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The	 Spectrum	 of	 Asynchronous	 Dynamics	 in	 Spiking	
Networks:	A	Theory	for	the	Diversity	of	Non-Rhythmic	
Waking	states	in	Neocortex	

Yann	Zer laut1, 2 , 4 , * , 	Stefano	Zucca1 , 3 , 4 , 	Stefano	Panzer i 1 , 2 , 5 , * 	

and	Tommaso	Fel l in1 , 3 , 5 , * 	

Summary	

The	 cerebral	 cortex	 of	 awake	 animals	 exhibits	 frequent	
transitions	 between	 diverse	 non-rhythmic	 network	 states.	
However,	 it	 is	 still	unclear	how	these	different	activity	 states	
emerge	within	the	same	network	and	how	each	state	impacts	
network	function.	Here,	we	demonstrate	that	model	networks	
of	 spiking	 neurons	 with	 moderate	 recurrent	 interactions	
dynamically	 change	 their	 asynchronous	 dynamics	 depending	
upon	the	level	of	afferent	excitation.	We	found	that	the	model	
network	displayed	a	spectrum	of	asynchronous	states,	ranging	
from	afferent	input-dominated	(AD)	regimes,	characterized	by	
unbalanced	 synaptic	 currents	 and	 sparse	 firing,	 to	 recurrent	
input-dominated	 (RD)	 regimes,	 characterized	 by	 balanced	
synaptic	 currents	 and	 dense	 firing.	 The	 model	 predicted	
regime-specific	relationships	between	several	different	neural	
biophysical	 properties	 which	 were	 all	 experimentally	
confirmed	 by	 intracellular	 recordings	 in	 the	 somatosensory	
cortex	of	awake	mice.	Moreover,	 theoretical	analysis	showed	
that	 AD	 regimes	 more	 precisely	 encode	 spatiotemporal	
patterns	 of	 presynaptic	 activity,	 while	 RD	 regimes	 better	
encoded	the	strength	of	afferent	inputs.	These	results	provide	
a	theoretical	foundation	for	how	recurrent	neocortical	circuits	
generate	non-rhythmic	waking	states	and	how	these	different	
states	modulate	the	processing	of	incoming	information.		

Introduction	

Cortical	circuits	frequently	display	spontaneous	activities	which	
are	characterized	by	small	values	of	pairwise	spiking	synchrony	
(Ecker	et	al.,	2010;	Renart	et	al.,	2010)	and	which	are	generally	
referred	 to	as	asynchronous	dynamics.	 The	 current	 theoretical	
description	 of	 such	 asynchronous	 regimes	 is	 based	 on	 an	
emergent	 solution	 of	 balanced	 synaptic	 activity	 in	 recurrently	
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connected	 networks	 (Amit	 and	 Brunel,	 1997;	 Destexhe	 and	
Contreras,	2006;	Kumar	et	al.,	2008;	Litwin-Kumar	and	Doiron,	
2012;	Parga,	2013;	Renart	et	al.,	2010;	Tsodyks	and	Sejnowski,	
1995;	 Vogels	 et	 al.,	 2005;	 van	 Vreeswijk	 and	 Sompolinsky,	
1996).	 In	 this	 dynamical	 setting,	 the	 strong	 excitatory	 and	
inhibitory	 currents	 cancel	 each	 other	 to	 bring	 the	 average	
membrane	potential	(V")	below	the	spiking	threshold,	and	the	
intense	 synaptic	 bombardment	 results	 in	 Gaussian	 V"	
fluctuations	 (van	 Vreeswijk	 and	 Sompolinsky,	 1996).	 Early	
recordings	 in	 awake	 cats	 supported	 this	 picture:	V"	 dynamics	
during	 desynchronized	 activity	 displayed	 near-Gaussian	
fluctuations	 and	 tonic	 membrane	 depolarization	 bringing	 the	
neuron	 close	 to	 the	 spiking	 threshold	 (Steriade	 et	 al.,	 2001).	
However,	 recent	 experiments	 in	 awake	 behaving	 rodents	
suggested	a	more	complex	picture	(Busse	et	al.,	2017;	McGinley	
et	 al.,	 2015a;	 Nakajima	 and	 Halassa,	 2017).	 Together	 with	
rhythmic	activity	 in	the	[2,10]	Hz	range	(Crochet	and	Petersen,	
2006;	 Poulet	 and	 Petersen,	 2008),	 spontaneous	 dynamics	
exhibited	 diverse	 asynchronous	 states	 (non-rhythmic	 activity)	
characterized	 by	 different	 mean	 V"	(McGinley	 et	 al.,	 2015b;	
Polack	et	al.,	2013;	Reimer	et	al.,	2014)	and	firing	activity	(Vinck	
et	al.,	2015).		

At	 the	 theoretical	 level,	 those	 observations	 raise	 fundamental	
questions.	 What	 is	 the	 dynamical	 nature	 of	 the	 different	
asynchronous	states	of	wakefulness?	Is	the	classical	setting	of	a	
recurrently-balanced	 dynamics	 a	 valid	 description	 for	 all	 the	
different	 asynchronous	 states?	 If	 not,	 does	 asynchronous	
dynamics	 exist	 beyond	 such	 a	 setting?	How	 can	we	develop	 a	
tractable	 computational	 model	 that	 reveals	 the	 mechanisms	
generating	these	asynchronous	states,	that	explains	quantitively	
the	 membrane	 potential	 dynamics	 observed	 in	 cortex	 during	
wakefulness,	 and	 that	 allows	 us	 to	 understand	 the	 specific	
computational	advantages	of	each	state?		

To	 address	 the	 above	 questions,	 we	 explored	 the	 collective	
dynamics	 emerging	 in	 recurrently	 connected	 networks	 of	
excitatory	 and	 inhibitory	 spiking	 units.	 We	 found	 that,	 for	
moderate	 recurrent	 interactions,	 spiking	 network	 models	
displayed	 a	 spectrum	 of	 stable	 asynchronous	 states	 exhibiting	
spiking	 activity	 spanning	 over	 orders	 of	 magnitudes,	 and	 we	
found	 profoundly	 different	 contributions	 of	 the	 afferent	 and	
recurrent	components	in	shaping	network	dynamics.	The	model	
made	precise	predictions	 for	a	number	of	 relationships	among	
different	 electrophysiologically-measurable	 features	 which	
were	 all	 experimentally	 confirmed	 by	 electrophysiological	
recordings	 of	 neural	 activity	 across	 different	 non-rhythmic	
states	of	waking	 in	the	superficial	 layers	of	 the	mouse	primary	
somatosensory	cortex.	Moreover,	we	demonstrated,	in	network	
models,	 that	 different	 activity	 regimes	 were	 characterized	 by	
distinct	 stimulus	 information	 coding	 properties.	 These	 results	
provide	 a	 new	 theoretical	 framework	 for	 explaining	 the	 origin	
and	 the	 information	 coding	 properties	 of	 the	 diverse	 non-
rhythmic	states	observed	during	wakefulness.	
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Results	

Recurrent	networks	exhibit	a	spectrum	of	asynchronous	
regimes	upon	modulation	of	their	level	of	afferent	excitation	

We	 hypothesized	 that	 the	 various	 non-rhythmic	 regimes	 of	
wakefulness	could	be	described	by	a	set	of	emergent	solutions	
of	 recurrent	 activity	 in	 excitatory/inhibitory	 spiking	 networks.	
More	specifically,	we	reasoned	that	regimes	of	intense	synaptic	
bombardments	(Brunel,	2000;	Kumar	et	al.,	2008;	Renart	et	al.,	
2010;	 van	 Vreeswijk	 and	 Sompolinsky,	 1996)	 should	 be	
complemented	 with	 regimes	 of	 low	 spiking	 activity,	 where	
single	neurons	dynamics	 is	driven	by	a	 few	synaptic	events,	 to	
describe	 the	 lower	 depolarization	 which	 characterizes	
asynchronous	 regimes	 associated	 to	 moderate	 arousal	
(McGinley	 et	 al.,	 2015a).	 Consequently,	 to	 find	 such	 a	 set	 of	
solutions,	 we	 explored	 the	 dynamics	 of	 spiking	 networks	 in	 a	
wide	activity	 range	 including	 low	 levels	of	 recurrent	activity	 (<	
0.1	 Hz).	 We	 implemented	 this	 in	 a	 randomly	 connected	
recurrent	 network	 of	 leaky	 integrate-and-fire	 excitatory	 and	
inhibitory	neurons	with	conductance-based	synapses	(Kumar	et	
al.,	 2008).	 The	 model	 network	 incorporated	 the	 following	
experimentally-driven	 features:	 recurrent	 synaptic	 weights	
leading	to	post-synaptic	deflections	below	2	mV	at	rest	(Jiang	et	
al.,	2015;	Lefort	et	al.,	2009;	Markram	et	al.,	2015);	probabilities	
of	 connectivity	 among	 neurons	matching	 the	 relatively	 sparse	
ones	observed	 in	 the	adult	mouse	 sensory	 cortex	 (Jiang	et	 al.,	
2015)	(see	also	Discussion);	a	potent	external	afferent	input	to	
account	for	the	numerous	and	synchronized	excitatory	thalamic	
drives	onto	sensory	cortices	(Bruno	and	Sakmann,	2006);	and	a	
higher	excitability	of	inhibitory	cells	to	model	the	high	firing	of	a	
subpopulation	 of	 interneurons,	 the	 fast-spiking	 non-adapting	
neurons	 (Markram	 et	 al.,	 2004).	 The	 network	 model	 and	 its	
features	are	depicted	 in	Figure	1A.	All	parameters	are	 listed	 in	
Table	1.	

We	 tested	 the	 above	 hypothesis	 by	 analyzing	 the	 emergent	
network	 dynamics	 as	 a	 function	 of	 the	 stationary	 level	 of	
afferent	 excitation.	We	 found	 that	 the	model	 produced	 stable	
asynchronous	 dynamics	 over	 a	 wide	 range	 of	 excitatory	 and	
inhibitory	activity.	The	stationary	spiking	activity	of	the	network	
spanned	 four	 orders	 of	magnitude	 (Figure	 1B),	 while	 pairwise	
synchrony	 remained	 one	 order	 of	 magnitude	 below	 classical	
synchronous	 regimes	 (𝑆𝐼	<	 5e-3,	 see	 Figure	 S1	 for	 a	 detailed	
analysis	 of	 the	 network’s	 residual	 synchrony).	 Varying	 the	
model’s	 afferent	population	 activity,	𝜈',	 from	𝜈'=	3	Hz	 to	𝜈'=	
25	Hz	resulted	in	a	logarithmically-graded	increase	of	excitatory	
firing	rates,	𝜈(,	 from	𝜈(=	0.004	Hz	to	𝜈(=	8.5	Hz	and	 inhibitory	
firing	rates,	𝜈),	from	𝜈)=	0.07	Hz	to	𝜈)=	21.8	Hz	(Figure	1B).	Thus,	
recurrent	dynamics	performed	an	exponentiation	of	the	level	of	
afferent	 input.	 Importantly,	 the	 relative	 contributions	 of	 the	
afferent	 and	 recurrent	 excitation	 in	 shaping	 the	 single	 neuron	
dynamics	varied	over	the	different	levels	of	activity	(grey	curve	
in	Figure	1C),	it	varied	from	regimes	dominated	by	the	afferent	

excitation	(𝐼(
'**/𝐼(	>	0.75	for	𝜈' ≤	6	Hz,	where	𝐼(	 is	the	sum	of	

the	 afferent	 𝐼(
'**	 and	 recurrent	 𝐼(,(-	 excitatory	 currents)	 to	 a	

recurrent	 connectivity-dominated	 regime	 (𝐼(,(-/𝐼(	>	 0.73	 for	

𝜈'	≥		12	Hz).	Concomitantly,	the	ratio	between	mean	inhibitory	
and	excitatory	synaptic	currents	(𝐼)/𝐼(,	where	𝐼)	is	the	recurrent	
inhibitory	 current)	 was	 not	 constant	 over	 those	 different	
activity	 levels	 (black	 curve	 in	 Figure	 1C).	 Rather,	 it	 gradually	
varied	 from	 excitatory-dominated	 regimes	 where	 𝐼)/𝐼( ≪	1	
(𝐼)/𝐼(<	 0.50	 below	 for	 𝜈'=	 6	 Hz)	 to	 balanced	 activity	 where	
𝐼)/𝐼( ∼ 1	(𝐼)/𝐼(	>	0.85	for	𝜈'	≥	12	Hz).	In	the	following,	we	refer	
to	 this	 continuum	 of	 diverse	 emergent	 solutions	 of	 recurrent	
activity	as	a	“spectrum”	of	asynchronous	regimes.	

To	 better	 highlight	 the	 profound	 differences	 in	 terms	 of	
network	 dynamics	 and	 of	 electrophysiologically	 measurable	
neural	 activity	 features	 that	 are	observed	along	 the	 spectrum,	
we	selected	two	levels	of	afferent	drive	leading	to	two	relative	
extreme	 states	 along	 this	 spectrum	 (Figure	 1B).	 The	 first	
example	 state,	 termed	 Afferent	 input-Dominated	 state	 and	
shortened	to	“AD”,	was	a	state	found	at	low	afferent	excitation	
that,	as	we	shall	 show	below,	was	characterized	by	temporally	
sparse	 spiking	 activity	 and	 was	 dominated	 by	 its	 afferent	
excitation.		The	second	example	state,	termed	Recurrent	input-
Dominated	 state	 and	 shortened	 to	 “RD”,	was	a	 state	 found	at	
high	 afferent	 excitation	 that,	 as	 we	 shall	 show	 below,	 was	
characterized	 by	 temporally	 dense	 spiking	 activity	 and	 was	
dominated	 by	 its	 synaptically	 balanced	 recurrent	 activity.	 We	
show	 samples	 of	 membrane	 potential	 traces	 (Figure	 1D)	 and	
synaptic	 currents	 (Figure	 1E)	 for	 the	 two	 selected	 regimes	 in	
representative	simulated	neurons.	

For	high	afferent	excitation	 (𝜈'	=	20	Hz,	RD),	 recurrent	activity	
was	dense	(>	1	Hz,	here	𝜈(=	7.6	±	0.1	Hz	and	𝜈)=	19.2	±	0.2	Hz),	
and	 the	 network	 displayed	 asynchronous	 dynamics	 in	 the	
balanced	 setting.	 The	 electrophysiological	 features	 identifying	
this	 regime	were:	 1)	 a	mean	 depolarized	𝑉8	 (𝜇:	=	 -59.3	 +	 0.1	
mV,	 Figure	 1F)	 with	 a	 standard	 deviation	 (s:	=	 3.7	±	0.1	mV,	
Figure	1G)	which	implied	that	fluctuations	 in	Vm	bring	Vm	close	
to	 the	 spiking	 threshold	 (𝑉;<,(	=	 -50	 mV)	 (see	 𝑉8	 traces	 in	
Figure	 1D);	 2)	 a	 symmetric	𝑉8	 distribution	 (see	 the	 near-zero	
skewness	in	Figure	1H,	𝛾:	=	0.02	±	0.04)	that	was	a	signature	of	
Gaussian	 fluctuations	 (coefficient	 of	 determination	 of	 a	
Gaussian	fitting	after	blanking	spikes:	𝑅?	=	0.994±0.002);	3)	fast	
membrane	 potential	 fluctuations	 (the	 autocorrelation	 time	 of	
the	 fluctuations	 𝜏:	 =	 6.2	±	0.8	 ms	 was	 much	 lower	 than	 the	
membrane	 time	 constant	 at	 rest	 𝜏	8A 	=	 20	ms,	 Figure	 1I);	 4)	 a	
high	conductance	state	(synaptic	conductances	sum	up	to	more	
than	 four	 times	 the	 leak	 conductance	 (Destexhe	 et	 al.,	 2003),	
here	 the	 conductance	 ratio	 was	 6.6	±	0.1);	 5)	 balanced	
excitatory	 and	 inhibitory	 currents	 (|𝐼)/𝐼(|	=	 0.881	±	0.003,	
Figure	 1C)	 with	 large	 means	 compared	 to	 their	 temporal	
fluctuations	(𝜇(/𝜎(	=	3.2	±	0.1	and	𝜇)/𝜎)	=	2.8	±	0.1,	Figure	1J);	
6)	 the	predominance	of	the	recurrent	activity	 in	shaping	single	
neuron	 dynamics	 (recurrently-mediated	 synaptic	 currents	
represented	84.6	±	0.1%	of	the	membrane	currents	and	largely	
exceeded	 the	 contributions	 of	 the	 afferent	 excitatory	 currents	
and	leak	currents,	10.8	±	0.1%	and	4.6	±	0.1%	respectively).	
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At	low	levels	of	afferent	activity	(𝜈'	=	5	Hz,	AD),	a	stable	regime	
of	asynchronous	dynamics	exhibited	a	qualitatively	different	set	
of	electrophysiological	 features.	Spiking	activity	 in	the	network	
was	 very	 sparse	 (𝜈(	=	 0.094	±	0.008	Hz	 and	𝜈)=	 0.535	±	0.013	
Hz,	Figure	1B)	which,	at	the	single	neuron	level,	was	associated	
to:	1)	a	higher	distance	between	the	mean		Vm	and	the	spiking	
threshold	(𝜇:	=	64.1	±	0.3	mV,	Figure	1F);	2)	a	strongly	skewed	
𝑉8	 distribution	 (𝛾:	=	 0.49	±	0.09,	 Figure	 1H);	 3)	 slower	
𝑉8	fluctuations	 (𝜏:	=	 20.4	±	1.1	 ms,	 i.e.	 a	 threefold	 increase	
with	 respect	 to	 the	 RD	 regime,	 Figure	 1I);	 4)	 a	 lower	
conductance	 state	 preserving	 the	 efficacy	 of	 synaptically-
evoked	 depolarizations	 (instead	 of	 the	 strong	 shunting	
characterizing	 high	 conductance	 states,	 here	 synaptic	
conductances	 increased	 the	 input	 conductance	 by	 only	
18.2	±	1.0	 %);	 5)	 excitatory	 dominated	 synaptic	 currents,	 the	
mean	 of	 the	 excitatory	 currents	 largely	 exceeded	 those	 of	
inhibitory	 currents	 (|𝐼)/𝐼(|	=	 0.272	±	0.018,	 Figure	 1C),	 leading	
to	 a	 nearly	 equal	 ratio	 of	 conductances	 (𝐺)/𝐺(	=	 0.8	±	0.2,	
instead	 of	𝐺)/𝐺( =	2.5	±	0.1	 for	 the	 balanced	 currents	 of	 RD,	
Figure	 1K);	 6)	 the	 predominance	 of	 the	 non-recurrent	

components	 in	 shaping	 single	 neuron	 dynamics	 (recurrently-
mediated	synaptic	currents	only	represented	14.6	±	0.2%	of	the	
membrane	 currents	 and	 were	 largely	 inferior	 to	 the	 afferent	
excitatory	 current	 and	 leak	 current	 contributions,	 44.9	±	 1.3%	
and	40.4	±	1.5%	respectively).	 In	contrast	 to	the	RD	state,	 the	
stability	 of	 the	 AD	 regime	 did	 not	 rely	 on	 the	
excitatory/inhibitory	 balance	 of	 synaptic	 currents	 (see	 Figure	
1E):	 the	 very	 low	 amount	 of	 recurrent	 inhibitory	 currents	 did	
not	 cancel	 the	 afferent-dominated	 sum	 of	 excitatory	 currents	
(see	 Figure	 1C,E,J).	 Instead,	 leak	 currents	 insured	 stability	 by	
contributing	 significantly	 to	 single	 neuron	 integration:	 the	
temporal	dynamics	of	the	membrane	potential	was	dominated	
by	 leak-mediated	 repolarization	 following	 sparse	 synaptic	
events	 (see	 Figure	 1D)	 and	 accordingly,	 the	 autocorrelation	
time	 𝜏:	 =	 20.4	±	1.1	 ms	 was	 close	 to	 the	 membrane	 time	
constant	at	rest	𝜏8A 	=	20	ms.	This	network	state	was	thus	mainly	
shaped	 by	 the	 following	 ingredients:	 a	 lower	 frequency	
excitatory	 afferent	 input	 producing	 strongly	 skewed	 𝑉8	
fluctuations	(occasionally	large	enough	to	elicit	spikes)	counter-
balanced	by	leak	repolarization	currents.	

	

Figure	 1.	 A	 spectrum	 of	 asynchronous	 regimes	
emerges	 in	 a	 recurrent	 spiking	 network	 upon	
modulation	of	its	level	of	afferent	excitation.	(A)	
The	 reduced	model	 of	 the	 neocortical	 assembly.	
An	 afferent	 excitatory	 input	 targets	 the	
recurrently	 connected	 excitatory	 (green)	 and	
inhibitory	(red)	populations.	In	the	inset,	we	show	
the	 post-synaptic	 deflections	 at	 rest	 (-70	 mV)	
associated	 to	 each	 type	 of	 synaptic	 connection	
(grey	 indicates	 the	afferent	population).	We	also	
show	the	spiking	response	of	single	neurons	to	a	
current	pulse	of	120	pA	(background	traces).	Note	
the	 higher	 excitability	 of	 inhibitory	 cells	 because	
of	their	lower	AP	threshold	(-53	mV	vs	-50	mV	for	
excitatory	 cells).	 Parameters	 of	 the	 model	 are	
listed	 in	Table	1.	(B)	Stationary	firing	rates	of	the	
excitatory	(green)	and	inhibitory	(red)	populations	
as	a	function	of	the	level	of	afferent	activity	(dots	
with	 error	 bars	 represent	 mean±s.e.m	 over	 n	 =	
10	 numerical	 simulations).	 	 The	 AD	 (blue	 circle)	
and	 the	 RD	 (orange	 circle)	 levels	 are	 indicated.	
We	 show	 the	 mean-field	 predictions	 for	
comparison	(thick	transparent	lines,	see	main	text	
and	Figures	S2).	 	(C)	Fraction	of	afferent	currents	
within	 the	 sum	 of	 recurrent	 and	 afferent	
excitatory	 currents	 (𝐼(

'**/𝐼( ,	 grey)	 and	 absolute	
ratio	 between	 inhibitory	 and	 excitatory	 currents	
(|𝐼)/𝐼(|,	black)	as	a	function	of	the	level	of	afferent	
activity	 𝜈' 	 (dots	 with	 error	 bars:	 n	 =	 10	
simulations;	 thick	 transparent	 lines:	 mean-field	
predictions).	 (D)	 Membrane	 potential	 traces	 for	
four	 neurons	 in	 the	 AD	 (i)	 and	 in	 the	 RD	 (ii)	
regimes.	(E)	Excitatory	(green)	and	inhibitory	(red)	
synaptic	currents	targeting	a	single	neuron	in	the	

AD	(i,	left)	and	RD	(ii,	right)	regimes.	Note	the	difference	in	current-scale	between	(i)	and	(ii).	(F-K)	Electrophysiological	signature	of	the	two	regimes	
(blue	 and	 orange	 for	 AD	 and	 RD	 respectively)	 at	 the	 single	 cell	 level	 (evaluated	 on	 excitatory	 cells	 on	 a	 single	 simulation,	 error	 bars	 represent	
variability	 over	 n	 =	 10	 recorded	 cells).	 (F)	 mean	 depolarization	 𝜇: ,	 (G)	 standard	 deviation	 𝜎: ,	 (H)	 skewness	 of	 the	 𝑉8 	 distribution	 𝛾: ,	 (I)	
autocorrelation	time	𝜏: ,	(J)	mean	and	standard	deviation	(𝜇	and	𝜎	respectively)	of	the	excitatory	(indexed	by	𝑒)	and	inhibitory	currents	(indexed	by	
𝑖)	over	time,	and	(K)	ratio	of	inhibitory	to	excitatory	synaptic	conductances	𝐺)/𝐺( .	
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A	mean-field	description	including	non-Gaussian	𝑉8	properties	
predicts	the	emergence	of	the	spectrum	

The	 simulations	 presented	 above	 highlight	 the	 firing	 rates	
(𝜈(,	𝜈))	and	the	𝑉8	fluctuations	properties	(𝜇:, 𝜎:, 𝜏:, 𝛾:)	as	key	
determinants	of	different	states	in	the	spectrum.	To	understand	
whether	 the	 variations	 of	 those	 statistical	 quantities	 provide	
sufficient	 ingredients	 for	 the	 emergence	 of	 the	 spectrum,	 we	
developed	and	analyzed	a	“mean	field”	description	of	network	
activity	 including	 these	 quantities	 (see	 Supplementary	
Information).	 Briefly,	 a	 mean	 field	 description	 of	 network	
activity	reduces	the	firing	rate	dynamics	of	each	population	into	
the	 dynamics	 of	 a	 prototypical	 neuron	 whose	 behavior	 is	
captured	by	a	rate-based	 input-output	function;	see	(Renart	et	
al.,	2004)	 for	a	review.	 In	standard	mean-field	approaches,	 the	
neuronal	 input-output	 function	 is	 determined	 analytically	 by	
converting	 the	 input	 firing	 rates	 into	 Gaussian	 fluctuations	 of	
synaptic	 currents	 in	 turn	 translated	 into	 an	 output	 firing	 rate	
using	estimates	from	stochastic	calculus	(Tuckwell,	2005).	Here,	
however,	 building	 on	 previous	 work	 (Zerlaut	 et	 al.,	 2016),	 we	
extended	 this	 formalism	 so	 that	 the	 input	 firing	 rates	 are	
converted	 into	 𝑉8	fluctuations	 properties	 that	 also	 include	
higher	 order	 non-Gaussian	 properties	 (such	 as	 the	 skewness	
and	 tail	 integral	 of	 the	 distribution),	 and	 that	 are	 in	 turn	
converted	into	an	output	firing	rate	thanks	to	a	semi-analytical	
approach	 (see	 Supplementary	 Information).	 Importantly,	 we	
found	 that	 the	 spectrum	 of	 activity	 regimes	 found	 in	 the	
numerical	 simulations	 was	 also	 present	 in	 such	 mean-field	
description	(Figure	1B,C	and	Figure	S2).	Because	the	mean-field	
description	 only	 specifies	 the	 firing	 rates	 and	 the	 four	 basic	
properties	 of	 𝑉8	 statistics	 that	 we	 plotted	 in	 our	 earlier	

simulations,	 this	analysis	 further	demonstrates	 that	changes	 in	
those	 parameters	 are	 sufficient	 to	 generate	 changes	 in	 the	
spectrum.	 This	 confirms	 that	 the	 spectrum	 can	 be	 generated	
also	without	relying	on	specific	properties	in	the	architecture	of	
the	 numerical	 network	 (such	 as	 a	 degree	 of	 clustering	 within	
the	drawn	 recurrent	 connectivity)	 or	more	 complex	 dynamical	
features	 (such	 as	 pairwise	 synchrony,	 or	 deviations	 from	 the	
Poisson	 spiking	 statistics),	 that	were	not	 included	 in	 the	mean	
field	 approach.	 It	 also	 strengthen	 the	 conclusion	 that	 the	
spectrum	 dynamics	 of	 both	 real	 and	 simulated	 data	 can	 be	
meaningfully	studied	and	analyzed	by	quantifying	the	firing	rate	
and	𝑉8	properties.	

A	moderate	strength	of	recurrent	interactions	is	a	necessary	
condition	for	the	emergence	of	the	spectrum	

Which	 are	 the	 crucial	 network	 parameters	 that	 lead	 to	 the	
emergence	 of	 the	 spectrum	 of	 activity	 states?	 We	 addressed	
this	 question	 through	 parameter	 variations	 in	 the	 numerical	
model.		

We	 first	 considered	 what	 happened	 when	 increasing,	 with	
respect	 to	 the	 reference	 network	 configuration	 considered	
above,	 the	 value	 of	 the	 excitatory	 and	 inhibitory	 recurrent	
synaptic	 weights	 (Figure	 2).	 When	multiplying	 this	 value	 by	 a	
moderate	amount	with	a	factor	𝑓	in	the	range	between	0.1	and	
2	(see	the	depicted	examples	of	𝑓	=	0.5	and	𝑓	=	1.2,	Figure	2A),	
the	 network	 was	 still	 able	 to	 create	 states	 of	 very	 low	
(respectively	 very	 high)	 activity	 at	 lower	 (respectively	 higher)	
afferent	activity.	For	synaptic	weights	in	this	range,	the	network	
exponentiated	the	level	of	afferent	input	to	generate	recurrent	
activity	spanning	several	orders	of	magnitude	(from	0.004	Hz	to	

	

Figure	 2.	 The	 emergence	
of	 the	 spectrum	 is	
conditioned	 to	 moderate	
strength	 of	 recurrent	
interactions.	 (A)	We	 show	
the	 various	 post-synaptic	
deflections	 following	 an	
excitatory	 (top)	 and	
inhibitory	 (bottom)	 event	
as	 a	 function	 of	 the	
modulating	 factor	 for	
synaptic	 weights	 (color-
coded,	 strong	 recurrent	
interactions	 in	 yellow	
(strength	 factor:	 5),	
moderate	 in	 green	

(strength	factor:	1)	and	absence	of	interaction	in	dark	purple	(strength	factor:	0).	(B)	Sample	traces	of	activity	at	low	(left,	(i),	𝜈' 	=	4	Hz)	and	high	
(right,	 (ii),	𝜈' 	=	20	Hz)	 levels	of	afferent	activity	 for	different	strength	of	synaptic	weights	 (same	color	code	as	 in	A).	 (C-F)	Excitatory	stationary	
firing	rates	 (𝜈( 	 in	C),	 inhibitory	stationary	 firing	rates	 (𝜈) 	 in	D),	 fraction	of	afferent	excitatory	current	 (𝐼(

'**/𝐼( 	 in	E),	and	 inhibitory	 to	excitatory	
current	ratio	(|𝐼)/𝐼(|		in	F)	as	a	function	of	the	afferent	activity	(𝜈')	for	the	seven	different	factors	of	recurrent	synaptic	weights.	For	a	factor	of	two	
(green	curve),	the	activity	almost	immediately	jumps	from	a	very	low	value	(<	0.01	Hz)	to	a	high	activity	level	(𝜈( 	≳	1	Hz)	where	synaptic	activity	is	
dominated	by	recurrent	connectivity	(𝐼(

'**/𝐼( ∼	0)	and	it	 is	balanced	(|𝐼)/𝐼(| ∼	1).	 	For	a	factor	of	five	(yellow	curve),	the	activity	 is	always	high.	
Even	very	weak	afferent	 inputs	are	 translated	 into	 the	balanced	synaptic	activity	 regime	of	high	excitatory	and	 inhibitory	 firing	 rates	 (see	also	
panel	B(i)).	When	negligible	recurrent	interactions	are	present	(strength	factor:	0),	the	activity	remains	purely	dominated	by	its	afferent	excitation	
(𝐼(
'**/𝐼( = 1	and	 |𝐼)/𝐼(|=0).	We	also	show	the	 lower	bound	configuration	 (𝑓	=	0.1).	Above	this	 factor,	 states	dominated	by	recurrent	activity	at	

high	afferent	inputs	(𝐼(
'**/𝐼(	>	0.5	for	𝜈'	>	20	Hz)	are	observed.	We	represent	the	mean	±		s.e.m	(error	bars)	over	n	=	10	networks	simulations.	

Non	visible	error	bars	correspond	to	variabilities	smaller	than	the	marker	size.	See	Figure	S3	for	the	changes	in	other	network	parameters.	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 23, 2018. ; https://doi.org/10.1101/427765doi: bioRxiv preprint 

https://doi.org/10.1101/427765
http://creativecommons.org/licenses/by/4.0/


	 Page	5	

15	Hz,	Figure	2C,D)	with	transitions	from	regimes	dominated	by	

afferent	 inputs	 (𝐼(
'**/𝐼(	>	 0.75	 for	 𝜈'	<	 5	 Hz	 ,	 Figure	 2E)	 and	

excitatory	 currents	 (|𝐼)/𝐼(|	<	 0.25	 for	 𝜈'	<	 5	 Hz,	 Figure	 2F)	 to	
regimes	dominated	by	recurrent	activity	(𝐼(

'**/𝐼(	<	0.5	for	𝜈'	>	
20	Hz	,	Figure	2E)	and	balanced	synaptic	currents	(|𝐼)/𝐼(|	>	0.75	
for	 𝜈'	>	 20	 Hz,	 Figure	 2F).	 Thus,	 the	 network	 displayed	 the	
features	 defining	 the	 spectrum	 of	 activity	 regimes	 over	 the	
entire	 range	 for	 0.1	 <	𝑓	<	 2.	 However,	 when	 increasing	 the	
excitatory	and	inhibitory	recurrent	synaptic	weights	by	a	larger	
factor	 (f	 >	 2;	 see	 𝑓	=	 5	 in	 Figure	 2A),	 the	 network	 generated	
states	of	dense	activity	throughout	the	entire	range	of	afferent	
input	rates	(see	yellow	curves	in	Figure	2C-F),	without	displaying	
sparse	activity	states	at	low	afferent	input	values,	and	showing	
a	 small	 range	of	 variations	of	 recurrent	 firing	 rate	 levels	 (from	
15	Hz	to	17	Hz,	yellow	curve	in	Figure	2C).	These	high	recurrent	
synaptic	 weights	 led	 to	 strong	 recurrent	 amplification	 of	
afferent	inputs,	and	the	generated	high	recurrent	activity	levels	
led	 to	 negligible	 leak	 currents	 and	 to	 stabilization	 being	
achieved	through	dense	recurrently-balanced	dynamics	 (Figure	
2E,F).	For	very	low	values	of	the	f	factor	(we	show	the	limit	case	
of	the	absence	of	recurrent	 interactions	defined	by	𝑓	=	0,	dark	
purple	 curves	 in	 Figure	 2),	 the	 population	 only	 displayed	

regimes	 dominated	 by	 afferent	 inputs	 (𝐼(
'**/𝐼(	=	 1,	 Figure	 2E)	

and	excitatory	currents	 (|𝐼)/𝐼(|	=	0,	Figure	2F).	This	was	due	to	
negligible	 recurrent	 interactions	which	 prevented	 the	 network	
from	 producing	 recurrently-balanced	 activity,	 therefore	
showing	that	a	minimum	amount	of	recurrent	interactions	was	
required	 to	 obtain	 the	 described	 spectrum	 of	 network	 states.	
Another	 factor	 influencing	 the	 strength	 of	 recurrent	
interactions	 was	 the	 amount	 of	 recurrent	 connections.	
Consistent	 with	 the	 need	 of	 moderate	 recurrent	 interactions,	
increasing	the	connectivity	 to	make	the	network	more	densely	
recurrently	connected	that	in	the	reference	scenario	(𝑝-MNN	>	20	
%)	 restricted	 the	occurrence	of	AD-type	 activity	 	 to	 lower	 and	
lower	 afferent	 activity	 levels	 (see	 Figure	 S3B).	 This	 analysis	
emphasized	 the	 non-trivial	 nature	 of	 the	 appearance	 of	 the	
spectrum:	 it	 is	a	parameter-dependent	emergent	phenomenon	
at	the	network	level	(see	Discussion).	

The	 other	 experimentally-driven	 constraints	 of	 our	 network	
implementation	 were	 much	 less	 critical	 for	 generating	 the	
spectrum	 of	 asynchronous	 dynamics.	 Varying	 the	 synaptic	
weights	of	the	afferent	input	in	the	[-50	%,	+50	%]	range	shifted	
the	 onset	 of	 the	 activity	 increase	 (in	 terms	 of	 𝜈'	 level)	 but	
allowed	 for	 a	 set	 of	 asynchronous	 regimes	 across	 orders	 of	
magnitude	 (Figure	 S3C).	 Varying	 the	 inhibitory	 excitability	 by	
shifting	the	spiking	threshold	in	the	[-57,	-52]	mV	range	also	did	
not	 affect	 the	 ability	 of	 the	 network	 to	 display	 a	 spectrum	 of	
activity	 regimes	 (Figure	 S3D).	 This	 was	 also	 the	 case	 when	
varying	 the	 network	 size	 (Figure	 S3E)	 and	 the	 excitatory	 and	
inhibitory	synaptic	weights	independently	in	the	[-50	%,	+50	%]	
range	(Figure	S3F-G).	However,	more	extreme	variations	as	the	
one	 listed	 below	 led	 to	 a	 recurrent	 architecture	 with	 a	 very	
strong	excitatory-to-excitatory	loop	and	produced	saturated	(𝜈(	
=	 𝜈)	 =	 200	 Hz)	 and	 highly	 synchronized	 (𝑆𝐼	 >	 0.9)	 activity	
because	 of	 weak	 inhibition	 unable	 to	 prevent	 an	 excitatory	

runaway	 (Brunel,	 2000).	 This	happened	 for	 very	 low	 inhibitory	
excitabilities	 𝑉;<,()N< ≥	 -51	 mV	 (Figure	 S3E),	 strong	 excitatory	
weights	𝑄( ≥	 4	 nS	 (Figure	 S3F),	 and	 weak	 inhibitory	 weights	
𝑄) ≤	 5	nS	 (Figure	S3G).	 Low	afferent	 input	weights	𝑄' ≤	 1	nS	
also	 prevented	 the	 appearance	 of	 the	 spectrum	 because	 only	
quiescent	regimes	(𝜈(	=	𝜈)	=	0	Hz)	could	be	observed	in	the	𝜈'<	
25	Hz	range	of	afferent	inputs	(Figure	S3C).	

In	 sum,	 these	 results	 demonstrate	 that	 the	 ability	 of	 the	
network	to	generate	a	spectrum	of	states,	in	particular	its	ability	
to	display	the	AD	regime,	depends	crucially	on	having	moderate	
strength	of	recurrent	interactions.	

Introducing	a	disinhibitory	circuit	broadens	the	extent	of	the	
spectrum		

To	 test	 the	generality	of	 the	 findings	and	 its	 robustness	 to	 the	
inclusion	 of	 other	 physiologically-realistic	 circuit	 features,	 we	
considered	a	more	complex	network	architecture	encompassing	
a	 disinhibitory	 circuit,	 see	 Figure	 3A	 and	 Table	 2.	 The	
disinhibitory	 cells	 formed	 inhibitory	 synapses	 on	 inhibitory	
neurons.	 Because	 experimental	 evidence	 suggest	 weak	 inputs	
into	disinhibitory	cells	from	the	local	network	(Jiang	et	al.,	2015;	
Pfeffer	 et	 al.,	 2013),	 we	 assumed	 in	 the	 model	 that	 the	
disinhibitory	 cells	 received	 only	 excitatory	 afferent	 inputs.	 By	
lowering	 the	 excitability	 of	 the	 inhibitory	 population	 as	 a	
function	of	 the	 afferent	 activity	 level,	 the	disinhibitory	 activity	
allowed	 excitatory-dominated	 states	 to	 span	 higher	 ranges	 of	
firing	 rate	values	 (up	 to	νR	=	58.3	±	3.9	Hz	 for	νS	=	25	Hz,	 see	
Figure	 3B)	 while	 remaining	 largely	 asynchronous	 (SI	 <	 0.12,	
Figure	 S3I).	 The	 emergence	 of	 the	 spectrum	 of	 states	 was	
therefore	robust	to	the	inclusion	of	a	disinhibitory	circuit	and	its	
addition	further	strengthened	and	broadened	the	generation	of	
the	 spectrum.	 As	 the	 model	 configuration	 inclusive	 of	 the	
disinhibitory	 circuit	 presumably	 provided	 a	 more	 realistic	
setting,	 we	 hereafter	 continued	 our	 analysis	 using	 the	 three-
population	model	of	Figure	3A.	

Dynamic	modulation	of	the	network	regime	upon	time-varying	
afferent	excitation	

After	 analyzing	 the	 stationary	 behavior	 of	 the	 network	model,	
we	 studied	whether	 it	 could	 generate	 a	 spectrum	 of	 states	 in	
the	presence	of	time-varying	 inputs.	 In	particular,	given	that	 in	
awake	cortical	data	different	states	can	persist	for	time	scales	of	
<	1	s	(McGinley	et	al.,	2015a),	we	focused	on	studying	network	
dynamics	 when	 inputs	 were	 stationary	 for	 some	 hundreds	 of	
milliseconds.	 	 In	Figure	3C,	we	stimulated	the	three	population	
model	 with	 a	 time-varying	 waveform	 made	 of	 three	 900	 ms-
long	plateaus	of	presynaptic	activity	at	low	(𝜈'	=	4	Hz,	𝑇W	period,	
blue	interval),	high	(𝜈'	=	18	Hz,	𝑇?	period,	orange	interval),	and	
intermediate	 (𝜈'	=	8	Hz,	𝑇X	period,	grey	 interval)	 levels.	Figure	
3D	 shows	 the	 temporal	 evolution	of	 the	 firing	 rates	 (averaged	
over	n	=	10	trials)	and	Figure	3E	shows	the	𝑉8	dynamics	in	the	
three	cellular	populations	included	in	the	model	in	a	single	trial.	
We	 observed	 dynamic	modulation	 of	 the	 firing	 rate	with	 time	
scales	 to	 reach	 stationary	 behavior	 which	 were	 similarly	 fast	
across	the	different	cell	types	(red,	green,	and	purple	in	Figure	
3D).	 Indeed,	 when	 computing	 the	 relaxation	 time	 of	 the	
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network	 (𝜏YZ[\,	 estimated	 by	 fitting	 the	 response	 to	 a	 short	
step	of	afferent	activity,	see	Figure	3F),	we	found	network	time	
constants	 between	 4	 ms	 and	 20	 ms	 (with	 a	 monotonic	
dependence	 on	 the	 level	 of	 ongoing	 activity,	 as	 predicted	
theoretically	 (Destexhe	 et	 al.,	 2003;	 van	 Vreeswijk	 and	
Sompolinsky,	 1996)).	 For	 time	 scales	 longer	 than	 few	hundred	
ms,	the	network	dynamics	can	thus	be	considered	as	stationary.	
Consequently,	 the	 characterization	 described	 above	 for	
stationary	 states	 (Figure	1	 and	Figure	3B)	 	 also	held	when	 the	
analysis	 was	 restricted	 to	 the	 three	 separate	 windows	 𝑇W,	 𝑇?	
and	𝑇X	 (see	Figure	3C-E).	 	For	example,	 in	the	first	period	(𝑇W),	
the	spiking	activity	was	temporally	sparse	(𝜈(	=	0.02	±	0.01	Hz),	
the	 average	 𝑉8	 value	 was	 hyperpolarized	 	(𝜇:	=	 -65.3	 ±	 0.1	
mV),	 the	𝑉8	 fluctuations	were	 skewed	 (𝛾:=	0.55	±	 0.01,	 blue	
curve	in	Figure	3G),	and	the	autocorrelation	function	displayed	
large	tV	values	(blue	curve	Figure	3H,	 leading	to	an	estimate	of	
𝜏:	 =	 17.8	±	 0.3	 ms).	 In	 the	 second	 period	 (𝑇?),	 the	 afferent	
input	 increased	 spiking	 activity	 by	 four	 orders	 of	 magnitude	
(𝜈(	=	 25.9	 ±	 0.6	 Hz)	 and	 it	 shifted	 the	 𝑉8	 dynamics	 to	
depolarized	 Gaussian	 fluctuations	 (orange	 curve	 in	 Figure	 3G,	
𝜇:	=	 -55.9	±	 0.1	 mV,	 𝑅?	 of	 a	 Gaussian	 fitting	 after	 blanking	
spikes:	 0.99	 ±	 0.01)	 characterized	 by	 a	 narrowly	 extended	
autocorrelation	function	(orange	curve	 in	Figure	3H,	 leading	to	
an	estimate	of	𝜏:	=	2.3	±	0.1	ms).	The	last	segment	(𝑇X)	was	an	

intermediate	situation	that	produced	excitatory	activity	at	𝜈(	=	
4.2	±	 0.3	 Hz	 associated	 to	moderate	 depolarization	with	 high	
variance	fluctuations	(grey	curve	in	Figure	3G,	𝜇:	=	-60.8	±	0.2	
mV	and	𝜎:	=	4.3	±	0.1	mV)	and	an	intermediate	autocorrelation	
time	 (𝜏:	 =	 6.8	±	 0.3	ms	 from	 the	orange	 curve	 in	 Figure	 3H).	
The	possibility	to	identify	a	given	network	state	from	the	spiking	
activity	 and	 from	 the	 𝑉8	 fluctuations	 at	 the	 sub-second	 time	
scale	 prompted	 us	 to	 test	 the	 model’s	 prediction	 with	
experimental	electrophysiological	recordings.	

In	 the	 somatosensory	 cortex	 of	 awake	mice	 diverse	 epochs	 of	
non-rhythmic	 activity	 have	 electrophysiological	 signatures	
predicted	by	the	model	

How	does	 neural	 activity	 in	 real	 cortical	 circuits	 compare	with	
the	 activity	 regimes	 observed	 in	 the	 model?	 To	 address	 this	
question,	 we	 performed	 intracellular	 patch-clamp	 recordings	
from	 layer	2/3	neurons	of	 the	 somatosensory	cortex	of	awake	
mice	(n	=	22	cells	in	N	=	8	animals)	during	spontaneous	activities	
(Figure	4).	These	recordings	(Figure	4A)	showed	fluctuations	 in	
the	membrane	potential	of	recorded	cell	between	rhythmic	and	
asynchronous	 dynamics	 as	 described	 in	 previous	 reports	
(Crochet	 and	 Petersen,	 2006;	 Poulet	 and	 Petersen,	 2008),	 see	
also	Figure	4B	for	examples	of	individual	time	epochs.	Because	
our	focus	was	asynchronous	cortical	dynamics,	we	introduced	a	

	

Figure	3.	Dynamic	modulation	of	network	activity	upon	a	time-
varying	 afferent	 excitation	 in	 the	 three	 population	model.	 (A)	
Schematic	 of	 the	 network	 model	 including	 the	 disinhibitory	
circuit.	 The	 parameter	 𝑝'] 	 corresponds	 to	 the	 connection	
probability	 between	 the	 afferent	 and	 disinhibitory	 population.	
Model	 parameters	 can	 be	 found	 in	 Table	 2.	 (B)	 Stationary	 co-
modulations	of	the	excitatory	(𝜈( ,	green),	inhibitory	(𝜈) ,	red),	and	
disinhibitory	 (𝜈] ,	purple)	rates	 in	absence	(𝑝'] = 0,	dashed	 line,	
reproduced	 from	 Figure	 1B)	 and	 in	 presence	 of	 a	 disinhibitory	
circuit	 (solid	 line,	 𝑝'] = 7.5%).	 (C-E)	 Network	 dynamics	 in	
response	to	a	time-varying	 input.	(C)	Waveform	for	the	afferent	
excitation.	 (D)	 Temporal	 evolution	 of	 the	 instantaneous	 firing	
rates	(binned	in	2	ms	window	and	smoothed	with	a	10	ms-wide	
Gaussian	 filter)	of	 the	excitatory	 (𝜈( ,	 green),	 inhibitory	 (𝜈) ,	 red),	
and	disinhibitory	(𝜈] ,	purple)	populations.	Mean	±	s.e.m	over	n	=	
10	 trials.	 (E)	 Sample	membrane	potential	 traces	 in	a	 trial	 (three	
excitatory	 cells	 in	 green,	 an	 inhibitory	 cell	 in	 red,	 and	 a	
disinhibitory	 cell	 in	 purple).	 Note	 that,	 to	 highlight	 mean	
depolarization	 levels,	 the	 artificial	 reset	 and	 refractory	
mechanism	 has	 been	 hidden	 by	 blanking	 the	 10	 ms	 following	
each	 spike	 emission.	 (F)	 Network	 time	 constants	 𝜏YZ[\ 	 for	 the	
three	different	 levels	of	afferent	activity	considered	 in	C	 (𝜈' 	=	4	
Hz	 in	blue,	𝜈' 	 =	18	Hz	 in	orange,	𝜈' 	 =	8	Hz	 in	brown).	The	 time	
constant	was	determined	by	stimulating	the	network	with	a	100	
ms-long	step	input	of	afferent	activity	of	2	Hz	(black	curve	in	the	
inset)	and	fitting	the	trial-average	responses	with	an	exponential	
rise-and-decay	 function	 (red	 dashed	 curves,	 see	 Methods	 for	
details).	We	 show	 the	 average	 over	 100	 stimulus	 repetitions	 of	
the	 network	 responses	 in	 the	 inset.	 (G-H)	 Electrophysiological	
signature	 in	 the	 three	 intervals	 highlighted	 in	 C:	 𝑇W	 (blue),	 𝑇?	
(orange),	 and	𝑇X	 (brown).	Data	were	obtained	 pooling	 together	
the	𝑉8 	after	blanking	spikes	over	100	excitatory	neurons	in	each	
interval	 for	 a	 single	 network	 simulation.	 (G)	 Pooled	membrane	
potential	histograms	 for	 the	 three	different	stimulation	periods.	
(H)	Pooled	normalized	autocorrelation	functions.		
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threshold	 in	 the	 low	 frequency	 power	 of	 the	 𝑉8	 recordings,	
which	 we	 called	 “rhythmicity	 threshold”	 (see	 Methods).	 We	
classified	 as	 rhythmic	 periods	 all	 the	 time	 stretches	 for	 which	
the	 𝑉8	 power	 exceeded	 this	 threshold	 (Figure	 4A)	 and	 we	
considered	 for	 further	 analyses	 only	 the	 epochs	 of	 network	
activity	with	𝑉8	power	below	this	threshold	(classified	as	“non-
rhythmic”,	 see	Figure	4A;	note	 that	 the	 results	were	 robust	 to	
variations	of	this	arbitrary	threshold,	see	Figure	S4D).	

We	 then	 divided	 the	 stretches	 of	 non-rhythmic	 activity	 into	 a	
series	 of	 500	 ms-long	 epochs	 (partly	 overlapping,	 and	 taken	
with	 sliding	windows	whose	 center	was	moved	 in	 steps	 of	 25	
ms).	Each	epoch	was	considered	a	possible	different	state.	We	
chose	 this	 epoch	 length	 as	 it	 offered	 a	 good	 compromise	
between	the	 following	 two	constraints:	1)	 it	was	short	enough	
to	 enable	 the	 identification	 of	 specific	 states	 of	 wakefulness	
(this	amounts	 to	choosing	T	<	1	s,	because	a	 time	scale	 longer	
than	 1	 s	 would	 likely	 merge	 different	 network	 states,	 see	
(McGinley	et	al.,	2015a))	and	2)	 it	was	 long	enough	to	average	
synaptically-driven	𝑉8	dynamics	and	to	analyze	network	activity	
beyond	its	own	relaxation	time	constant	(i.e.	T	≫	10	ms,	see	the	
previous	section	for	the	model’s	properties	and	(Reinhold	et	al.,	
2015)	 for	 a	 concordant	 experimental	 estimate	 in	 the	 mouse	
visual	 cortex).	 We	 then	 examined	 in	 detail	 the	 properties	 of	
neural	activity	in	each	such	epoch.	Similarly	to	previous	findings	
in	 the	 auditory	 (McGinley	 et	 al.,	 2015b)	 and	 visual	 (Reimer	 et	
al.,	 2014)	 cortices	 of	 awake	 behaving	 mice,	 we	 found	 non-
rhythmic	 epochs	 of	 network	 activity	 in	 the	 primary	
somatosensory	 cortex	 that	 showed	 various	 levels	 of	 mean	
membrane	 depolarization	 𝜇:.	 Figure	 4B	 shows	 representative	

membrane	potential	epochs	and	their	fraction	of	occurrence	at	
the	various	𝜇:	levels	over	single	cells	(color-coded	in	Figure	4C)	
and	over	the	ensemble	data	(grey	area	 in	Figure	4C).	Few	cells	
(n	 =	 3	 out	 of	 22,	 for	 example	 “Cell	 10”	 shown	 in	Figure	 4A,B)	
displayed	non-rhythmic	activity	over	a	wide	 range	of	𝜇:	 levels	
(>	20	mV).	The	majority	of	cells	displayed	non-rhythmic	activity	
in	 a	 narrower	 range	 of	 depolarization	 levels	 𝜇:	 (for	 the	
remaining	n	=	19	out	of	22	the	extent	of	𝜇:	was	10.8	±	4.1	mV;	
e.g.	 “Cell	 1”	 corresponded	 to	 a	 recording	 exhibiting	 only	
hyperpolarized	 non-rhythmic	 activity	 and	 “Cell	 22”	
corresponded	to	a	recording	exhibiting	mostly	depolarized	non-
rhythmic	 activity,	 see	 Figure	 4C).	 This	 limited	 variability	might	
have	partly	been	due	to	the	relatively	short	durations	of	our	𝑉8	
samples	that	resulted	from	the	strict	criteria	we	used	to	define	
stable	𝑉8	recordings	(enabling	us	to	perform	the	analysis	on	an	
absolute	𝜇:	scale,	see	Methods).		

One	 central	 prediction	 of	 the	model	 was	 the	 occurrence	 of	 a	
range	of	 different	 states	 at	 various	mean	depolarization	 levels	
𝜇:	 with	 mean	 spiking	 activity	 spanning	 over	 3	 -	 4	 orders	 of	
magnitude	 (see	 inset	 in	 Figure	 5A).	 This	 prediction	 was	
confirmed	 in	 our	 experimental	 data:	 hyperpolarized	 epochs	
displayed	 firing	 rates	 below	 0.1	 Hz,	 while	 depolarized	 epochs	
exhibited	firing	activity	in	the	10	Hz	range	(see	Figure	5A,	in	the	
right	 inset	we	 show	 representative	epochs	exhibiting	 spikes	at	
low,	intermediate,	and	high	𝜇:	 levels).	The	wide	range	of	firing	
rates	(suggestive	of	exponential	amplification	of	spiking	activity)	
across	 the	 non-rhythmic	 states	 of	 wakefulness	 with	 different	
mean	 depolarization	 levels	 𝜇:	 was	 further	 confirmed	 by	
extracellular	 recordings	 (see	 Figure	 S5).	 Indeed,	 we	 combined	

Figure	4.	In	the	barrel	cortex	of	awake	mice,	non-rhythmic	activity	is	associated	with	various	membrane	depolarization	levels.	(A)	Intracellular	
recordings	of	𝑉8 	 fluctuations	 (top)	during	 spontaneous	activity	 and	maximum	power	of	 	𝑉8 	 in	 the	 [2,	 10]	Hz	band	 (bottom).	Within	 this	103	 s	
sample,	we	highlight	the	occurrence	of	three	periods	classified	as	non-rhythmic	epochs	(blue,	brown,	and	orange	stars)	and	one	rhythmic	epoch	
(purple	 star).	Note	 the	Pow[?,WA]gh

8'i 	 index	being	below	 (for	 the	 three	non-rhythmic	 events)	 and	above	 (for	 the	 rhythmic	 event)	 the	 rhythmicity	
threshold.	(B)	Three	𝑉8 	samples	classified	as	(i)	rhythmic	epochs,	(ii)	low	𝜇: 	epochs:	𝜇:	<	-70mV,	(iii)	intermediate	𝜇: 	epochs:	𝜇: ∈	[-70,	-60]	mV	
and	(iv)	high	𝜇: 	epochs:	𝜇:	>	-60	mV.	The	black	traces	correspond	to	the	samples	highlighted	in	A,	the	two	other	samples	(copper	colors)	were	
extracted	from	the	same	intracellular	recording.	(C)	Fraction	of	occurrence	of	the	rhythmic	activity	epochs	together	with	the	non-rhythmic	epochs	
at	their	respective	levels	of	mean	depolarization	𝜇: .	Single	cell	recordings	have	been	sorted	with	respect	to	their	average	level	of	non-rhythmic	
activity	𝜇: 	and	color-coded	accordingly.	We	highlight	three	cells	(see	main	text):	Cell	1,	Cell	22,	and	Cell	10	(shown	in	A	and	B).	The	plain	grey	area	
represents	the	dataset	after	pooling	together	all	𝑉8 	recordings	(n	=	22	cells).	Note	that	the	fraction	of	occurrence	of	rhythmic	activity	in	the	pooled	
data	corresponds	to	50%	as	a	consequence	of	the	definition	of	the	rhythmicity	threshold	(see	Methods).	
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the	 previously	 described	 intracellular	 recordings	 with	
extracellular	recordings	of	the	multiunit	activity	in	layer	2/3	(N	=	
4	mice,	n	=	14	cells,	see	Methods).	We	found	that	the	logarithm	
of	 the	 mean	 multi-unit	 activity	 within	 non-rhythmic	 epochs	
exhibited	 a	 robust	 linear	 correlation	 with	 the	 depolarization	
levels	𝜇:	(correlation	coefficient	c	=	0.5,	one-tailed	permutation	
test:	p	<	1e-5,	see	Figure	S5).		This	suggests	that	the	wide	range	
of	 rates	predicted	by	 the	model	was	observed	not	only	 at	 the	
single	neuron	level	but	also	at	the	mass	circuit	activity	level,	as	
expected	by	the	theoretical	model.		

A	 more	 detailed	 characterization	 of	 the	 correspondence	
between	model	predictions	and	 in	vivo	dynamics	was	obtained	
by	analyzing	how	the	 features	of	 	𝑉8	 in	each	epoch	depended	
on	 the	 mean	 membrane	 depolarization	 𝜇:	 level	 in	 the	 same	
epoch.	We	measured	 in	 real	 data	 the	 following	 feature	 of	𝑉8	
fluctuations	that	were	previously	described	in	our	model:	1)	the	
standard	deviation,	𝜎:;	2)	 the	skewness	of	 the	𝑉8	distribution,	
𝛾:;	 3)	 the	 speed	 of	 the	 𝑉8	 fluctuations	 quantified	 by	 the	
autocorrelation	 time,	 𝜏:	 (see	Methods).	 The	 network	 model	
predicted	 that:	 1)	 the	 𝜎:-	𝜇:	relationship	 should	 be	 non-
monotonic	with	 a	 peak	 in	 the	 intermediate	𝜇:	 range	 (inset	 of	
Figure	5B);	2)	the	𝛾:-𝜇:	relationship	should	start	from	strongly	
positively	 skewed	 values	 (𝛾: ∼	1)	 and	monotonically	 decrease	
with	𝜇:	(inset	of	Figure	5C);	3)	the	𝜏:-𝜇:	relationship	should	be	
monotonically	decreasing	with	a	near	15	ms	drop	in	𝜏:	(inset	of	
Figure	5D).	Remarkably,	we	 found	all	 those	 features	 in	 the	𝑉8	
fluctuations	 properties	 of	 our	 experimental	 recordings	 (Figure	
5B-D).	 Moreover,	 those	 relationships	 were	 found	 highly	
significant	 as	 the	 null	 hypothesis	 of	 a	 zero-slope	 relationship	
corresponded	 to	 very	 low	 probabilities	 (p	 <	 5e-5	 for	 all	
relationships,	 see	 the	 individual	 p-values	 in	 Figure	 5B-D).	 The	
model	prediction	of	a	transition	toward	Gaussian	fluctuations	at	
high	 𝜇:	 (Figure	 3F)	 was	 also	 found	 to	 hold	 on	 real	 data:	 we	
fitted	 the	 pooled	 distributions	 with	 a	 Gaussian	 curve	 (see	

Methods)	and	the	coefficient	of	determination	was	found	to	be	
𝑅?	=	 0.99	±	 0.01	 above	 𝜇:	=	 -60	 mV	 compared	 to	𝑅?	=	 0.96	
±	0.04	 below	 𝜇:	=	 -60	 mV	 (n	 =	 55	 𝜇:-defined	 distributions	
across	 13	 cells	 for	 𝜇:	>	 -60	 mV	 and	 n	 =	 129	 𝜇:-defined	
distributions	 across	 the	 22	 cells	 for	𝜇: 	≤	-60	mV,	 p	 =	 3.2e-5,	
unpaired	 t-test).	 Taken	 together,	 these	 results	 show	 that	 the	
spectrum	of	activity	 in	 the	 theoretical	model	predicted,	 in	 real	
data,	 the	 electrophysiological	 features	 of	 the	 non-rhythmic	
epochs	as	a	 function	of	 their	𝜇:	 level	both	 in	 terms	of	 spiking	
activity	and	𝑉8	fluctuations.			

Activity	levels	along	the	spectrum	are	characterized	by	different	
computational	properties	

The	 in	 vivo	 recordings	 displayed	 in	 Figure	 4	 showed	 that	
networks	transiently	settle	at	various	points	along	the	spectrum	
of	 asynchronous	 dynamics.	 Does	 the	 shift	 between	 activity	
states	within	 the	spectrum	affect	 the	capabilities	of	 the	circuit	
to	 encode	 afferent	 information?	 To	 investigate	 how	 the	
transition	 between	 asynchronous	 activity	 regimes	 may	 shape	
the	computational	properties	of	the	network,	we	designed	two	
types	of	afferent	stimulus	sets	that	we	fed	to	the	model,	both	in	
the	AD	regime	and	in	the	RD	regime	(Figure	6).	

The	 first	 stimulus	 set	 mimicked	 the	 precise	 spatiotemporal	
patterns	 often	 evoked	 by	 sensory	 stimuli	 (Foffani	 et	 al.	 2009;	
Luczak	 et	 al.,	 2015;	 Panzeri	 et	 al.,	 2010;	 Petersen	 et	 al.,	 2008;	
Urbain	et	al.,	2015).	 It	corresponded	to	a	pattern	of	sequential	
presynaptic	 co-activations,	 distributed	 over	 a	 500	 ms	 time	
window	and	it	targeted	a	subset	of	100	neurons	within	the	full	
network	 (maintaining	 the	connectivity	probability	and	synaptic	
weights	of	the	background	activity,	see	Methods).	We	show	in	
Figure	6A	an	example	of	such	an	afferent	pattern.	Figure	6B	and	
6C	 show	 the	 response	 in	 the	 targeted	 sub-network	 over	
different	 trials	 (where	 the	 realizations	 of	 background	 activity	
vary)	 for	 the	 AD	 and	 RD	 regimes,	 respectively.	 The	 network	

Figure	 5.	 Various	 levels	 along	 the	 theoretical	 spectrum	 predict	 the	 electrophysiological	 signature	 of	 the	 different	 non-rhythmic	 epochs	 of	
wakefulness	in	mouse	barrel	cortex.	(A)	Spiking	probability	(𝜈( 	in	Hz)	of	intracellularly	recorded	layer	2/3	pyramidal	cells	within	𝜇:-classified	epochs.	
The	red	dashed	line	is	a	linear	regression	between	𝜇: 	and	𝑙𝑜𝑔WA(𝜈()	(see	Methods).	In	the	right	inset,	we	show	300	ms-long	sample	epochs	displaying	
spikes	for	three	levels	of	𝜇: 	(blue,	brown,	and	orange	stars	in	main	plot).	See	also	Figure	S5	for	extracellular	recordings	of	population	spiking	activity.		
In	the	main	plots,	we	show	the	co-modulation	between	the	depolarization	level	and	𝜇: 	(at	a	given	𝜇: 	level,	mean	±	s.e.m.	over	the	cells	displaying	
that	specific	𝜇: 	level,	see	Figure	4C).	The	correlation	coefficients	and	the	p-value	of	a	one-tailed	permutation	test	(see	Methods)	are	reported.	In	top	
inset,	we	 show	 the	 predictions	 of	 the	 network	model.	 (B)	Co-modulation	 between	 the	 depolarization	 level	𝜇: 	 and	 the	 standard	 deviation	 of	 the	
fluctuations	𝜎: .	Note	 that	 the	 linear	 regression	has	 been	 split	 into	 two	 segments	 (depicted	 in	 red)	 to	 test	 the	 significance	of	 the	non-monotonic	
relationship.	(C)	Co-modulation	between	𝜇: 	and	the	skewness		𝛾: 	of	the	𝑉8 	distribution.	(D)	Co-modulation	between	𝜇: 	and	the	autocorrelation	time	
𝜏: 	of	the	𝑉8 	fluctuations.		
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activity	across	trials	was	highly	structured	by	the	stimulus	in	the	
AD	regime	(Figure	6B),	while	the	stimulus-evoked	response	was	
less	reliable	and	more	diluted	in	the	RD	regime	(Figure	6C).	We	
generated	various	random	realizations	of	such	afferent	patterns	
(see	other	examples	 in	Figure	S6A)	and	analyzed	the	reliability	
of	 the	 various	 responses	 across	 trials	 using	 a	 scalar	metric	 for	
multi-unit	activity	(van	Rossum	2001,	with	a	temporal	sensitivity	
of	 5	ms,	 see	Methods).	We	 found	 that	 the	 trial-to-trial	 cross-
correlation	 between	 the	 output	 spiking	 responses	 and	 the	
presented	 afferent	 pattern	 was	 significantly	 larger	 in	 the	 AD	
than	in	the	RD	regime	(p	=	6e-3,	paired	t-test,	see	Figure	6D).	By	
including	the	distance	of	the	above	metric	in	a	nearest-neighbor	
classifier,	we	constructed	a	decoder	retrieving	both	the	pattern	
identity	and	the	stimulus	onset	from	the	output	spiking	activity	
of	the	target	population	(see	Methods).	We	used	this	classifier	
to	 analyze	 whether	 the	 ability	 of	 the	 AD	 regime	 to	 generate	
reliable	output	patterns	(reported	in	Figure	6D)	would	lead	to	a	
robust	 joint	decoding	of	both	 the	 identity	 and	onset	 timing	of	
the	afferent	input	pattern.	We	found	that	these	spatiotemporal	
features	 of	 the	 afferent	 input	 pattern	were	 faithfully	 encoded	
by	the	activity	of	the	target	network	in	the	AD	regime	(accuracy	
for	 the	 joint	 decoding	 of	 both	 afferent	 pattern	 identity	 and	
onset:	83.0	±	10.1	%,	Figure	6E).	 In	contrast,	 in	 the	RD	regime	
the	decoding	accuracy	remained	close	to	chance	level	(7.0	±	9.0	

%;	Figure	6E).	The	explanation	for	this	difference	can	be	found	
in	 the	drastically	different	 levels	of	activity	 in	 the	 two	 regimes	
(𝜈(	=	0.02±	0.01	Hz	for	the	AD	regime	compared	to	𝜈(	=	25.9	±	
0.6	Hz	for	RD).	In	the	AD	regime,	the	patterned	structure	of	the	
input	strongly	constrained	the	spiking	activity	of	the	population	
(as	the	stimulus-evoked	spikes	represented	92.4	±	4.4	%	of	the	
overall	activity),	therefore	leading	to	a	reliable	encoding	of	the	
input	 identity.	 In	 the	 RD	 regime,	 the	 stimulus-evoked	 spiking	
was	confounded	by	the	strong	ongoing	dynamics	in	single	trials	
in	the	RD	regime	(stimulus-evoked	activity	only	represented	6.7	
±	 5.7	 %	 of	 the	 overall	 activity)	 therefore	 impeding	 a	 reliable	
decoding	of	activity	patterns.	

We	then	fed	the	network	with	waveforms	of	afferent	activity	at	
various	 amplitudes	 targeting	 the	 entire	 network	 without	 any	
spatiotemporal	 structure	 within	 the	 stationary	 period	 of	 the	
afferent	waveform	 (see	Methods	 and	Figure	 6F).	We	decoded	
the	 level	 of	 afferent	 activity	 from	 the	 sum	 of	 excitatory	
population	activity	within	 the	 recurrent	network	 (Figure	6G-H,	
for	 the	 AD	 and	 RD	 regimes,	 respectively).	 Classically	 (Murphy	
and	Miller,	 2009;	 Tsodyks	 and	 Sejnowski,	 1995;	 Van	Vreeswijk	
and	Sompolinsky,	1996),	in	the	RD	regime,	the	network	showed	
a	linear	response	of	high	gain	(Figure	6I	and	inset	of	Figure	6H)	
and	 the	 response	waveforms	 accurately	 represented	 the	 level	

Figure	 6.	 Distinct	 computational	 properties	 along	 the	 activity	 spectrum:	 the	 AD	 regime	 enables	 the	 precise	 encoding	 of	 complex	 patterns	 of	
presynaptic	activity	while	 the	RD	regime	exhibits	high	population	responsiveness	 to	afferent	 inputs.	 (A)	Representative	example	of	a	presynaptic	
activity	pattern	which	corresponds	to	ten	activations	of	different	groups	of	ten	synchronously	spiking	units	(randomly	picked	within	the	one	hundred	
cells	of	the	presynaptic	population)	in	a	500	ms	window	(see	Methods).	(B)	Spiking	response	of	a	sub-network	of	neurons	(20	cells)	across	20	trials	in	
the	AD	regime.	The	y-axis	indexes	both	the	neuron	identity	(color-coded)	and	the	trial	number	(vertical	extent	on	a	given	color	level).	(C)	Same	than	B	
for	the	RD	regime.	(D)	Mean	cross-correlation	of	the	output	spiking	patterns	across	realizations	for	a	given	input	pattern	(mean	±	s.e.m	over	10	input	
patterns,	for	each	input	pattern	we	computed	the	mean	cross-correlation	across	all	pairs	of	observations	of	the	20	realizations,	two-sided	Student’s	t-
test).	(E)	Performance	 in	decoding	the	pattern	 identity	 from	the	sub-network	spiking	patterns	with	a	nearest-neighbor	classifier	 (see	Methods).	The	
mean	accuracy	±	s.e.m.	over	ten	patterns	of	ten	test	trials	each	is	shown	(two-sided	Student’s	t-test).	The	thin	dashed	line	indicates	chance	level	(from	
10	patterns	and	10	onsets:	1%).	(F)	The	model	network	is	fed	with	a	stimulus	whose	firing	rate	envelope	is	of	varying	maximum	amplitudes	stimulus	
𝛿𝜈'8'i 	 (amplitude	 values	 are	 color-coded).	 (G)	 Mean	 and	 standard	 deviations	 over	 n	 =	 10	 trials	 of	 the	 increase	 in	 excitatory	 population	 activity	
𝛿𝜈( 𝑡 = 𝜈( 𝑡 − 𝜈(u;'; 	in	the	AD	regime.	The	stationary	activity	level	𝜈(u;'; 	was	discarded	and	the	rates	were	smoothed	with	a	30	ms	Gaussian	filter.	In	
the	 inset,	 the	 response	average	 in	 the	 time	window	𝑇	 (highlighted	by	a	grey	bar	on	 the	 time	axis)	as	a	 function	of	 the	maximum	amplitude	of	 the	
stimulus	𝛿𝜈'8'i 	is	shown.	(H)	Same	than	F	for	the	RD	regime.	(I)	Slope	of	the	relationship	between	 𝛿𝜈( Z 	and	𝛿𝜈'8'i 	(mean	+/-	s.e.m	over	n=10	trials,	
statistical	analysis:	two-sided	Student’s	t-test).	(J)	Decoding	the	sub-network	rate	waveform	with	a	nearest-neighbor	classifier	(see	Methods).	The	thin	
dashed	line	indicates	chance	level	(from	the	5	waveforms	shown	in	F:	20	%).	The	mean	accuracy	±	s.e.m.	over	five	patterns	of	ten	test	trials	each	is	
shown	(two-sided	Student’s	t-test).	
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of	the	afferent	input	waveforms	(see	Figure	6H).	We	found	that,	
however,	this	was	not	the	case	in	the	AD	regime.	In	this	regime,	
the	population	 response	exhibited	a	weak	amplification	of	 the	
input	signal	(note	the	much	lower	gain	in	Figure	6I)	and	it	failed	
to	accurately	 follow	 the	 input	 (single	 trial	 responses	 in	 the	AD	
regime	had	significantly	lower	cross	correlations	with	the	input	
waveform:	0.81	±	0.26	for	AD	vs	0.87	±	0.23	for	RD,	p	=	4.4e-3,	
two-tailed	 Student’s	 t-test).	 When	 decoding	 the	 input	 signal	
from	the	single-trial	time-varying	rate	of	a	small	populations	of	
the	network	(100	excitatory	neurons,	a	population	size	equal	to	
that	 used	 above	 for	 the	 decoding	 of	 the	 precise	 afferent	
spatiotemporal	patterns),	we	now	observed	a	higher	decoding	
accuracy	 in	 the	 RD	 regime	 than	 in	 the	 AD	 regime	 (Figure	 6J,	
nearest-neighbor	 decoder	 combined	 with	 a	 rate	 waveform	
metric,	see	Methods),	suggesting	that	the	RD	regime	favors	the	
reliable	encoding	of	the	overall	strength	of	the	afferent	activity	
thanks	to	its	high	amplification	properties.	

Discussion	

Our	 study	 reports	 a	 novel	 emergent	 feature	 of	 recurrent	
dynamics	 in	 spiking	 network	 models:	 a	 spectrum	 of	
asynchronous	activity	states	in	which	firing	activity	spans	orders	
of	magnitude	 and	 in	 which	 the	 predominance	 of	 the	 synaptic	
activity	 shifts	 from	 the	 afferent	 input	 component	 (AD)	 to	 the	
recurrent	 input	 component	 (RD).	 Importantly,	 the	 continuous	
set	 of	 network	 states	 predicted	 by	 the	 model	 matches	
qualitatively	and	quantitatively	the	set	of	non-rhythmic	cortical	
states	observed	in	awake	rodents.	Our	model	predicts	that	each	
regime	 has	 marked	 electrophysiological	 signatures,	 and	 the	
model	predictions	were	validated	by	experimental	recordings	of	
asynchronous	 activities	 in	 superficial	 layers	 of	 the	
somatosensory	cortex	in	awake	mice.	Moreover,	we	found	that,	
under	 specific	 biophysical	 constraints	 (discussed	 below),	 two	
qualitatively	 different	 computational	 properties	 could	 coexist	
within	 the	 same	 network:	 the	 reliable	 encoding	 of	 complex	
presynaptic	activity	patterns	in	the	AD	regime	together	with	the	
fast	 and	 high-gain	 response	 properties	 associated	 to	 balanced	
recurrent	amplification	in	the	RD	regime.		

Using	 rate-based	 models	 of	 cortical	 dynamics,	 previous	
theoretical	 analysis	 suggested	 that	 recurrent	 networks	 can	 be	
made	to	operate	in	afferent-driven	regime	and	recurrent-driven	
regime	 (Ahmadian	 et	 al.,	 2013;	 Rubin	 et	 al.,	 2015).	 However,	
this	seminal	work	left	important	questions	unanswered.	Being	a	
phenomenological	 rate	model,	 it	 could	 neither	 investigate	 the	
detailed	 biophysical	 mechanisms	 behind	 the	 creation	 and	
coexistence	 of	 these	 regimes	 in	 the	 same	 network	 nor	 reveal	
the	computational	advantages	in	terms	of	information	coding	of	
each	 state	 resulting	 from	 their	 spiking	 dynamics.	 Finally,	 this	
previous	 work	 was	 proposed	 as	 a	 model	 for	 multi-input	
integration	 in	sensory	cortices	and	did	not	 investigate	whether	
such	 a	 theoretical	 picture	 could	 be	 used	 to	 explain,	 in	
quantitative	 terms,	 the	 electrophysiological	 signature	 of	
neocortical	dynamics	across	the	different	states	of	wakefulness.	
The	 present	 study	 developed	 those	 aspects	 through	 the	

combination	 of	 biophysically	 plausible	 spiking	 network	
modeling	and	experimental	recordings	in	awake	rodents.	

Key	features	of	the	model	shed	light	on	the	biophysical	circuit-
level	mechanisms	for	the	emergence	of	the	spectrum	

The	present	study	detailed	the	biophysical	mechanisms	as	well	
as	 the	necessary	 conditions	 for	 the	emergence	of	 spectrum	of	
states.	 Our	 work	 showed	 that	 the	 observed	 spectrum	 of	
asynchronous	 regimes	 and	 their	 functional	 diversity	 is	 an	
emergent	 dynamical	 property	 of	 spiking	 networks,	 because	 it	
relies	 on	 the	 interactions	 between	 the	 different	 mechanisms	
characterizing	 such	 systems:	 synaptically-mediated	 single	 cell	
integration,	 spike-and-reset	 mechanisms,	 and	 leak	
repolarization	currents	(see	Figure	1).	 	Unlike	previous	analysis	
where	 afferent	 synaptic	 currents	were	described	by	 stochastic	
processes	 only	 constrained	by	 a	mean	 and	 a	 variance	 (Brunel,	
2000;	 Renart	 et	 al.,	 2004;	 van	 Vreeswijk	 and	 Sompolinsky,	
1996),	 	we	 explicitly	modeled	 afferent	 activity	 as	 a	 shot	 noise	
process	 producing	 post-synaptic	 events	 of	 excitatory	 currents.	
At	 the	 single	 cell	 level,	 this	 feature	 was	 crucial	 to	 produce	
skewed	membrane	potential	distribution	(DeWeese	and	Zador,	
2006;	Richardson	et	al.,	2010;	Tan	et	al.,	2014).	At	the	network	
level,	it	enabled	the	emergence	of	the	AD	regime.	Crucial	to	our	
model	 was	 also	 the	 presence	 of	 conductance-based	
interactions.	This	feature	of	the	model	allowed	synaptic	efficacy	
to	 be	 high	 at	 low	 levels	 of	 activity	 while	 being	 strongly	
dampened	 at	 higher	 level	 (Kuhn	 et	 al.,	 2004).	 Other	 types	 of	
activity-dependent	modulation	of	synaptic	transmission	such	as	
short-time	depression	(Tsodyks	and	Markram,	1997)	or	synaptic	
disfacilitation	(Urban-Ciecko	et	al.,	2015)	may	also	contribute	to	
this	 mechanism.	 On	 a	 dynamical	 perspective,	 this	 property	
constrained	uncontrolled	increase	of	the	𝑉8	fluctuations	upon	a	
2-3	orders	 of	magnitude	 raise	 in	 recurrent	 activity	 and	helped	
maintaining	stable	asynchronous	dynamics	over	the	large	range	
of	 firing	 rates.	 Note	 however,	 that,	 although	 this	 feature	 of	
single	 cell	 integration	 is	 a	 necessary	 mechanism	 for	 the	
emergence	of	the	spectrum,	 it	 is	not	a	sufficient	condition	and	
the	non-monotonic	𝜎:-𝜇:	relationship	is	not	generally	observed	
in	 the	 network	 model	 (in	 the	 “strong	 recurrence”	 network	 of	
Figure	 2,	 although	 individual	 cell	 contain	 this	 single	 cell	
mechanism,	 the	emergent	dynamics	at	 the	network	 level	does	
not	 display	 the	 non-monotonic	 relationship	 because	 it	 only	
displays	RD	regimes).		

The	 key	 variable	 governing	 network	 state	 modulation	 in	 the	
model	was	 the	 level	 of	 afferent	 excitation	 (Figure	1	 and	3).	 In	
accordance	with	such	a	dependency,	 shifts	 in	network	state	 in	
the	 cortex	 have	 been	 observed	 to	 be	 controlled	 by	 thalamic	
excitation	 (Poulet	 et	 al.,	 2012).	 Network	 state	modulation	 has	
also	 been	 shown	 to	 be	 regulated	 by	 the	 activity	 of	 other	
subcortical	 structures	 (Reimer	 et	 al.	 2016;	 Zagha	 and	
McCormick,	2015).	Whether	such	contribution	is	mediated	by	a	
net	 increase	 in	 afferent	 excitatory	 input	 (i.e.	 by	 the	 effect	
described	 in	Figure	 1,	 3),	 by	 the	 neuromodulation	 of	 effective	
synaptic	weights	(i.e.	by	the	effect	described	in	Figure	2),	or	by	
any	other	mechanism	remains	to	be	established.		
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Another	 critical	 network	 setting	 to	 obtain	 the	 described	
spectrum	 of	 regimes	 was	 a	 moderate	 strength	 of	 recurrent	
interactions	 (Figure	 2).	 It	 is	 thus	 important	 to	 understand	
whether	 this	 assumption	 is	 valid	 in	 light	 of	 the	 experimental	
evidence	 accumulated	 so	 far.	 Reducing	 the	 strength	 of	
recurrent	 interaction	 to	 single	 numbers	 is,	 however,	 difficult	
given	 the	 high	 heterogeneity	 of	 excitatory	 and	 inhibitory	 cells	
found	 in	 the	 neocortex	 (heterogeneity	 which	 is	 not	 entirely	
replicated	 in	our	simplified	model	 (Jiang	et	al.,	2015;	Markram	
et	al.,	2015)),	and	given	the	area,	layer,	and	species	specificities	
that	 are	 often	 experimentally	 observed.	 This	 complexity	
notwithstanding,	 we	 restrict	 our	 discussion	 here	 to	 mouse	
experimental	 data	 on	 the	 superficial	 cortical	 layers	 (layer	 2/3,	
where	our	experiments	were	performed).	Unitary	post-synaptic	
potentials	 observed	 in	 slice	 recordings	 (maximum	 amplitudes	
below	2	mV	(Jiang	et	al.,	2015;	Lefort	et	al.,	2009;	Markram	et	
al.,	 2015))	 are	 in	 agreement	with	 the	 conditions	of	 “moderate	
weights”	 that	 we	 used	 in	 our	 model	 for	 both	 excitatory	 and	
inhibitory	 synaptic	 transmission	 (at	 -70	 mV,	 our	 model	 gives	
maximal	amplitudes	of	𝛿𝑉=2.1	mV	for	excitatory	synapses	and	
𝛿𝑉=-1.4	mV	for	 inhibitory	synapses,	see	Figure	1A).	Moreover,	
from	 local	 measurements	 of	 excitatory	 projections	 in	 adult	
rodent	 cortex	 (Jiang	 et	 al.,	 2015),	 recurrent	 excitatory	
connections	 seem	 to	 match	 the	 “sparse	 connectivity”	
requirement	 with	 connectivity	 probabilities	 below	 10	 %	 (note	
that	measurements	 in	 the	 juvenile	cortex	point	 toward	slightly	
higher	values	in	the	10-20%	range	(Lefort	et	al.,	2009;	Markram	
et	 al.,	 2015),	 see	 also	 (Barth	 et	 al.,	 2016)).	 In	 contrast,	 local	
measurements	of	inhibitory	projections	in	adult	mice	show	high	
(>	30	%)	connectivity	probabilities,	 in	particular	when	targeting	
interneuronal	 sub-populations	 (Jiang	 et	 al.,	 2015).	 However,	
two	phenomena	might	decrease	the	effect	of	this	experimental	
finding	 when	 considering	 our	 simplified	 excitatory/inhibitory	
network	framework.	First,	given	the	spatial	attenuation	of	those	
connectivity	probabilities	(Jiang	et	al.,	2015),	a	strong	reduction	
is	 expected	 when	 considering	 the	 spatial	 scale	 studied	 here	
(5000	 neurons),	 corresponding	 to	∼ 0.2	mm2	 of	 cortical	 tissue	
(Markram	 et	 al.,	 2015).	 Second,	 connectivity	 values	 and	
connectivity	 patterns	 of	 inhibitory	 projections	 largely	 vary	
depending	on	the	type	of	source	and	target	neurons	(Pfeffer	et	
al.,	2013).	For	example,	while	PV	cells	show	a	high	connectivity	
with	excitatory	neurons,	 other	 types	of	 interneurons	 (e.g.,	 the	
vasoactive	 intestinal	 peptide–expressing	 (VIP)	 cells)	 show	 low	
level	 of	 connectivity	 with	 excitatory	 neurons.	 This	 high	
heterogeneity	across	interneuronal	subtypes	may	thus	result	in	
moderate	average	connectivity	values	for	inhibitory	projections,	
despite	 some	 interneuronal	 classes	 showing	 high	 connectivity	
with	 specific	 targets.	 Altogether,	 although	 previous	
experimental	 observations	 provide	 evidence	 in	 support	 of	 our	
model	 setting,	 the	 extent	 to	 which	 moderate	 strength	 of	
recurrent	interactions	in	the	neocortex	can	be	extended	across	
different	cortices	and	animal	species	remains	to	be	determined.	
This	 is	 even	 more	 true	 considering	 that	 the	 strength	 of	
recurrent	 connectivity	 may	 vary	 over	 time	 (e.g.,	 at	 different	
developmental	stages	and	in	an	activity-based	manner).	

Regarding	 cell	heterogeneity	and	cell	 type-specific	effects,	 it	 is	
interesting	 to	 note	 that	 the	 activity	 of	 one	 main	 class	 of	
disinhibitory	 interneurons,	 the	VIP	 interneurons,	was	observed	
to	 be	 strongly	modulated	 across	 behavioral	 states	 (Lee	 et	 al.,	
2013;	 Pi	 et	 al.,	 2013).	 The	 VIP	 population	 has	 been	 shown	 to	
control	the	level	of	local	recurrent	activity	(Jackson	et	al.,	2016;	
Pi	 et	 al.,	 2013),	 the	 motor	 integration	 in	 the	 primary	
somatosensory	cortex	(Lee	et	al.,	2013)	and	the	gain	of	cortical	
responses	(Fu	et	al.,	2014).	Similarly,	in	the	model,	the	inclusion	
of	a	disinhibitory	circuit	broadened	the	extent	of	the	spectrum	
of	 regimes	 by	 enabling	 high	 activity	 states	 in	 the	 network	
(Figure	 3B)	 which	 were	 associated	 to	 strong	 recurrent	
amplification	properties	(Figure	6G-H).		
Electrophysiological	signature	of	non-rhythmic	network	
regimes:	model	vs	experiments	

One	 important	 feature	 of	 our	 theoretical	 description	 is	 that	 it	
makes	 clear	 predictions	 about	 how	 several	 major	
experimentally	 measurable	 quantities	 change	 across	 states.	
Generating	 testable	 prediction	 is	 key	 for	 using	 the	 model	 to	
understand	 which	 circuit	 mechanisms	 are	 at	 work	 in	 the	 real	
cerebral	cortex,	and	for	understanding	how	to	further	refine	the	
realism	 and	 predictive	 power	 of	 the	 model.	 In	 our	 case,	 the	
model	 generated	 four	 predictions	 (derived	 both	 from	 the	
numerical	 analysis	 of	 the	 model,	 see	 main	 text,	 and	 from	 its	
analytical	 study,	 see	 Supplementary	 Information)	 that	 were	
non-trivially	 expected	 to	happen	 in	 any	model.	 This	non-trivial	
aspect	 is	 visible	 on	 Figure	 2,	 the	 “strong	 recurrence”	 network	
(yellow	curves)	contains	the	same	biophysical	mechanisms	than	
the	 “moderate	 recurrence”	 network,	 but	 does	 not	 lead	 to	 the	
same	 electrophysiological	 signature	 because	 of	 the	 parameter	
dependency	 of	 the	 emergent	 dynamics.	 We	 could	 therefore	
analyze	 such	 signature	 on	 cortical	 data	 and	 thus	 give	 insights	
about	cortical	mechanisms	and	circuit	function.		

A	major	prediction	of	our	model,	confirmed	by	the	cortical	data,	
was	 the	 presence	 of	 a	 strongly	 non-monotonic	 relationship	
between	 𝜎:	 and	 𝜇:	 (Figure	 5B)	 as	 neural	 activity	 increases	
across	states	in	the	spectrum	(Figure	5A).	This	relationship	goes	
against	 a	 simple	 expectation	 (Campbell’s	 theorem,	 see	 (Daley	
and	 Vere-Jones,	 2003))	 which	 is	 derived	 from	 considering	
𝑉8	dynamics	as	the	result	of	summed	excitatory	and	 inhibitory	
processes	 (Kuhn	 et	 al.,	 2004).	 Importantly,	 experimental	
measurements	that	we	performed	in	the	somatosensory	cortex	
of	awake	mice	(Figure	5B),	as	well	as	earlier	data	(McGinley	et	
al.,	2015b;	Polack	et	al.,	2013),	confirmed	the	predictions	of	the	
model	and	exhibited	a	non-monotonic	𝜎:-𝜇:	relationship	with	a	
clear	 decay	 at	 high	 𝜇:,	 suggesting	 the	 presence	 of	 this	 key	
model	 mechanism	 in	 real	 cortical	 circuits.	 	 Our	 model	 also	
predicted	 that	 the	 autocorrelation	 time	 of	 the	𝑉8	fluctuations	
𝜏:	decreases	with	the	mean	membrane	potential	value	𝜇:.	This	
feature,	which	we	also	found	to	be	present	in	cortical	data	(we	
observed	a	linear	decrease	of		𝜏:	with	𝜇:;	Figure	5D),	 in	terms	
of	 mechanisms	 is	 likely	 due	 to	 the	 fact	 that	 single	 neuron	
integration	 is	 faster	 upon	 an	 increase	 of	 recurrent	 activity	
(Destexhe	and	Paré,	1999).	 	From	the	functional	point	of	view,	
this	 feature	 is	 crucial	 to	 enable	 the	 non-trivial	 dynamical	
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property	of	displaying	 fast	 responses	 in	 the	RD	 regime	 (Figure	
6H),	 resulting	 in	 the	ability	of	potentially	 tracking	 variations	 in	
the	 input	 at	 time	 scales	 of	 few	 milliseconds.	 The	 model	
predicted	 that	𝛾:	 is	 reduced	as	 the	 frequency	of	post-synaptic	
events	increases	and	therefore	makes	the	distribution	closer	to	
its	 “diffusion	 approximation”,	 i.e.	 a	 Gaussian	 distribution	
(analogous	to	a	“large	number	limit”	where	statistical	moments	
beyond	second	order	tend	to	vanish,	see	(Daley	and	Vere-Jones,	
2003)).	 Therefore,	 a	 prediction	 of	 the	 model	 is	 a	 strong	 link	
between	 differences	 in	 dynamical	 properties	 of	 states	 and	
differences	 in	 membrane	 potential	 statistics,	 with	 the	 latter	
changing	 systematically	 from	non-Gaussian	 to	Gaussian	 across	
different	 regimes.	This	was	validated	 in	experimental	data	 (we	
observed	a	linear	decrease	of	𝛾:	with	𝜇:;	Figure	5C).		

Finally,	 our	 model	 makes	 predictions	 about	 how	 a	 cortical	
circuit	may	respond	to	a	strong	sustained	afferent	input	(Figure	
3C)	 that	 emulates	 the	 input	 driving	 primary	 sensory	 cortices	
upon	 the	 static	 presentation	 of	 an	 optimal	 receptive-field	
stimulus.	 Recent	 experimental	 observations	 in	 the	 awake	
mammalian	 cortex	 showed	 three	 prominent	 phenomena	 in	
response	 to	 this	 type	 of	 sensory	 stimuli.	 First,	 in	 the	 mouse	
visual	cortex,	the	presentation	of	a	grating	was	associated	with	
the	 predominance	 of	 the	 recurrent	 component	 compared	 to	
the	 afferent	 (thalamic)	 component	 of	 synaptic	 excitation	
(Reinhold	 et	 al.,	 2015),	 together	with	 a	 fast	 time	 scale	 for	 the	
relaxation	 of	 the	 network	 activity	 (𝜏YZ[\ ∼10	 ms).	 Second,	
such	a	stimulus	also	led	to	the	transient	prevalence	of	inhibitory	
conductances	 (Haider	 et	 al.,	 2013),	 a	 situation	 consistent	with	
balanced	currents	given	the	asymmetry	of	the	driving	forces	for	
excitatory	 and	 inhibitory	 currents.	 Third,	 in	 the	monkey	 visual	
cortex	 the	 presentation	 of	 a	 grating	 triggered	 a	 transition	 to	
Gaussian	membrane	potential	fluctuations	(Tan	et	al.,	2014).	In	
light	of	 the	model	presented	 in	 this	 study,	 those	experimental	
observations	 are	 natural	 correlates	 of	 the	 stimulus-evoked	
dynamics:	a	strong	afferent	excitatory	input	transiently	switches	
network	 activity	 toward	 a	 network	 regime	 where	 recurrent	
input	 dominates	 synaptic	 activity	 (Figure	 1C),	 the	 relaxation	
time	 constant	 is	 low	 (Figure	 3F),	 depolarized	 fluctuations	
become	 Gaussian	 (Figure	 3G),	 and	 inhibitory	 conductances	
dominate	(Figure	1K).	

Hypothetical	functions	of	the	various	non-rhythmic	waking	
states	suggested	by	the	model	

The	 transition	 toward	 aroused	 or	 attentive	 states	 elicits	
desynchronization	of	network	activity	in	sensory	cortices	(Harris	
and	 Thiele,	 2011).	 This	 mechanism	 is	 thought	 to	 facilitate	
sensory	 processing	 as	 sensory-evoked	 activity	 exhibits	 higher	
signal-to-noise	ratio	when	 low-frequency	cortical	 rhythm	fades	
out	 (Busse	et	al.,	2017;	Harris	and	Thiele,	2011).	However,	 the	
functional	 modulation	 of	 sensation	 beyond	 the	
“desynchronization”	effect,	i.e.	within	the	various	non-rhythmic	
substates	 of	 wakefulness,	 remains	 elusive.	 Our	 computational	
model	 provides	 new	 mechanistic	 insight	 on	 this	 process.	 It	
suggests	 that	 neocortical	 networks	 switch	 their	 encoding	
properties	upon	modulation	of	 the	afferent	excitatory	 input	 in	
order	 to	 either	 faithfully	 encode	 complex	 patterns	 of	

presynaptic	 activity	 (in	 the	 AD	 regime)	 or	 to	 exhibit	 strong	
population-wide	 recurrent	 amplification	 of	 any	 afferent	 input	
(in	the	RD	regime).	Experimental	results	 in	the	mouse	auditory	
and	visual	cortices	seem	to	match	this	model	prediction.	In	fact,	
the	behavioral	state	of	the	animal,	 indexed	based	on	pupil	size	
and	 running	 speed	 into	 low	 arousal,	 moderate	 arousal,	 and	
hyper	 arousal,	 was	 shown	 to	 modulate	 the	 𝑉8	 signature	 of	
cortical	 dynamics	 similarly	 to	 what	 observed	 in	 the	 model	
((McGinley	et	al.,	2015b;	Reimer	et	al.,	2014),	see	(Busse	et	al.,	
2017)	 for	 a	 review).	 Comparing	 the	 experimental	 data	
presented	in	those	studies	with	the	predictions	of	our	study,	the	
AD	 regime	 could	 correspond	 to	 the	 moderate	 arousal	 state	
(characterized	 by	 low	 depolarization	 level,	 non-rhythmic	
membrane	potential	dynamics	associated	to	intermediate	pupil	
size)	while	the	RD	regime	could	correspond	to	the	hyper	arousal	
regime	 (characterized	 by	 depolarized	 fluctuations	 of	 the	
membrane	 potential	 of	 narrow	 variance	 associated	 to	
locomotion	 and/or	 large	 pupil	 size).	 Interestingly,	 moderate	
arousal	 was	 found	 to	 be	 optimal	 for	 the	 discrimination	 of	 a	
tone-in-noise	 auditory	 stimulus	 	 (McGinley	 et	 al.,	 2015b),	 a	
result	 in	 accordance	 with	 the	 model	 prediction	 of	 a	 more	
reliable	subnetworks	activation	(tone-specific	in	this	context)	in	
the	 AD	 regime	 (Figure	 6D).	 A	 theoretical	 explanation	 for	 the	
inverted	U-relationship	 for	detection	performance	with	a	peak	
at	moderate	arousal	(McGinley	et	al.,	2015a,	2015b)	might	thus	
be	 found	 in	 the	 reliable	 encoding	 of	 sensory	 stimuli	
characterizing	 the	 AD	 regime.	 During	 locomotion	 (hyper	
arousal),	neuronal	responses	in	the	visual	system	were	found	to	
be	increased	at	all	orientations	(Reimer	et	al.,	2014),	consistent	
with	 the	 prediction	 of	 an	 unspecific	 recurrent	 amplification	 of	
population	 activity	 in	 the	 RD	 regime	 (Figure	 6H).	 Neuronal	
responses	of	preferred	orientation	were	selectively	potentiated	
only	in	the	moderate	arousal	state	(Reimer	et	al.,	2014).		

Because	the	precise	spatiotemporal	pattern	of	neural	responses	
within	 sensory	 cortices	 is	 thought	 to	 encode	 stimulus	 identity	
(Luczak	et	al.,	2015;	Panzeri	et	al.,	2010),	the	AD	regime	might	
be	 an	 activity	 regime	 optimized	 for	 sensory	 discrimination.	 In	
contrast,	 the	 fast	 and	 unstructured	 amplification	 of	 excitatory	
inputs	 that	 characterizes	 the	 RD	 regime	 may	 potentiate	 the	
cortical	 response	 to	weak	 sensory	 stimuli	 and	 could	 therefore	
represent	 an	 activity	 regime	 optimized	 for	 sensory	 detection.	
Because	 the	electrophysiological	 signature	of	 the	RD	 regime	 is	
found	under	hyper	 arousal	 conditions	 (McGinley	et	 al.,	 2015a)	
and	 it	 is	 presumably	 associated	 to	 a	 high	 cognitive	 load,	 this	
state	 might	 enable	 animals	 to	 focus	 on	 a	 narrow	 piece	 of	
information,	 e.g.	 the	 presence	 (or	 absence)	 of	 a	 sensory	 cue	
within	 the	 environment.	 Future	 work	 focusing	 on	 the	
modulation	 of	 sensation	 in	 awake	 behaving	 animals	 across	
various	sensory	modalities	will	test	the	validity	and	generality	of	
this	theoretical	framework.	

Material	and	Methods	
Animals	

Experimental	procedures	involving	animals	have	been	approved	by	the	
IIT	 Animal	 Welfare	 Body	 and	 by	 the	 Italian	 Ministry	 of	 Health	
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(authorization	 #	 34/2015-PR	 and	 125/2012-B),	 in	 accordance	with	 the	
National	 legislation	 (D.Lgs.	 26/2014)	 and	 the	 European	 legislation	
(European	 Directive	 2010/63/EU).	 Experiments	 were	 performed	 on	
young-adult	 (4-6	 weeks	 old,	 either	 sex)	 C57BL/6J	mice	 (Charles	 River,	
Calco,	 Italy)	 and	 PV-IRES-Cre	 mice	 (B6.129P2-Pvalbtm1(cre)Arbr/J,	 Jackson	
Laboratory,	 Bar	Harbor,	USA).	 The	 animals	were	 housed	 in	 a	 12:12	 hr	
light-dark	 cycle	 in	 singularly	 ventilated	 cages,	with	 access	 to	 food	 and	
water	ad	libitum.	

In	vivo	electrophysiology	in	awake	mice	

	The	experimental	procedures	for	in	vivo	electrophysiological	recordings	
in	awake	head-fixed	mice	have	been	previously	described	(Zucca	et	al.,	
2017).	 Briefly,	 a	 custom	 metal	 plate	 was	 fixed	 on	 the	 skull	 of	 young	
(P22-P24)	mice	two	weeks	before	the	experimental	sessions.	After	a	2-3	
days	 recovery	 period,	 mice	 were	 habituated	 to	 sit	 quietly	 on	 the	
experimental	 setup	 for	 at	 least	 7-10	 days	 (one	 session	 per	 day	 and	
gradually	increasing	session	duration).	The	day	of	the	experiment,	mice	
were	 anesthetized	with	 2.5%	 isofluorane	 and	 a	 small	 craniotomy	 (0.5	
mm	 x	 0.5	mm)	was	 opened	 over	 the	 somatosensory	 cortex	 and	 a	 30	
minutes	 long	 recovery	 period	 was	 provided	 to	 the	 animal	 before	
starting	 the	 recordings.	 Brain	 surface	 was	 kept	 moist	 with	 a	 HEPES-
buffered	artificial	cerebrospinal	fluid	(ACSF).	Current-clamp	patch-clamp	
recordings	were	carried	out	on	superficial	pyramidal	neurons	(100	–	350	
µm).	 3–6	 MΩ	 borosilicate	 glass	 pipettes	 (Hilgenberg,	 Malsfeld,	
Germany)	were	 filled	with	 an	 internal	 solution	 containing	 (in	mM):	 K-
gluconate	140,	MgCl2	1,	NaCl	8,	Na2ATP	2,	Na3GTP	0.5,	HEPES	10,	Tris-
phosphocreatine	10	to	pH	7.2	with	KOH.	For	simultaneous	recordings	of	
multi-unit	 activity	 (Figure	 S5),	 an	 additional	 glass	 pipette	 filled	 with	
ACSF	was	lowered	into	the	tissue	with	the	deeper	tip	placed	at	~300	µm	
from	 pial	 surface.	 Electrical	 signals	 were	 acquired	 using	 a	Multiclamp	
700B	 amplifier,	 filtered	 at	 10	 kHz,	 digitized	 at	 50	 kHz	with	 a	 Digidata	
1440	 and	 stored	 with	 pClamp	 10	 (Axon	 Instruments,	 Union	 City,	 CA).		
We	 recorded	 from	 n	 =	 14	 cells	 in	 N	 =	 4	 Wild	 Type	 (WT)	 C57BL/6J	
animals.	In	the	analysis,	we	added	data	from	n	=	8	cells	in	N	=	4	PV-Cre	
mice	 obtained	 in	 recordings	 that	 were	 designed	 for	 a	 previous	
publication	 (Zucca	 et	 al.,	 2017).	 Those	 recordings	 contained	 period	 of	
optogenetic	stimulation	 (every	5	s,	 see	details	 in	Zucca	et	al.,	2017)	of	
PV	 cells	 intermingled	 with	 period	 of	 spontaneous	 activity.	 The	
stimulation	 epochs	 and	 subsequent	 500	 ms-long	 time	 periods	 were	
discarded	from	the	analysis	 in	the	additional	8	cells	of	PV-Cre	mice.	All	
the	 relations	 displayed	 in	 Figure	 4	 for	 the	 pooled	 data	 (WT	 +	 PV-Cre)	
were	 found	 similarly	 significant	 in	 the	dataset	 containing	only	 the	WT	
mice	(p	<	1e-3	for	all	relations	with	similar	correlation	coefficients,	see	
Figure	S4C).	

Computing	the	electrophysiological	properties	of	non-rhythmic	
epochs	

From	 the	 previously	 described	 recordings,	 we	 extracted	 stable	
membrane	 potential	 samples.	 Cells	 or	 periods	 with	 action	 potential	
peaking	below	0mV	or	displaying	 a	 slow	 (∼1min)	 drift	 in	 the	𝑉8 	 trace	
were	discarded	from	the	analysis.	This	resulted	in	dataset	of	n=22	cells	
with	 a	 recording	 time	 per	 cell	 of	 5.1±3.2	min.	 This	 stability	 criterion	
enabled	us	 to	perform	the	analysis	on	an	absolute	scale	of	membrane	
potential	values	(see	Figure	4	and	Figure	S4).	

We	 first	 estimated	 a	 time-varying	 low	 frequency	power	within	 the	𝑉8 	
samples:	𝑃𝑜𝑤 ?,WA gh

8'i (𝑡).	 To	 this	 purpose,	we	 discretized	 the	 time	 axis	
over	 windows	 of	 500ms	 sliding	 with	 25ms	 shifts	 and	 extracted	 the	
maximum	 power	 within	 the	 [2,10]Hz	 band	 (estimated	 with	 a	 fast	
Fourier	 transform	algorithm,	numpy.fft).	All	 segments	whose	 center	 𝑡) 	
had	a	𝑃𝑜𝑤 ?,WA gh

8'i (𝑡))	value	greater	than	the	rhythmicity	threshold	were	
classified	as	“rhythmic”	and	discarded	from	future	analysis.	The	value	of	
the	rhythmicity	threshold	was	adjusted	so	that	50%	of	the	data	should	

be	 classified	 as	 “rhythmic”	 (see	 Figure	 4C,	 in	 Figure	 S4D	 we	 analyze	
various	 rhythmicity	 threshold	 levels).	 In	 the	 remaining	 “non-rhythmic”	
samples	 𝑡) Yx ,	we	evaluate	the	mean	depolarization	 level	𝜇: 𝑡) 	over	
the	same	500ms	 interval	surrounding	the	center	time	𝑡) 	 (T=500ms	 is	a	
good	tradeoff	between	an	interval	short	enough	to	catch	the	potential	
variability	 in	 network	 regimes	 at	 the	 sub-second	 time	 scale,	 i.e.	 T<1s,	
and	 an	 interval	 long	 enough	 to	 overcome	 the	 relaxation	 time	 of	 the	
network	dynamics,	i.e.	T≫10ms,	see	main	text).	At	that	point,	each	time	
𝑡) 	is	associated	to	a	given	depolarization	level	𝜇:(𝑡)).	We	now	discretize	
the	𝜇: 	axis	in	𝑗 ∈[1,20]	points	from	-80mV	to	-50mV	and	we	count	the	
number	of	segments	𝑛{ 	over	all	𝑡) 	where	𝜇: 𝑡) ∈	[𝜇:

{ , 𝜇:
{|W]	(see	Figure	

S4A).	As	all	 cells	did	not	contribute	equally	 to	all	𝜇: 	 levels	 (see	Figure	
S4C),	we	applied	a	“minimum	contribution”	criteria:	 if	a	depolarization	
level	counted	less	than	200	segments	(𝑛{<200),	the	[𝜇:

{ , 𝜇:
{|W]	level	was	

discarded	 from	 future	 analysis	 (see	 Figure	 S4A).	 We	 then	 count	 the	

number	 of	 spikes	 falling	 in	 a	 given	 level	 [𝜇:
{ , 𝜇:

{|W]	 level	 by	 counting	
spikes	 within	 the	 500ms	 window.	 Spikes	 were	 detected	 as	 a	 positive	
crossing	 of	 the	 -30mV	 level	 (spikes	 were	 blanked	 in	 the	𝑉8 	 traces	 by	
discarding	 the	 values	 above	 this	 threshold).	 We	 then	 compute	 the	
fluctuations	properties	of	all	depolarization	levels.	This	was	achieved	by	
constructing	 a	 “pooled	 distribution”	 and	 a	 “pooled	 autocorrelation	

function”	 corresponding	 to	 all	 [𝜇:
{ , 𝜇:

{|W]	 intervals.	 For	 all	 [𝜇:
{ , 𝜇:

{|W]	
intervals,	 we	 took	 500ms	 samples	 around	 all	 𝑡) 	 matching	 𝜇: 𝑡) ∈	
[𝜇:

{ , 𝜇:
{|W]	 and	 incremented	 the	 “pooled	 distribution”	 with	 those	 𝑉8 	

samples.	 Similarly,	 we	 incremented	 the	 “pooled	 autocorrelation	
function”	 with	 the	 individual	 normalized	 autocorrelation	 functions	
(evaluated	up	 to	100ms	 time	shift)	of	 those	𝑉8 	 samples.	The	 resulting	
“pooled	 distributions”	 and	 “pooled	 autocorrelation	 functions”	 are	
illustrated	for	a	single	cell	on	Figure	S4A.	The	“pooled	distributions”	at	

all	[𝜇:
{ , 𝜇:

{|W]	levels	were	used	to	evaluate	the	standard	deviation	𝜎:
{ 	and	

skewness	𝛾:
{ 	while	the	“pooled	autocorrelation	functions”	were	used	to	

determine	the	autocorrelation	time	𝜏:
{ .	The	autocorrelation	time	𝜏:

{ 	was	
determined	 by	 a	 numerical	 integration	 of	 this	 normalized	
autocorrelation	 function	 (Zerlaut	 et	 al.,	 2016).	 This	 procedure	 was	
repeated	for	all	cells	(shown	in	Figure	S4B)	and	yielded	the	population	
data	 of	 Figure	 4.	We	 also	 analyzed	 the	 goodness-to-fit	 of	 a	 Gaussian	
fitting	of	the	“pooled	distributions”,	we	performed	a	least-square	fitting	
(using	the	function	scipy.optimize.leastsq)	and	we	report	the	coefficient	
of	determination	𝑅?	(see	main	text).	

	

Numerical	simulations	of	recurrent	network	dynamics	

We	studied	two	versions	of	recurrently	connected	networks	targeted	by	
an	 afferent	 excitatory	 population:	 1)	 a	 model	 with	 two	 coupled	
populations	 (excitatory	 and	 inhibitory	 neurons)	 and	 2)	 a	 three	
population	model	with	excitatory,	 inhibitory	and	disinhibitory	neurons.	
Single	cells	were		

described	 as	 single	 compartment	 Integrate	 and	 Fire	 models	 with	
conductance-based	 exponential	 synapses.	 Their	 membrane	 potential	
dynamics	thus	follows	the	set	of	equations:	

𝐶8
𝑑𝑉
𝑑𝑡 = 	𝑔�	(𝐸� − 𝑉) + 𝐺( 𝑡 (𝐸( − 𝑉) + 𝐺) 	𝑡 (𝐸) − 𝑉)

𝐺( 𝑡 = 	 𝑄(	𝑒
�;�;���

;�

ℋ(𝑡 − 𝑡() + 𝑄'		𝑒
�;�;��� ℋ(𝑡 − 𝑡')

{;�}

𝐺) 𝑡 = 	 𝑄)	𝑒
�;�;���

;�

ℋ(𝑡 − 𝑡)) + 𝑄]	𝑒
�;�;��� ℋ(𝑡 − 𝑡])

{;�}

	

Where	ℋ	 is	the	Heaviside	(step)	function.	Note	that,	to	emphasize	the	
similarity	in	the	equation	between	the	different	cell	types	considered		

	(excitatory,	 inhibitory	 and	 disinhibitory),	we	 omitted	 the	 index	 of	 the	
target	 cell	 (e.g.	 the	 weight	 should	 be	𝑄'( 	 for	 the	 afferent	 excitation	
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onto	 the	 excitatory	 cell	 instead	 of	 𝑄' 	 here).	 This	 set	 of	 equation	 is	
complemented	 with	 a	 threshold	 and	 reset	 mechanism,	 i.e.	 when	 the	
membrane	potential	𝑉	reaches	a	threshold	𝑉;<,( 	it	is	reset	at	the	value	
𝑉,(u(; 	 during	 a	 refractory	 period	 𝜏,(*,'- .	 The	 sets	 of	 events	 {𝑡�}	
corresponds	 to	 the	 synaptic	 events	 targeting	 a	 specific	 neuron.	 	 All	
parameters	 can	 be	 found	 on	 Table	 1	 for	 the	 two	 population	 model	
(Figure	 1).	 The	 additional	 parameters	 required	 for	 the	 coupled	 three	
population	model	 (excitation,	 inhibition,	disinhibition,	 for	Figure	3	and	
Figure	6)	can	be	found	on	Table	2.	

Recurrent	 connections	 were	 drawn	 randomly	 by	 connecting	 each	
neuron	of	 the	 population	𝑌	with	𝑝��𝑁� 	 neurons	 of	 the	 population	𝑋.	
Afferent	 drive	 of	 frequency	 𝜈' 	 onto	 population	 𝑋	 with	 connectivity	
probability	 𝑝'� 	 was	 modeled	 by	 stimulating	 each	 neuron	 of	 the	
population	𝑋	with	 a	 Poisson	 process	 of	 frequency	𝑝'�𝑁'𝜈' 	 (i.e.	 using	
the	 properties	 of	 Poisson	 processes	 under	 the	 hypothesis	 of	
independent	processes).	

Numerical	 simulations	 were	 performed	 with	 the	 Brian2	 simulator	
(Goodman	 and	 Brette,	 2009)	 (RRID:SCR_002998).	 A	 time	 step	 of	
dt=0.1ms	 was	 chosen.	 Stationary	 properties	 of	 network	 activity	 were	
evaluated	with	simulations	 lasting	10s.	The	first	200ms	were	discarded	
from	 the	 analysis	 to	 remove	 the	 contributions	 of	 initial	 transients.	
Simulations	 were	 repeated	 over	 multiple	 seeds	 generating	 different	
realizations	 of	 the	 random	 connectivity	 scheme	 and	 of	 the	 random	
afferent	stimulation	(see	number	in	the	legends).		

Characterizing	network	dynamics	

From	 the	 numerical	 simulations,	 we	 monitored	 all	 spike	 times	 and	
binned	them	in	𝑇�=2ms	time	bins	to	obtain	the	spike	train	𝑆) 𝑡 	for	each	
neuron	 𝑖	 (𝑆) 𝑡 	 takes	only	0	or	1	values	as	𝜏,(*,'- > 𝑇�).	We	analyzed	
the	 network	 activity	 by	 looking	 at	 the	 time-varying	 firing	 rate	 of	 the	
population	𝑋:	

𝜈� 𝑡 =
𝑆𝑖 𝑡)	∈	 A,Y�

𝑁�
	

We	 measured	 population	 synchrony	 by	 averaging	 the	 correlation	
coefficient	of	the	spike	trains	over	some	(𝑖, 𝑗)	neuronal	pairs		(Kumar	et	
al.,	2008),	i.e.	the	synchrony	index	𝑆𝐼	was	given	by:	

𝑆𝐼 = 	
𝐶𝑜𝑣 𝑆), 𝑆{

𝑉𝑎𝑟 𝑆) 𝑉𝑎𝑟 𝑆{
),{ 	

In	 practice	 we	 selected	 4000	 spiking	 neuronal	 pairs	 for	 numerical	
evaluation.	

Additionally,	 we	 monitored	 the	 membrane	 potential,	 the	 synaptic	
conductances	and	the	synaptic	currents	of	four	randomly	chosen	cells	in	
each	populations.	To	evaluate	the	mean,	standard	deviations,	skewness	
and	 autocorrelation	 time	 of	 the	membrane	 potential	 fluctuations,	 we	
discarded	the	refractory	periods	from	the	analysis.	The	same	discarding	
procedure	 was	 applied	 for	 the	 mean	 conductances	 and	 currents	
reported	here.	The	excitatory	currents	and	conductances	shown	in	the	
main	 text	 merge	 all	 excitatory	 contributions	 together	 (afferent	 and	
recurrent	 excitations).	 The	 inhibitory	 currents	 and	 conductances	
correspond	to	recurrent	inhibition	only	for	excitatory	cells	and	add	the	
disinhibitory	 contributions	 for	 inhibitory	 cells	 in	 the	 three	 population	
model.		

Varying	parameters	of	the	network	model	

We	 investigated	the	robustness	of	 the	proposed	theoretical	picture	by	
studying	 its	 sensitivity	 to	 parameter	 variations.	 The	 values	 of	
parameters	and	results	of	this	analysis	is	shown	on	Figure	S3.	Network	

simulations	 were	 run	 with	 time	 step	 0.1ms,	 lasted	 10s	 and	 were	
repeated	over	4	different	seeds.	

Response	to	an	afferent	time-varying	rate	envelope	

To	emulate	a	time-varying	afferent	input	onto	the	local	cortical	network	
(see	Figure	3),	we	took	an	arbitrary	waveform	for	the	firing	rate	activity	
of	 the	 afferent	 population.	 From	 this	 waveform,	 an	 inhomogeneous	
Poisson	process	was	 generated	 to	 stimulate	 each	neuron	of	 the	 three	
populations	model.	For	Figure	3,	the	waveform	was	taken	as:	

𝜈' 𝑡 = 𝐴)
)∈[W,?,X]

(1 + 𝐸𝑟𝑓𝑐(
𝑡 − 𝑡)
𝑇,)u(

)	)(1 + 𝐸𝑟𝑓𝑐(
𝑡) + 𝑇�(N�;< − 𝑡

𝑇,)u(
)	)/4	

with	 𝐴W=4Hz,	 𝐴?=18Hz,	 𝐴X=8Hz,	 𝑡W=100ms,	 𝑡?=1150ms,	𝑡X=2000ms,	
𝑇,)u(=50ms	 and	 𝑇�(N�;<=900ms.	 The	 resulting	 waveform	 is	 shown	 in	
Figure	3C.	

Determining	 the	 relaxation	 time	 constant	 of	 the	 network	
dynamics	

We	 determined	 the	 network	 time	 constant	 𝜏YZ[\ 	 at	 three	 different	
levels	of	network	activity	in	the	three-population	model	(see	Figure	3F).	
The	 network	 model	 was	 stimulated	 with	 three	 different	 levels	 of	
stationary	background	activity	𝜈'=	4	Hz,	𝜈'=	8	Hz	and	𝜈'=	18	Hz.	On	top	
of	this	background	activity,	we	added	a	2Hz	step	of	afferent	excitation	
lasting	𝑇u;)8=100ms	 and	 each	 500ms.	We	 repeated	 this	 stimulation	 a	
100	times	and	we	computed	the	trial-average	response	to	this	stimulus	
(shown	 in	 the	 inset	 of	 Figure	 3F).	 The	 network	 time	 constant	 was	
estimated	 by	 a	 least-square	 fitting	 of	 the	 following	waveform:	𝑓 𝑡 =

𝜈(A + 𝛿𝜈( 	 ℋ 𝑡 − 	ℋ 𝑡 − 𝑇u;)8 	 1 − 𝑒�
�

����� + 	ℋ 𝑡 −

𝑇u;)8 	𝑒�
� �¡��¢
����� .	The	three	values	𝜈(A,	𝛿𝜈( 	and	𝜏YZ[\ 	were	determined	

through	the	minimization	procedure.	We	show	the	𝜏YZ[\ 	values	in	the	
bar	plot	and	the	response	amplitudes	𝛿𝜈( 	as	the	scale	bar	annotations	
in	Figure	3F.	

Encoding	of	spiking	patterns	of	presynaptic	activity	

We	 designed	 a	 stimulation	 to	 investigate	 whether	 a	 complex	 spatio-
temporal	 pattern	 targeting	 a	 subset	 of	 the	 local	 cortical	 population	
could	 be	 faithfully	 encoded	 by	 the	 activity	 of	 this	 sub-network	 (see	
Figure	6A-E).	We	took	the	following	scheme.	Within	the	100	neurons	of	
the	afferent	population,	we	made	groups	of	10	neurons	that	co-activate	
simultaneously.	 Those	 groups	 of	 10	 neurons	 target	 a	 subset	 of	 100	
neurons	within	 the	 4000	neurons	of	 the	 excitatory	 population	 (with	 a	
synaptic	 weight	 equal	 to	 those	 of	 background	 afferent	 connections).	
Presynaptic	neurons	only	make	mono-synaptic	connections	 to	a	 target	
neuron,	but	two	co-activated	neurons	may	connect	to	the	same	neuron	
in	 the	 100	 neurons	 target	 population	 hence	 creating	 some	 degree	 of	
synchronous	 activation	 (but	 with	 a	 low	 probability:	 1%,	 because	
𝑝'(=10%,	see	Table	1).	Within	a	window	of	500ms,	we	generate	random	
activations	over	time	with	a	homogeneous	Poisson	process	of	frequency	
20	Hz	(i.e.	10	activations	per	500	ms	window)	and	assign	randomly	each	
activation	 time	 to	 a	 given	 afferent	 group,	 this	 generates	 one	 pattern	
(see	example	patterns	on	Figure	6A	and	Figure	S6A).	We	reproduce	this	
procedure	10	times	with	a	different	random	seed	to	obtain	10	patterns	
of	presynaptic	activations.	We	then	feed	the	network	with	this	afferent	
pattern	 on	 top	 of	 the	 non-specific	 background	 afferent	 drive	 (both	 in	
the	 AD	 regime	 and	 in	 the	 DR	 regime).	 We	 run	 20	 trials	 per	 pattern,	
where	the	realization	of	the	background	activity	varies	while	the	pattern	
is	 kept	 constant.	We	 compared	 the	 output	 spiking	 patterns	 using	 the	
inner-product	 (𝐼𝑅)	 and	 distance	 (𝐷)	 for	 multi-neuron	 spike	 trains	
derived	 in	 (Houghton	and	Kreuz,	2012;	Rossum,	2001)	 implemented	 in	
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the	publicly-available	package	pymuvr.	This	metrics	takes	a	time	scale	𝜏	
that	sets	the	temporal	sensitivity	(for	𝜏 → 0	the	metrics	is	only	sensitive	
to	 infinitely	precise	coincident	spiking,	 for	𝜏 → ∞	 the	metrics	 is	a	 joint	
spike	count	over	time).	The	value	of	𝜏	was	set	to	5	ms	as	this	time	scale	
was	 found	 in	 preliminary	 analyses	 to	 be	 the	 minimal	 time	 scale	 for	
which	a	reliable	encoding	of	the	 input	pattern	was	observed	in	the	AD	
regime.	 The	 cross-correlation	 coefficient	 between	 spike	 trains	
computed	 in	 Figure	 6D	 was	 computed	 as	 𝐶𝐶 𝑆W, 𝑆? = 𝐼𝑅 𝑆W, 𝑆? /
𝑅 𝑆W, 𝑆W 	𝑅 𝑆?, 𝑆? ,	where	𝐼𝑅	is	the	inner	product	between	two	spike	

trains	 𝑆W	 and	 𝑆?.	 We	 then	 implemented	 a	 k-neighbor	 classifier	 to	
decode	 the	 output	 spike	 train	 of	 the	 excitatory	 subnetwork.	 The	
distance	 between	 two	 output	 patterns	 relied	 on	 the	 distance	𝐷.	 We	
implemented	 this	 custom	metrics	 in	 the	 k-neighbor-classifier	 of	 scikit-
learn	(Pedregosa	et	al.,	2011)(RRID:SCR_002577)	to	obtain	our	classifier.	
We	first	train	the	classifier	on	the	first	10	trials	and	tested	on	the	last	10	
trials	 per	 pattern.	 For	 a	 first-nearest-neighbor	 classification,	we	 found	
the	following	decoding	accuracies:	88.0	±	9.8	%	for	AD	activity	and	16.0	
±	0.2	%	for	RD	activity.	Raising	the	number	of	neighbors	up	to	10	points	
(over	a	training	set	containing	10	trials	per	presynaptic	patterns)	did	not	
affect	 this	 difference:	 it	 yielded	 (non-monotonic)	 variations	 of	 the	
decoding	accuracy	between	90%	and	65%	for	AD	regimes	and	between	
27%	 and	 16%	 for	 RD	 regimes,	 we	 therefore	 kept	 a	 nearest-neighbor	
classifier	 for	all	analysis.	To	partially	separate	the	spatial	and	temporal	
components	 in	 afferent	 patterns	 encoded	by	 the	 network	 activity,	we	
duplicated	all	10	patterns	and	their	10	repetitions	in	the	training	set	by	
aligning	 the	 network	 response	 onset	 time	 to	 all	 observed	 stimulus	
onsets	(shifting	the	time	axis,	the	procedure	is	depicted	in	Figure	S6A).	
The	final	decoder	should	therefore	associate	a	trial	in	the	test	set	with	a	
given	 pattern	 identity	 and	 a	 given	 stimulus	 onset	 (accuracy	 results	
shown	 in	 Figure	 6E).	 In	 Figure	 S6B,	 we	 show	 the	 distributions	 of	
decoded	stimulus	onsets	 in	the	AD	and	RD	regimes.	The	percentage	of	
stimulus-evoked	 activity	 (see	 main	 text)	 was	 evaluated	 by	 comparing	
the	 firing	 rates	 in	 the	 500	 ms	 before	 and	 during	 the	 500	 ms	 of	 the	
stimulus.	

Encoding	of	presynaptic	rate	waveforms	

We	designed	a	stimulation	to	investigate	whether	the	rate	envelope	of	
given	presynaptic	stimulus	could	be	faithfully	encoded	by	the	activity	of	
the	network	(see	Figure	6F-J).	The	waveform	was	taken	as:	

𝜈' 𝑡 = 𝐴�� + 𝐴u;)8	(1 + 𝐸𝑟𝑓𝑐(
𝑡 − 𝑡W
𝑇W

)	)(1 + 𝐸𝑟𝑓𝑐(
𝑡? − 𝑡
𝑇?

)	)/4	

with	 𝑇W=100ms,	 𝑇?=300ms,	 	 𝑡W=400ms	 and	 𝑡?=1100ms.	 𝐴��=4Hz	 to	
produce	the	AD	regime	and	𝐴��=14Hz	to	produce	the	DR	regime.	𝐴u;)8 	
was	 varied	 from	 0.1Hz	 to	 7Hz	 in	 5	 different	 levels	 (see	 the	 resulting	
waveforms	 are	 shown	 in	 Figure	 6F).	 This	 time-varying	 rate	 was	 then	
converted	to	a	Poisson	process	(varying	the	seed	in	all	trials)	setting	the	
activity	of	the	afferent	population	and	fed	as	an	input	to	the	recurrent	
network.	 Similarly	 to	 the	 previous	 section,	 we	 implemented	 a	 k-
neighbor	classifier	to	decode	the	rate	waveform	from	a	sub-population	
of	the	network	(taking	the	same	100	neurons	sample).	The	time-varying	
rate	of	the	subpopulation	was	computed	by	binning	spikes	in	2ms	bins	
and	Gaussian	smoothing	of	extent	30ms,	yielding	the	quantity	𝑅(𝑡).	The	
metric	 for	 the	 rate	 waveform	 decoder	 was	 the	 integral	 over	 the	
stimulus	duration	of	the	square	difference	between	waveforms,	i.e.	for	
two	waveforms	R1	and	R2,	it	corresponded	to:		

𝑀 𝑅1 𝑡 , 𝑅2 𝑡 = 	 𝑅1 𝑡 − 	𝑅2 𝑡 ?
Wu

A
	𝑑𝑡	

We	run	20	trials	for	each	of	the	five	levels	of	afferent	activity	shown	in	
Figure	6F.	We	trained	the	decoder	on	the	first	10	trials	and	tested	it	on	
the	following	10	trials.	

Data	Analysis	and	Statistics	

Data	were	analyzed	with	SciPy	(Oliphant,	2007).	Experimental	data	were	
translated	 to	 the	 Python	 format	 using	 Neo	 (Garcia	 et	 al.,	 2014)	
(RRID:SCR_000634).	 In	 Figure	 5A-D,	 we	 performed	 least-square	 linear	
regressions	 on	 continuously	 distributed	 data	 (implemented	 in	
scipy.stats.linregress),	we	report	the	correlation	coefficients	(“c”).	Given	
the	partial	temporal	overlap	between	individual	samples	of	membrane	
potential,	 the	data	across	the	different	𝜇: 	 levels	cannot	be	considered	
as	 independent,	 so	 we	 evaluated	 statistical	 significance	 (“p”)	 with	 a	
non-parametric	 one-tailed	 permutation	 test	 (performed	 with	 1e5	
permutations,	 hence	 p	 values	 were	 reported	 as	 “p<1e-5”	 if	 no	
permutation	was	found	to	exhibit	the	correlation	value	of	the	data).	In	
Figure	 6,	 we	 evaluated	 the	 significance	 of	 the	 difference	 in	 encoding	
accuracy	 and	 response	 gain	 with	 a	 two-sided	 t-test	 (implemented	 in	
scipy.stats.ttest_rel).		
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	 Parameter	 Value	

Properties	of	
excitatory	cells	

𝐶8 	 200	pF	
𝑔� 	 10	nS	
𝐸� 	 -70	mV	
𝑉,(u(; 	 -70	mV	
𝑉;<,( 	 -50	mV	

Properties	of		
inhibitory	cells	

𝐶8 	 200	pF	
𝑔� 	 10	nS	
𝐸� 	 -70	mV	
𝑉,(u(; 	 -70	mV	
𝑉;<,( 	 -53	mV	

Connectivity	
probabilities	

𝑝(( 	 5%	
𝑝() 	 5%	
𝑝)( 	 5%	
𝑝)) 	 5%	
𝑝'( 	 10%	
𝑝') 	 10%	

Cell	number	
𝑁( 	 4000	
𝑁) 	 1000	
𝑁' 	 100	

Synaptic	
parameters	

𝑄(( 	 2nS	
𝑄() 	 2nS	
𝑄)( 	 10nS	
𝑄)) 	 10nS	
𝑄'( 	 4nS	
𝑄') 	 4nS	
𝐸( 	 0mV	
𝐸) 	 -80mV	
𝐸' 	 0mV	
𝜏( 	 5ms	
𝜏) 	 5ms	
𝜏' 	 5ms	

Table	1.	Network	parameters	for	the	two	population	
model	(excitation/inhibition)	with	afferent	excitation.	

	 Parameter	 Value	

Properties	of	
disinhibitory	

cell	

𝐶8 	 200	pF	
𝑔� 	 10	nS	
𝐸� 	 -70	mV	
𝑉,(u(; 	 -70	mV	
𝑉;<,( 	 -50	mV	

Connectivity	
probability	

𝑝'] 	 7.5%	
𝑝]) 	 5%	

Cell	number	 𝑁] 	 500	

Synaptic	
parameters	

𝑄'] 	 4nS	
𝐸] 	 -80mV	
𝜏] 	 5ms	
𝑄]) 	 10nS	

Table	2.	Additional	parameters	to	construct	the	three	
population	model	(excitation/inhibition/disinhibition).	

	(excitation/inhibition/disinhibition).	n.	
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