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Abstract 

The brain is highly dynamic, reorganizing its activity at different interacting spatial and temporal scales including variation 

within and between brain networks. The chronnectome is a model of the brain in which nodal activity and connectivity 

patterns are changing in fundamental and recurring ways through time. Most previous work has assumed fixed spatial 

nodes/networks, ignoring the possibility that spatial nodes or networks may vary in time, particularly at the level of the 

voxel. Here, we introduce an approach allowing for a spatially fluid chronnectome (called the spatial chronnectome for 

clarity), which focuses on the variation in spatiotemporal coupling at the voxel level within each network. We identify a 

novel set of spatially dynamic features which can be obtained and evaluated under different conditions. Results reveal 

transient spatially fluid interactions between intra- and inter-network relationships in which brain networks transiently 

merge and then separate again, emphasizing the dynamic interplay between segregation and integration. We also show that 

brain networks exhibit distinct spatial patterns with unique temporal characteristics, potentially explaining a broad spectrum 

of inconsistencies in previous studies which assumed static networks. Moreover, we show for the first time that 

anticorrelative connections to the default mode network, are transient as opposed to constant across the entire scan. 

Preliminary assessments of the approach using a multi-site dataset collected from 160 healthy subjects and 149 patients with 

schizophrenia (SZ) revealed the ability of the approach to obtain new information and nuanced alterations of brain networks 

that remain undetected during static analysis. For example, patients with SZ display transient decreases in voxel-wise 

network coupling including within visual and auditory networks that are not detectable in a spatially static analysis. Our 

approach also enabled calculation of a novel parameter, the intra-domain coupling variability which was higher within 

patients with SZ. The significant association between spatiotemporal uniformity and attention/vigilance cognitive domain 

highlights the cognitive relevance of the spatial chronnectome. In summary, the spatial chronnectome represents a new 

direction of research enabling the study of functional networks that are transient at the voxel level and identification of 

mechanisms for within and between-subject spatial variability to study functional brain homeostasis. 

Keywords 

Brain spatial dynamics, spatial chronnectome, dynamic segregation and integration, spatial coupling, spatial states, 

spatiotemporal transition matrix, large-scale networks, resting state fMRI (rsfMRI), schizophrenia (SZ) 
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Introduction 

Neuroimaging modalities provide unique opportunities to model and investigate brain functional connectivity at a 

large/macro scale. One key finding is a set of replicable large-scale functional brain networks (Biswal et al., 2010; Buckner 

et al., 2009; Franco et al., 2009; Guo et al., 2012; Shehzad et al., 2009; Zuo et al., 2010). Brain networks, and groups of 

temporally coherent activity within networks called functional domains, have been studied and validated using various 

analytical approaches (Calhoun et al., 2008; Smith et al., 2009; van den Heuvel et al., 2009; Van Dijk et al., 2010; Yeo et 

al., 2011). Of these approaches, independent components analysis (ICA) enables simultaneous extraction of both the spatial 

patterns of functional domains and their temporal activity patterns. Studies of brain networks and functional domains 

demonstrate alterations in their spatial/temporal patterns under different physiological and psychological conditions, as well 

as disease (Arbabshirani et al., 2017; Garrity et al., 2007; Greicius, 2008; Iraji et al., 2015; Menon, 2011; Seeley et al., 2009; 

Sorg et al., 2007). However, these studies hold a common assumption that each brain network is comprised of a fixed set of 

brain regions with a static pattern of activity over time. This is an oversimplification, as the brain is highly dynamic, with 

variations in associated regions and spatial patterns of brain functional organizations including brain networks (Calhoun et 

al., 2014). As such, many recent studies have demonstrated the ability of fMRI to capture time-varying brain connectivity 

(Calhoun et al., 2014; Hutchison et al., 2013; Preti et al., 2017). For instance, studying whole-brain dynamic connectivity 

demonstrates variations in temporal coupling, both within and between functional domains (Allen et al., 2014; Damaraju et 

al., 2014). Examining temporal coupling between brain regions reveals strong correlations between regions known to be 

part of one network with regions of other networks at particular moments in time. This suggests “isolated” brain networks 

are only transiently isolated. Additionally, despite recent developments in detecting the dynamic behavior of brain activity 

using fMRI, spatiotemporal variations of brain networks have been underappreciated. Previous time-varying studies have 

focused on either 1) dynamic temporal coupling among fixed spatial nodes/networks, which ignore the importance of spatial 

variations (Allen et al., 2014; Barttfeld et al., 2015; Chen et al., 2016; Damaraju et al., 2014; Hutchison et al., 2013; Leonardi 

et al., 2013; Sakoglu et al., 2010; Shine et al., 2016; Yaesoubi et al., 2018) or 2) the dominant spatial pattern at any given 

time using a single region or whole brain time courses without capturing the spatiotemporal variations within and between 

functional organizations (Karahanoglu and Van De Ville, 2015; Liu and Duyn, 2013; Preti and Van De Ville, 2017; 

Tagliazucchi et al., 2012; Trapp et al., 2018; Vidaurre et al., 2017). Kiviniemi and his colleagues presented work 

highlighting spatial variation in the default mode network using sliding-window ICA (Kiviniemi et al., 2011). Other work 
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investigated fluctuation in spatial couplings between spatial components derived from independent vector analysis (Ma et 

al., 2014). While these present intriguing early evidence, to date, there has not been an approach that has evaluated the 

spatial fluidity within and between functional brain networks. 

The chronnectome is a model of the brain in which nodal activity and connectivity patterns are changing in fundamental 

and recurring ways through time (Calhoun et al., 2014). Here, we introduce an approach allowing for a spatially fluid 

chronnectome (called the spatial chronnectome) which advances current analytical methods by providing, novel, time-

varying information of individual brain networks at the voxel level. Encapsulating transient voxel-wise network coupling 

allows researchers to capture the spatially fluid behavior of brain networks. To investigate the spatiotemporal variations of 

brain networks, we calculated the relationship (temporal correlation) of each individual brain network with every voxel of 

the brain. Because the time course of each brain network obtained from ICA represents its temporal activity, its temporal 

correlation with each brain voxel provides information about the involvement of the voxel to the brain network. Therefore, 

the spatiotemporal variations of a brain network were encapsulated through measuring the coupling (temporal correlation) 

between every brain voxel and the given brain network at different moments using a sliding-window approach. Preliminary 

assessments demonstrate the ability of the approach to obtain new information of brain function. A new set of spatially 

relevant features can be calculated and used to study brain function. For instance, we introduce a metric called the 

“spatiotemporal transition matrix” to summarize the spatiotemporal information of each brain network. We also characterize 

distinct spatial states within each brain network with unique temporal characteristics which are highly replicable. Using 

spatial states, the dynamic properties of each brain network can also be assessed by calculating temporally derived indices 

such as mean dwell time or fraction time for individual brain networks. It is worth mentioning that the spatial states of brain 

networks can also be related to interdigitated networks previously only observed in single subject analysis (Braga and 

Buckner, 2017; Laumann et al., 2015). The approach was further used to evaluate spatial chronnectome properties in patients 

with schizophrenia (SZ). We hypothesized spatial chronnectome will allow us to detect nuanced alterations in brain 

networks in patients with SZ, which would be remained undetected during static analyses. The statistical comparison reveals 

that transient decreases in voxel-wise networks couplings are more pronounced than the reduction in static functional 

connectivity. Furthermore, a spatial chronnectome analysis detects alterations in brain networks that are not identified when 

used a spatially static analysis. Using variation-based analysis, we demonstrate, for the first time, higher coupling variability 

and different spatiotemporal transition patterns across various brain networks. We conclude that the study of spatiotemporal 
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variations of large-scale brain networks can unveil underappreciated features of the dynamic brain and improve our 

understanding of cognitive and behavioral neuroscience. 

2. Method 

2.1. Outline of our approach 

Our approach assessing spatiotemporal variations of individual brain networks includes the following steps (Figure 1(A)): 

1) Spatial independent component analysis (sICA; can be either group sICA followed by back-reconstruction or single-

subject sICA) applied to obtain large-scale brain networks and their associated time courses (Figure 1(A) Step 1). 

The time course of each brain network obtained from sICA represents the temporal activity of that large-scale brain 

network. Details can be found in Section 2.4. Identifying large-scale brain networks: Spatial ICA. 

2) Temporal coupling and sliding-window approaches were employed to capture spatiotemporal variations of the large-

scale brain networks. For each brain network and time window, we calculated the correlation between the time 

course of the brain network and the time courses of every voxel of the brain. The resulting correlation values 

represent the association (involvement) of all voxels across the brain to the given network at each time window 

(Figure 1(A) Step 2). This results in one dynamic coupling map (dCM) per window for each brain network. This 

approach, unlike its predecessors such as whole brain dynamic functional network connectivity (dFNC) and co-

activation patterns (CAP), provides nuanced information regarding temporal variations of spatial patterns of 

multiple brain networks simultaneously at the level of the voxel. Details can be found in Section 2.5. Calculating 

dynamic coupling maps (dCMs) for each brain network using a sliding-window approach.  

3) Time-varying properties were evaluated for each brain network (Figure 1(A) Step 3). First, the dCMs of each 

individual network were clustered into a set of distinct spatial patterns called spatial states on which multiple 

dynamic metrics were calculated and investigated (see Section 2.6. Calculating the spatial states of each brain 

network and their dynamic patterns). Next, the spatial variations of each brain network over time were evaluated 

by calculating voxel-wise changes in their dCMs (See Section 2.7. Evaluating the spatial variations of each brain 

network over time). 
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Figure 1. Summary of processing steps. (A) Cartoon of the analysis pipeline. First, spatial independent component analysis (sICA) is applied to obtain 

brain networks and their associated times courses. ICA consists of several steps including data reduction (principal component analysis), group-level 

sICA, and subject-level sICA. Following ICA, whole brain dynamic coupling maps (dCMs) of each network for every subject are obtained by 

calculating windowed-correlation values between the time course of the network and every brain voxel. Finally, time-varying properties of each network 

are investigated by evaluating spatial variation of dCMs over time and estimating spatial states. Details of the spatiotemporal variation analysis can be 
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found in Sections 2.6 and 2.7. (B) A toy model of calculating the spatiotemporal transition matrix. First, we discretize the correlation value. For 

visualization purpose, we present three bins here, but 10 bins were used in analysis of the real data. Next, we count the number of transitions from one 

bin to another between time windows at a given interval. 

2.2. Data collection 

Data collection was performed at 7 imaging sites across the United States, and all analyzed data passed data quality control. 

All participants were at least 18 years old, and gave written informed consent prior to enrollment. Data were collected from 

160 healthy participants, including 46 females and 114 males (average age: 36.71 ± 10.92; range: 19-60 years), and 149 

age- and gender- matched patients with SZ, including 36 females and 113 males (average age: 37.95 ± 11.47; range: 18-60 

years). The imaging data were collected on a 3-Tesla Siemens Tim Trio scanner for six of the seven sites and on a 3-Tesla 

General Electric Discovery MR750 scanner at one site. Resting state fMRI (rsfMRI) data was acquired using a standard 

gradient echo-planar imaging (EPI) sequence with following imaging parameters: repetition time (TR) = 2000 ms, echo 

time (TE) = 30 ms, flip angle (FA) = 77°, field of view (FOV) = 220 × 220 mm, matrix size = 64 × 64, mm, pixel spacing 

size = 3.4375 × 3.4375 mm, slice thickness = 4, slice gap = 1 mm, number of excitations (NEX) = 1, and a total of 162 

volumes. During rsfMRI scans, participants were instructed to keep their eyes closed and rest quietly without falling asleep. 

Further details on this dataset can be found in our earlier work (Damaraju et al., 2014).  

2.3. Preprocessing 

The preprocessing was performed primarily using SPM (http://www.fil.ion.ucl.ac.uk/spm/) and AFNI 

(https://afni.nimh.nih.gov) software packages. The pipeline includes brain extraction, motion correction using the 

INRIAlign, slice-timing correction using the middle slice as the reference time frame, and despiking using AFNI's 

3dDespike. The data of each subject was subsequently warped to the Montreal Neurological Institute (MNI) template using 

non-linear registration, resampled to 3 mm3 isotropic voxels, and spatially smoothed using a Gaussian kernel with a 6 mm 

full width at half-maximum (FWHM = 6 mm). Finally, voxel time courses were z-scored (variance normalized) as it has 

been shown in our analysis to better estimate brain networks relative to other scaling methods for independent component 

analysis. 
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2.4. Identifying large-scale brain networks: Spatial ICA 

Spatial ICA (sICA) was applied to the fMRI data to obtain brain networks (Calhoun and Adali, 2012; Calhoun et al., 2001a). 

ICA was performed using the GIFT software package (http://mialab.mrn.org/software/gift/) in the following steps similar 

to our previous work (Iraji et al., 2016): 1) Subject-level principal component analysis (PCA) was applied and the 30 

principal components accounting for the maximum variance in each individual dataset were retained. 2) Subject-level 

principle components were concatenated across time, and group-level spatial PCA was applied. 3) The first 20 principal 

components with the highest variance were selected as input for the infomax algorithm to estimate the 20 group independent 

components (Bell and Sejnowski, 1995; Correa et al., 2007; Correa et al., 2005). Infomax ICA algorithm was repeated 100 

times on the 20 group-level principal components using ICASSO framework in order to obtain a stable and reliable 

estimation of independent components (Himberg et al., 2004) and the most representative run was selected for further 

analysis (Ma et al., 2011). 4) The subject-specific independent components and component time courses were calculated 

using group information guided ICA (GIG-ICA) (Du and Fan, 2013; Du et al., 2015). 5) The twelve independent components 

were identified as brain networks based on the spatial and temporal properties and prior knowledge from previous studies. 

2.5. Calculating dynamic coupling maps (dCMs) for each brain network using a 

sliding-window approach 

The spatiotemporal variations of each brain network can be captured by evaluating its dynamic coupling at a voxel-wise 

level. For this purpose, we calculated the temporal coupling between the brain network and every voxel of the brain using 

the sliding-window correlation approach. As a result, we compute dCMs for a given network, which encapsulates the 

spatiotemporal variations of that brain network at a voxel-wise level. The cleaning procedure was first performed on the 

time courses of brain networks and every voxel of the brain to reduce noise. The cleaning procedure includes 

orthogonalizing with respect to estimated subject motion parameters, linear detrending, despiking, and band-pass filtering 

using a fifth-order Butterworth filter (0.001-0.15 Hz). This cleaning procedure has demonstrated its effectiveness in 

improving the detection of dynamic patterns in whole-brain dFNC analyses (Allen et al., 2014; Damaraju et al., 2014). We 

used the tapered window obtained by convolving a rectangle (width = 30 TRs) with a Gaussian (σ = 3 TRs) and the sliding 

step size of one TR resulting in 131 windows per subject (Allen et al., 2014; Damaraju et al., 2014). 
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2.6. Calculating the spatial states of each brain network and their dynamic patterns 

First, we modeled the spatiotemporal fluctuations of each brain network as temporal variations in a set of distinct spatial 

patterns called spatial states. Clustering approaches can be used to summarize the dCMs of each brain network into a set of 

spatial states. This allows us to investigate the spatiotemporal variations of the brain network via temporal variations of 

these distinct spatial states. Here, k-means clustering was employed to detect the spatial states of each brain network. For 

each brain network, k-means clustering was applied on the 40479 (309 subjects × 131 windows) dCMs of the brain network. 

K-means clustering was repeated 100 times with different initializations using the k-means++ technique to increase chances 

of escaping local minima (Arthur and Vassilvitskii, 2007). The correlation distance metric was used to measure the similarity 

between data points (i.e., the dCMs), as it is more effective in the detection of spatial patterns irrespective of voxel 

intensities. However, an exploratory analysis using Euclidean distance demonstrated almost identical results. K-means 

clustering was performed for 3 to 10 clusters, and the spatial maps of the cluster centroids were compared. For each brain 

network, the maximum number of clusters that provided distinct spatial maps for centroids were selected by visual 

inspection for further analysis. Thus, each network includes multiple spatial states as defined by the cluster centroids, and 

the number of spatial states (centroids) can vary between networks. We also compared our numbers of clusters with the 

estimated number of clusters using the elbow criterion (Damaraju et al., 2014; Yaesoubi et al., 2017). With the exception 

of the left frontoparietal and subcortical domains, in which the elbow criterion estimates a higher number of clusters than 

those chosen by visual inspection, the estimated cluster numbers using elbow criterion were the same as the expert 

selections. Using temporal profiles of the spatial states, various state level and meta-state level dynamic indices can be 

calculated for each brain network. For example, the mean dwell time (the average of the amount of time that subjects stay 

in a given state once entering that state) and the fraction time (the proportion of time subjects stay in a given state) can be 

calculated for each networks. Here, we compared mean dwell time and fraction time between healthy subjects and patients 

with SZ to show the feasibility of the approach. 

2.7. Evaluating the spatial variations of each brain network over time 

Coupling variability map 

Coupling variability for each network is defined as the amount of variations in network coupling over time, which is obtained 

by measuring voxel-wise changes in dCMs using the L1 norm distance (sum of absolute differences). For each voxel, the 
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L1 norm distance represents the variations in a voxel’s membership to a given brain network over time by measuring 

changes in the sliding-window correlation values between the time courses of a given voxel and the brain network across 

time. For example, if the correlation values for a given voxel for seven consecutive time windows are c1, c2, ..., and c7, the 

changes in correlation values will be d1 = |c2-c1|, d2 = |c3-c2|, ... d6 = |c7-c6|. Therefore, the coupling variability for a given 

voxel will be equal to d1+d2+…+d6 (Figure S1). The coupling variability map quantifies the overall spatial behavior of a 

given brain network varying across time. Voxel-wise comparisons were further applied comparing coupling variability maps 

for each network between healthy subjects and patients with SZ.  

Spatiotemporal transition matrix 

To further evaluate spatiotemporal variations of each brain network, we exploit the gray-level co-occurrence (spatial 

dependence) matrix method in the field of image processing that is used to extract Haralick textural features from images 

(Haralick et al., 1973). Figure 1(B) shows a toy model of this approach. First, the network coupling (i.e., voxel-to-network 

correlation) values are discretized to n bins. The spatiotemporal transition matrix is constructed by counting the number of 

voxels transitioning from one bin to another between time windows at a given interval. We calculate this spatiotemporal 

transition matrix for interval equal to one TR, (i.e., by counting the number of transitions between every two consecutive 

spatial maps), and for larger intervals. The maximum interval would be the total number of windows per subject minus 1 

(i.e., 130). The spatiotemporal transition matrix was normalized (divided) by the total number of transitions to allow us to 

compare across different interval values. Several global indices such as contrast, correlation, energy, entropy, and 

homogeneity can be calculated from spatiotemporal transition matrix to provide summary statistics of spatiotemporal 

variations of brain networks (Haralick et al., 1973). Here, for example, the energy index was calculated to evaluate 

spatiotemporal uniformity. The energy index, also known as angular second moment (ASM), is defined as ∑ 𝑝(𝑖, 𝑗)2
𝑖,𝑗  in 

which 𝑝(𝑖, 𝑗) is the (i,j)th element of the spatiotemporal transition matrix. The energy index is between zero and one, and 

smaller energy values represent higher spatiotemporal uniformity. The energy index of each network was compared between 

healthy subjects and patients with SZ. The energy indices of the networks which show significant differences between the 

two groups were further analyzed to understand the relationships between the spatiotemporal variations and cognitive 

scores. For this purpose, we used the domains of the computerized multiphasic interactive neurocognitive system 

(CMINDS) scores including speed of processing, attention/vigilance, working memory, verbal learning, visual learning, 

and reasoning/problem solving. Further details of CMINDS and preprocessing steps can be found in (van Erp et al., 2015). 
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2.8. Statistical analysis: dynamic alterations among patients with schizophrenia 

The spatiotemporal variations of brain networks were evaluated by comparing group differences between patients with SZ 

and healthy subjects. For each statistical comparison, we used a general linear model (GLM) that included age, gender, site, 

and a mean framewise displacement (meanFD) as covariates. meanFD was added as a covariate to mitigate against the 

effects of motion (Power et al., 2012). To evaluate the relationship between energy indices and CMINDS scores, the 

correlation analyses were conducted separately for healthy subjects and patients with SZ after regressing out age, gender, 

site, and meanFD. CMINDS scores and energy indices were mean-centered for each group to mitigate group differences in 

either CMINDS scores and/or energy indices introduced into the correlations. The group difference in correlation coefficient 

of the relationship between energy indices and CMINDS scores was also evaluated between the two groups. Outliers were 

removed using the scaled median absolute deviation, and p-values of all statistical analyses were corrected for multiple 

comparisons using the 5% false discovery rate (FDR) (Benjamini and Hochberg, 1995). 

3. Results  

3.1. Large-scale brain networks 

We applied spatial ICA with 20 components on rsfMRI data from 309 individuals. The ICA algorithm ran several times and 

clustering the resulting components revealed a high level of compactness (a cluster quality index greater than 0.8), indicating 

the reliability of the independent components (Himberg et al., 2004). Twelve independent components were identified as 

neuronal activity related components, or brain networks (Erhardt et al., 2011a), based on their temporal and spatial properties 

and knowledge from previous studies. The time courses of the selected components are dominated by low-frequency 

fluctuations, which were evaluated using the dynamic range and the ratio of low-frequency to high-frequency power (Allen 

et al., 2011). Their spatial maps have significant overlap with gray matter, their peak of activations fall within gray matter, 

and display low spatial overlap with known ventricular, motion, and susceptibility artifacts components (Allen et al., 2011). 

Furthermore, the selected components should have high spatial similarity with one of the established intrinsic connectivity 

networks (Allen et al., 2011; Beckmann et al., 2005; Damoiseaux et al., 2006; Fox et al., 2006; Iraji et al., 2016; Smith et 

al., 2009; Yeo et al., 2011; Zuo et al., 2010). The identified brain networks are the auditory, cerebellar, default mode, (dorsal) 

attention, left and right frontoparietal, somatomotor, language, salience, subcortical, primary visual, and secondary visual 
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networks (Figure 2). After identifying the brain networks, the time courses of individual networks were used to calculate 

their dCMs (one dCM per window for each brain network). 

 

Figure 2. Static group spatial functional connectivity maps of the twelve brain networks obtained from spatial independent components analysis. 

Spatial maps are plotted as z-score and thresholded at Z > 1.96. 

3.2. Spatial state evaluation 

To evaluate the time-varying information of brain networks, k-means clustering was applied on the dCMs of each network 

to group them into a set of distinct spatial patterns called spatial states. This allows us to visualize and quantify the variations 

in spatial patterns of brain networks. An example of variations in spatial patterns of brain networks and the regions 

associated with them can be seen in Figure 3, in which three selected spatial states for each brain network represented as 

red, blue, and green additive color overlays. Regions in white indicate association to a given network in all three states. For 

instance, the posterior cingulate cortex (PCC) is the central hub of the default mode (Andrews-Hanna, 2012; Leech and 

Sharp, 2014) and expected to be part of the default mode all of the time, which is confirmed by being involved in all three 

states as well as the fourth state, which is not included in Figure 3. However, the thalamus is associated with the default 
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mode in one of the three states (represented in red), and the frontal regions are involved in either one (represented in blue 

or red) or two states (represented in purple). These findings could explain inconsistencies in previous findings regarding the 

membership of certain regions to brain networks. For instance, different patterns for the default mode have been observed 

(Andrews-Hanna et al., 2010; Braga and Buckner, 2017; Fox et al., 2005). While most of the original studies did not report 

the thalamus as part of the default mode (Buckner et al., 2008; Fox et al., 2005; Greicius et al., 2003), recent studies have 

shown conflicting results (Lee and Xue, 2018; Shirer et al., 2012; Wang et al., 2014). Moreover, different parts of the frontal 

and prefrontal lobes have been reported as part of the default mode across studies (Braga and Buckner, 2017; Buckner et 

al., 2008; Damoiseaux et al., 2006; Garrity et al., 2007; Shirer et al., 2012). Similarly, different patterns of regions 

memberships have been observed across other brain networks (Braga and Buckner, 2017; Damoiseaux et al., 2006; Zuo et 

al., 2010). Therefore, we suggest that different regions are associated with brain networks at different time points, and only 

overall patterns of brain networks during data acquisition are identified in the static analysis.  
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Figure 3. RGB additive color-code presentation of three arbitrarily-selected spatial states for brain networks. Red, blue, and green represent the strength 

of three spatial states. Thus, for instance, white represents the areas in which the brain network is strong in all three spatial states, and yellow shows 
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strong association in Red and Green spatial states. It is worth mentioning that the spatial states of different brain networks were identified independently; 

therefore, for example, the first spatial state of networki is not correspondent with the first spatial state of networkj (i ≠ j). 

Anticorrelated brain networks: Evaluating the spatial chronnectome using the dCMs also provides new information 

relating to anticorrelated brain networks, i.e., negative associations between brain networks. Previous static studies have 

observed negative associations between brain networks and their associated regions (Allen et al., 2011; Fox et al., 2005; 

Fox et al., 2009; Uddin et al., 2009). For instance, regions of different brain networks (including salience and sensorimotor) 

are suggested to be negatively correlated with the default mode regions (Allen et al., 2011; Fox et al., 2005; Fox et al., 2009; 

Uddin et al., 2009). Our analysis reveals that different, anticorrelated patterns occur at different momentsin time. For 

example, each of previously reported networks and its associated regions become negatively associated with the default 

mode for a specific spatial state, and there are moments in which no negative associations exist (Figure 4). In other words, 

anticorrelative relationships identified across previous default mode static analyses all exist, but in differing segments of 

time. We further observed new anticorrelated patterns across different networks including in left and right frontoparietal, 

salience, somatomotor, and secondary visual (Figure S2). This finding emphasizes the importance of time-varying properties 

that may not be fully captured during static analysis.  

 

Figure 4. The spatial states of the default mode. Hot and cold colors represent positive and negative associations to the default mode, respectively. The 

results show that sensorimotor areas are anti-correlated with the default mode during State 2, and the salience network is anti-correlated with the default 

mode during State 4. Importantly, States 1 and 3 do not exhibit an anticorrelative relationship with the default mode.  
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Cerebellar contribution: Despite the important role of the cerebellum, it is often overlooked in brain network analysis. 

One reason is that the cerebellum is not usually recognized as an integral part of the connectome, with some exceptions, 

across studies using static analysis. Our analysis reveals significant contributions of the cerebellum to multiple brain 

networks, but these contributions are not constant over time (see Figure 3). Different patterns of cerebellar contribution 

emerge at particular timepoints or states. This highlights a challenge in detecting the role of the cerebellum in brain networks 

in static analysis. Overall, two major patterns are 1) primarily negative associations between cerebellar regions with 

sensorimotor networks (e.g. including somatomotor, auditory, and visual networks), and 2) positive associations of 

cerebellar regions with the subcortical and left and right frontoparietal networks. 

Brain networks are not isolated: Studying spatial chronnectomes through spatial states reinforces our understanding that 

brain networks are not isolated, and there is strong cross talk between “isolated” brain networks. Regions assigned to one 

network using static analysis are also involved with other networks at particular points in time. This is observed across all 

networks but is more dominant in sensorimotor networks including visual, somatomotor, and auditory networks (Figure 3). 

This finding further suggests that brain networks sometimes merge, or inter-network coupling increases, consistent with a 

dynamic interplay between segregation and integration. Therefore, evaluating the interaction between networks and their 

associated regions using this approach can shed new light on the multifactorial role of large-scale brain networks. 

Statistical comparison: The dCMs of brain networks were compared between healthy subjects and patients with SZ. We 

initially hypothesized that networks’ dCMs would allow us to detect nuanced alterations in brain networks in patients with 

SZ relative to healthy subjects which would be lost and remain undetected during static analyses. This hypothesis was 

evaluated first by comparing the results of voxel-wise comparisons using spatial states (obtained by applying K-means 

clustering on the dCMs of each brain network) and static connectivity (spatial map obtain by applying sICA on the data of 

all time points) analyses. The results of voxel-wise comparisons are presented in Figure 5(A). Both static and spatial states 

approaches reveal group differences in the cerebellar, subcortical, language, and salience networks. The pattern of 

differences in these networks was similar between static and spatial states analysis. Static comparison revealed lower static 

functional connectivity in patients with SZ compared to healthy subjects across these networks except for the putamen in 

the subcortical network. Similarly, spatial states analyses detected decreases in dynamic couplings across the same networks 

with the same exception in the subcortical network. In contrast, different and larger regions within networks were found to 

be altered in patients with SZ compared to healthy subjects in the spatial state analysis compared to the static analysis. 
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Additionally, spatial state analysis shows similar patterns of differences between patients with SZ and healthy subjects in 

the auditory, primary and secondary visual, somatomotor, default mode, (dorsal) attention, and left frontoparietal networks 

(Figure 5(A)). The similarity between static and state analysis patterns further supports the idea that alterations observed in 

state analysis driven by group differences between patients and healthy subjects. This suggests state analyses detect nuanced 

alterations within patient groups absent in static analyses. For instance, an alteration in a small region of the primary visual 

network can also be seen in static analyses if we apply less restrictive criterion i.e., using smaller cluster size threshold 

(Figure S3), which reiterates the loss of important nuanced information through static analysis. Previous studies suggest 

these networks and associated areas are affected in patients with SZ (Baker et al., 2014; Calhoun et al., 2009; Garrity et al., 

2007; Jafri et al., 2008; Zeng et al., 2018), which indicates the ability of the approach to both detect known patterns of 

alterations and also identify novel patterns of patient-based alterations. 

It is important to highlight some of the regions within a network that show differences in the state analysis were not 

recognized as being part of the same network in a static analysis. In other words, a region that is part of Network i at State 

k and assigned to the Network j in the static analysis display significant differences between healthy subjects and patients 

with SZ. Figure 5(B) represents a summary of spatial state voxel-wise comparisons and their static labeling. The Y-axis 

includes the spatial states of the networks illustrating significant differences between healthy subjects and patients with SZ. 

The X-axis indicates the static network assignment of the regions that show significant differences. For instance, the lingual 

gyrus is assigned to primary visual network in static analysis, but it is also part of (associated with) at State 1 of the language 

domains. This region shows a reduction in its association with State 1 of the language domain in patients with SZ. This 

emphasizes the importance of capturing dynamic information about network integration. 
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Figure 5. Voxel-wise statistical comparisons between healthy subjects and patients with schizophrenia (SZ). Only comparisons that show significant 

differences after multiple comparison corrections are presented here. (A) Spatial maps displaying significant differences between healthy subjects and 

patients with SZ. Blue and red colors represent lower and higher associations of regions to the networks in patients with SZ relative to healthy subjects, 

respectively. Yellow and green colors indicate lower and higher coupling variability, i.e., variation over time measured by the L1 norm distance, in 

patients relative to healthy subjects. Networks are separated with solid white colors, while different types of analyses including static functional 

connectivity, coupling variability (L1 norm distance), and spatial states are separated by dashed white color lines. (B) Summary of voxel-wise 
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comparisons of spatial states. The Y-axis includes the list of the spatial states of the networks with significant differences between the two groups. The 

t-values for differences between patients with SZ vs. healthy subjects. Cold and hot colors indicated transient reduced and increased association 

(network coupling) in patients with SZ relative to healthy subjects, respectively. The X-axis indicates the static network labeling of the regions that 

show significant differences in state analysis. For instance, the cell labelled with “†” represents the voxels that show a significant difference with 

reduced dynamic network coupling in patients with SZ (t-value) in State 1 of the language network (Y-axis). These voxels are assigned to (labeled as) 

the primary visual network in the static analysis (X-axis).  

While the spatial states of brain networks provide important details of their spatial dynamic, their temporal profiles provide 

further information regarding the temporal dynamic nature of brain networks. Statistical analyses of mean dwell time and 

fraction time showed statistically significant differences between patients with SZ and healthy subjects across all networks 

(Figure 6). In patients with SZ, networks tend to spend more time in spatial states which have high correlations, negative or 

positive, with sensorimotor regions, particularly within primary visual areas. They include State 1 of the right frontoparietal 

network, State 3 of the primary visual network, State 1 of the somatomotor network, State 2 of the subcortical network, 

State 2 of the default mode network, State 2 of the cerebellar network, State 1 of the salience network, State 1 of the left 

frontoparietal network, State 2 of the attention network, and State 1 of the language network. We also observed certain 

networks spent more time in the spatial states with high (negative or positive) correlations with the default mode regions in 

healthy subjects compared to patients with SZ. 

 

Figure 6. The ability of dynamic temporal indices calculated from spatial states to distinguish different cohorts. Two indices including fractional time 

and mean dwell time were calculated for spatial states of brain networks and compared between healthy subjects and patients with SZ. Statistically 

significant differences after multiple comparison corrections were observed between patients with SZ and healthy subjects. The results suggest the 

ability of the approach to detect patient-based alterations. 
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3.3. Spatial variation evaluation 

Coupling variability map 

Brain networks are spatially fluid, and this can be captured and evaluated via calculating coupling variability maps over 

time. Figure 7 shows variations in the dynamic coupling of associated voxels to a given network over time. Green represents 

coupling variability, indicating variations in dynamic coupling of each voxel to a given network over time. Red represents 

static functional connectivity strength. For instance, our results show the PCC that is always associated with the default 

mode has lower variation over time. However, the thalamus and frontal areas reveal higher variations over time. Evaluating 

variation in regions association to brain networks can provide further information about their roles in brain networks. 

Performing voxel-wise comparison of coupling variability maps reveal significant differences between healthy subjects and 

patients with SZ in cerebellar, subcortical, language, auditory, and primary and secondary visual networks (Figure 5(A)). 

Thus, we observed higher coupling variability, in addition to lower network coupling strength, among patients with SZ. 

Collectively, these results suggest both coupling strength and variability are altered in patients with SZ. 

 

Figure 7. Additive color-code representation of networks’ coupling variability. Green represents coupling variability estimated by the L1 norm distance 

of variations in the membership (pairwise correlation) of each voxel to a given network over time. Red represents static functional connectivity strength. 
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Thus, Yellow represents the regions with both high coupling variability over time and static strength. The figure indicates extensive variations in spatial 

patterns of brain networks. Previous work typically ignores levels of variability and the degree to which a voxel contributes to a given network over 

time, which is captured using this method.  

Spatiotemporal transition matrix 

While voxel-wise analysis is important to assess the spatial variations of brain networks, the spatiotemporal transition matrix 

can quantify and summarize dynamic spatiotemporal properties of individual brain networks, which are essential to 

understanding the dynamic characteristics of brain networks. Because of the smoothing effect of the sliding window, the 

spatiotemporal dynamic properties become easier to distinguish as the interval value increases. However, the pattern of 

transitions is consistent across interval values (See examples in Figure S4). In Figure 8, we present the examples of findings 

for the interval value of 30 (the size of the interval = 30×TR), which is the transition between two windows with almost no 

overlap (Figure 8(A)). Evaluating the spatiotemporal dynamic properties allows us to detect changes in the brain networks 

such as the default mode which were imperceptible in our static analysis. Performing statistical comparisons on the elements 

of the spatiotemporal transition matrix display its ability to differentiate healthy subjects and patients with SZ (Figure 8(B)). 

Patients with SZ have higher transitions in higher bins, i.e. bins with higher dynamic coupling value, and healthy subjects 

have higher transitions in lower bins, with the exception of the default mode, which shows the opposite pattern. Significant 

differences were observed between healthy subjects and patients with SZ in all networks expect the left and right 

frontoparietal networks. Examples of the comparisons for all possible interval values for multiple networks are included in 

Figure S5, which display similar patterns for different interval values. The spatiotemporal transition matrix can further be 

utilized to extract abstract global measures to summarize the dynamic properties of each network. For instance, evaluating 

spatiotemporal uniformity using the energy index shows a significant difference between the two groups in which healthy 

subjects demonstrated higher spatiotemporal uniformity (i.e., lower energy index) (Figure 8(C)). 
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Figure 8. Examples of spatiotemporal transition matrices and statistical analysis. (A) The average spatiotemporal transition across all subjects. The 

spatiotemporal transition matrix for each network summarizes the variation of the network’s dCMs by discretizing the dynamic coupling values into 

ten bins. The value in each array indicates the percentage of the transition compared to the total number of transitions using warm colors. For instance, 

if the number of transitions were uniform, the value of each array would be 1% because there are 100 arrays in the transition matrix. (B) t-statistics for 

group comparisons by diagnosis. Blue (cold) and red (hot) colors represent lower and higher transition values in patients with SZ compared to healthy 

subjects, respectively. (C) Energy index comparison, with greater spatiotemporal uniformity towards the center of the chart. The energy index was 
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measured for the spatiotemporal transition matrix and compared between healthy subjects and patients with SZ. Blue and red colors represent healthy 

subjects and patients with SZ, respectively. Green asterisks indicate the statistical significant differences between the two groups. 

Evaluating the relationship between CMINDS and the energy indices display significant correlations between the energy 

index of the subcortical domain from the imaging data and attention/vigilance CMINDS domain in the healthy subjects ( 

= -0.27; p < 0.0011, FDR = 0.049) but not patients with SZ ( = 0.12; p < 0.1561, FDR = 0.962). Furthermore, the group 

difference of the correlation between the energy index of the subcortical domain from the imaging data and 

Attention/Vigilance CMINDS domain approached statistical significance (p < 0.0012, FDR = 0.059). 

Discussion 

Static analysis of fMRI data (i.e. computing correlations based on all timepoints) has provided important information about 

the brain; however, the assumption that resting brain activity can be represented by static activity across time is a gross 

oversimplification which may obscure the true dynamic nature of the brain. Motivated by the recent discovery of the ability 

of fMRI to capture dynamic, time-varying information of brain connectivity, we propose a spatial chronnectome approach 

which examines the variations in the spatiotemporal coupling of networks at the voxel level. The findings of our study offer 

unprecedented evidence for the spatially fluid behavior of inter- and intra-network brain relationships and emphasize the 

dynamic interplay between information segregation and integration across the brain. Our approach affirms that brain 

networks evolve spatially over time by capturing spatiotemporal variations within brain networks. For instance, our 

approach identified variability in the brain network membership of a given brain region over time. 

For discussion purposes, regions associated with a given brain network can be divided into two categories. The first includes 

regions which are repeatedly or occasionally reported to be parts of a given network in static analysis. The second category 

contains brain regions known to be parts of other networks in static studies based on previous research. Findings related to 

the first category explain the inconsistent observations regarding the brain network spatial patterns. These findings indicate 

that the spatial chronnectome, i.e., the temporal variations of the coupling patterns of brain networks, is the reason for the 

observed inconsistency in the spatial patterns of brain networks and the variability in brain regions’ memberships. For 

example, thalamus and frontal regions show high variations in their associations to the default mode, even dissociating from 

the default mode at particular times. The PCC, however, showed a more robust and constant association to the default mode 

over time, which may be related to its role as the central hub (core) of the default mode. The small amount of 
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variation/variability of the PCC association with the default mode suggests that the cores of brain networks have smaller 

variations in their dynamic couplings to the associated networks over time. Categorizing regions based on their time-varying 

associations with brain networks, and evaluating the multifactorial roles and relationship between them can provide new 

information about the interaction within and between network. 

It is worth mentioning that there is both a high-level of similarity and major differences between the spatial states and the 

interdigitated networks observed in previous single-subject analysis (Braga and Buckner, 2017) which can be seen, in our 

opinion, as an alternative interpretation for the observed inconsistency in the spatial patterns of brain networks. The concept 

of the spatial chronnectome within brain networks does not exclude the existence of a set of parallel networks within each 

large-scale network, as these also can be identified via brain dynamic analysis. Because a brain region’s association to a 

given large-scale network varies over the time, the associated parallel networks can be captured using the time points during 

which they contribute in the dominant patterns within the given large-scale networks. 

The second category highlights that brain networks are not isolated and exhibit significant cross talk. Regions in different 

networks join other networks and dissociate from them over time. This pattern of integration and segregation occurs across 

various regions and all investigated networks. This finding helps to extend the classical view of information processing in 

the brain and detect what we are currently missing about the functions of brain regions. An example of this claim is our 

observation that the primary visual area transiently associated with multiple networks which do not typically include visual 

areas. In our analysis, the primary visual area demonstrates significant positive or negative associations to at least one state 

of all identified brain networks suggesting its major role in network cross talk and various brain functions. This finding 

challenges the classic view of primary visual area role as responsible for receiving and delivering visual information from 

retinal input. However, there is significant evidence to support the role of the primary visual area in other brain functions. 

While the primary visual area receives most of the retinal input (90%) (Sincich et al., 2004), neuronal tracing and neuronal 

recording investigations demonstrated feedback connections between primary visual and many cortical areas (Bullier et al., 

2001; Felleman and Van Essen, 1991; Hupe et al., 2001). For instance, the primary visual area receives information from a 

wide range of sensory and non-sensory cortices such as the primary auditory, parietal and frontal cortices (Markov et al., 

2011). Moreover, transcranial magnetic stimulation (TMS) interference on the primary visual area introduced impairments 

to working memory processing (van de Ven et al., 2012). However, the classic view of the primary visual cortex can be 

well studied by fMRI because fMRI can detect changes associated with higher cognitive function and indirect functional 
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connectivity. fMRI research provides the striking evidence that the primary visual cortex is involved in higher cognitive 

functions (Bressler et al., 2013; Harrison and Tong, 2009; Lars, 2010; Muckli and Petro, 2013; Roelfsema and de Lange, 

2016). To conclude, variability in a given region’s association to a given brain network highlights a dynamic interplay 

between segregation and integration, providing a new perspective on the function of well‐known brain areas. Our results 

suggest evaluating time-varying properties of brain network interplay is thus a vital issue for future research to understand 

the multifactorial role of brain networks.  

Studying patterns of brain networks using spatial states also provides striking findings regarding anticorrelative patterns of 

brain networks. Similar to our finding that different brain regions become involved with different brain networks over time, 

various anticorrelative relationships were detected at different time points. Using a spatial state analysis, the default mode 

shows anticorrelated relationships with sensorimotor and salience networks at States 2 and 4 respectively, but the 

anticorrelated pattern attenuates in States 1 and 3. Our findings suggest anticorrelative relationships are not limited to the 

default mode. We identified a new set of anticorrelated patterns for various networks and illustrate, for the first time, 

anticorrelative relationships occur at specific moments rather than persisting over time. This is an intriguing finding which 

suggests the need for new investigations and potential revision to proposed causality or modulatory relationships between 

brain networks such as between the salience and default mode.  

Studying dCMs of brain networks also accentuates the role of the cerebellum in different networks. The cerebellum has 

widespread polysynaptic connections to the cerebral cortex which all pass through the thalamus (Buckner et al., 2011; Kelly 

and Strick, 2003; Krienen and Buckner, 2009; Strick et al., 2009). This phenomenon can explain the role of the cerebellum 

in a wide range of motor and cognitive functions (Lars, 2010; Muckli and Petro, 2013; Stoodley and Schmahmann, 2009). 

While the polysynaptic connections make reconstructing the topography of cerebro-cerebellar connections by anatomical 

methods relatively difficult, the ability to measure indirect connectivity (functional connectivity) via fMRI makes it an 

effective way to map cerebro-cerebellar connections (Krienen and Buckner, 2009; O'Reilly et al., 2010). Our observations, 

similar to previous fMRI studies, demonstrate stronger contralateral connectivity patterns between cerebellum and cerebral 

cortex compared to ipsilateral connectivity patterns, which is consistent with known contralateral polysynaptic connections 

between cerebral cortex and the cerebellum (Buckner et al., 2011; Kelly and Strick, 2003; Krienen and Buckner, 2009; 

O'Reilly et al., 2010). In general, previous rsfMRI studies agree on the relationship of the cerebellum with the thalamus, 
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motor area, and regions involved with the frontoparietal networks (Krienen and Buckner, 2009; O'Reilly et al., 2010). Our 

dynamic network analysis corroborates these results. 

Despite the unique ability of rsfMRI to measure cerebro-cerebellar connectivity, the role of the cerebellum in brain network 

analysis is often overlooked. This is in part because it is not usually recognized as an integral part of the connectome, and 

its static functional connectivity to brain networks is typically weaker compared to cortical connectivity limiting the 

visibility of the cerebellum due to limitations in statistical power. In earlier work, Buckner and his colleagues estimated 

specific cerebellar topography patterns for cerebral networks by assigning each cerebellar voxel to a network with the 

highest correlation values (Buckner et al., 2011). Although their approach had limitations preventing concrete conclusions, 

their work provides a striking result regarding different functional connectivity patterns across the cerebellum. Using a 

dynamic analysis, we observed intriguing findings suggesting the evaluation of time-varying contributions of cerebellar 

regions to different brain networks conjointly provide a great deal of knowledge about the role of the cerebellum in 

functional networks. Our analysis showed positive associations between cerebellar regions and the subcortical network, 

which may be explained by the relay role of the thalamus in cerebro-cerebellar connections. We also observed positive 

associations between cerebellar regions and both the left and right frontoparietal networks that relate to fronto-cerebellar 

circuitry (Kelly and Strick, 2003; Krienen and Buckner, 2009; O'Reilly et al., 2010). For the first time, we observe negative 

associations between cerebellar regions and certain sensorimotor networks. These include somatomotor, auditory, and visual 

networks. This negative association could be related to modulating the connection between the thalamus and cortex in 

cerebellar thalamic cortical circuits. 

It is also worth mentioning that functional relationship between the cerebellum and somatosensory and motor/premotor 

cortex has been frequently reported, but there is some disagreement over the relationship between the cerebellum and both 

the primary auditory and visual cortices (Krienen and Buckner, 2009; O'Reilly et al., 2010). O'Reilly et al. (O'Reilly et al., 

2010) suggested the relationship between the cerebellum and primary auditory and visual areas probably reflects the 

importance of visual and auditory information in motor control which was demonstrated in earlier experiments. 

Interestingly, the motor area is positively associated with the states of the primary visual and auditory networks that have a 

negative association with the cerebellum. This also emphasizes the importance of our finding that different networks have 

cross talk.  
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Our approach emphasizes distinct features in both the spatial and temporal realms. Regarding spatial patterns of brain 

networks, the spatial chronnectome analysis allows us to detect atypical brain patterns in patients with SZ that cannot be 

detected using a static analysis including statistical alteration in dCMs. Moreover, spatial chronnectome analysis detects 

important variations in temporally fluid patterns. For example, the influence of dynamic alterations in the static analysis can 

be small, and therefore changes networks coupling would not be detected in static analysis due to a reduction in the statistical 

power. With respect to temporal dynamic properties, preliminary investigations reveal significant differences in both mean 

dwell time and fraction time between patients with SZ and healthy subjects. Additional independent studies will be needed 

to comprehensively investigate the temporal properties of brain networks through networks’ state and meta-state indices. 

Furthermore, our approach provides a unique opportunity to investigate the variations of networks’ couplings which is not 

feasible in static analysis. In our analysis, we observed overall higher coupling variability and lower network coupling 

strengths among patients with SZ, which is aligned with the dysconnectivity or disconnection hypothesis of schizophrenia 

(Friston, 1998). Reduced functional connectivity has been constantly reported in patients with SZ (Damaraju et al., 2014; 

Erdeniz et al., 2017; Gavrilescu et al., 2010; Skudlarski et al., 2010; Vercammen et al., 2010), and higher fluctuations of 

brain connectivity within brain networks in SZ could be related to the brain’s effort to compensate for dysconnectivity 

and/or unbalancing of brain circuitries (Cazorla et al., 2015). 

While the proposed approach can capture the spatial fluidity of networks’ couplings, new indices are also needed to quantify 

the spatiotemporal of individual brain networks. For this purpose, the spatiotemporal transition matrix and associated 

features were introduced to summarize the time-varying properties. Statistical comparisons between healthy subjects and 

patients with SZ reveals statistical significant differences which were consistent across interval values. With the exception 

of the default mode, the patterns of alterations are similar across networks in which patients with SZ have higher transitions 

in higher dynamic coupling values, while healthy subjects display higher transitions in lower dynamic coupling values. The 

opposite pattern of the default mode could be related to its activity pattern in relation to other networks and mental and 

physical activities. It is known that static functional connectivity within the default mode decreases as the static functional 

connectivity of the other networks increases. For instance, during a task, the connectivity value within the default mode 

reduces. Thus, it is expected that variations in lower dynamic coupling values of the default mode are associated with 

variations in higher dynamic coupling of other networks. Significant differences between healthy subjects and patients with 

SZ were also observed in networks’ spatiotemporal uniformity. Future work should also examine how spatiotemporal 
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dynamic information can improve classification accuracy of patients into diagnosis categories. More importantly, significant 

associations were detected between spatiotemporal uniformity indices obtained from the spatiotemporal transition matrix 

and attention/vigilance cognitive domains of CMINDS. Previously, van Erp et. al., found patients with SZ revealed 

significantly large impairments in the speed of processing and the attention/vigilance of CMINDS compared to healthy 

subjects on the, more so than other CMINDS domains (van Erp et al., 2015). As such, our findings of strong difference in 

the links between subcortical and CMINDS attention/vigilance domain may reflect a true disruption in subcortical domains 

relative to attention/vigilance in patients with SZ, but lack the statistical power for confirmation. Future work is needed to 

identify the nature of the relationship between spatiotemporal indices and neuropsychological variables in both SZ and other 

patient groups, but our preliminary results demonstrate promising relationships between the spatial chronnectome metrics 

and cognition. 

Limitations and future directions: The proposed approach is utilizing the sliding window (Allen et al., 2014; Damaraju 

et al., 2014; Sakoglu et al., 2010), which is the most commonly used approach to study time-varying properties of brain 

networks. Previous analysis suggested that data length of 30-60 seconds is a good choice to successfully capture the dynamic 

properties (Allen et al., 2014; Preti et al., 2017) as well as to estimate cognitive states (Shirer et al., 2012). While we chose 

a window size of 60 seconds to follow previous recommendations, we highlight the importance of capturing the dynamic 

information of BOLD signals to its full potential, i.e. up to the maximum frequency that exists in the data (Trapp et al., 

2018; Vidaurre et al., 2017; Yaesoubi et al., 2018). Therefore, the approach should be improved to capture the full amount 

of time-varying information in the data. The other drawback of this work is the spatial resolution of the data, which limits 

the dynamic spatial specificity. Spatial resolution and smoothing induce blurring, which can be detrimental for capturing 

time-varying properties of brain networks. This effect has a more severe impact when brain regions with very distinct 

functional roles, like sub-regions of the cerebellum, are located in close proximity to one another within a small area. Data 

with higher spatial and temporal resolutions can provide better insight into spatiotemporal variations of brain functional 

organizations. Moreover, using surface-based registrations for high spatial resolution data instead of volume-based 

registration could potentially enhance functional specialization. 

In this study, we investigated the spatiotemporal variations of the brain networks, i.e. spatial independent functional 

organizations; however, another set of functional organizations can be obtained by assuming temporal dependency (Calhoun 

et al., 2001b; Smith et al., 2012). Temporal independence may be better suited for the proposed approach, as it does not 
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assume spatial stationarity in the first step of the analysis. In other words, using spatially independent networks carries the 

same contradictory assumption regarding the spatial maps that exists in spatio-temporal (dual) regression analysis (Erhardt 

et al., 2011b). Thus, future studies with higher temporal resolution should be used to investigate the spatial chronnectome 

of temporally independent networks. Finally, the proposed approach is the first step toward enhancing our understanding of 

spatiotemporal variations of brain functional organizations at the voxel level. Further work needs to be conducted to 

transform the approach to an established framework to investigate the spatial chronnectome of functional organizations 

across different cohorts (e.g. patients and healthy subjects). 

Conclusion 

The proposed approach provides a new framework to study the spatial chronnectome of brain functional organizations. 

Despite the limitations of our analysis/acquisition approach, such as spatial and temporal resolutions and sliding window 

restrictions, the findings of this study elucidate the spatiotemporal variations of brain networks. Major findings of the study 

include: 1) highlighting spatially fluid behavior of intra- and inter-network relationships, underlying a dynamic interplay 

between segregation and integration of information; 2) explaining broad-spectrum of inconsistencies in findings of static 

analysis; and 3) extracting detailed information and nuanced alterations of brain networks which gets lost and remains 

undetected using static analysis. Furthermore, new indices are introduced to evaluate spatiotemporal variations in brain 

functional organizations such as brain networks. Preliminary assessments of the approach using healthy subjects and patients 

with SZ demonstrate the ability of the approach to obtain new information of brain function and detect alterations among 

patients with SZ. Further investigation should be performed to evaluate the ability of the approach to study spatiotemporal 

variations of brain functional organizations. 
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