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Abstract1

A central goal of community ecology is to infer biotic interactions from observed distributions2

of co-occurring species. Evidence for biotic interactions, however, can be obscured by shared3

environmental requirements, posing a challenge for statistical inference. Here we introduce a4

dynamic statistical model that quantifies the effects of spatial and temporal covariance in lon-5

gitudinal co-occurrence data. We separate the fixed pairwise effects of species occurrences on6

persistence and colonization rates, a potential signal of direct interactions, from latent pairwise7

correlations in occurrence, a potential signal of shared environmental responses. We apply our8

modeling approach to a pressing epidemiological question by examining how human papillo-9

mavirus (HPV) types coexist. Our results suggest that while HPV types respond similarly to10

common host traits, direct interactions are sparse and weak, so that HPV type diversity depends11

largely on shared environmental drivers. Our modeling approach is widely applicable to micro-12

bial communities and provides valuable insights that should lead to more directed hypothesis13

testing and mechanistic modeling.14

Introduction15

A fundamental goal of community ecology is to understand how interactions between species16

in a shared environment shape observed patterns of diversity over time. A key challenge in un-17

derstanding community turnover is to disentangle effects of environmental drivers of species co-18

occurrence from inter-species interactions, especially when the goal is to infer these mechanisms19

from observational data [1, 2]. This challenge is also found in epidemiology, in which a major20

goal is to understand the factors that allow pathogens to coexist [3]. As is the case with free-living21

species, when determinants of environmental niches are shared among pathogen types, inferring22

interactions is difficult [4]. Understanding the mechanisms of microbial community turnover23

thus presents an ecological, statistical, and computational challenge, especially considering the24
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size of microbial and pathogen data sets [5, 6]. Ecological models of community turnover that25

account for shared environmental drivers are thus important for understanding mechanisms that26

underlie pathogen diversity.27

For macroscopic organisms, null model analysis has historically been used to infer potential28

species interactions from observational data sets, through the identification of statistically non-29

random aggregations of species across multiple habitats [7, 8, 1, 9]. Similar approaches have been30

used to develop computationally efficient algorithms that make it possible to infer large corre-31

lation networks from microbial sequence data [5, 10]. Disentangling the simultaneous effects of32

species interactions and environmental filters from survey data is nevertheless a challenge for33

analyses of both macroscopic and microscopic communities [11, 2]. For example, highly mobile,34

competing species should transiently aggregate in habitats with shared resources, even if com-35

petitive exclusion is expected at equilibrium. Snap-shot surveys of co-occurrence can therefore36

lead to biased interpretations of species interactions, but time-series data can help overcome this37

problem.38

In the microbial ecology literature, network inference models have only rarely been adapted to39

incorporate time-series data from multiple localities. Available methods include local similarity40

analysis [12, 11, 13] and generalized Lotka-Volterra modeling [14, 15]. While local similarity anal-41

ysis can be used with incidence data, Lotka-Volterra modeling requires measures of abundance,42

which are notoriously difficult to infer from sequence data, whereas relative abundances can43

bias statistical analyses [16]. Local similarity analysis can infer microbial networks from observa-44

tions of time-delays and temporal correlations between microbes and environmental covariates,45

but it relies on multiple, independent tests with p-value corrections, instead of an integrated46

analysis [12, 13]. Joint species distribution models provide a more comprehensive method for47

identifying putatively interacting species from static ecological survey data, while accounting48

for shared environmental drivers [17, 18, 19, 20, 21, 22]. These models use logistic regression49

to estimate how environmental covariates affect species occupancy probabilities across a hetero-50

geneous landscape. Species interactions are then inferred from residual correlations between51
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species occurrences. While joint-species models can generate hypotheses about static community52

assemblages, most methods fail to capture important drivers of co-occurrence that emerge from53

dynamic properties of the community dynamics [2]. For example, species co-occurrence may54

be positively correlated across heterogeneous habitats, because of shared resources, but nega-55

tively correlated across time, because of negative species interactions within sites (i.e. Simpson’s56

paradox, fig. 1).57

Here we extend the joint-species modeling framework to infer more complex, biologically58

realistic dynamics in a way that is computationally tractable for large microbial data sets. We59

develop a statistical model of a dynamic, multi-species metacommunity in which species are60

affected by each other’s persistence and colonization probabilities, and by shared environmental61

drivers. This approach can be readily applied to pathogenic microbe populations, in which62

distinct pathogen types represent species coexisting within a heterogeneous landscape of host63

organisms. In our method, we model correlations in species occupancy across habitats and across64

time, resolving Simpson’s paradox and accounting for latent environmental covariates. We also65

estimate pairwise species effects on rates of colonization and persistence. Using synthetic data,66

we demonstrate the ability of our model to accurately and precisely infer dynamics consistent67

with Simpson’s paradox, even with sparse occurrences. We then apply our model to data on68

human papillomavirus (HPV), a pathogen of significant public health concern.69

Human papillomavirus (HPV) is the most common sexually transmitted infection and a ma-70

jor cause of cervical, genital, and oropharyngeal cancers, and it consists of over 200 types [23].71

Uncertainty about the mechanisms underlying HPV type coexistence, and particularly about po-72

tential HPV type interactions, reflects a crucial unknown. Four HPV types cause most disease73

symptoms [24, 23, 25] and quadrivalent vaccination has demonstrated high efficacy in reducing74

rates of cervical dysplasia and genital warts [26, 27]. A recent 9-valent HPV vaccine targets ad-75

ditional oncogenic types [28]. Because the HPV vaccine is multivalent, it is possible that type76

replacement will occur, in which non-vaccine types increase in frequency due to population-level77

removal of vaccine-targeted types [29]. Type replacement following vaccination depends on inter-78
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actions between HPV types during natural infection, and particularly on inter-type competition79

through cross-immunity [30]. Understanding the ecological mechanisms that underlie HPV type80

diversity could therefore inform strategies for disease management and prevention. It has thus81

far been difficult to distinguish HPV type interactions from the effects of shared host-specific risk82

factors. Our dynamical community model allows us to investigate how type interactions and risk83

factors together structure the HPV viral community.84

In this study we address two questions, which differ in their scope. First, we use our full85

model to ask which interactions between specific HPV types warrant future investigation? Sec-86

ond, we ask a more ecological question: what are the dominant drivers of community compo-87

sition across space and time? To address this second question, we build models of increasing88

complexity, and we use model selection to determine whether HPV community patterns are89

determined by putative interactions between HPV types, by host-level factors that determine90

HPV distributions, or both. Our full model identified several interactions that warrant further91

experimental investigation, including negative pairwise effects on persistence and colonization92

probabilities. In addition, there is a strong signal of shared environmental drivers among HPV93

types, highlighting the importance of host-specific risk factors in supporting coexistence. By94

comparing models of varying complexity, however, we show that the dynamics of the HPV95

community are most parsimoniously explained by shared environmental drivers, rather than96

by strong pairwise interactions between HPV types. Pairwise species interactions thus do not97

appear to drive community-wide patterns of co-occurrence in the HPV community. Our study98

demonstrates the ability of our joint-species models to quickly and efficiently infer properties of99

a large, real-world viral community, and the model could therefore be of broad usefulness in100

understanding microbial communities.101
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Materials and Methods102

HPV natural history103

HPV types are classified based on the L1 viral capsid protein. A distinct HPV type is a variant104

whose L1 gene sequence is at least 10% dissimilar from any other HPV type [31]. The transmis-105

sion and coexistence of individual HPV types depend on traits and risk factors of individual hosts106

[32, 33, 34, 35]. These include determinants of sexual behavior, including frequency of condom107

use, number of new and steady sexual partners, and sexual orientation; demography, including108

race and ethnicity; and non-sexual behavior, including smoking and alcohol consumption.109

Interactions between HPV types could determine HPV diversity, though conclusive evidence110

of HPV type interactions is lacking [36, 37, 30].As in any species, HPV type interactions may be111

synergistic, neutral, or competitive. Synergism occurs when one type facilitates infection by an-112

other, while competition occurs when one type prevents infection by another. Under competitive113

interactions, removal of one HPV type should lead to an increase in prevalence of the competing114

type in the host population, resulting in type replacement. Natural history surveys reporting ele-115

vated odds ratios for multiple to single infections with HPV have suggested that cross-immunity116

among HPV types is unlikely [38, 39, 40, 41]. Additionally, the genetic stability of HPV as a117

double-stranded DNA virus has been used to support arguments against the possibility of type118

replacement [42], on the grounds that rapid emergence of antigenic variants is unlikely [27].119

Nevertheless, a recent increase in prevalence of non-vaccine types was found in young women120

following vaccination and in the United States [36], suggesting that type replacement may be121

occurring. Indeed, several models of HPV type interactions indicate that competition between122

HPV types is plausible under observed patterns of coinfections [43, 30] and have demonstrated123

the possibility of type-replacement after vaccination [43, 30, 44, 45].124
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Data125

We fit models of HPV type dynamics to data from the HPV Infection in Men (HIM) study126

[32, 33, 46], a multinational cohort study of HPV infection in men with no prior diagnosis of127

genital cancer or other sexually transmitted infections. The HIM study enrolled over 4000 men128

between 2005 and 2009 from three cities: Tampa, Florida, USA; Cuernavaca, Mexico; and Sao129

Paulo, Brazil. Detailed study methods are described elsewhere [32]. Briefly, the HIM study130

tracked PCR-confirmed infections with 37 types of HPV in men over a mean of 5 years of follow-131

up, recording behavioral and demographic information for all participants. The data for each132

individual consist of binary time series describing infection status with respect to each type over133

a median of 10 clinic visits, at median intervals of 6.0 months (variance = 0.7 months).134

For the present analysis, we included the 3656 participants with no reported diagnosis of135

HIV and PCR samples for each HPV type at all clinic visits (see Appendix). We limited our136

analysis to ten of the HPV types available in the HIM dataset: the nine HPV types included in137

the most recent HPV vaccine [28]) and HPV84, a type that has shown high prevalence in several138

studies among men [23, 47]. Of the ten types analyzed, seven oncogenic or high-risk types -139

HPV16, HPV18, HPV31, HPV33, HPV45, HPV52, and HPV58 - have a demonstrated connection140

to cervical cancer, while three nononcogenic or low-risk types - HPV6, HPV11, and HPV84 - have141

been implicated in benign anogenital lesions [48]. Overall, our study includes 30,525 data points:142

one point per patient per virus type per visit.143

Statistical Model144

Our goal is to extend current joint-species modeling techniques to biological processes that may145

be needed to understand community dynamics. Currently, only a limited number of joint-species146

modeling techniques are available for longitudinal survey data. Sebastian-Gonzalez et al. [20] ex-147

tended the joint-species modeling framework to allow for multiple community surveys through148

time by modeling the fixed, pairwise effects of species co-occurrence between subsequent time149
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points. Dorazio [49] introduced a model that separately estimated rates of species colonization150

and persistence from sequential community surveys. Although this latter model specifies the151

processes of extinction and colonization that can explain occupancy dynamics over time, it does152

not account for the residual dependence among species that can result from species interactions.153

Here we describe a statistical model that is tailored to the repeated surveys of patients in the154

HIM dataset, thereby combining the methods of Sebastian-Gonzalez et al. [20] and Dorazio [49]155

in a computationally tractable way.156

Our data consist of observations made in I patients, who can harbor up to J HPV types (in157

our case limited to 10 types), sampled over a maximum of T sequential visits to the clinic. Ob-158

servations of the HPV dataset are therefore aggregated as binary presence/absence data in the159

I × J × T incidence array Y, such that Yi,j,t indicates the presence or absence of HPV type j in160

patient i at visit t. Importantly, however, this model generalizes to metacommunities sampled161

repeatedly through time. Specifically, the model structure is the same as considering a metacom-162

munity made up of I discrete habitats or sites, which harbor up to J species from the regional163

species pool, and that are surveyed over a maximum of T time points.164

We fit a multivariate probit regression model to the binary presence/absence data in Y, which

has been used in other joint-species modeling approaches [21]. Probit regression relates a linear

predictor to occupancy probabilities using a standard normal cumulative distribution function.

In this model, the probability that a binary random variable is equal to one (i.e. P(Y = 1)) is

equal to the probability that the latent variable z is greater than zero. The linear predictor µ

completely determines the latent variable z and can be a function of one or more covariates and

their effects. As part of the probit definition, the residual variance of z is equal to one. In general

then, we are interested in understanding how linear predictors influence the probability that an

HPV type occurs in a given patient. A generalized probit model with a single covariate x is
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formulated for the ith sample as:

Y ∈ {0, 1},

P(Yi = 1) = P(zi > 0),

zi ∼ N(µi, 1),

µi = βxi.

(1)

Our model extends the generalized probit model by assuming that occurrence probabilities165

are affected by both patient-level effects and potential interactions between HPV types. We166

therefore build upon the general case of the probit model (Eq. 1) to model observations of the167

dynamic HPV metacommunity. To account for temporal dynamics, we assume that the linear168

predictor µi,j,t for each observation depends on observation-specific probabilities of persistence169

and colonization:170

µi,j,t = αj + Yi,1:J,t−1B(φ)′

j (Yi,j,t−1) + Yi,1:J,t−1B(γ)′

j (1−Yi,j,t−1) + εpatienti,j + εvisiti,j,t (2)

Here, αj is an adjustment to account for among-type variation in commonness. The presence171

of a given HPV type can affect the probability of persistence or colonization of other types, with172

a one time-step lag. If HPV type j was present in patient i on the previous clinic visit (t− 1), then173

persistence effects are represented by the product Yi,1:J,t−1B(φ)′

j , where Yi,1:J,t−1 is a row vector of174

length J containing the presence/absence states of strains j = 1, ..., J in patient i on the previous175

visit (t− 1), and B(φ)′

j is a column vector of length J containing pairwise interaction coefficients.176

These coefficients thus specify how HPV type composition at the previous visit affects persistence177

(φ) of type j. If type j was absent in patient i on visit t− 1, colonization effects are represented178

by the product Yi,1:J,t−1B(γ)′

j (1− Yi,j,t−1), where B(γ)′

j (1− Yi,j,t−1) is a column vector of length J,179

again containing pairwise interaction coefficients. These coefficients thus specify how HPV type180

composition at the previous visit affects the colonization (γ) of type j. Both interaction matrices181

(B(φ) and B(γ)) are J × J dimensional, and B(φ)
j and B(γ)

j represent the row vectors acquired by182

extracting row j.183
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Lastly, patient-level and visit-level adjustments are specified as εpatienti,j and εvisiti,j,t , respec-

tively. The multivariate patient-level random effect εpatient allows pairwise correlations in HPV

type occurrence across patients, thereby describing pairwise similarities in environmental re-

quirements. In the case of the HIM data, εpatient therefore controls for shared determinants of

host risk, such as host behavioral covariates, that could confound estimates of HPV type interac-

tions. The random visit-level effect εvisit allows for pairwise correlations in HPV type occurrence

across clinic visits that are not explained by the fixed temporal effects. εpatient and εvisit allow

for residual pairwise correlations in co-occurrence that are not explained by the fixed, pairwise

effects. Following the definition of the multivariate probit density, εpatient and εvisit are nested ef-

fects, such that the same εpatient is added to to all of that patient’s visits, such that the variances of

εpatient and εvisit must sum to one (i.e. z ∼ N(µ, 1)). These random effects are therefore structured

as follows:

εpatient ∼ N(0, Σpatient)

εvisit ∼ N(0, Σvisit)

σ2
patientj

+ σ2
visitj

= 1

(3)

where Σpatient and Σvisit are J× J variance-covariance matrices, constrained so that the jth variance184

parameters from the two matrices sum to one, for j = 1, ...J. Therefore, ρpatientp,q represents the185

pairwise correlation between HPV types that is measured among patients, which is derived from186

the variance-covariance matrix Σpatient. Then, ρvisitp,q represents the pairwise correlation between187

HPV types that is measured between visits and within patients (i.e. longitudinally), which is188

derived from the variance-covariance matrix Σvisit.189

We also model fixed effects of the time between visits (TBV) on persistence and colonization,

to allow for the variability in when patients visited the clinic. The median TBV was 6.0 months

with variance = 0.7 months, which we centered and scaled for use in the model. We allowed

for fixed effects of TBV on the HPV type-specific probability of persisting (β(TBV,φ)
j ) and the

probability of colonizing (β(TBV,γ)
j ). We hypothesized that the probability that an HPV type

colonizes a patient increases with TBV, due to a longer period of risk, while the probability that
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a HPV type persists in the patient decreases with TBV, due to a longer time in which clearance

may occur. The structure of these fixed effects is:

Zi,j,t−1β
(TBV,φ)
j (Yi,j,t−1) + Zi,j,t−1β

(TBV,γ)
j (1−Yi,j,t−1) (4)

In this formula, Z is an I × T matrix that holds the centered and scaled values of TBV for190

each patient. This formula is added to µijt.191

Model inference192

We coded our Bayesian model in Stan [50], an efficient, generalizable, statistical programming193

language, which employs adaptive Hamiltonian Monte Carlo (HMC) for model inference. We194

used vague priors for all parameters, although as mentioned earlier, we constrained the patient-195

and visit-level standard deviations to sum to one, to conform to the definition of the multivariate196

probit. We also included priors on the HPV type-specific, baseline probabilities of occurrence,197

αj, that allowed us to assume that all types are rare across patients and clinic visits. Indeed, the198

most common type, HPV84, was still only present in 8.3% of all observations.199

Testing the model with synthetic data200

Using synthetic data, we tested the ability of our model to: (1) infer dynamics consistent with201

Simpson’s Paradox, meaning opposite correlations in among-patient effects versus among-visit202

effects, (2) infer dynamics given observations of rare species, reflective of the HIM data, and203

(3) infer weak inter-species interactions, as are likely in nature. We generated a synthetic data204

set roughly half the size of the HIM data set to demonstrate the ability of our model to correctly205

estimate model parameters from a sparser data set. We therefore simulated data for a community206

of ten hypothetical pathogen strains sampled in 1500 patients, in which each patient was sampled207

10 times. We assumed low but variable baseline probabilities of occurrence for each strain, with208

the baseline occurrence set to the baseline prevalence of the ten least prevalent HPV types in the209
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HIM dataset. We further assumed positive patient-level correlations and negative observation-210

level correlations, such that correlations were equal across pathogen strain pairs (ρpatientp,q = 0.5,211

ρvisitp,q = -0.1). Pairwise effects on persistence and colonization β
φ
p,q and β

γ
p,q were drawn from212

normal distributions. All of our code for generating the synthetic data, as well as the data set213

itself, is available in our open-source repository https://bitbucket.org/jrmihalj/hpv_jsdm.214

Fitting the model to the HIM data215

Our first goal was to use our model to identify any interactions between HPV types that might216

warrant future epidemiological investigations. We therefore fit our full model and quantified the217

posterior distributions of the pairwise effects of HPV types on colonization and persistence rates.218

Our second goal was to understand the relative contributions of environmental effects, such219

as host-specific risk factors, and pairwise inter-type interactions to HPV community dynamics.220

We therefore fit four nested models of varying complexity. Model 1 has fixed, pairwise effects221

between HPV types, model 2 has residual correlations that account for environmental effects, and222

model 3, our full model, has both. Model 4 includes only baseline occurrence probabilities αj,223

and is therefore a type of null model. All of these models include the effects of the time between224

visits (TBV). We then compared the models’ out-of-sample predictive abilities using the leave-225

one-out information criterion (LOO-IC), estimated using Pareto-smoothed importance sampling226

in the R package “loo” [51]. Compared to the Watanabe-Akaike information criterion (WAIC),227

which is asymptotically equal to LOO-IC, the LOO-IC has been found to be more robust when228

using vague priors [52], as in our models. We considered two models to be substantially different229

if their LOO-IC values differed by 3, which is the common convention [53]. In practice, for a data230

set this large, small changes in overall goodness-of-fit could lead to very large changes in the231

likelihood when integrated across the many data points, and thus large differences in LOO-IC.232

We therefore emphasize that we use this model selection procedure as a heuristic to guide our233

understanding of community dynamics, rather than as a robust hypothesis test.234
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Results235

Model validation with synthetic data236

When we tested our model with synthetic data, it accurately and precisely inferred dynamics237

consistent with Simpson’s Paradox, even when the data were sparse (Fig. 2). The model cor-238

rectly inferred the low baseline probabilities of species occurrence (Fig. 2 A) and all patient-level239

correlations (Fig. 2 B). It also accurately estimated the majority of negative correlations at the240

observation level, although some inferred pairwise correlations were indistinguishable from zero241

( Fig. 2 C). This latter effect was not surprising, because we assumed a weak negative correla-242

tion (ρvisit = -0.1). Importantly, although the model’s estimates of the magnitude of simulated243

correlations were sometimes incorrect, the model was unbiased with respect to the direction of244

the simulated correlations. The model also correctly estimated persistence (βφ
p,q) and coloniza-245

tion (βγ
p,q) under both strong and weak interactions (Fig. 2 D,E). Finally, the model accurately246

recovered the effects of the time between visits on both persistence and colonization probabilities,247

which we assumed were the same for all pathogen strains (Fig. S2).248

Metacommunity dynamics of HPV and model comparisons249

In our full model, there were only a few interactions between HPV types that were worthy of fu-250

ture investigation, including several weakly negative effects on colonization probability (Fig. 3).251

Importantly, including these fixed effects and the random effects of patient-level and observation-252

level correlations led to a substantial improvement relative to a null model that accounts only for253

type-specific baseline occurrence probabilities, suggesting that the biology added to our model254

helps explain HPV community composition relative to the null model (Table 1). Based on LOO-IC255

selection, however, the most parsimonious model included only the random effects of patient-256

level and observation-level correlations, without pairwise interactions between the HPV types257

(Table 1). Pairwise inter-type interactions can thus be identified by our model, but the effect of258
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these interactions is not strong enough to substantially mediate the overall community compo-259

sition in this subset of 10 HPV types. The best model, which did not include these pairwise260

interactions, gives qualitatively similar insights for the random effects, meaning the patient-level261

and observation-level correlations, as our full model (Fig. S4).262

The best model captured important qualitative aspects of the HPV dynamics, as well. The263

inferred baseline occurrence probability recovered the observed rank order of prevalence of the264

ten HPV types (Fig. 3A). The model confirmed that increasing values of TBV had positive effects265

on colonization probabilities (β(TBV,γ)
j > 0) for all HPV types, but it had negative effects on266

persistence probabilities (β(TBV,φ)
j < 0) for all but two HPV types (Figs. S3, S4).267

Patient-level correlations were positive for all but one pair of HPV types (Fig. 3B). These268

positive correlations suggest that there are shared environmental drivers across human hosts,269

in the form of risk factors. In the case of HPV52 and HPV58 (Fig. 3C), there are both positive270

patient-level and negative observation-level correlations. Positive observation-level correlations,271

or correlations within individuals over time, likely signal affinity for co-transmission, because in272

the models these effects are in addition to the pairwise effects on persistence and colonization.273

Negative observation-level correlations thus signal reduced affinity for co-transmission. How-274

ever, the negative observation-level correlations between HPV52 and HPV58 must be interpreted275

with caution, as they could reflect the masking of HPV58 detection by HPV52, a problem that276

has been documented in the linear array genotyping test used in the HIM study [42].277

Discussion278

Our results suggest that HPV type coexistence is strongly driven by shared environmental char-279

acteristics. While the full model is able to estimate even sparse and weak (putative) interactions280

between HPV types, our model selection procedure suggests that these interactions are not im-281

portant for explaining overall patterns of community turnover in HPV. The influence of patient-282

level correlations on HPV community dynamics suggests that HPV types segregate among hosts283
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with shared traits. It is therefore likely that human subpopulations exist that could promote HPV284

type coexistence across space and time. This finding is consistent with epidemiological evidence285

of type-specific differences in the risk factors that promote HPV transmission [54, 55], and with286

another recent modeling study that characterized subtle differences in the profile of host-specific287

risk factors that affect infection with each type [56].288

Model selection shows that pairwise inter-type interactions that affect colonization and per-289

sistence probabilities do not influence overall patterns of community turnover in this HPV data290

set. However, the full model identified several putative interactions worthy of future epidemio-291

logical investigations. In particular, it is possible that interactions could mediate the occurrence292

patterns of specific pairs of HPV types, even though model selection suggests that pairwise in-293

teraction effects have no meaningful effects on the HPV community dynamics as a whole. In294

other words, the community-level patterns could swamp out the patterns of specific HPV pairs.295

Further, by limiting our analysis to a subset of ten HPV types, it is possible that we by chance did296

not include HPV types that have larger effects on the community. Also, our model only estimates297

pairwise effects, and future studies could account for higher order interactions, which have been298

shown to be important in diverse competitive networks [57].299

The results of our analysis complement the results of a previous, mechanistic model of HPV300

dynamics fitted to 6 HPV types of the HIM dataset [56]. The authors of this previous work301

formulated an epidemiological model that allowed for homologous immunity, a form of within-302

species competition, as well as the effects of 11 host-specific covariates. The best-fit version of this303

model included no homologous immunity for any of the six HPV types (HPV84, HPV62, HPV89,304

HPV16, HPV51, and HPV6), finding instead that previous infection with any type significantly305

increases the risk of re-infection with the same type. In our statistical model, this effect is further306

confirmed by the positive baseline persistence probabilities (βφ
p,p) across all ten HPV types ana-307

lyzed. That study [56] also detected no pairwise interaction between two taxonomically similar308

types, HPV16 and HPV31, which had been hypothesized to compete through cross-immunity309

[58, 59]. Furthermore, the risk of initial infection with any HPV type was concentrated among310
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high-risk subpopulations, which were linked to host-specific covariates. Taken together, the re-311

sults of this previous analysis [56] suggest that both intra-specific and inter-specific competition312

are weak or absent in the HPV viral community, such that stabilizing competitive mechanisms313

cannot explain HPV diversity. Instead, diversity may depend on sustained infection within high-314

risk subpopulations specific to each HPV type. These findings are consistent with our finding315

that inter-type interactions have little effect on HPV community dynamics (Table 1). Further-316

more, by showing how host-specific traits define niches that are used by different HPV types, the317

previous work [56] supports the importance of shared among-patient traits to explain patterns318

of co-occurrence.319

While the different quantitative approaches between the previous study [56] and our study320

provide complementary results, there are important differences in the methods, applications,321

and conclusions. Ranjeva et al. [56] tested mechanistic biological models about type-specific322

HPV dynamics, whereas our approach allowed for the identification of statistical patterns in the323

community dynamics of multiple types. Also, our method can be generalized to any metacom-324

munity that is sampled through time, rather than being specific to a pathogen community that325

interacts via cross-immunity, as modeled by Ranjeva et al. [56]. Indeed, our statistical frame-326

work is agnostic to the specific mechanisms of interactions. Instead our model specifies latent327

mechanisms that affect probabilities of persistence and colonization, which are estimated from328

the occurrence data.329

We have shown that a relatively simple statistical model can be used to infer community330

dynamics, even in a system with rare species occurrences. Sparsity of observational data in real-331

world metacommunities generally limits the power of statistical models to correctly infer ecolog-332

ical effects [49, 60, 61]. We showed that our model can be used to infer opposing environmental333

and temporal dynamics from communities of rare species, and to detect weak interactions among334

rare species, which are the most common types of interactions in nature [62]. Inferring residual335

correlations with rare species requires a substantial amount of data, but, in the age of affordable,336

high-throughput sequencing technologies, such data can often be obtained easily. Moreover, our337

15

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2018. ; https://doi.org/10.1101/427542doi: bioRxiv preprint 

https://doi.org/10.1101/427542
http://creativecommons.org/licenses/by-nc-nd/4.0/


model accounts for the effects of unobserved environmental drivers, specifically host-specific338

risk-factors in the case of the HPV data, without having to specify covariates explicitly. This may339

be useful for analyzing large microbial communities, such as microbiome communities, in which340

the environmental drivers are unknown.341

In classical joint-species distribution models, residual correlations in species occurrence are342

used to infer species interactions, but such residual correlations can arise instead from shared343

covariate responses that are not explicitly included in the model structure [21, 2]. Our model,344

however, does not rely on residual correlations to infer interspecies interactions per se. We use345

species occupancy at the previous time step to estimate lagged, pairwise effects of species’ oc-346

currences on the probabilities of persistence and colonization of cohabitating species. Residual347

correlations in our models instead account for latent environmental covariates, such as unmea-348

sured host-specific traits. Although our statistical modeling approach can thus identify impor-349

tant signatures of species interactions, mechanistic models and experimentation are nevertheless350

required to rigorously test hypotheses about species interactions. Furthermore, we estimate in-351

terspecies effects on persistence and colonization using a one-timestep lag, which requires that352

the timescale of the species interactions be equal to the timescale of observations. This assump-353

tion may not always hold. Our method is therefore best used to refine testable hypotheses354

from observed dynamics of large community assemblages, such as microbiome assemblages, in355

a computationally-feasible manner, rather than as a final step in inferring interactions.356

A final caveat is that our models do not allow for dynamics that occur between observa-357

tions. Given two consecutive observations of a species, our models instead assume that there is358

either persistence over the entire interval, or that at most one extinction or colonization has oc-359

curred. This assumption may result in bias in communities that are poorly sampled relative to the360

timescale of the dynamics. Indeed, recent evidence shows that standard joint-species distribution361

modeling approaches cannot accurately capture simulated predator-prey dynamics, especially if362

habitats are relatively homogeneous, probably because of non-linear dynamics [2]. This problem363

is likely to be important for non-linear host-pathogen dynamics as well, and should be a subject364
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of future simulation efforts. Our dataset however spans a wide diversity of patients, and includes365

the effects of the time between visits, which should limit this type of bias.366
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from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota.409

PLoS Computational Biology. 2013;9(12):31–36.410

[15] Carrara F, Giometto A, Seymour M, Rinaldo A, Altermatt F. Inferring species interactions in411

ecological communities: A comparison of methods at different levels of complexity. Methods412

in Ecology and Evolution. 2015;6(8):895–906.413

[16] Cardona C, Weisenhorn P, Henry C, Gilbert JA. Network-based metabolic analysis and mi-414

crobial community modeling. Current Opinion in Microbiology. 2016;31:124–131. Available415

from: http://dx.doi.org/10.1016/j.mib.2016.03.008.416

19

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2018. ; https://doi.org/10.1101/427542doi: bioRxiv preprint 

http://dx.doi.org/10.1038/ismej.2015.235
http://dx.doi.org/10.1038/ismej.2015.235
http://dx.doi.org/10.1038/ismej.2015.235
http://dx.doi.org/10.1186/s12859-015-0732-8
http://dx.doi.org/10.1186/s12859-015-0732-8
http://dx.doi.org/10.1186/s12859-015-0732-8
http://dx.doi.org/10.1016/j.mib.2016.03.008
https://doi.org/10.1101/427542
http://creativecommons.org/licenses/by-nc-nd/4.0/


[17] Ovaskainen O, Hottola J, Siitonen J. Modeling species co-occurrence by multivariate logistic417

regression generates new hypotheses on fungal interactions. Ecology. 2010;91(9):2514–2521.418

Available from: http://www.esajournals.org/doi/abs/10.1890/10-0173.1.419

[18] Ovaskainen O, Tikhonov G, Norberg A, Blanchet FG, Duan L, Dunson D, et al. How to420

make more out of community data? A conceptual framework and its implementation as421

models and software. Ecology Letters. 2017;20:561–576.422

[19] Ovaskainen O, Abrego N, Halme P, Dunson D. Using latent variable models to identify large423

networks of species-to-species associations at different spatial scales. Methods in ecology424

and evolution. 2015;.425
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Figure Legends585

Figure 1: Simpson’s paradox demonstrated for two species that are sampled across ten habitat586

sites, with each site surveyed fifteen times. A Species covary positively across sites (over space),587

indicating response to similar habitat requirements. B Species covary negatively within sites over588

time, indicating inter-specific competition. Probabilities of occurrence are on the probit scale.589

Figure 2: Inference of model parameters from synthetic data simulated for 10 pathogen strains590

across 1500 patients, where each patient was tested 10 times. A Recovery of baseline occurrence591

probability for the 10 strains. Red vertical line gives the true value. B Recovery of positive,592

pairwise correlations in among-patient random effects. Dashed line represents zero effect, while593

dotted line represents the true value (0.5). C Recovery of weakly negative, pairwise correlations in594

within-patient, observation-level random effects. Dashed line represents zero effect, while dotted595

line represents the true value (-0.11). D Recovery of fixed inter-strain effects on probability of596

strain persistence. E Recovery of fixed inter-strain effects on probability of strain colonization.597

Figure 3: Inference of model parameters from the HIM data. A Estimate of the baseline occur-598

rence probability for each HPV type. B Inferred correlations in among-patient random effects.599

C Inferred correlations in within-patient, observation-level random effects. D Recovery of fixed600

inter-type effects on the probability of type persistence. E Recovery of fixed inter-type effects on601

probability of type colonization.602
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Tables603

Table 1: Comparison of candidate models using leave-one-out cross-validation. The table shows

whether fixed and/or random effects were included, the log-likelihood of the model fit (i.e.

L(θ|D)), and the LOO-IC. The standard error (SE) in the LOO-IC is shown to emphasize that

the LOO-IC is an estimated statistic with error, but also that none of our LOO-IC values overlap

within ± 2SE.

HPV Interactions

Among-patient

and Among-visit

Correlations

Log-

Likelihood
LOO-IC SE LOO-IC

X -220310.1 708323.6 373.8

X X -279574.9 825439.5 329.8

X -433036.9 1109717.0 465.3

-432977.8 1130039.0 681.3
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Figure 1:
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Figure 2:
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Figure 3:
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Supporting Information (SI)1

Subset of HIM data included in the analysis2

We excluded individuals that failed to meet the full eligibility criteria described by the HIM3

study [32]. The criteria included: ages 18 to 70 years; residents of one of three sites — Sao Paulo,4

Brazil; Morelos, Mexico; or southern Florida, United States; no prior diagnosis of penile or anal5

cancers; no prior history of genital or anal warts; no symptoms of a sexually transmitted infection6

at baseline or recent treatment for a sexually transmitted infection; no history of participation in7

an HPV vaccine study; and no history of HIV or AIDS.8

We identified 3,656 eligible participants from the 4,123 men enrolled in the HIM study as of9

October 2014. For each of the 10 HPV types that we analyzed, we include in our data the binary10

infection status of each man at each clinic visit. We also include the length of time between11

consecutive clinic visits.12

Type-specific HPV prevalence over follow-up13

We calculated the prevalence of the 10 HPV types included in the analysis at each visit (Fig.14

S1). Note that, because individuals varied in their visit dates, the prevalence at each visit is15

a time-averaged estimate. The data show that the expected distribution of HPV types in the16

metacommunity is consistent across visits.17
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Figure S1: Observed visit-level prevalence of each of the 10 HPV types included in this analysis.
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Stan model details18

All of our code to run the Stan model is provided in our open-source repository **LINK**, but we19

will briefly describe the fitting routine here. For each nested model, we ran three MCMC chains in20

parallel on the Gardner high performance computing (HPC) cluster at the University of Chicago21

(Center for Research Informatics). Each chain ran for 5000 iterations with a 2000 iteration warm-22

up period, and we thinned the samples by three, giving us a total of 1000 posterior samples from23

each chain. Parameter samples were stored as tables in a SQLite database for later processing.24

Due to the large number of columns of the log-likelihood table, we split this table into sub-25

components before storage. We monitored convergence with the Gelman-Rubin (R̂) statistic, and26

we conducted several standard visual diagnostics to check MCMC chain performance [63, 53].27

All models converged after 5000 iterations, and no problems were observed in the MCMC chains.28

Time between visits29

Here we display the effects of time between visit (TBV) on persistence and colonization probabil-30

ities for the synthetic data (Fig. S2) and for the HIM dataset, using the full model that includes31

both correlations and fixed, pairwise interactions (Fig. S3).32
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Figure S2: Effects of time between visit (TBV) on colonization (top row) and persistence (bottom

row) probabilities for each of 10 simulated pathogen strains, from the synthetic data. These

results are generated from the full model, which has both fixed effects of pairwise interactions,

as well as patient-level and observation-level correlations among residuals. Blue histograms are

effects greater than zero, while red histograms are effects less than zero, based on a 95% credibal

intervals (CI) that does not overlap zero. The true, simulated values are shown as red vertical

lines
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Figure S3: Effects of time between visit (TBV) on colonization (top row) and persistence (bottom

row) probabilities for each HPV type. These results are generated from the full model, which has

both fixed effects of pairwise interactions, as well as patient-level and observation-level correla-

tions among residuals. Blue histograms are effects greater than zero, while red histograms are

effects less than zero (marked as the vertical dotted line), based on a 95% credibal intervals (CI)

that does not overlap zero. Histograms with black bars have effects with 95% credibal intervals

(CI) that overlap zero.
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Results from “best” model, with no pairwise interaction effects33

The figure below displays the results from the most preferred model, which includes the random34

effects (i.e. patient-level and observation-level correlations among HPV types), but does not35

include pairwise effects on persistence and colonization probabilities (Fig. S4). Notably, this36

model is nearly identical to the full model in terms of baseline probabilities of occurrence (Fig.37

S4 A), the random effects (Fig. S4 B,C), and the effects of time between visit (TBV) (Fig. S4 D).38
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Figure S4: Inference of model parameters from the HIM data, using the “best” model, which

only has patient-level and observation-level correlations among types, but does not have fixed

effects on persistence and colonization. A Estimate of the baseline occurrence probability for

each HPV type. B Inferred correlations in among-patient random effects. C Inferred correlations

in within-patient, observation-level random effects. D Estimates of the effects of time between

visit (TBV) on persistence and colonization probabilities. Colors and vertical lines in D are the

same as in Fig. S3.
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