices; in our case, the number of neurons 

in a single image data set is on the scale of ten thousand, whereas the data set comprises only a 

few hundred slices. Therefore, advantages of using slices include (depending on the complexity 

of considered neuron features), for example less computation time and simpler feature selection. 

In contrast, a shortcoming is that in the horizontal direction (i.e. within slices), the entire slices 

are assumed to be homogeneous regions that can be unambiguously assigned to a specific layer. 

Alternatively, smaller regions or patches of the slices with more homogeneous characteristics 

could be selected for clustering.  

 

A related aspect refers to a more philosophical issue. As is well known, there exist transition 

zones between the cortical layers, which cannot unambiguously be assigned to specific layers. 

During neuron-based laminar discrimination, transition layers could in principle be defined as 

regions where upper and lower layer neurons are entangled together. Nonetheless, such 

compartments would usually be assigned to either the upper or the lower layer, based on some 

implementation-specific criteria40. In our approach, transition layers automatically show up as 

separate layers at more detailed hierarchical levels, but may merge with either the upper or the 

lower neighbouring layer at higher hierarchical levels. As an example, in Figs. 4, 5 and S1, such 

layers can be easily identified. 
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Impact of feature selection: What means “meaningful” layer discrimination? 

 
It needs to be noted that, especially for the unsupervised clustering approach, it is not easy to 

evaluate the appropriateness of a feature set. Any (combination of) features will generate a 

hierarchical tree. In our case, we evaluate the appropriateness of features mainly by their ability 

to generate a final single-level layer discrimination that resembles manually labelled 

(Brodmann) layers. Human observers (and most probably also Brodmann himself one century 

ago)48,49 discriminate cortical layers mainly visually based on neuron density and neuronal 

morphology. Thus, it was expected that corresponding features performed best in terms of 

respective quality measures. Yet, other features and feature sets do not necessarily have to be 

less meaningful, but can potentially reveal additional, currently neglected structuring principles. 

Finally, to judge appropriateness and importance of feature sets and discrimination results, it 

remains to be seen and investigated whether there exists, for example, a functional 

correspondence of the uncovered hierarchy and layer discrimination.  

 

Still, based on similarity to manual labelling results according to Brodmann’s classical laminar 

classification scheme, we tentatively conclude that F1 (neural density), F2 (neural density and 

mean neuron size), F3 (neural density, the proportions of the two neuron classes, and the mean 

neuron sizes of the two classes), and F4 (F3 plus the mean size of all neurons) give promising 

results, and, if computation cost is considered critical, neuron density alone already leads to 

reliable laminar hierarchies by the proposed unsupervised clustering approach. For the 

described supervised learning part, we, nevertheless, demonstrate that F3 and F4 significantly 

improve performance compared to neuron density alone. In contrast, the image texture features 

and F6 do not lead to satisfying results at all.  

 

Considering that our applied methods of neuron size and shape detection and neuron 

classification are not very precise at the moment (as the development of such algorithms is not 

our main goal and beyond the scope of this work), we can reasonably expect that developing 

better methods will further improve the presented discrimination results. 
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Conclusion  
 
Combining unsupervised and supervised machine learning allows discriminating (and finally 

analysing) the hierarchical laminar cortical organization in 2-photon image data without the 

need of manual labelling. Unsupervised clustering offers the opportunity to identify the 

hierarchical laminar organization of image data obtained at the different cortical locations. 

Regarding respective features for layer discrimination, it turned out that neuron density alone 

was already sufficient to achieve biologically plausible results during unsupervised clustering, 

whereas supervised learning for cross-location label transferring requires consideration of 

additional features. The computed discrimination results agree well with the classical 

Brodmann scheme of cortical layers and reflect the layer similarity of data acquired at locations 

of the same type of cortical area. At the same time, they also provide additional, new 

information on the laminar structure of cortical areas, for instance, by providing insight into the 

hierarchical structure revealed by the clustering analysis. 
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Figures  

 
Figure 1. Example slices of x-z planes of (A) VISp area and (B) motor area of mouse brain in our study. For 

comparison purposes, we adapt the drawings of cortical lamination by Santiago Ramon y Cajal of (C) Nissl-stained 

visual cortex and (D)  Nissl-stained motor cortex of a human adult50.  
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Figure 2. Proposed pipeline for 

the discrimination of hierarchical 

laminar cortical organization. 

The top-right panel shows the 

unsupervised clustering part, 

whereas the bottom-left panel 

shows the supervised learning 

part. The bottom-right panel 

shows how to combine the 

unsupervised and supervised 

learning results. 
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Figure 3. Illustration of 

applied evaluation procedures. 

The left panel shows the 

pipeline to evaluate the 

similarity between two 

hierarchical clustering results 

X and Y. X and Y could, for 

example, be two hierarchical 

trees obtained for one image 

data set but with different 

feature sets, or two hierarchy 

trees of data acquired at 

different locations. The 

middle panel illustrates the 

pipeline to evaluate similarity 

between a hierarchical 

clustering result and the 

corresponding manually 

labelled layers. The right 

panel shows the pipeline to 

evaluate two final 

discrimination results or a 

respective discrimination 

result and the corresponding 

manually assigned layer 

labels. Again, the two 

discrimination results can 

either indicate results 

computed for a single location 

but with different feature sets, 

or results from two different 

locations. For the latter case, 

the image data potentially 

contain a different number of 

slices.  
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Figure 4. Example of unsupervised clustering (VISp area M248L1). Panels A and B show the distribution of the 

clusters as direct output of the original clustering algorithm and panels C and D the respective layers after 7th and 

8th iterations. Panels F and G represent the whole iteration process and the hierarchical tree obtained with neural 

density as unique feature (panel E). The manually labelled layers are indicated to the right of panel F. The bottom 

panels show seven slice examples at z=40 µm (H), z=160µm (I), z=280µm (J), z=320µm (K) z=460µm (L), 

z=620µm (M), and z=690µm (N), corresponding to the seven c-layers on the eighth hierarchical level in panel F.  
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Figure 5. Example for transferring reference c-layers to a target data set. Panels A and B represent the results of 

the supervised and unsupervised learning of the target data set. Panels C and D show the probability of the 

assignment of the reference c-layers to the target c-layers as determined by an SVM ensemble and the final 

discrimination result. Unsupervised clustering was based on feature set F1, and the supervised learning on F3. The 

dataset under discrimination is the RSC area M262L0, and the reference data for supervised learning are the c-

layers of the 8th hierarchical level of VISp area M248L1, that is, the one shown in Figure 2. For comparison 

purposes, the manually labelled layers are indicated to the right of panel D. The bottom panels show six slice 

examples at z=50 µm (E), z=90µm (F), z=140µm (G), z=220µm (H) z=300µm (I), and z=400µm (J), 

corresponding to the six c-layers on the seventh hierarchical level in panel B. Both panels E and F correspond to 

the first d-layer in panel D, whereas panels G, H, I correspond to the second d-layer and panel J corresponds to the 

third d-layer.  
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Figure 6. Evaluation of unsupervised clustering. (A) The similarity κ of the results obtained for any pair of feature 

sets and all 60 data sets studied, and (B) the similarity κm of the feature set-specific results and the manually 

labelled layers (indicated with ML). The bottom label of panel B shows the data set names and the top label of 

panel A their area types. (C) The first six columns and first six rows show the mean values of κ over all 60 

locations, and the seventh column and the seven rows the mean value of κm over all 60 locations. The element at 

(ML, ML) is manually set to 1. (D) The detailed statistics of Log(κm). The histograms show the mean values, error 

bars the standard deviations, and the blue dots the maximum values. The minimal values are close to zero or even 

negative, and are, therefore, not shown. Pairwise comparison of F1, F2, F3, and F4 values is not significant (p>0.2), 

whereas pairwise comparison of F1, F2, F3, or F4 to F5 or F6 is significant (p<0.001). To illustrate the meaning 

of the obtained κm values, we randomly shifted the manually assigned layer boundaries, with the boundary shift 

values chosen in the range of [-Nsa, Nsa] slices. We repeated runs with Nsa = 1,2, …, 6. For each Nsa value, each 

of the 60 locations was re-labelled and the artificial labelling result compared to the original manual labelling. 

Corresponding mean values are plotted in panel (D). Based on our experience, a NSA value of 5 approximately 

resembles the accuracy of manual layer discrimination; the respective line therefore represents ideal performance 

when taking into account manual labelling uncertainty. 
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Figure 7. Supervised learning evaluation results for the VISp reference data and c-layers. (A-H) fd=B statistics for 

the different reference locations (panels) and different feature sets (horizontal axis). The histograms show the mean 

values over the 60 locations, the error bar the standard deviations, and blue and black dots the maximum and 

minimum values. Comparison of differences between F1 and F3 or F1 and F4 are, except for M262R3 and 

M339R6, significant (p<0.01). In contrast, differences between F3 and F4 are not significant for all cases (p>0.4). 

Panels (I) and (J) contain additional information about the reference c-layers. Panel (I) shows the number of 

manually discriminated and labelled layers of the reference locations, namely nB. (J) shows the similarity between 

the refined reference c-Layer structures and the refined manually labelled layers structures. (K) The statistics of 

the self-identical measurement (= re-labelling) of the reference locations, where all the symbols have the same 

statistical meaning as in panels (A-H). All reference c-layers were selected on the hierarchical level after the 8th 

clustering iteration. Target c-Layers were selected on the last hierarchical level that exhibited a layer number not 

smaller than the number of reference c-Layers.    
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Figure 8. Similarity of discrimination results for any pair of datasets, using feature set F3 for supervised learning 

and M16R4 as reference data set. Reference c-Layers were selected after the 8th clustering iteration, and all target 

c-Layers were selected on the last hierarchical level with the number of layers not being smaller than the number 

of the reference c-Layers. 
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Supplementary Information 
 

 
Table S1. Refined maps between reference c-Layers from SSp areas and the manually labelled layers. Similar to 

the VISp areas, some layers were merged after visual inspection. 

 
Reference location name Reference c-Layer structure Manually labelled layer structure 

M23R4 [1], [2], [3], [4, 5] [1], [2], [3], [5] 

M248L5 [1], [2], [3], [4, 5] [1], [2], [3], [5] 

M226R5 [1, 2, 3], [4], [5] [1, 2, 3], [4], [5] 

M337R6 [1], [2], [3], [4], [5] [1], [2], [3], [4], [5] 

M16R4 [1], [2], [3], [4], [5] [1], [2], [3], [4], [5] 

M262L4 [1], [2], [3], [4, 5] [1], [2], [3], [5] 

M261R4 [1], [2], [3], [4], [5] [1], [2], [3], [4], [5] 
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Figure S1. Comparison between unsupervised clustering results of M248R3 with feature set F1 and its 

corresponding manually labelled layers. The red rectangle highlights the reference c-layers we used (layer names 

indicated by black text with white background). To its right side, the red horizontal lines indicate the B-Layer 

boundaries (layer names by white text and black background).  
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Figure S2. Supervised learning part evaluations for SSp reference c-Layers. All figure details and symbol 

meanings similar to Figure 5.  
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Figure S3. Similarity of manual labels for any pair of locations. 
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Figure S4. Similarity hierarchical clustering results for any pair of datasets and using feature set F1 for clustering.  

 

  

M
2

6
1

L
9

M
3

3
7

R
9

M
3

3
7

R
8

M
2

6
2

R
5

M
1

6
R

3
M

2
3

R
5

M
2

6
2

L
5

M
2

4
8

R
7

M
2

2
6

R
1

M
2

3
L

2
M

2
3

R
3

M
2

4
8

R
5

M
2

3
L

3
M

2
6

1
L

4
M

2
4

8
L

3
M

2
4

8
L

4
M

2
6

1
R

2
M

3
3

9
R

9
M

2
6

1
L

1
M

2
6

2
L

0
M

2
6

2
L

1
M

2
6

2
R

1
M

2
4

8
R

4
M

2
6

2
R

2
M

2
6

1
L

5
M

1
6

L
1

M
2

2
6

R
2

M
1

6
L

2
M

1
6

R
1

M
1

6
R

2
M

2
2

6
L

1
M

2
2

6
L

2
M

2
3

L
1

M
2

3
R

1
M

2
4

8
R

1
M

2
3

R
2

M
2

3
R

4
M

2
4

8
L

5
M

2
2

6
R

5
M

3
3

7
R

6
M

1
6

R
4

M
2

6
2

L
4

M
2

6
1

R
4

M
2

4
8

L
6

M
2

3
R

6
M

2
6

1
L

3
M

2
2

6
L

4
M

2
6

1
R

1
M

2
4

8
R

2
M

2
2

6
R

3
M

2
2

6
R

4
M

2
6

1
L

2
M

2
6

2
L

2
M

2
4

8
L

1
M

2
4

8
R

3
M

2
6

2
R

3
M

3
3

9
R

6
M

3
3

9
R

5
M

2
2

6
L

5
M

2
6

2
L

3

M261L9
M337R9
M337R8
M262R5

M16R3
M23R5

M262L5
M248R7
M226R1

M23L2
M23R3

M248R5
M23L3

M261L4
M248L3
M248L4
M261R2
M339R9
M261L1
M262L0
M262L1
M262R1
M248R4
M262R2
M261L5

M16L1
M226R2

M16L2
M16R1
M16R2

M226L1
M226L2

M23L1
M23R1

M248R1
M23R2
M23R4

M248L5
M226R5
M337R6

M16R4
M262L4
M261R4
M248L6
M23R6

M261L3
M226L4
M261R1
M248R2
M226R3
M226R4
M261L2
M262L2
M248L1
M248R3
M262R3
M339R6
M339R5
M226L5
M262L3

M
o
to

r
M

o
to

r
M

o
to

r
M

o
to

r
M

o
to

r
M

o
to

r
M

o
to

r
M

o
to

r
M

o
to

r
M

o
to

r
P

T
L

p
P

T
L

p
P

T
L

p
P

T
L

p
P

T
L

p
P

T
L

p
P

T
L

p
P

T
L

p
/S

S
p
/R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

S
S

p
S

S
p

S
S

p
S

S
p

S
S

p
S

S
p

S
S

p
S

S
p
/M

o
to

r
V

IS
V

IS
V

IS
a
m

V
IS

a
m

V
IS

a
m

V
IS

a
m

V
IS

a
m

V
IS

a
m

V
IS

p
V

IS
p

V
IS

p
V

IS
p

V
IS

p
V

IS
p

V
IS

p
V

IS
p

Motor
Motor
Motor
Motor
Motor
Motor
Motor
Motor
Motor
Motor
PTLp
PTLp
PTLp
PTLp
PTLp
PTLp
PTLp
PTLp/SSp/RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
SSp
SSp
SSp
SSp
SSp
SSp
SSp
SSp/Motor
VIS
VIS
VISam
VISam
VISam
VISam
VISam
VISam
VISp
VISp
VISp
VISp
VISp
VISp
VISp
VISp

 

 

 

 

0

0,1250

0,2500

0,3750

0,5000

0,6250

0,7500

0,8750

1,000

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 26, 2018. ; https://doi.org/10.1101/427955doi: bioRxiv preprint 

https://doi.org/10.1101/427955


 

 

Figure S5. Similarity of layer discrimination results for any pair of dataset locations, using feature set F3 for 

supervised learning and taking M226R3 as reference location. 
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Figure S6. Similarity of discrimination results for any pair of dataset locations, using feature set F6 for supervised 

learning and taking M16R4 as reference location. 

 

M
2

6
1

L
9

M
3

3
7

R
9

M
3

3
7

R
8

M
2

6
2

R
5

M
1

6
R

3
M

2
3

R
5

M
2

6
2

L
5

M
2

4
8

R
7

M
2

2
6

R
1

M
2

3
L

2
M

2
3

R
3

M
2

4
8

R
5

M
2

3
L

3
M

2
6

1
L

4
M

2
4

8
L

3
M

2
4

8
L

4
M

2
6

1
R

2
M

3
3

9
R

9
M

2
6

1
L

1
M

2
6

2
L

0
M

2
6

2
L

1
M

2
6

2
R

1
M

2
4

8
R

4
M

2
6

2
R

2
M

2
6

1
L

5
M

1
6

L
1

M
2

2
6

R
2

M
1

6
L

2
M

1
6

R
1

M
1

6
R

2
M

2
2

6
L

1
M

2
2

6
L

2
M

2
3

L
1

M
2

3
R

1
M

2
4

8
R

1
M

2
3

R
2

M
2

3
R

4
M

2
4

8
L

5
M

2
2

6
R

5
M

3
3

7
R

6
M

1
6

R
4

M
2

6
2

L
4

M
2

6
1

R
4

M
2

4
8

L
6

M
2

3
R

6
M

2
6

1
L

3
M

2
2

6
L

4
M

2
6

1
R

1
M

2
4

8
R

2
M

2
2

6
R

3
M

2
2

6
R

4
M

2
6

1
L

2
M

2
6

2
L

2
M

2
4

8
L

1
M

2
4

8
R

3
M

2
6

2
R

3
M

3
3

9
R

6
M

3
3

9
R

5
M

2
2

6
L

5
M

2
6

2
L

3
M261L9
M337R9
M337R8
M262R5

M16R3
M23R5

M262L5
M248R7
M226R1

M23L2
M23R3

M248R5
M23L3

M261L4
M248L3
M248L4
M261R2
M339R9
M261L1
M262L0
M262L1
M262R1
M248R4
M262R2
M261L5

M16L1
M226R2

M16L2
M16R1
M16R2

M226L1
M226L2

M23L1
M23R1

M248R1
M23R2
M23R4

M248L5
M226R5
M337R6

M16R4
M262L4
M261R4
M248L6
M23R6

M261L3
M226L4
M261R1
M248R2
M226R3
M226R4
M261L2
M262L2
M248L1
M248R3
M262R3
M339R6
M339R5
M226L5
M262L3

M
o
to

r
M

o
to

r
M

o
to

r
M

o
to

r
M

o
to

r
M

o
to

r
M

o
to

r
M

o
to

r
M

o
to

r
M

o
to

r
P

T
L

p
P

T
L

p
P

T
L

p
P

T
L

p
P

T
L

p
P

T
L

p
P

T
L

p
P

T
L

p
/S

S
p
/R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

R
S

C
R

S
C

S
S

p
S

S
p

S
S

p
S

S
p

S
S

p
S

S
p

S
S

p
S

S
p
/M

o
to

r
V

IS
V

IS
V

IS
a
m

V
IS

a
m

V
IS

a
m

V
IS

a
m

V
IS

a
m

V
IS

a
m

V
IS

p
V

IS
p

V
IS

p
V

IS
p

V
IS

p
V

IS
p

V
IS

p
V

IS
p

Motor
Motor
Motor
Motor
Motor
Motor
Motor
Motor
Motor
Motor
PTLp
PTLp
PTLp
PTLp
PTLp
PTLp
PTLp
PTLp/SSp/RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
RSC
SSp
SSp
SSp
SSp
SSp
SSp
SSp
SSp/Motor
VIS
VIS
VISam
VISam
VISam
VISam
VISam
VISam
VISp
VISp
VISp
VISp
VISp
VISp
VISp
VISp

 
 

 
 

0

0,1250

0,2500

0,3750

0,5000

0,6250

0,7500

0,8750

1,000

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 26, 2018. ; https://doi.org/10.1101/427955doi: bioRxiv preprint 

https://doi.org/10.1101/427955

