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ABSTRACT 

PURPOSE: Many cancers can be treated with targeted therapy. Almost inevitably, tumors 

develop resistance to targeted therapy, either from preexistence or by evolving new genotypes 

and traits. Intra-tumor heterogeneity serves as a reservoir for resistance, which often occurs due 

to selection of minor cellular sub-clones. On the level of gene expression, the ‘clonal’ 

heterogeneity can only be revealed by high-dimensional single cell methods. We propose to use 

a general diversity index (GDI) to quantify heterogeneity on multiple scales and relate it to 

disease evolution.   

METHODS: We focused on individual patient samples probed with single cell RNA sequencing 

to describe heterogeneity. We developed a pipeline to analyze single cell data, via sample 

normalization, clustering and mathematical interpretation using a generalized diversity measure, 

and exemplify the utility of this platform using single cell data.  

RESULTS: We focused on three sources of RNA sequencing data: two healthy bone marrow 

(BM) samples, two acute myeloid leukemia (AML) patients, each sampled before and after BM 

transplant (BMT), four samples of pre-sorted lineages, and six lung carcinoma patients with 

multi-region sampling. While healthy/normal samples scored low in diversity overall, GDI further 

quantified in which respect these samples differed. While a widely used Shannon diversity index 

sometimes reveals less differences, GDI exhibits differences in the number of potential key 

drivers or clonal richness. Comparing pre and post BMT AML samples did not reveal differences 

in heterogeneity, although they can be very different biologically.  

CONCLUSION: GDI can quantify cellular heterogeneity changes across a wide spectrum, even 

when standard measures, such as the Shannon index, do not. Our approach offers wide 

applications to quantify heterogeneity across samples and conditions.   
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INTRODUCTION  

In many cancers, there still exists a critical need to understand the mechanisms of therapy 

resistance evolution. For example, Acute Myeloid Leukemia (AML) is an aggressive hematologic 

malignancy that is hallmarked by proliferation of immature myeloid cells in the bone marrow and 

life-threatening ineffective hematopoiesis1. AML is the most common adult leukemia, with an 

incidence of about 20,000 cases yearly and a 5-year survival of only 26%2,3. The diagnosis of 

AML requires greater than 20% of myeloid immature cells (myeloblasts) in the peripheral blood 

or bone marrow. The median survival of untreated AML is measured in weeks4. Several AML 

targeted therapies have been recently approved, e.g. midostaurin for FLT3 mutated patients and 

enasidenib for those with mutations in IDH25,6. These mutations occur at rates of 25% (FLT3) 

and 5% (IDH2) of all AML patients and their targeted therapies are generally well tolerated 

relative to chemotherapeutic counterparts7. However, midostaurin (and even more potent FLT3 

inhibitors in clinical trial8) does not fully eradicated the disease, leading to refractory or relapsing 

AML in most patients9. The complete response rate for enasidenib in relapse/refractory IDH2 

mutated AML is less than 20%. Further refinements in patient selection are required to realize 

mutationally-directed therapy5. Little is known regarding the emerging resistance mechanism 

and whether targeted therapies (single or combination) against AML alone can ever be 

successful.  

The conventional dogma postulates that therapeutic resistance occurs via the acquisition 

of mutations that result in clonal evolution. Emerging data suggests that these mutations are 

either subclonally present or present at frequencies detectable using digital PCR or ultra-deep 

sequencing technologies at diagnosis or prior to progression. Very low level somatic mutations 

are also detected in pre-leukemic states10-13. Somatic mutations are often present years before 
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the diagnosis of therapy related myeloid neoplasms14,15. Interestingly, these mutations are 

commonly associated with disease progression and transformation16. The presence of such low-

frequency genetic markers suggests that high levels of intra-tumor heterogeneity (ITH) persist 

over long periods of time, and that pre-existing ITH is a primary driver of future therapy 

resistance, while variation in transcription over time shapes the disease phenotype. A clinically 

relevant summary metric to describe ITH on the transcriptional level has not been developed. 

scRNA-sequencing technologies can present a cost-effective method to identify 

transcriptomic heterogeneity and directly measure ITH. Proof of concept studies have been 

performed in AML, using DROP-seq that yields potentially cost-effective single cell annotations 

of thousands of transcripts per cell. In triple negative breast cancer, intercellular heterogeneity 

of gene expression programs within tumors is variable and correlates with genomic clonality17.  

A study in Chronic Myeloid Leukemia (CML) demonstrated that scRNA-seq was capable of 

segregating patients with discordant responses to targeted tyrosine kinase inhibitor therapy18. 

These data provide rationale to explore ITH in scRNA-seq data, and to determine whether 

defined measures of ITH can be predictive of progression, and eventually leveraged to mitigate 

progression and relapse.  

Our goal is to quantify ITH in cancer such that it has maximal predictive value, in particular 

in hematologic malignancies. To this end we here present a platform that uses a generalized 

diversity index that characterizes cell population heterogeneity across a spectrum of scales 

(orders of diversity)19. These scales range from clonal richness (low order of diversity reveals 

the number of distinct subpopulations), to more classical measures such as Shannon or 

Simpson indices (intermediate order of diversity), to the number of most abundant cell types that 
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possibly act as the key drivers of heterogeneity before transformation or perturbation by therapy 

(high order of diversity).  

 

MATERIALS AND METHODS 

 We created a computational and modeling approach to develop a robust statistical picture 

of the persistent and emerging variability in scRNA-seq data, chiefly based on drop-seq 

technologies; the 10x Genomics platform offered a variety of datasets that were linked to disease 

and treatment dynamics20. We specifically used the datasets of two healthy/control bone marrow 

mononuclear cell samples (BMMCs), two individuals with AML BMMCs sampled pre and post 

bone marrow transplant (BMT), to develop and test our ITH pipeline. pipelines. 

First, we ran publicly available FASTQ-format files (a typical output from a drop -seq 

experiment) through the cellranger count pipeline and then through the cellranger aggr pipeline, 

to pool the samples together for comparisons during cluster analysis, interrogated through the 

10x Genomics LoupeTM Cell Browser (Fig. S1). To test the robustness and valid our diversity 

metrics and the ITH pipeline, we extended our analysis to include additional publicly available 

datasets for other hematopoietic cell types (CD34+, CD14+, CD19+, and CD4+)20, as well as six 

patient normal-tumor matched lung cancer samples21, for which we used the same approaches 

and pipelines. To calculate summary metrics (outlined in Fig. 1), first the transcript expression 

data was clustered into groups of cells with similar transcript expressions (cellranger aggr). Next, 

we quantified the distance between each of the clusters to determine if clusters separated based 

on healthy or disease status (healthy vs AML). A Euclidean distance was calculated between 

the mean expression values for each gene, of each cluster, to establish a distance metric (Fig. 

2).  
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Figure 1. Schematic of our single cell RNA sequencing-based approach. A: Workflow of calculating a generalized diversity 
index (GDI) for a single sample. After sequencing and library preparation, normalization to reduce the number of false negatives 
or false positives is applied, for example using 10x-genomics platform, or clustering can then be applied (LoupeTM Cell browser, 
or other platforms, see Supplement), from which diversity can be calculated. B: A similar approach can be used when multiple 
samples are compared. Data normalization and clustering now have to be implemented considering all samples (see 
Supplement), from which diversity scoring can inform a ranking of intratumor-heterogeneity across samples. Single dots in the 
tSNE plots represent single cells, which might either be marked according to their cluster classification or according to their 
sample of origin.   

Second, we sought to characterize across-sample differences by calculating the 

Kolmogorov-Smirnov (KS) distance22 of the cell count distributions in each cluster, in order to 

compare samples or pooled samples of the same condition (e.g. disease v. healthy) in terms of 

the cellular distribution over the identified clusters (Fig. 3 A-G).  

Third, we calculated an ecological diversity index23 using the cellular frequencies over 

clusters, across a range of order of diversity (Fig. 3H, I). To assess the robustness of our 

diversity metric, we performed down sampling of the original datasets and found the relative 

change in diversity index, across a range of order of diversity, to determine the sensitivity of our 

diversity metric (Fig. 4).  

Last, we applied our ITH pipeline and diversity metric to two additional datasets, (1) a 

hematopoietic cell type datasets comparing CD34+ cells with CD4+, CD14+, and CD19+ cell 

populations20, and (2) a lung cancer dataset with tumor-normal matched tissue sites taken from 
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six different lung cancer patients21  (Fig. 5, Supplement). Further specific details of our methods, 

such as cells per sample, are described in the Supplement and is available online (including all 

code used to generate our results): https://github.com/mcfefa/scRNAseq.  

 

RESULTS AND DISCUSSION 

We established proof of concept that we can generate clinically relevant summary metrics 

of ITH by analyzing publicly available scRNA-seq data20,21. Within BMMC samples from 

diagnosed AML and healthy control groups, we sought to establish how to summarize both inter- 

and intra-sample ITH.  First, we clustered transcript expression of two healthy individuals, two 

AML patients, each sampled twice—once before and once after allogenic bone marrow 

transplant.  

As a verification we sought to distinguish between healthy and AML samples based on 

the mean expression values across cells, across clusters (Fig. 2A). With the 23 clusters 

identified (Fig. 2B, C), a network of clusters emerged, displayed as an undirected graph where 

the distance between mean UMI counts determines the thickness and length of the edges (Fig. 

2D). The size of the node was chosen to indicate of the total number of cells in that cluster. We 

colored each node according to the condition (health, pre BMT AML, post BMT AML) that was 

in the majority (breakdown of actual proportions per cluster shown in Fig. 2E). This showed that 

indeed the large clusters with mostly healthy cells are most similar in average gene expression, 

while the large clusters with mostly AML cells cluster separately (to the right). The post BMT 

cells clustered more closely to the healthy than pre BMT AML samples. This supports the idea 

that these patients were potentially still transitioning but closer to a healthy phenotype. However, 

some AML-dominant clusters still grouped near the healthy/post BMT super cluster. Based on 
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this “bulk” measure alone, one may not be able to easily distinguish between healthy and 

diseased cells. Therefore, other quantifications and metrics to describe the gene expression 

differences may better discriminate clinical and stages. 

 

Figure 2. Mean cellular gene expression across clusters within patients can separate disease conditions to some 
degree. Here we built a network based on mean differences in overall expression. A: The geometric mean of UMI counts across 
samples and genes was calculated for each cluster. Then a Euclidean distance was calculated between clusters. Here we used 
publicly available scRNA-seq data20: two healthy donor BMMCs, two AML patient BMMCs pre bone marrow transplant (preBMT), 
and post bone marrow transplant (postBMT). These six samples were then clustered (using 10x-genomics LoupeTM Cell browser; 
for alternative clustering methods see Supplement), for which we show the sample-based (B) and cluster-based (C) tSNE-plots 
out of LoupeTM browser. Each dot represents a single cell, which is colored either according to sample of origin or its assigned 
cluster. The cluster-based differences in mean gene expression over unique molecular identifier (UMI) counts the gave rise to a 
“clustering of the clusters” (D). The nodes in the resulting graph were colored based on the dominant cell type from each condition 
present in each cluster; gray for healthy, red for AML pre BMT and purple for AML post BMT, the distance between nodes was 
chosen inversely proportional to the difference in mean gene expression level, the individual distributions of cells from a specific 
condition in each cluster are shown in E. 
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To determine metrics better at discriminating between healthy and disease AML, we 

analyzed and summarized inter- and intra-heterogeneity in two different ways. First, we 

considered each samples’ grouping of cells into clusters of similar gene expression. To this end, 

we used the Kolmogorov-Smirnov (KS) distance, which compares two discrete probability mass 

functions (the fraction of cells per cluster, Fig. 3A). We identified rather similar distributions within 

the same condition, and rather different distributions between conditions, with post BMT being 

a notable exception (Fig. 3B-D). The KS distance between the two healthy samples was 0.139, 

between the two pre BMT AML samples it was 0.174, but between the two post BMT samples it 

was 0.551. Since we had clustered all six samples together, we could also compare them pooled 

by condition, which revealed that indeed conditions distribute differently across the identified 

cellular subpopulations in high-dimensional gene expression space (Fig. 3E-G). 

Second, we calculated a general diversity index (GDI) for each condition (healthy, pre 

BMT AML, post BMT). The mathematical definition of GDI, qD, is shown in Fig. 3H. We 

established segregation of the different clinical conditions according to this ecology-based 

diversity index23. The pre BMT AML samples had consistently higher diversity index compared 

to the healthy sample and this held true across the entire order of diversity range, q (Fig. 3I). 

Interestingly, on this level the post BMT samples also scored unanimously higher in GDI. This 

could indicate that post BMT settings may require a certain amount of time after transplant to 

evolve toward a healthy spectrum of intra-leukemic diversity.  Also, in a comparison of the 

individual samples within each condition (Fig. 4, A-C), the post BMT samples were most different 

from each other.   

To interrogate the robustness of GDI further and to establish confidence in the metric, we 

down sampled the dataset and then re-clustered and calculated the qD spectrum (Fig. 4D-I). 
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Figure 3. Cluster-based diversity scoring reveals strong differences between healthy individuals and cancer patients. 
In our analysis, using data from Zheng, et. al.20, we evaluated our ability to score significant differences in “cluster diversity” 
across healthy and AML samples pre and post bone marrow transplant (BMT). As a first indicator of between-sample or between-
condition differences we used the Kolmogorov-Smirnov (KS) distance for discrete probability mass functions (A). Little difference 
was found in the KS distance within condition-differences (B, C), except in post BMT samples (D). Between condition-differences 
were larger when comparing pooled samples across conditions (E, F, G). We calculated a general diversity index (GDI) qD (H) 
to quantify diversity across “orders of diversity” q. For all orders of diversity measure, AML patients (pre and post BMT) had a 
higher diversity index compared to healthy individuals (I, 2 samples per condition), suggesting GDI can be used as a metric for 
stratification. 
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During down sampling, we analyzed each sample individual by randomly removing 50% of the 

cells, then calculating the number of clusters identified for that individual’s transcript expression, 

and finally calculating the diversity index for specific q values of interest, including q=10-2, q=10-

1, q=1 (which relates to the Shannon index), q=2 (which defines the inverse of the Simpson 

index), q=10, and q=102. The distributions shown were obtained from 1000 runs of independent 

down sampling. Intriguingly, these distributions showed that with removing half of the cells, the 

diversity scores did not change more than a unit or two in either direction. When comparing to 

the diversity spectrum shown in Fig. 3I, this suggests that if healthy diversity spectrum were 

shifted up by two units (10% of the maximum) and the AML samples diversity spectrum were 

shifted down by two units, there would still be visible separation between the healthy and AML 

conditions.   

To further validate our metric, we implemented on our approach with two other datasets. 

One dataset described different hematopoietic cellular subtypes, CD34+, CD4+, CD14+, and 

CD19+20. CD34+ is a hematopoietic progenitor cell marker and represent a polyclonal population 

that includes many different subtypes (hematopoietic stem cells, multipotent progenitor cells, 

common myeloid progenitor cells, common lymphoid progenitor cells, megakaryocytes erythroid 

progenitor cells and granulocytes macrophage progenitor cells) all of which express CD3424-26. 

The CD34+ polyclonal population contrasted the CD4+, CD14+, and CD19+ populations, which 

represent more homogenous cellular populations (helper T-cells, monocytes, and B-cells, 

respectively). This clonality pattern was recovered by GDI (Fig. 5A), where the CD34+ 

population had a considerable higher diversity score across the spectrum. Interestingly, lower 

values of q seem to separate differentiated cells or robustly.  
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Figure 4. AML patients have consistently higher diversity compared to healthy individuals.  Individual diversity spectrums 
were reported for healthy (A), AML pre BMT (B), and AML post BMT (C) samples (each line is one from one sample). Cell-gene 
matrices were down sampled to 50% of the cells 1000 times, and qD scores were calculated (using the full pipeline, see 
Supplement) for specific values of q=0.01, 0.1, 1, 2, 10, 100. The distributions of relative qD changes for healthy (D, G), AML 
(E, H), and postBMT AML (F, I) samples showed that generally, lower q values lead to less change in measured diversity. Across 
all cases the diversity score did not change by more than two units (relative change is measured by dividing the entire distribution 
by the distribution mean). For sample sizes, see Supplement. BMT: Bone marrow transplant. 

Figure 4:
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Finally, we quantified ITH using lung cancer scRNA-seq samples21. We analyzed six 

different patients, each with up to three different tumor sites (core, middle, and edge) and a 

patient-matched adjacent normal lung tissue sample. Using our GDI metric, we see that the 

diversity spectrum of the normal lung tissue was much lower than any of the tumor site diversity 

scores (pooled conditions, Fig. 5B). Interestingly here, more clear separation of conditions was 

achieved at high orders of diversity q, indicating differences in the number of driver clones at 

different sites within the tumors. These additional datasets further support the ability of quantified 

diversity metric to discriminated between healthy and diseases states, which can be applied in 

a clinical setting. 

 

Figure 5. Higher diversity indicates higher clonality in in normal tissues and solid tumors. (A) Additional available data 
from Zheng, et. al.20 for CD34+ cells, CD4+ helper T-cells, CD14+ monocytes and CD19+ B-cells were run through pipeline S 
(see Supplement), and the continuum of diversity was calculated for each population. The naturally polyclonal population 
(CD34+) shows the highest diversity score. Each of the other differentiated immune cell compartments are more homogeneous 
across orders of diversity. (B) In solid tumors, location matters: normal-tumor matched lung carcinoma samples were obtained 
from publicly available data for six lung cancer patients21 (individual patients: see Supplement). The diversity metric across q 
shows an increase in diversity within tumors across different tumor locations. 

 

SUMMARY AND CONCLUSIONS 

Single-cell RNA sequencing efforts have greatly helped to uncover population structures 

and mapping to specific cellular population patterns27. Although these methods can also 

elucidate tumorigenesis28, immune-profiles29, and detect and track genomic profiles of 
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clones30,31, the overall utility of scRNA-seq for cancer progression survival metrics has been 

elusive32. Here, we demonstrated the potential utility of two scRNA-seq based scores of cellular 

heterogeneities, using a generalized diversity index that may be elevated in disease. 

Remarkably, using previously published data without further processing, this quantification of 

intra-tumor heterogeneity was able to accurately distinguish AML from healthy individuals, as 

well as from post-transplant conditions. These data suggest that ITH can be estimated by 

diversity-based summary statistics, and that these summary statistics can be leveraged to 

predict clinical outcomes.  

Our work here aimed at optimizing and identifying a clinically relevant summary index for 

ITH in the context of AML, for which targeted single-cell genome sequencing was also able to 

sensitively uncovered complex clonal evolution33. We anticipate that our ILH metric will be 

prognostic for leukemia-free survival (LFS) and potentially overall survival (OS), even after 

correction for known clinical prognostic variables. We have also shown how this metric can also 

be used to effectively describe heterogeneity in other malignancies, including solid tumors such 

as lung carcinomas. 

From a clinical perspective in terms of tumor heterogeneity and emergence of resistance 

clones during targeted therapy34,35, we expect our metric can discriminate patients clinically. We 

hypothesize that these heterogeneity metrics would be elevated independently (at least a priori) 

in potentially highly resistant patients. The advantage of a more general metric used here is that 

it allows us to look across many orders of diversity, and potentially pick a desired range of 

heterogeneity quantification. For example, one might be interested especially in lower values of 

q, where a higher diversity score may indicate an individual (sample) more at risk of resistance 

evolution, as it shows high standing variation. On the other hand, differences at high values of q 
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point to key differences in the number of important driver clones, which might uncover distinct 

vulnerabilities that can be targeted in combination or adaptively.  

Diversity measures have long received attention in ecology and evolution19,36. We here 

approached to measure diversity, and thus tumor heterogeneity, using a general definition of 

non-spatial diversity37, in form of the quantity qD (Fig. 3H-I). This approach considers all possible 

orders of diversity q, but also allows to compare disease stages according to a specific diversity 

index (fixed choice of q), which emerge as special cases of qD. The species (clonal) richness of 

a sample is given by q=0. The Shannon index (log scale) can be found when q approaches 1. 

The Simpson index, which approximated the probability that any two cells are identical emerges 

from the case q=2. Both Shannon and Simpson index have been used in mathematical and 

statistical models of cancer evolutionary dynamics to quantify tumor heterogeneity as it 

potentially changes during tumor growth, with disease progression, or during treatment38-40. 

Shannon entropy-based statistics have also been used to quantify single cell heterogeneity, to 

deliver insights into emerging or disappearing clones during transitions between clinical 

conditions41. 

 Single cell RNA sequencing experiments give a snapshot of the cell population state on 

the level of gene expression, and it can characterize how individual cell’s transcriptomes 

compare to the bulk. In contrast to mass cytometry, drop-seq is fast and extremely high-

throughput. Other single cell technologies, like flow cytometry can be used to generate single 

cell data for a relatively small subset of potential markers that distinguish between normal and 

disease, and it requires that the researcher/clinician knows what these markers are in advance. 

Among a variety of outcomes that may be distinguished by our metric, one can be the study for 
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segregating samples based on disease severity, for which additional follow-up knowledge will 

be needed.  

Further extending our results to the potential impact in a clinical setting in leukemias, 

intraleukemic heterogeneity (ILH) is a known reservoir for tumor resistance and clinical 

refractoriness to targeted therapies9. For current targeted therapies to treat AML, clinical 

responses have been modest. Specific means to change ILH can be of particular appeal in such 

cases, as they might help render tumors less aggressive and hinder their ability to rapidly evolve 

resistance. In particular, hypomethylating agents (HMA, cytosine analogs that irreversibly bind 

to DNA methyltransferase, an enzyme required for methylation of CpG-rich DNA) have the 

potential to diminish ILH42. Transcriptome changes upon treatment with HMA therapy have not 

been analyzed at single cell resolution. Our analyses here provide a quantitative basis to 

understand and reliably track these changes. 

Clear separation of diversity metrics by condition, as we show it, might not be expected 

in general. A weakness of our approach is that it does not consider any meaning of the 

associated phenotypes or genotypes. Therefore, as it stands, our method cannot be transferred 

to improve the predictive power of existing bulk signatures. Hence, existing survival data is 

unlikely to be useful to prove that GDI is predictive of survival, and novel databased that uniquely 

connect high throughput single cell experiments with clinical outcomes are needed.  

Once the appropriate cohorts are established, however, changes in an individual’s 

diversity score could indicate unique features of disease progression. In the context of adaptive 

therapy43,44, which aims at tumor burden control rather than difficult tumor eradication, it might 

be critical to identify the appropriate scale of diversity that best predicts outcomes. One could 

speculate that there is an optimal window of diversity that should be maintained—very low 
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diversity could indicate fast disease progression and very high diversity could mean that the 

tumor could adapt to the treatment schedule too quickly. The concept we introduced here is 

sufficiently flexible in its ability to quantify optimally predictive windows of diversity that should 

be maintained during adaptive therapy. 
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SUPPLEMENTAL MATERIALS AND METHODS 

DROPLET-BASED scRNASEQ SAMPLES 

The 10X Genomics platform offered a variety of datasets1 that were used to create our 

pipeline for quantifying intraleukemic heterogeneity. The major focus of our analysis and pipeline 

development was of Healthy/Control and AML patient bone marrow mononulear cells (BMMCs). 

The Healthy Controls 1 and 2 BMMCs had been sequenced on Illumina Hiseq 2500 Rapid Run 

V2 with 90-135 thousand reads per cell and 2000-2400 cells detected. The AML027 and 

AML035 pre-transplant BMMCs had been sequenced on Illumnia NextSeq 500 High Output with 

16.6-58 thousand reads per cell and 3500-3900 cells detected. The AML027 and AML035 post-

transplant BMMCs had also been sequenced on Illumina NextSeq 500 High Output with 41-51 

thousand reads per cell and 900-3900 cells detected. Additional datasets1 for CD34+, CD14+, 

CD19+, and CD4+ (hematopoietic cell type set) cells as well as patient normal-tumor matched 

lung cancer samples2 available in ArrayExpress under accessions E-MTAB-6653 and E-MTAB-

6149 were used to test the robustness of the pipeline. The CD34+ dataset was CD34+ cells 

enriched from peripheral blood mononuclear cells (PBMCs), sequenced on an Illumnia NextSeq 

500 High Output with 24.7 thousand reads per cell with 9000 cells detected. The CD14+ dataset 

was enriched from PBMCs, sequenced on Illumnia NextSeq 500 Output with 100 thousand 

reads per cell with 2600 cells detected. The CD19+ dataset was enriched from PBMCs, 

sequenced on Illumnia NextSeq 500 Output with 25 thousand reads per cell with 10000 cells 

detected.  The CD4+ dataset was enriched from PBMCs, sequenced on Illumnia NextSeq 500 

High Output with 21 thousand reads per cell with 11000 cells detected. All lung tissue samples 

were prepared as single-cell suspensions, sequenced on Illumina HiSeq4000, and aimed for an 

estimated 4000 cells per library2. There were six patients analyzed, each patient had 4 distinct 
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tissues locations sampled: an adjuacent normal lung sample (normal), a sample from the tumor 

core (core), a sample from the tumor margin (edge), and a sample between the tumor core and 

margin/edge (middle).  

INITIAL DATA PROCESSING 

First, the all samples were run through the 10x Genomics cellranger count pipeline for 

transcriptome alignment, calling individual cell barcodes, estimating multiplet rates, and finally 

clustering of normalization corrected FPKM (fragments per kilobase million; expression level) 

values (Fig. S1, pipeline X). In our analysis of the Healthy versus AML high-throughput scRNA-

seq, we used cellranger aggr to pool together the individual dataset results, so we could compare 

intra-tumor heterogeneity (ITH) between samples with the same clustering. Using a graph-based 

clustering algorithm, 23 different clusters were identified based on clustering cells by expression 

similarity (shown in Fig. 2B-C). The clustering was performed by forming a graph with cells as 

vertices and edges indicating pairs of cells that are sufficiently similar (implemented by 

CellRanger). The CellRanger graph-based clustering with Louvain Modularity Optimization3 was 

used to partition this graph into clusters of similar cells.  For analysis with the hematopoietic cell 

set and the lung cancer samples the cell/gene matrices produced by cellranger count pipeline 

were then loaded into R using the Seurat package4 (designed for QC, analysis, and exploration 

of single cell RNA-seq data; Fig. S1, pipelines M and S).  With Seurat, cells were removed that 

had either fewer than 200 UMIs and greater than 6000 UMIs and more than 10% mitochondrial 

DNA2, then scaled and normalized before clustering using graph-based clustering.  

QUANTIFYING SUMMARY DIVERSITY METRICS 

After the data was clustered, we then sought to quantify whether the clustering could 

disentangle healthy and AML samples by average gene expression. To approach within-sample 



 26 

differences in overall gene expression, we computed Euclidean distance matrices of the mean 

expression values in each cluster, to establish a distance metric of cluster differences and a 

subsequent diversity of distances across samples (standard deviation, ANOVA) (Fig. 2A). For 

each cluster, the geometric mean of each unique molecular identifier (UMI) across all genes 

were computed, then the Euclidean distance was computed between clusters.  This was plotted 

as a graph where each node represents each clusters identified in the leukemic dataset (Fig. 

2D). The size of the node indicates the total number of cells in that cluster and the color identifies 

the major species (AML, Healthy, or postBMT) present in that cluster. The distribution of cells 

per cluster (Fig. 2E) was also included to show which other conditions were also present in each 

cluster and how the number of cells compared to the major species used to dictate the color of 

the nodes in graph describing the connectivity of the clusters in Fig. 2D.   

Next, we sought to characterize across-sample differences by calculating the 

Kolmogorov-Smirnov (KS) distance5 of the cell count distributions in each cluster (Fig. 3A).  The 

KS distance is a non-parametric measure that is calculated as the supremum of paired 

differences of two empirical probability mass functions5. Last, we calculated a continuum of the 

ecological diversity index6 based on the individual cell frequencies in each of the clusters 

identified by the graph-based clustering (Fig. 3H), across all clusters, which can be written as: 

 

where n is the number of clusters in the data set, pn is the frequency of each cluster, and q is 

the order of diversity. q is a hyperparameter that would be optimized in a clinical setting. The two 

distributions for AML were joined together and the two distributions of the healthy indiviuals were 

qD =

 
nX

I=1

pq
i

! 1
1�q
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joined together and plotted across orders of diversity (Fig. 4A-C). The same technique was used 

to group the lung cancer samples based on location as reported in (Fig. 5B).  

DOWNSAMPLING 

 We sought to test the robustness of our metrics by downsampling the number of cells and 

re-calculating the number of clusters identified as well as changes in key diversity scores.  This 

downsampling was preformed removing increments of 10% of the data at a time and the results 

were reported as the summary statistics of 1000 runs at each downsampling percentile (Fig. 

S2). The downsampling results were also used to quantify confidence in the diversity index 

spectrum and was calculated for the following orders of diversity: 10-2, 10-1, 100, 2, 101, 102.  The 

relative change in diversity score was reported for the downsampling results with 50% the initial 

amount of cells in Fig. 4D-I. Relative change in the diversity score was calculated by subtracting 

the mean of the diversity score from all 1000 and reported as the distributions of scores around 

that mean score. 

CODE AVAILABILITY 

 The code used in the pipelines described in Fig. S1 were uploaded to a GitHub repository 

(https://github.com/mcfefa/scRNAseq). These pipelines were implemented using data run 

through at least cellranger counts, and then post-processed with CellRanger Loupe Browser, 

Mathematica, and R.  Code available includes:  

• Mathematica code and R scripts and data described to implement all pipelines (described 

in Fig. S1) 

• Mathematica code for calculating the geometric mean of UMIs and Euclidean distances 

between clusters (for Fig. 2) 

• R code to draw the graph of the clusters (Fig. 2D) 
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• Mathematica code for calculating the KS distance and diversity spectrum across all 

clusters for the leukemic dataset (Fig. 3) 

• R code used to downsample datasets, then cluster and calculate diversity indices (Fig. 4 

and S2) 

• R code for calculating the diversity spectrum for the hematopioteic subtype and matched 

lung carcinoma datasets (Fig. 5) 
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Supplemental Figure 1. Workflow diagram for the scRNAseq quantifying intraleukemia 

heterogeneity for an example comparing two samples. Cells were processed through the 

10X Genomics Chromium and ultimately sequenced, producing a raw base call (BCL) file, which 

was demultiplexed for each flowcell directory and converted to a FASTQ file using cellranger 

mkfastq. Then cellranger count was run separately for each library to align, filter, and count 

barcodes and UMIs. These instances were then aggregated into a single instance using 

cellranger aggr to normalize runs to the same sequencing depth and recompute analysis on 

combined dataset. Following along pipeline X, from the aggregated analysis, the Loupe Browser 

contains the clustered data, which were exported and run through a Mathematic script to 

calculate the diversity metrics. This pipeline was used to generate Figs. 3 and 4. This pipeline 

was expanded to give the user increased flexibility by using the gene-barcode matrices output 

by cellranger and then processing the data in R using the Seurat package, which allows users 

to set the filtering criteria (M) and allows data to be combined without running through the 

cellranger aggr pipeline (S) as well as both new pipelines allow users to implement additional 

clustering algorithms. Pipeline S was used to generate Fig. 5 from gene-barcode matrices 

available from additional data from Zheng, et. al.18. 
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Supplemental Figure 2. AML populations converge to consistent number of clusters that 

describe the population sooner than healthy populations. graph-based clustering.  Each 

original population’s gene-barcode matrix obtain from publicly available data from Zheng, et. 

al.18  was then downsampled to contain 10% to 90% of the cells originally in the matrix. This data 

was loaded into R using the Seurat package, downsampled, and then clustered to determine 

how sensitive the cluster metrics was to the starting number of cells. Downsampling was 

performed 1000 times per cutoff and the violin plots show the distribution of clusters identified.  

The red-dashed lined indicates the number of clusters identified with no cells removed from the 

dataset. Gray numbers indicate the number of cells present in each downsampling condition. 

AML populations (A, B) showed quickest convergence to number of clusters after about 1500 

cells were present in clustering. Healthy populations (C, D) showed that as more cells were 

added, an additional cluster could be found.  AML post-bone marrow transplant populations (E, 

F) behaved more similar to healthy than AML populations. 
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Supplemental Figure 3: Individual lung cancer patient diversity scores show same trends as 

aggregated clustering results with tumor samples have greater diversity scores than their 

matched normal counterpart. Individual patients were run through pipeline S to aggregate 

normal, core, middle, and edge tissue samples. 

 

  

A: B:Patient 1 Patient 2

C: D:Patient 3 Patient 4

E: F:Patient 5 Patient 6

postBMT
Healthy
AML

10-2 10-1 1 10 102
0

5

25

10

15

20

Diversity parameter q

D
iv
er
si
ty
in
de
x
q D

normal
core
middle
edge

5

10

15

20

postBMT
Healthy
AML

10-2 10-1 1 10 102
0

5

25

10

15

20

Diversity parameter q

D
iv
er
si
ty
in
de
x
q D

0

25 postBMT
Healthy
AML

10-2 10-1 1 10 102
0

5

25

10

15

20

Diversity parameter q

D
iv
er
si
ty
in
de
x
q D

normal
core
middle
edge

5

10

15

20

postBMT
Healthy
AML

10-2 10-1 1 10 102
0

5

25

10

15

20

Diversity parameter q

D
iv
er
si
ty
in
de
x
q D

0

25

postBMT
Healthy
AML

10-2 10-1 1 10 102
0

5

25

10

15

20

Diversity parameter q

D
iv
er
si
ty
in
de
x
q D

normal
core
middle
edge

5

10

15

20

postBMT
Healthy
AML

10-2 10-1 1 10 102
0

5

25

10

15

20

Diversity parameter q

D
iv
er
si
ty
in
de
x
q D

0

25 postBMT
Healthy
AML

10-2 10-1 1 10 102
0

5

25

10

15

20

Diversity parameter q

D
iv
er
si
ty
in
de
x
q D

normal
core
middle
edge

5

10

15

20

postBMT
Healthy
AML

10-2 10-1 1 10 102
0

5

25

10

15

20

Diversity parameter q

D
iv
er
si
ty
in
de
x
q D

0

25

postBMT
Healthy
AML

10-2 10-1 1 10 102
0

5

25

10

15

20

Diversity parameter q

D
iv
er
si
ty
in
de
x
q D

normal
core
middle
edge

5

10

15

20

postBMT
Healthy
AML

10-2 10-1 1 10 102
0

5

25

10

15

20

Diversity parameter q

D
iv
er
si
ty
in
de
x
q D

0

25 postBMT
Healthy
AML

10-2 10-1 1 10 102
0

5

25

10

15

20

Diversity parameter q

D
iv
er
si
ty
in
de
x
q D

normal
core
edge

5

10

15

20

postBMT
Healthy
AML

10-2 10-1 1 10 102
0

5

25

10

15

20

Diversity parameter q

D
iv
er
si
ty
in
de
x
q D

0

25



 34 

REFERENCES 
   
 1. Zheng GX, Terry JM, Belgrader P, et al: Massively parallel digital transcriptional 

profiling of single cells. Nat Commun 8:14049, 2017 

 2. Lambrechts D, Wauters E, Boeckx B, et al: Phenotype molding of stromal cells in 

the lung tumor microenvironment. Nat Med 24:1277-1289, 2018 

 3. 10xGenomics: https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/algorithms/overview, 2018 

 4. Butler A, Hoffman P, Smibert P, et al: Integrating single-cell transcriptomic data 

across different conditions, technologies, and species. Nat Biotechnol 36:411-420, 2018 

 5. Carruth J, Tygert M, Ward R: A comparison of the discrete Kolmogorov-Smirnov 

statistic and the Euclidean distance. arxiv.org:arXiv:1206.6367, 2012 

 6. Lou J: Entropy and diversity. Oikos 113:363-375, 2006 

 
 


