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Abstract 

The architectonic type principle attributes patterns of cortico-cortical connectivity to the relative 

architectonic differentiation of cortical regions. One mechanism through which the observed close 

relation between cortical architecture and connectivity may be established is the joint development of 

cortical areas and their connections in developmental time windows. Here, we describe a theoretical 

exploration of the possible mechanistic underpinnings of the architectonic type principle, by performing 

systematic computational simulations of cortical development. The main component of our in silico 

model was a developing two-dimensional cortical sheet, which was gradually populated by neurons 

that formed cortico-cortical connections. To assess different explanatory mechanisms, we varied the 

spatiotemporal trajectory of the simulated histogenesis. By keeping the rules governing axon 

outgrowth and connection formation constant across all variants of simulated development, we were 

able to create model variants which differed exclusively by the specifics of when and where neurons 

were generated. Thus, all differences in the resulting connectivity were due to the variations in 

spatiotemporal growth trajectories. Our results demonstrated that a prescribed targeting of interareal 

connection sites was not necessary for obtaining a realistic replication of experimentally observed 

connection patterns. Instead, we found that spatiotemporal interactions within the forming cortical 

sheet were sufficient if a small number of empirically well-grounded assumptions were met, namely 

planar, expansive growth of the cortical sheet around two points of origin as neurogenesis progressed, 
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stronger architectonic differentiation of cortical areas for later neurogenetic time windows, and 

stochastic connection formation. Our study pinpointed potential mechanisms of how relative 

architectonic differentiation and cortical connectivity become linked during development. The 

successful prediction of connectivity in two species, cat and macaque, from simulated cortico-cortical 

connection networks further underscored the general applicability of mechanisms through which the 

architectonic type principle can explain cortical connectivity in terms of the relative architectonic 

differentiation of cortical regions.  

Author Summary 

The mechanisms that govern the establishment of cortico-cortical connections during the 

development of the mammalian brain are not completely understood. In computational simulation 

experiments reported here, we explored the foundations of an architectonic type principle, which 

attributes adult cortical connectivity to the relative architectonic differentiation of connected areas. 

Architectonic differentiation refers, among other characteristics, to the cellular make-up of cortical 

areas. This architectonic type principle has been found to account for diverse properties of cortical 

connectivity across mammalian species. Our in silico model generated connectivity patterns consistent 

with the architectonic type principle and typically observed in mammalian cortices, if model settings 

were chosen such that they corresponded to empirical observations about how cortical development 

proceeds. Our computational experiments systematically evaluated previously proposed mechanisms 

of cortical development and showed that connectivity consistent with the architectonic type principle 

arises only from realistic assumptions about the growth of the cortical sheet.  

Introduction  

Axonal connections among cortical areas are the structural substrate of information transfer 

throughout the brain. These cortico-cortical connections form networks that are neither regular nor 

random, and exhibit large-scale topological features, such as modules and hubs [1, 2], rich-clubs [3, 4] 

and diverse-clubs [5], that have been the subject of wide-ranging investigations [6-19]. Moreover, 

there exist noteworthy regularities in the laminar patterns of cortical projection origins and terminations 

[20-23].  
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Many structural features of the cortex have been probed for their relationship to axonal 

connections between brain regions. For example, aspects of cell morphology have been shown to 

correlate with properties such as area degree (i.e., the number of projections maintained by an area) 

in the macaque monkey [24, 25] and humans [26].  

An architectonic type principle linking cortical structure and connectivity  

One potent explanatory framework that imposes order onto the tangle of cortico-cortical 

connections is the so-called structural model [27]; reviewed in [28, 29], also termed architectonic type 

principle (ATP). This principle describes the patterns of cortical projections and their laminar origins 

and terminations in terms of the relative architectonic differentiation of brain areas. Briefly, graded 

differences in cortical architecture have been found to account for the graded patterns observed in the 

distribution of projection origins and targets across cortical layers [27, 30-36]. Moreover, greater 

similarity in the architectonic differentiation of cortical areas has been found to be associated with 

higher connection frequency between them, above and beyond the explanatory power of spatial 

proximity [34, 36, 37]; see [29, 38] for reviews). Originally described for ipsilateral connections of the 

macaque prefrontal cortex [27], the ATP has since been confirmed for a considerable number of brain 

systems and species, as well as contralateral connections [30-37, 39-42], suggesting a mammalian-

general organisational principle. The general applicability of this principle was further supported in a 

recent study by performing prediction analyses that transferred information across mammalian species 

[43]. Specifically, by training a classifier on the relationship between cortical structure and connections 

in a first species, area-to-area connectivity in a second species could be reliably predicted from 

structural variations of cortical areas in the second species without making changes to the classifier.  

The architectonic type principle, thus, allows the prediction of cortico-cortical connectivity from 

brain architecture regularities. Further substantiation of the ATP calls for a mechanistic explanation of 

how the described relationships between brain architecture and connectivity may emerge. From early 

on, the origin of this relationship has been hypothesized to be linked to developmental events [27]. 

Specifically, the observed close relationship between variations in cortical structure and axonal 

connections may arise from an interplay between the ontogenetic time course of neurogenesis and 

concurrent connection formation [29, 35, 44]. Areas which develop during different time windows were 

suggested to be afforded distinct opportunities to connect, with self-organisation rather than precisely 
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targeted connection formation leading to the strikingly regular final connectivity patterns (also cf. [45]). 

Put differently, it has been hypothesized that spatiotemporal interactions in the forming tissue, and 

specifically the relative timing of neurogenesis across the cortex, determine the connectivity patterns 

between cortical areas. Empirically, such a relationship has, for example, been observed in the 

olfactory system of the rat [46].  

Here, using systematic computational simulation experiments, we explored whether this 

suggested mechanism may be capable of generating cortico-cortical connectivity consistent with 

empirical observations and the architectonic type principle (Fig. 1). To this end, we implemented an in 

silico model of the growing two-dimensional cortical sheet of a single cerebral hemisphere that was 

progressively populated by neurons and divided into cortical areas. Model neurons randomly grew 

their axons across the cortical sheet and stochastically formed connections with potential postsynaptic 

targets (similar, for example, to simulation experiments in [47] and [48]). We assessed the resulting 

network of simulated structural connections between cortical areas in the same way as in previous 

experimental studies (e.g., [34, 36]) and compared the results to the empirical observations. Since we 

constrained the model to a single hemisphere, the simulated connections represent ipsilateral 

connectivity. Following this general approach, we characterized a number of variants of the in silico 

model of the growing cortical sheet, which differed in their adherence to empirical observations about 

developmental processes, specifically the spatiotemporal sequence of neurogenesis across the 

cortex. By comparing the networks generated from these variants, we could infer which aspects of the 

proposed mechanistic underpinnings of the ATP, particularly, which neurodevelopmental assumptions, 

were necessary to approximate empirical ipsilateral cortical connectivity.  

Fig 1. Neurodevelopmental assumptions and overview of the in silico model. The figure 

illustrates the assumptions regarding neurogenesis that were varied in the in silico model. The spatial 

growth of the cortical sheet of a single hemisphere was modelled in three possible ways: First, planar 

growth, in which the neurons comprising a cortical area develop at the same time and the cortical 

sheet expands as more areas materialize. Second, radial growth, in which neurons across the entire 

extent of the final cortical sheet develop at the same time, and the final complement of neurons is 

reached by gradual growth of neurons at a constant rate. Third, no growth, that is, a static cortical 

sheet on which the final complement of neurons is already present from the onset. Regarding the 

gradients of architectonic differentiation, we considered three possible relationships between the time 

at which an area was formed (time of neurogenesis) and its architectonic differentiation (approximated 

by neuron density). First, areas could be the more differentiated the later in ontogenesis they were 
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formed (increasingly differentiated). This scenario corresponds to the realistically oriented density 

gradient we incorporated in the in silico model. Second, areas could be less differentiated, the later 

their time of origin was (decreasingly differentiated). This scenario corresponds to the inversely 

oriented density gradient in the in silico model. Third, there could be no gradient of differentiation 

aligned with neurogenetic timing, that is, the neuron density of newly formed areas varied randomly 

throughout ontogenesis. As a third factor that determined the spatiotemporal growth trajectory of the 

cortical sheet, we considered the number of neurogenetic origins. There could either be a single origin, 

such that more recently formed areas occupied the fringes of the cortical sheet, or there could be two 

or three origins. In this case, recently formed areas would be interleaved with areas that were formed 

earlier, as the neurogenetic origins were moved apart by addition of areas around them. From these 

assumptions on neurogenetic processes shaping the cortical sheet, we set up different variants of an 

in silico model in which axons grew randomly across the developing cortical sheet and stochastically 

formed connections. We translated the resulting neuron-level connectivity to area-level connectivity 

and extracted structural measurements from the simulated cortical sheet. As in previous studies of 

mammalian connectomes, we considered the difference in architectonic differentiation between areas 

and their spatial distance. Thus, we simulated sets of measures which we could then analyse in the 

same way as empirical data, and compared the results to empirical findings. Specifically, we used 

simulated architectonic differentiation and spatial distance to classify whether a connection existed in 

the final simulated network; we probed whether there was an association between simulated 

architectonic differentiation and the number of connections maintained by an area; and we used a 

classifier trained on the simulated data to predict connection existence in two sets of empirical 

connectivity data, from the cat and the macaque cortex. 

Aspects of neural development that prescribe spatiotemporal trajectories 

of cortical growth  

We explicitly incorporated three aspects of corticogenesis in our simulations which are briefly 

described here.  

First, the cortical sheet is established through neurogenesis spreading out from spatial origins, 

or primordial points, so that the surface of the cortex expands over time. This expansion is 

accompanied by a gradient in the time of onset of neurogenesis across the cortical sheet, which we 

refer to as the planar gradient of time of neurogenesis [49-59]. Developmental studies indicate that 

neurogenesis proceeds from at least two points of origin [56, 59, 60], with new neurons successively 

increasing the extent of cortical tissue between these neurogenetic origins. This progression entails 

that areas formed earlier become further separated on the cortical sheet as new areas are generated. 

Moreover, there is a superimposed radial gradient in the progression of neurogenesis [49, 50, 52, 61, 

62], resulting in the characteristic inside-out generation sequence of neurons across layers (meaning 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 25, 2018. ; https://doi.org/10.1101/426718doi: bioRxiv preprint 

https://doi.org/10.1101/426718


6 

that, with the exception of neurons in layer I, neurons in lower cortical layers are generated before 

neurons in upper cortical layers). In contradistinction to the findings outlining a planar gradient in the 

onset of neurogenesis, as described above, it has also been suggested that the onset of neurogenesis 

is simultaneous across the cortex [63, 64]. To contrast these two interpretations, we included both 

alternatives in our simulation experiments, as described in more detail below.  

Second, cortical areas that are generated later are generally more architectonically 

differentiated [44, 59, 65, 66]; also briefly reviewed in [35]. Gradual changes in cortical architecture 

along two trends were described already several decades ago [67-71]; reviewed in [29, 38]. In brief, 

the two foci of least differentiated cortex are the allocortical, three-layered archicortex and paleocortex. 

These cortices are surrounded by periallocortex, where additional layers can be discerned, but without 

the clear laminar organisation found in the isocortex. Proisocortex, the next stage of differentiation, 

has a definite laminar organisation, but is missing a well-developed layer 4. Finally, there are different 

levels of isocortex with increasing demarcation of laminar boundaries and prominence of layer 4. More 

recently, changes in cell cycle kinetics across the forming cortical sheet and genetic correlates of the 

neurogenetic gradients have been described [57, 58, 72-74], which elucidate how gradual changes in 

cortical architecture are effected and provide an association between time of origin and architectonic 

differentiation. Particularly, a lengthening in the cell cycle along the planar neurogenetic gradient is 

accompanied by a successive increase in the proportion of progenitor cells differentiating into neurons 

with each cell cycle. In combination with the mentioned relation between time of origin and final 

laminar position of neurons, this mechanism results in a relatively increased number of supragranular 

layer neurons in later generated sections of the cortical sheet. Thus, a positive correlation can be 

observed between time of origin and neuron density across the cortex [66]. This link has been 

corroborated by findings in the human cortex, which directly traced systematic architectonic variation 

of the cortex to the timing of development [44]. A lengthening of the overall developmental time period, 

and with it the neurogenetic interval, appears to be responsible for increased neuron numbers both 

within the cortex of a given species, as well as across species which differ in their overall level of 

architectonic differentiation [65, 66, 75]. In fact, it has been suggested that cortical architecture 

correlates not only with neurogenetic time windows during ontogenesis, but also with the succession 

of architectural differentiation observed during brain evolution [59, 70]. This finding suggests that 

phylogenetic age has a bearing on architectural gradients. As mentioned above, it has repeatedly 
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been reported that areas at similar points in the architectonic differentiation spectrum, as well as within 

the two described trends of architectonic progression, are preferentially linked, even if they are 

dispersed throughout the brain (also reviewed in [38]). The link to phylogeny, added to this correlation 

between architectonic progression and associated connectivity, thus, further points towards a 

developmental origin of the interrelations captured by the architectonic type principle.  

The third aspect of neurogenesis which we incorporated into our simulations is that axon 

outgrowth starts concurrently with, or immediately after, neuronal migration [73, 76-79], and appears to 

be largely unspecific spatially [80]. We, therefore, assumed that connection formation starts as soon 

as neurons were generated. Further assumptions derived from these observations were that axons 

grow randomly across the cortical sheet (i.e., with no particular spatial orientation) and that they 

indiscriminately form connections once they are close enough to a potential target neuron, a 

mechanism that has been named Peters’s Rule [81, 82]. Thus, the process of connection formation 

can be described as stochastic, and has been simulated in this way in previous computational models 

of connection development (e.g., [48]). This mechanism entails that the probability of a neuron forming 

a connection is only dependent on the probability of its axon finding a target neuron. Since neurons 

that are far apart are separated by a larger number of neurons that could accommodate the axon, the 

probability of connecting to a target neuron is the lower, the larger the distance between two neurons. 

In effect, there is a positive correlation between the spatial proximity and connection probability of 

different neurons.  

An in silico model for assessing spatiotemporal growth trajectories  

The spatiotemporal dynamics of corticogenesis that emerge from the combination of these 

empirically grounded assumptions were hypothesized to result in the establishment of realistic cortico-

cortical connectivity. In particular, we expected interactions between the spatial and temporal aspects 

of neurogenesis to lead to the formation of connections which are consistent with the predictions of the 

architectonic type principle concerning the relationship between areas’ relative architectonic 

differentiation and connection frequencies. Our simulation experiments, thus, contribute the first 

systematic exploration of the neurodevelopmental mechanisms that have been hypothesized to 

underlie the ATP [27, 29, 35, 40].  
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In summary, we implemented several aspects of neurogenesis in an in silico model of the 

growing mammalian cerebral cortex. These aspects were then modified in some variants of the model, 

so that they either corresponded to, or violated, empirically observed phenomena. This strategy 

allowed us to compare the cortico-cortical connectivity resulting from hypothetical variants that differed 

in their assumptions, where some of these assumptions were empirically grounded and others were 

not. The approach enabled us to assess the merits of mechanisms which have been proposed to link 

cortical structure and connectivity through the ATP.  

Results  

Overview  

We simulated the growth of cortico-cortical connections between areas of different neuron 

density according to a constant set of growth rules. We evaluated how closely the simulated 

connectivity corresponded to empirical observations made in mammalian connectomes when the 

physical substrate of the connections, that is, the simulated cortical sheet, developed along different 

spatiotemporal trajectories. To this end, we systematically varied the settings of our in silico model to 

construct a number of variants, which we refer to as spatiotemporal growth layouts. We considered 

five sets of growth layouts: (1: realistically oriented density gradient) planar growth of the cortical 

sheet, such that cortical areas were added around neurogenetic origins, with new areas having an 

increasingly higher neuron density (i.e., neuron density increased with distance from a point of origin); 

(2: inverse density gradient) planar growth of the cortical sheet, such that cortical areas were added 

around neurogenetic origins, but with new areas having increasingly lower neuron density (i.e., neuron 

density decreased with distance from a point of origin); (3: radial) no planar growth of cortical areas on 

the fringes of the cortical sheet, but gradual addition of neurons at a constant rate across the cortical 

sheet, which resulted in an ordered gradient of area neuron density that was the same as in sets 1 

and 4; (4: static) no planar growth of cortical areas, but the same final gradient of area neuron density 

as in sets 1 and 3; (5: random) planar growth of the cortical sheet, such that cortical areas were added 

around neurogenetic origins, but with no ordered gradient of area neuron density, instead neuron 

density varied randomly between locations on the cortical sheet. For all five sets, we implemented 

three growth modes: (1D 1row) one-dimensional growth implemented with one row of areas; (1D 
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2rows) one-dimensional growth implemented with two rows of areas; and (2D) two-dimensional 

growth. For all five sets, all three growth modes were implemented with planar growth around two 

neurogenetic origins. For set 1 (realistically oriented density gradient), we additionally implemented 

each growth mode with one neurogenetic origin as well as three (1D growth) or four (2D growth) 

neurogenetic origins. Thus, in total, we considered 21 growth layouts, grouped into five sets according 

to the spatiotemporal trajectory the cortical sheet traversed (see Fig. 2 and Table 1 for an overview).  

We first present some general statistics of the simulated connectivity and then go on to 

characterize how well the relationship between connectivity and the two factors of (relative) neuron 

density and spatial distance corresponded to previously published empirical observations for the 

different growth layouts. Finally, we assess how well the different growth layouts predicted empirical 

connectivity, as an indication of how realistic the simulated connectivity was for a given growth layout. 

Figure 3 provides an outline of this procedure. Table 2 gives an overview of all results.  

Fig 2. Developmental trajectories of growth layouts. The figure illustrates the spatiotemporal 

growth trajectory for different growth layouts. The successive population of the cortical sheet with 

neurons is shown for the first three growth events. For static growth, all neurons grow simultaneously, 

hence only one growth event is shown. Here, all growth layouts of growth mode 1D 2 rows are shown. 

See Supplementary Figure S1 for an illustration of the developmental trajectories of all 21 growth 

layouts. 

Fig 3. Validation procedure for measures of simulation-to-empirical classification 

performance. The figure illustrates the general procedure for assessing the performance of the 

classification of empirical data from the cat and macaque cortex by classifiers that were trained on 

simulated data; see main text for details. We computed median measures of classification 

performance for each growth layout and compared these measures against chance performance, as 

assessed by a permutation analysis. Specifically, for each of the 21 growth layouts shown in Figure 8 

and Table 4, 100 instances were simulated. For each instance, classification was performed using 10 

different classification thresholds. For each threshold, a simulation-trained classifier assigned labels to 

the empirical data, resulting in Athr. Additionally, a distribution of chance performance accuracies, 

Achance, was generated by classifying 100 times from randomly permuted non-sensical labels. A z-test 

quantified the probability that Athr was an element of the distribution of Achance. The corresponding p-

value pthr was used for further calculations. For each simulation instance, classification performance 

from all 10 thresholds was averaged, resulting in one mean accuracy value and one median value of 

pthr per instance, thus amounting to a total of 100 values each per growth layout. Figure 8 shows the 

distribution of mean accuracy values from these 100 instances, and indicates the median accuracy. 

The indication of significance in Figure 8 refers to the p-value obtained from a sign-test which 
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assessed whether the median of the distribution of median values of pthr was larger than the chosen 

significance threshold αz-test of 0.05 (with a small value of psign-test indicating that pthr was very unlikely to 

be larger than αz-test). Table 4 includes the median accuracy, median z-test p-value and the result of 

the sign-test. Shown here for accuracy, the procedure was analogous for the Youden index J, which is 

shown in Figure 9 and Table 4. 

Table 1. Growth layouts. 

set growth mode # origins 

final gradient of 

neuron density 

around origins 

planar 

growth of 

cortical 

sheet 

radial 

growth of 

cortical 

sheet 
number 

of areas 

number of 

growth 

events 

total 

number of 

neurons   abbreviation 
realistically 

oriented 

gradient 

1D 1 row 1 

realistically 

oriented   

25 12 24897   1D-1row-1or 

1D 2 rows 1 50 12 49794   1D-2row-1or 

2D 1 81 5 40838   2D-1or 

1D 1 row 2 26 6 26550   1D-1row-2or 

1D 2 rows 2 52 6 53100   1D-2row-2or 

2D 2 162 5 81676   2D-2or 

1D 1 row 3 27 4 28215   1D-1row-3or 

1D 2 rows 3 54 4 56430   1D-2row-3or 

2D 3 196 4 100248   2D-4or 
inverse 

gradient 
1D 1 row 2 

inverse   
26 6 23910   inverse-1D-1row-2or 

1D 2 rows 2 52 6 47820   inverse-1D-2row-2or 

2D 2 162 5 38994   inverse-2D-2or 
radial 1D 1 row 2 

realistically 

oriented   
26 6 26550   radial-1D-1row-2or 

1D 2 rows 2 52 6 53100   radial-1D-2row-2or 

2D 2 162 5 81676   radial-2D-2or 
static 1D 1 row 2 

realistically 

oriented   
26 1 26550   static-1D-1row-2or 

1D 2 rows 2 52 1 53100   static-1D-2row-2or 

2D 2 162 1 81676   static-2D-2or 
random 

1D 1 row 2 
no gradient / 

random   
26 6 26550   random-1D-1row-2or 

1D 2 rows 2 52 6 53100   random-1D-2row-2or 

2D 2 162 5 81676   random-2D-2or 

This table indicates the set, growth mode and number of neurogenetic origins for each of the 21 

growth layouts. For each set, the determining properties of the spatiotemporal growth trajectory are 

indicated. Moreover, for each growth layout the total numbers of areas, growth events and neurons 

are included. Abbreviations and background colours introduced here are used throughout the figures. 

Table 2. Summary of correspondence between simulation results and empirical 

observations. 

set growth mode # origins 
connectivity between 

areas of similar 

classification of 

connections: 

number of 

connections 
classification of connections:  

empirical from simulation 
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neuron density simulation from 

simulation accuracy Youden index J 
realistically 

oriented 

gradient 

1D 1 row 1    ?  

1D 2 rows 1    ?  
2D 1      
1D 1 row 2      
1D 2 rows 2      

2D 2      

1D 1 row 3      

1D 2 rows 3      
2D 3      

inverse 

gradient 
1D 1 row 2  ?  ? ? 

1D 2 rows 2  ?    

2D 2  ?  ?  
radial 1D 1 row 2    ?  

1D 2 rows 2 ?   ?  
2D 2      

static 1D 1 row 2      
1D 2 rows 2      

2D 2      
random 1D 1 row 2    ?  

1D 2 rows 2    ?  
2D 2      

details in     Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 
corresponding measure   correlation of 

relative connection 

frequency vs 

|density difference| 

McFadden's 

Pseudo R² for 

|density 

difference| 

correlation of 

area degree 

vs density 

classification of 

connections in 

cat and macaque 

cortex: accuracy 

classification of 

connections in cat 

and macaque cortex: 

Youden index J 

This table provides an estimate of the extent to which the connectivity resulting from each 

growth layout corresponds to expectations derived from empirically observed phenomena. ✓: good 

correspondence, ?: inconclusive, ✕: correspondence not satisfactory. 

Connection statistics  

The cortico-cortical networks resulting from the simulations showed realistic levels of overall 

connectivity, with between 39% and 66% of possible connections present (Fig. 4A, Table 3). 

Previously, between 50% and 77% of connections were reported to be present in the macaque and 

cat cortex [22, 34, 83]. Some 2D growth layouts reached higher levels of connectivity, with up to 87% 

of possible connections present. This connection density translated into several hundreds of inter-

areal connections (Fig. 4B, Table 3), with between 250 and 400 connections for growth mode 1D 1row 

and between 900 and 1500 connections for growth mode 1D 2rows. Due to the large number of areas, 

connection numbers were much higher for 2D growth layouts, between 8000 and 18600. 
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Fig 4. Connection statistics. (A) Percentage of connected areas, plotted as the fraction of possible 

connections that are present in the final simulated network. (B) Total number of connections among all 

areas. Box plots show distribution across 100 simulation runs per growth layout, indicating median 

(line), interquartile range (box), data range (whiskers) and outliers (crosses, outside of 2.7 standard 

deviations). See Table 3 for a summary. Abbreviations and background colours as in Table 1.
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Table 3. Summary connectivity statistics, correlation with relative projection frequency, classification performance logistic regression, and 

correlation with area degree. 

   

 

Connectivity statistics  

(Fig. 4) 
Relative connection frequency 

(Fig. 5) 
Logistic regression performance 

(Fig. 6) 
Degree 

(Fig. 7) 

  

 

    

distance |density difference| distance |density 

difference| 

distance & 

|density 

difference|      

 

growth layouts   

correlation relative 

connection 

frequency vs 

distance 
validation p-values of 

correlation: sign test 

correlation relative 

connection frequency 

vs |density 

difference| 

validation p-values 

of correlation: sign 

test     

correlation area 

degree vs neuron 

density 

validation p-values 

of correlation: sign 

test 

set growth mode 

 

# origins 

median 

fraction 

connected 

areas 

median 

number of 

connections 
media

n ρ 
median 

 p-value z-value p-value 
median 

ρ 
median 

 p-value z-value p-value 

median 

McFadden's 

Pseudo R² 

median 

McFadden's 

Pseudo R² 

median 

McFadden's 

Pseudo R² median ρ 
median 

 p-value z-value p-value 
realisticall

y oriented 

gradient 

1D 1 row  1 0.517 280 -0.99 9.54E-08 -9.9 2.08E-23 -0.98 0.00E+00 -9.9 2.08E-23 0.407 0.154 0.513 -0.74 2.19E-05 -9.9 2.08E-23 
1D 2 rows  1 0.466 1019 -0.99 9.54E-08 -9.9 2.08E-23 -1.00 0.00E+00 -9.9 2.08E-23 0.373 0.161 0.458 -0.79 1.32E-11 -9.9 2.08E-23 
2D  1 0.708 4154 0.50 1.43E-01 10.1 1.00E+00 -1.00 1.67E-02 -9.9 2.08E-23 0.000 0.266 0.269 0.03 7.43E-01 10.1 1.00E+00 
1D 1 row  2 0.629 372 -0.89 6.10E-04 -9.9 2.08E-23 -0.96 2.78E-03 -9.9 2.08E-23 0.166 0.150 0.381 -0.42 3.26E-02 -5.5 1.90E-08 
1D 2 rows  2 0.563 1339 -0.85 2.68E-03 -9.9 2.08E-23 -0.96 2.78E-03 -9.9 2.08E-23 0.137 0.143 0.314 -0.52 7.57E-05 -9.9 2.08E-23 
2D  2 0.590 13103 -0.77 1.37E-02 -8.1 2.75E-16 -1.00 1.67E-02 -9.9 2.08E-23 0.016 0.256 0.288 0.17 3.41E-02 -5.1 1.70E-07 

1D 1 row 
 

3 0.611 395 -0.88 1.10E-03 -9.9 2.08E-23 -0.90 8.33E-02 3.9 
1.00E+0

0 0.188 0.152 0.424 -0.44 2.15E-02 -7.7 6.80E-15 
1D 2 rows  3 0.549 1412 -0.85 3.50E-03 -9.9 2.08E-23 -1.00 1.67E-02 -9.9 2.08E-23 0.155 0.151 0.359 -0.56 8.83E-06 -9.9 2.08E-23 

2D 
 

3 0.578 18626 -0.92 4.67E-04 -9.9 2.08E-23 -1.00 8.33E-02 10.1 
1.00E+0

0 0.017 0.285 0.320 0.34 1.52E-06 -9.9 2.08E-23 
inverse 

gradient 
1D 1 row  2 0.438 259 -0.95 2.38E-05 -9.9 2.08E-23 -0.96 2.78E-03 -9.9 2.08E-23 0.175 0.077 0.284 0.67 1.95E-04 -9.9 2.08E-23 
1D 2 rows  2 0.393 933 -0.95 2.93E-05 -9.9 2.08E-23 -1.00 3.97E-04 -9.9 2.08E-23 0.164 0.051 0.224 0.72 1.53E-09 -9.9 2.08E-23 
2D  2 0.408 7988 -0.99 0.00E+00 -9.9 2.08E-23 -1.00 1.67E-02 -9.9 2.08E-23 0.029 0.040 0.074 0.67 2.97E-22 -9.9 2.08E-23 

radial 1D 1 row  2 0.654 365 -0.98 1.54E-06 -9.9 2.08E-23 0.96 2.78E-03 -8.9 2.79E-19 0.743 0.013 0.745 0.00 9.49E-01 10.1 1.00E+00 
1D 2 rows  2 0.659 1459 -0.99 5.93E-09 -9.9 2.08E-23 0.96 2.78E-03 -9.3 7.02E-21 0.703 0.006 0.705 0.00 9.54E-01 10.1 1.00E+00 
2D  2 0.864 17693 -0.93 6.51E-05 -9.9 2.08E-23 -1.00 1.67E-02 -9.9 2.08E-23 0.099 0.020 0.126 0.59 7.49E-17 -9.9 2.08E-23 

static 1D 1 row  2 0.528 319 -0.93 7.57E-05 -9.9 2.08E-23 0.85 2.38E-02 -2.3 1.07E-02 0.746 0.009 0.750 0.00 9.12E-01 10.1 1.00E+00 

1D 2 rows 
 

2 0.522 1266 -0.97 3.78E-06 -9.9 2.08E-23 0.46 3.02E-01 6.7 
1.00E+0

0 0.724 0.003 0.730 0.00 9.27E-01 10.1 1.00E+00 
2D  2 0.758 16283 -0.95 0.00E+00 -9.9 2.08E-23 -1.00 1.67E-02 -9.9 2.08E-23 0.215 0.010 0.236 0.62 6.41E-19 -9.9 2.08E-23 

random 
1D 1 row 

 

2 0.515 307 -0.95 2.38E-05 -9.9 2.08E-23 -0.18 3.57E-01 7.1 
1.00E+0

0 0.171 0.001 0.174 0.29 1.30E-01 3.9 1.00E+00 

1D 2 rows 
 

2 0.462 1096 -0.95 1.02E-05 -9.9 2.08E-23 -0.36 2.54E-01 6.7 
1.00E+0

0 0.148 0.000 0.148 0.25 7.98E-02 1.3 9.03E-01 
2D  2 0.549 12165 -0.84 4.46E-03 -9.9 2.08E-23 -1.00 1.67E-02 -8.5 9.48E-18 0.022 0.003 0.025 0.54 9.56E-14 -9.9 2.08E-23 

This table lists the median values indicated by the box plots in Figures 4 to 7. Where applicable, the table additionally lists the associated median p-value of 

Spearman rank correlations as well as the z-value and p-value of a left-tailed sign test testing the distribution of rank correlation p-values for a median of α = 0.05. 

Background colours as in Table 1.

w
as not certified by peer review

) is the author/funder. A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

T
he copyright holder for this preprint (w

hich
this version posted S

eptem
ber 25, 2018. 

; 
https://doi.org/10.1101/426718

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/426718


14 

Contributions of distance and density difference to connectivity patterns  

We first checked how well the simulated networks corresponded to the empirical observations 

that a larger fraction of connections is present between regions that are more similar in neuronal 

density, as suggested by the architectonic type principle, and spatially closer to each other. To this 

end, we computed the relative frequency of present connections (Fig. 5, Table 3). We then examined 

how well both factors, absolute density difference and distance, enabled the reconstruction of the 

simulated networks using logistic regression. Specifically, we assessed this by computing McFadden’s 

Pseudo R² statistic, which provides a measure of the increase in the model log-likelihood with 

inclusion of either or both factors compared to a null model (Fig. 6, Table 3).  

Fig 5. Correlation of distance and absolute density difference with relative connection 

frequency. Spearman rank correlation coefficients are provided for the correlation between relative 

connection frequency and distance (blue) or absolute density difference (green). A sign test was used 

to test whether the distribution of associated Spearman rank correlation p-values had a median value 

smaller than α = 0.05. The result of the sign test is indicated on top; black star: median p < 0.05, red 

circle: median p >= 0.05. See Supplementary Figure S2 for representative plots of the correlation for 

individual simulation runs. Box plots show distribution across 100 simulation runs per growth layout, 

indicating median (line), interquartile range (box), data range (whiskers) and outliers (crosses, outside 

of 2.7 standard deviations). See Table 3 for a summary. Abbreviations and background colours as in 

Table 1. 

Fig 6. Logistic regression performance for classification of simulation data from simulation 

data. Within each growth layout, a logistic regression was performed to classify connection existence 

from three sets of factors: distance (blue), absolute density difference (green), or distance as well as 

absolute density difference simultaneously (purple). To assess whether classification performance was 

better than chance, McFadden's Pseudo R² was computed against performance of a null-model, 

where a constant was the only factor included in the logistic regression. Box plots show distribution 

across 100 simulation runs per growth layout, indicating median (line), interquartile range (box), data 

range (whiskers) and outliers (crosses, outside of 2.7 standard deviations). See Table 3 for a 

summary. Abbreviations and background colours as in Table 1. 

Relative frequency of present connections  

In general, connections were more likely to be present across smaller distances (Fig. 5, 

Supplementary Fig. S2). The relative frequency of present connections was very strongly negatively 

correlated with the distance between areas. The correlation was significant for all growth layouts, 
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except for the 2D 1origin growth layout. This effect was due to very weak connections being formed 

across even the longest distances in this growth layout, which resulted in a moderate positive 

correlation that did not reach significance. However, also for this growth layout, the correlation became 

strongly negative and significant if connections with fewer than 10 constituent axons were excluded, in 

line with previous treatment of empirical data [31, 83].  

In contrast, the correlation of relative connection frequency with density difference was not 

uniform across all growth layouts. For 1D random, static and radial growth layouts, the density 

difference was not significantly or else positively correlated with relative connection frequency. For 2D 

growth layouts, however, the correlation was negative and significant for all three of those sets.  

Conversely, the density difference was very strongly negatively correlated with relative 

projection frequency for all growth layouts with oriented growth (i.e., realistically oriented gradient and 

inverse gradient). The only exceptions here were the 1D 1row 3origins growth layout and the 2D 

4origins growth layout. For reasons of computational efficiency, these layouts were implemented with 

only five and four density difference tiers, respectively. For the 1D 1row 3origins growth layout, the 

deviation of relative connection frequency from a perfect negative correlation in one of the five tiers 

was, therefore, sufficient to render the rank correlation insignificant, with a p-value of 0.083. Similarly, 

for the 2D 4origins growth layout, the minimal p-value that could be obtained from a rank correlation 

across the four tiers was 0.083, which is not low enough to reach significance. However, the 

correlation coefficients for both growth layouts consistently indicated a very strong to perfect negative 

correlation (cf. also Supplementary Fig. S2).  

Logistic regression  

When we predicted connection existence using binary logistic regression, the inclusion of 

distance as a predicting factor markedly increased prediction performance as compared to the 

constant-only null model, with median McFadden’s Pseudo R² values of at least 0.14 (Fig. 6). This was 

not true for the 2D growth layouts with planar growth of the cortical sheet (i.e., the static and radial 2D 

growth layouts are excepted here), where distance did not markedly increase prediction performance 

compared to the constant-only null model, with median McFadden’s Pseudo R² values of at most 0.03. 

For the radial 2D growth layout, distance performed intermediately with a median McFadden’s Pseudo 

R² value of 0.10, indicating moderate performance. Absolute density difference as the only predictive 

factor did not increase prediction performance compared to the constant-only null model for all 
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random, static and radial growth layouts, with median McFadden’s Pseudo R² values below 0.03. 

However, inclusion of absolute density difference led to an increase in prediction performance for the 

growth layouts with oriented growth. For the growth layouts with a realistically oriented density 

gradient, the performance increase was moderate to very high, with median McFadden’s Pseudo R² 

values between 0.14 and 0.28. For growth layouts with an inverse density gradient, in contrast, the 

performance increase was very small, with median McFadden’s Pseudo R² values between 0.04 and 

0.08.  

Including distance and absolute density difference jointly as predictors for the logistic regression 

led to a moderate to very high increase in prediction performance compared to the constant-only null 

model, with median McFadden’s Pseudo R² values of at least 0.13, but mostly above 0.20 and up to 

0.75. The only exceptions to this finding were the random and the inverse 2D growth layouts, which 

did not reach median McFadden’s Pseudo R² of 0.10.  

In summary, a binary logistic regression adequately allowed to predict connection existence 

from distance and absolute density difference for the overwhelming majority of growth layouts. This 

result was to be expected given the rules of connection growth that governed the formation of the 

simulated networks. The notable dissociation that could be observed in the separate prediction from 

distance and density difference was that distance markedly contributed to prediction performance for 

most growth layouts, while the contribution of density difference was more specific. Namely, density 

difference most strongly allowed prediction of connection existence for the layouts with oriented 

growth of the cortical sheet and a realistically oriented density gradient.  

Number of connections per area  

Another property of the simulated networks that we compared to empirical observations was 

area degree (i.e., the number of connections per area). We previously reported that, in biological 

cortical networks, the number of connections maintained by an area is negatively correlated with the 

area’s cytoarchitectonic differentiation [34, 36]. Here, we show an analogous analysis for the simulated 

networks (Fig. 7, Table 3, Supplementary Fig. S3). For random, static and radial growth layouts, area 

degree was not significantly correlated with neuron density, with the exception of 2D growth layouts, 

which showed a positive and significant correlation in each case.  
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Fig 7. Correlation of area degree with neuron density. Spearman rank correlation 

coefficients for the correlation between area degree (number of connections) and area neuron density. 

A sign test was used to test whether the distribution of associated Spearman rank correlation p-values 

had a median value smaller than α = 0.05. The result of the sign test is indicated on top; black star: 

median p < 0.05, red circle: median p >= 0.05. See Supplementary Figure S3 for representative plots 

of the correlation for individual simulation runs. Box plots show distribution across 100 simulation runs 

per growth layout, indicating median (line), interquartile range (box), data range (whiskers) and outliers 

(crosses, outside of 2.7 standard deviations). See Table 3 for a summary. Abbreviations and 

background colours as in Table 1. 

Growth layouts with realistically oriented density gradients showed a strongly negative, 

significant correlation between area degree and neuron density, with median correlation coefficients 

between -0.42 and -0.79 for both 1D growth modes. Conversely, for growth layouts with an inverse 

density gradient, area degree was strongly positively correlated with neuron density. For 2D growth 

along a realistically oriented density gradient, the observed effect was more variable. Correlation 

coefficients were of weak to moderate magnitude, and the correlation was not significant for 2D growth 

around one origin (2D 1origin: median ρ = 0.03, median p > 0.05; 2D 2origins: median ρ = 0.17, 

median p < 0.05; 2D 4origins: median ρ = 0.34, median p < 0.05). This observation was in contrast to 

the strongly positive and significant correlations observed for the 2D growth layouts without oriented 

growth, where median correlation coefficients were larger than 0.50 (random 2D: median ρ = 0.54; 

static 2D: median ρ = 0.62; radial 2D: median ρ = 0.59). We, therefore, concluded that the effect of 

oriented growth along a realistically oriented density gradient on area degree, as observed for both 1D 

growth modes, persisted in the 2D growth mode, but that it was not strong enough to completely 

abolish the tendency for a positive correlation between area degree and neuron density inherent to the 

2D growth layouts, instead only diminishing the positive correlation.  

In summary, the empirically observed negative correlation between area degree and neuron 

density was only reproduced for the growth layouts with a realistically oriented density gradient. We 

cannot rule out that there existed a minor contribution of geometric centrality to this relationship. 

However, taking into account the results for the radial and static growth layouts made clear that such 

an effect, if there was any in the realistically oriented gradient growth layouts, could only be 

secondary. Without expansive, planar growth, there is no temporal advantage helping earlier-formed 

areas to accrue more connections. Any negative correlation between neuron density and area degree 

would, thus, be caused by geometric centrality. Figure 7 illustrates that no such correlation arises, 
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instead area degree appears to vary randomly with neuron density for the radial and static growth 

layouts.  

Prediction of empirical connectivity data from simulated networks  

In the previous sections, we showed that empirically observed regularities, particularly a close 

relationship between connection existence and the two factors of relative neuron density and spatial 

distance, could be reproduced in silico. We further characterized how well the simulation captured this 

phenomenon by predicting empirical connectivity using classifiers trained on the simulated networks. 

Classification performance was used as a measure of how well the properties of the artificially 

generated networks reflected the characteristics of empirical brain networks, in particular, the 

macaque and cat cortical connectomes. We report two measures of classification performance, 

accuracy and the Youden index, J. Accuracy was calculated as the percentage of predictions that 

were correct, while the Youden index is a summary measure that takes into account both the rate of 

true positives and the rate of true negatives and indicates divergence from chance performance.  

As seen from Figures 8 and 9, classification performance was generally higher for the macaque 

connectome than for the cat connectome. However, the described differences between growth layouts 

held for both species. We also provide the fraction of the available empirical connections that were 

classified in each species (Fig. 10, Table 4). Generally, between 30% and 60% of the empirical 

connections were classified, with some growth layouts reaching up to 86% (Fig. 10). However, for 

some growth layouts, nearly no empirical connections reached posterior probabilities of at least 0.75 

(the minimal threshold applied for assigning a predicted label), and, thus, very low fractions of the 

available empirical connections were classified. Specifically, this applied to random growth layouts 

(median fraction classified between <0.01 and 0.14) and the inverse 2D growth layout (median fraction 

classified macaque: 0.08, cat: 0.05). The overall low posterior probabilities for these growth layouts 

and the resulting small fraction of classified empirical connections already suggested that the 

properties of those layouts did not correspond well to the properties of the empirical networks. This 

impression was corroborated by other measures (see below).  

Fig 8. Classification accuracy for prediction of empirical connection existence from 

simulation data. A classifier was trained to predict connection existence of a simulated network from 

the associated distance and absolute density difference. Classification accuracy for predicting 
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existence of connections in two species (macaque, blue; cat, green) by this classifier is shown. 

Accuracy was determined at each classification threshold (see Methods); here, we show mean 

accuracy across thresholds 0.750 to 0.975. Whether classification accuracy was better than chance 

was assessed by a permutation test, where classification accuracy was calculated for prediction from 

randomly permuted labels and a z-test was performed. A sign test was used to test whether the 

distribution of associated z-test p-values had a median value smaller than α = 0.05. The result of the 

sign test is indicated on top; black star: performance better than chance with median p < 0.05, red 

circle: performance not better than chance with median p >= 0.05. Box plots show distribution across 

100 simulation runs per growth layout, indicating median (line), interquartile range (box), data range 

(whiskers) and outliers (crosses, outside of 2.7 standard deviations). See Table 4 for a summary. 

Abbreviations and background colours as in Table 1. 

Fig 9. Youden index for prediction of empirical connection existence from simulation 

data. A classifier was trained to predict connection existence of a simulated network from the 

associated distance and absolute density difference. Youden index J for predicting existence of 

connections in two species (macaque, blue; cat, green) by this classifier is shown. Youden index J 

was determined at each classification threshold (see Methods); here, we show mean J across 

thresholds 0.750 to 0.975. Whether the Youden index was better than chance was assessed by a 

permutation test, where J was calculated for prediction from randomly permuted labels and a z-test 

was performed. A sign test was used to test whether the distribution of associated z-test p-values had 

a median value smaller than α = 0.05. The result of the sign test is indicated on top; black star: 

performance better than chance with median p < 0.05, red circle: performance not better than chance 

with median p >= 0.05. Box plots show distribution across 100 simulation runs per growth layout, 

indicating median (line), interquartile range (box), data range (whiskers) and outliers (crosses, outside 

of 2.7 standard deviations). See Table 4 for a summary. Abbreviations and background colours as in 

Table 1. 

Fig 10. Percentage of empirical connectivity data that were classified from simulation 

data. A classifier was trained to predict connection existence of a simulated network from the 

associated distance and absolute density difference. This classifier was then used to predict 

connection existence in two species (macaque, blue; cat, green). Here, we show which fraction of the 

empirical data set was classified. This fraction differs across classification thresholds (see Methods); 

here, we show the mean fraction across thresholds 0.750 to 0.975. Box plots show distribution across 

100 simulation runs per growth layout, indicating median (line), interquartile range (box), data range 

(whiskers) and outliers (crosses, outside of 2.7 standard deviations). See Table 4 for a summary. 

Abbreviations and background colours as in Table 1.
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Table 4. Summary classification of empirical connectivity from simulated connectivity. 

   

Accuracy 

(Fig. 8) 
Youden index 

(Fig. 9) 
% classified 

(Fig. 10) 
     macaque   cat   macaque   cat macaque   cat 

growth layouts 

 

prediction performance 

validation of 

'median p-value 

against chance 

performance': sign 

test 

prediction performance 

validation of 

'median p-value 

against chance 

performance': sign 

test 

prediction performance 

validation of 

'median p-value 

against chance 

performance': sign 

test 

prediction performance 

validation of 

'median p-value 

against chance 

performance': sign 

test     

set growth mode # origins 
median 

accuracy 

median p-

value against 

chance 

performance z-val p-value 
median 

accuracy 

median p-

value against 

chance 

performance z-val p-value 
median 

J 

median p-

value against 

chance 

performance z-val p-value 
median 

J 

median p-

value against 

chance 

performance z-val p-value 

median 

fraction 

classified 

median 

fraction 

classified 
realistically 

oriented 

gradient 

1D 1 row 1 0.805 0.00E+00 -9.90 2.08E-23 0.699 6.37E-18 -9.90 2.08E-23 0.624 0.00E+00 -9.90 2.08E-23 0.493 1.47E-17 -9.90 2.08E-23 0.548 0.471 
1D 2 rows 1 0.781 4.54E-43 -9.90 2.08E-23 0.640 6.45E-19 -9.90 2.08E-23 0.601 9.04E-41 -9.90 2.08E-23 0.468 7.02E-16 -9.90 2.08E-23 0.493 0.438 
2D 1 0.811 3.14E-24 -9.90 2.08E-23 0.830 2.57E-10 -9.90 2.08E-23 0.265 1.95E-26 -9.90 2.08E-23 0.256 8.99E-12 -9.90 2.08E-23 0.423 0.414 
1D 1 row 2 0.854 0.00E+00 -9.90 2.08E-23 0.820 6.03E-17 -9.90 2.08E-23 0.620 0.00E+00 -9.90 2.08E-23 0.507 3.90E-21 -9.90 2.08E-23 0.510 0.409 
1D 2 rows 2 0.860 0.00E+00 -9.90 2.08E-23 0.797 1.89E-16 -9.90 2.08E-23 0.684 0.00E+00 -9.90 2.08E-23 0.590 2.75E-19 -9.90 2.08E-23 0.409 0.328 
2D 2 0.841 4.61E-35 -9.90 2.08E-23 0.767 7.93E-15 -9.90 2.08E-23 0.527 2.33E-41 -9.90 2.08E-23 0.493 1.17E-17 -9.90 2.08E-23 0.346 0.309 
1D 1 row 3 0.837 0.00E+00 -9.90 2.08E-23 0.796 2.92E-17 -9.90 2.08E-23 0.617 0.00E+00 -9.90 2.08E-23 0.479 1.78E-20 -9.90 2.08E-23 0.551 0.451 
1D 2 rows 3 0.843 0.00E+00 -9.90 2.08E-23 0.757 4.00E-17 -9.90 2.08E-23 0.673 0.00E+00 -9.90 2.08E-23 0.553 6.09E-19 -9.90 2.08E-23 0.461 0.384 
2D 3 0.847 5.33E-41 -9.90 2.08E-23 0.767 6.32E-16 -9.90 2.08E-23 0.579 0.00E+00 -9.90 2.08E-23 0.497 8.88E-19 -9.90 2.08E-23 0.392 0.343 

inverse 

gradient 
1D 1 row 2 0.782 7.70E-40 -9.90 2.08E-23 0.586 3.59E-15 -9.90 2.08E-23 0.492 7.06E-35 -9.90 2.08E-23 0.345 1.31E-13 -9.90 2.08E-23 0.376 0.341 
1D 2 rows 2 0.744 3.48E-35 -9.90 2.08E-23 0.500 1.84E-13 -9.90 2.08E-23 0.260 5.15E-22 -9.90 2.08E-23 0.177 3.57E-08 -9.90 2.08E-23 0.300 0.274 
2D 2 0.852 1.65E-22 -9.90 2.08E-23 0.667 3.10E-06 -9.90 2.08E-23 0.000 -/- -/- 1.00E+00 0.000 -/- -/- 1.00E+00 0.077 0.049 

radial 1D 1 row 2 0.739 7.89E-33 -9.90 2.08E-23 0.671 4.24E-10 -9.90 2.08E-23 0.407 6.28E-33 -9.90 2.08E-23 0.266 2.32E-10 -9.90 2.08E-23 0.743 0.723 
1D 2 rows 2 0.751 1.38E-34 -9.90 2.08E-23 0.682 2.60E-11 -9.90 2.08E-23 0.439 3.49E-35 -9.90 2.08E-23 0.294 1.17E-11 -9.90 2.08E-23 0.730 0.701 
2D 2 0.644 3.20E-01 5.50 1.00E+00 0.771 3.20E-01 5.90 1.00E+00 0.000 1.56E-02 0.00 5.00E-01 0.000 8.73E-03 0.00 5.00E-01 0.500 0.500 

static 1D 1 row 2 0.701 1.89E-39 -9.90 2.08E-23 0.602 1.28E-11 -9.90 2.08E-23 0.459 2.03E-40 -9.90 2.08E-23 0.289 1.65E-11 -9.90 2.08E-23 0.827 0.861 
1D 2 rows 2 0.703 1.12E-39 -9.90 2.08E-23 0.602 6.91E-12 -9.90 2.08E-23 0.465 8.41E-41 -9.90 2.08E-23 0.294 1.24E-11 -9.90 2.08E-23 0.817 0.834 
2D 2 0.869 1.40E-39 -9.90 2.08E-23 0.897 6.17E-13 -9.90 2.08E-23 0.169 1.86E-31 -9.90 2.08E-23 0.083 4.35E-11 -9.90 2.08E-23 0.426 0.393 

random 1D 1 row 2 0.880 1.70E-23 -9.90 2.08E-23 0.722 4.65E-04 -9.70 1.51E-22 0.655 1.29E-28 -9.90 2.08E-23 0.283 1.43E-10 -9.50 1.05E-21 0.137 0.139 
1D 2 rows 2 0.801 1.05E-19 -9.90 2.08E-23 0.556 8.81E-03 -9.90 2.08E-23 0.286 1.79E-16 -9.90 2.08E-23 0.103 3.30E-10 -9.70 1.51E-22 0.116 0.133 
2D 2 1.000 4.05E-02 0.71 7.60E-01 1.000 6.10E-02 3.88 1.00E+00 -/- -/- -/- 1.00E+00 -/- -/- -/- 1.00E+00 0.000 0.000 

This table lists the median values for classification accuracy, Youden index J and fraction of empirical connections classified as indicated by the box plots 

in Figures 8 to 10. For accuracy and Youden index, it additionally lists the associated median p-value of a z-test against chance performance as assessed by 

permutation analysis, as well as the z-value and p-value of a left-tailed sign test testing the distribution of z-test p-values for a median of α = 0.05. Background 

colours as in Table 1.
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Accuracy  

While classification accuracy is not a comprehensive measure to quantify classification 

performance, we included it to provide an overall impression of prediction quality. As seen in Figure 8 

and Table 4, accuracy for most growth layouts surpassed chance performance, as assessed by a 

permutation analysis. Only the random and radial 2D growth layouts did not consistently reach better-

than-chance accuracy. For classification of macaque connectivity, median accuracies that were better 

than chance ranged between 0.64 and 0.88, while the range of median accuracy for classification of 

cat connectivity was between 0.50 and 0.90. Comparing the different growth layouts, accuracy was 

generally higher for layouts with a realistically oriented density gradient than for random, static, radial 

or inverse growth layouts. The accuracies obtained for realistically oriented gradient growth layouts 

compared well to the accuracies we reported for the classification of empirical connectivity from the 

corresponding empirical structural measures, which were between 0.85 and 0.99 for the thresholds 

used here (cat, [34]; macaque, [36]). The better performance of realistically oriented gradient growth 

layouts was especially apparent if corresponding layouts were compared, for instance, in the 

macaque, the random 1D 2rows growth layout (median accuracy = 0.80) with the realistically oriented 

density gradient 1D 2rows 2origins growth layout (median accuracy = 0.86). Exceptions were, in the 

macaque, the random 1D 1row growth layout and the inverse 2D growth layout, as well as, in the 

macaque and in the cat, the static 2D growth layout, all of which had higher accuracy than the 

corresponding realistically oriented growth layout. However, all three growth layouts appeared inferior 

when their Youden index was considered (see below). Specifically, the random 1D 1row growth layout 

was very variable in terms of both accuracy and Youden index of classification performance, in 

contrast to the narrow distributions obtained for the realistically oriented density gradient 1D 1row 

2origins growth layout. The inverse 2D growth layout reached a high accuracy for the prediction of 

macaque connectivity, but the Youden index showed that this did not lead to an overall prediction 

performance that was better than chance. Finally, for the prediction of both macaque and cat 

connectivity, the Youden index for the static 2D growth layout was below 0.2, indicating low overall 

prediction performance even though the obtained accuracies were very high.  
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Youden index  

The Youden index, J, is a helpful summary measure of overall classification performance and 

affords a clear distinction between growth layouts. As seen in Figure 9 and Table 4, for most growth 

layouts J surpassed chance performance, as assessed by a permutation analysis. Exceptions here 

were the random, radial and inverse 2D growth layouts. Across the growth layouts with better-than-

chance performance, classification performance ranged from poor to good, generally being somewhat 

higher for classification of the macaque connectome than for classification of the cat connectome. The 

highest values of J were reached for the layouts with growth along a realistically oriented gradient. In 

both species, performance for these growth layouts was moderate to good (macaque: median J = 0.53 

- 0.68, cat: median J = 0.47 - 0.59). The only exception here was the 2D 1origin growth layout, which 

reached only weak classification performance (macaque: median J = 0.27, cat: median J = 0.26). For 

the macaque, this performance compares well to the values of J that we previously reported for the 

classification of empirical connectivity from the corresponding empirical structural measures, which 

was 0.75 for the classification thresholds 0.85 through 1.00 [36]. Inclusion of the thresholds 0.75 and 

0.80 would lower that value somewhat (cf. Fig. S2 in [36]).  

Classification performance for the remaining growth layouts, namely the random, static, radial 

and inverse layouts, was low to moderate (median J macaque: generally < 0.49, median J cat: < 0.35). 

The difference to growth along a realistically oriented gradient was particularly apparent if 

corresponding layouts were compared. Growth layouts that reached moderate performance were the 

static, radial and inverse 1D growth layouts in the macaque. Their median J was still notably smaller 

than the median J value of the corresponding layout with growth along a realistically oriented density 

gradient (1D 1row 2origins: 0.62, 1D 2rows 2origins: 0.68; static 1D 1row: 0.46, static 1D 2rows: 0.47; 

radial 1D 1row: 0.41, radial 1D 2rows: 0.44; inverse 1D 1row: 0.49, inverse 1D 2rows: 0.26; all values 

are for the macaque; cf. Table 4). The only exception to these observations was the random 1D 1row 

growth layout. In the macaque, this growth layout reached a median J of 0.65. However, the Youden 

index was also distributed very broadly, with a range of 0.36 to 0.85, indicating that classification 

performance was not consistently good, but volatile and strongly dependent on the particular 

instances of random neuron density patterns emerging in a given simulation.  
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Classification performance varied with number of simulated growth origins  

To assess differences in classification performance in more detail, we compared the layouts 

with growth along a realistically oriented gradient among each other. Table 5 shows the results of a 

three-way analysis of variance for both accuracy and Youden index among the 9 growth layouts of set 

1. We included the factors ‘species’ (macaque, cat), ‘growth mode’ (1D 1row, 1D 2rows, 2D) and 

‘number of origins’ (1, 2, 3/4). For both accuracy and Youden index, the main effects of these three 

factors were significant. We performed post-hoc comparisons to describe the effect of the number of 

origins in more detail. As can be seen from Table 6, the comparisons showed that classification 

performance increased as the number of origins changed from one to two, but did not markedly 

increase further with addition of a third or fourth origin. In fact, for accuracy, there even was a slight 

decrease in the model estimate for three or four origins compared to two origins. This suggests that 

the network properties generated by growth around two origins were closer to empirical reality than 

those of networks grown around one origin, while a third or fourth origin did not further improve 

correspondence.  

Table 5. Anova classification performance. 

   Accuracy      Youden index J    

Factor Sum Sq. d.f. Mean Sq. F Prob>F Sum Sq. d.f. Mean Sq. F Prob>F 

species 2.00 1 2.00 1847.0 0 4.40 1 4.40 1283.7 0 
origins 1.24 2 0.62 572.8 0 5.52 2 2.76 804.0 0 
growth mode 0.28 2 0.14 128.7 0 8.03 2 4.02 1170.7 0 
Error 1.94 1794 0.00   6.15 1794 0.00   

Total 5.46 1799    24.11 1799    

A three-way analysis of variance was performed for both classification accuracy (see Fig. 8, 

Table 4) and Youden index J (see Fig. 9, Table 4), testing for effects of the factors ‘species’, ‘number 

of origins’, and ‘growth mode’. Sum Sq., Sum of squares; d.f., degrees of freedom; Mean Sq., mean 

squares = Sum.Sq. / d.f..  

Table 6. Post-hoc comparisons classification performance. 

   Accuracy   Youden index J 

model estimates    

  estimated mean standard error est. mean estimated mean standard error est. mean 

1 origin 0.762 0.0013 0.450 0.0024 
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2 origins 0.824 0.0013 0.568 0.0024 
3/4 origins 0.808 0.0013 0.567 0.0024 

post-hoc comparisons    

  difference est. means p-value difference est. difference est. means p-value difference est. 

1 vs 2 -0.066 0 -0.118 0 
1 vs 3/4 -0.046 0 -0.117 0 
2 vs 3/4  0.016 0  0.001 1 

Post-hoc comparisons were computed to assess how classification accuracy and Youden index 

J were affected by the Anova factor ‘number of origins’. The upper section shows the marginal means 

estimated from the Anova-model. The lower section shows the results of the post-hoc tests for 

differences between the estimated means.  

Discussion  

By performing comprehensive computational simulation experiments of how the network of 

interareal connections may develop during ontogenesis, we addressed the question of how cortico-

cortical structural connections come to be closely related to the underlying substrate’s 

cytoarchitectural differentiation, an empirical observation made in multiple species [27, 30-37, 39-42]. 

The main component of our in silico model was a developing two-dimensional cortical sheet, gradually 

populated by neurons. To assess potential explanatory mechanisms, we varied the spatiotemporal 

trajectory of this simulated histogenesis. The rules governing axon outgrowth and connection 

formation, by contrast, were kept fixed across all variants of simulated histogenesis, so that the 

differences in outcome measures between spatiotemporal growth trajectories were introduced 

exclusively by the specifics of when and where neurons were generated.  

To allow for straightforward interpretation of the simulation results, we applied network 

measures that were used in previous empirical studies, which allowed us to perform analyses on the 

simulated connectomes in the same way as we did on the empirical connectomes. Accordingly, the 

two characteristics of areas that were considered in the analyses of the final simulated network of 

interareal connections were their final position on the two-dimensional cortical sheet relative to other 

areas, measured as Euclidean distance, and their neuron density, which functioned as a surrogate for 

overall architectonic differentiation. Neuron density was expressed relative to the densities of other 
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areas, that is, as density difference, for most analyses. We treated the existence of connections 

between areas as binary, thus, connections were considered as either absent or present.  

Spatiotemporal growth trajectories determine essential properties of the 

final connectome  

We considered different spatiotemporal trajectories of how neurons populated the simulated 

cortical sheet. To recapitulate, simulated histogenesis proceeded according to five different sets of 

growth rules, with three to nine specific implementations per set (a total of 21 different growth layouts). 

These five sets were (1: realistically oriented density gradient) planar, expansive growth of the cortical 

sheet, with newer areas having successively higher neuron density; (2: inverse gradient) planar, 

expansive growth of the cortical sheet, with newer areas having successively lower neuron density; (3: 

radial) instead of planar growth, neurons started to populate all areas simultaneously and were added 

at a constant rate across the whole cortical sheet until each area reached its predetermined 

complement of neurons, with a final neuron density gradient identical to sets 1 and 4; (4: static) all 

neurons of the cortical sheet formed simultaneously, with a neuron density gradient identical to the 

final gradient of sets 1 and 3; (5: random) planar, expansive growth of the cortical sheet, with no 

ordered gradient of area neuron density around the two origins. To exclude effects specific to any 

particular implementation of these sets of growth rules, we considered three growth modes for each 

set: one-dimensional growth with one row of areas, one-dimensional growth with two rows of areas, 

and two-dimensional growth. For set 1, with a realistically oriented density gradient, we considered 

growth around one origin and three or four origins (for one-dimensional and two-dimensional growth 

modes, respectively) additionally to the growth around two origins that was used in all five sets.  

These distinct spatiotemporal trajectories of cortical sheet growth led to considerable 

differences in the properties of the generated networks of structural connections. See Table 2 for an 

overall assessment of the results. While all growth layouts exhibited a clear decline in the relative 

frequency of present projections across larger distances, this measure correlated with density 

difference only for a subset of growth layouts (Fig. 5). Particularly, there was no consistent relationship 

for the random, static and radial growth layouts, while for oriented growth, both along a realistically 
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oriented density gradient and along an inverse gradient, the relative frequency of present connections 

decreased with larger density differences between areas.  

A more precise assessment of the extent to which distance and density difference determined 

connection existence was obtained by predicting simulated connectivity using binary logistic 

regression. Here, a similar picture as for relative connection frequency emerged from comparing 

McFadden’s Pseudo R² values across growth layouts (Fig. 6). Distance was a better-than-chance 

predictor of connection existence for most growth layouts, as shown by the performance increase 

compared to a constant-only null model that is measured by McFadden’s Pseudo R². In contrast, 

inclusion of density difference increased prediction performance only for the layouts with oriented 

growth (both along realistically oriented and inverse density gradients), but not for the random, static 

or radial growth layouts.  

Finally, the growth layouts differed in whether neuron density correlated with area degree (Fig. 

7). As before, for random, static and radial growth layouts, there was no consistent effect of neuron 

density on the measure of interest, in this case area degree. In contrast, there was a significant 

correlation with neuron density for layouts with oriented growth. This correlation was negative, as 

observed empirically, for growth layouts with a realistically oriented density gradient, but positive for 

growth layouts with an inverse density gradient.  

In combination, these results demonstrate that the relation between neuron density, which is 

one crucial feature of the physical substrate in which connections are embedded, and cortico-cortical 

connections is strongly influenced by the precise spatiotemporal trajectory of cortex growth, which 

coincides with the time of connection formation. By manipulating where and when areas of varying 

neuron density were generated, we could observe a change in the extent to which connections of the 

simulated network were accounted for by the two factors of spatial proximity on the fully formed 

cortical sheet and the relative neuron density, indicating relative architectonic differentiation of areas.  

Realistic network properties emerge from empirically grounded growth 

trajectories  

As described above, the extent to which spatial proximity and relative neuron density 

determined simulated connectivity strongly depended on the specific spatiotemporal trajectory of the 
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simulated growth of the cortical sheet. Growth layouts that more closely mirrored the biological 

developmental trajectory of the mammalian cortical sheet led to closer correspondence of the 

simulation results with empirical observations on adult connectivity. This finding became especially 

apparent when we predicted empirical connectivity in two different mammalian species, cat and 

macaque, from regularities that were extracted from the simulated connectivity generated by the 

different growth layouts. Applying the regularities that emerged in our simulations to empirical data 

afforded a strong test of whether the simulations adequately captured ontogenetic processes and 

produced realistic networks. Our results showed that both of the aspects that were manipulated across 

growth layouts, the temporal trajectory of area growth as well as the direction of the neuron density 

gradient, were relevant for how well simulated connectivity allowed to predict empirical connectivity 

(Fig. 8, Fig. 9). First, it could be observed that growth layouts in which areas appeared successively 

around origins of neurogenesis (i.e., the realistically oriented density gradient growth layouts), were 

much better able to predict empirical connectivity than growth layouts with the same final neuron 

density gradient, but without the observed link between time of origin and neuron density (i.e., static 

and radial growth layouts). Second, in the presence of planar growth around origins, the direction of 

the neuron density gradient was crucial. This finding was indicated by the large decrease in prediction 

performance when comparing the realistically oriented gradient growth layouts with the random and 

inverse density gradient layouts. These sets of growth layouts both followed the same time course of 

cortical sheet expansion as the realistically oriented gradient, but with no relationship between time of 

origin and neuron density or a negative correlation between time of origin and neuron density, which 

contradicts the empirically observed positive correlation of time of origin with neuron density. Hence, 

the extent to which neuron density is well suited as a predictor of connectivity could be due to it 

reflecting neurodevelopmental time windows.  

Third, our analyses revealed that the number of neurogenetic origins, around which new areas 

grew, influenced the correspondence to empirical connectivity (Table 5, Table 6). Growth around two 

origins arguably led to the best prediction performance: it was superior to growth around one origin for 

both accuracy and Youden index, and performed better than growth around three or four origins in 

terms of accuracy. For the Youden index, this performance difference was present, but too small to be 

meaningful or statistically significant. Thus, while correspondence between simulated and empirical 
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connectivity clearly increased with the addition of a second origin of neurogenesis, there was at the 

very least no further performance increase with the addition of a third or fourth origin. Fourth, we 

observed that the overall level of prediction performance for the realistically oriented density gradient 

growth layouts was quite high, indicating that they afforded a good correspondence with empirical 

connectivity not only relative to the other growth layouts, but also in absolute terms. Therefore, a dual 

origin of neurogenesis and the resulting cytoarchitectonic gradients arguably are necessary 

components of the developmental mechanism for the empirically observed relations to hold (Fig. 11). 

These findings stress the importance of the theory of the dual origin of the cerebral cortex [38, 70] and 

the presence of multiple gradients of neurogenesis [56, 84], for the configuration of connectivity in the 

adult cortex.  

Collectively, the presented results suggest that planar cortical sheet growth around two origins 

of neurogenesis and a systematic increase in neuron density with later time of origin are crucial 

determinants of the development of realistic cortico-cortical structural connections. Conversely, 

assuming that connection formation is a stochastic process with few constraints, as simulated here, 

the assumptions underlying the spatiotemporal growth trajectories of the random, static, radial and 

inverse growth layouts were shown not to mirror actual principles of cortical development.  

Fig 11. Number and relation of neurogenetic and architectonic gradients. A synthesis of all the 

results presented here indicates that the presence of two origins of neurogenesis, resulting in two 

neurogenetic (temporal) and architectonic gradients is necessary for the closer correspondence of the 

in silico model to the empirical relations between connectivity and architectonic differentiation. 

Importantly, the empirically observed relations are replicated in silico only when the less-to-more 

differentiated architectonic gradients align with early-to-late ontogenetic gradients. Hence, the 

suggested mechanism entails correspondence of neurogenesis and architectonic differentiation [36, 

37, 40] and a dual origin of the cerebral cortex [38, 70]. 

Simulation results validate the mechanistic explanations hypothesized to 

underlie the architectonic type principle  

With the postulation of the architectonic type principle it was suggested that a close relationship 

between cortico-cortical connections and architectonic differentiation of the cortex might arise from the 

timing of neurogenesis [27], a process that occurs in close temporal proximity to the formation of 

connections. Specifically, it has been hypothesized that the relative time of generation of areas of 
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different neuron densities affords them with different opportunities to connect with each other, thus 

imposing constraints on stochastically formed connections [29, 35]. This mechanism would be in line 

with findings in Caenorhabditis elegans [85] and rat cortex [46]. Moreover, a previous computational 

study already demonstrated that topological features, such as modular connectivity, may arise from 

the growth of connectivity within developmental time windows [86]. Thus, the main premise of this 

study, that spatiotemporal interactions in the forming cortex determine connectivity, has long been 

under consideration. Here, we provide the first systematic exploration of the possible mechanistic 

underpinnings of the ATP. We simulated multiple combinations of spatiotemporal growth trajectories of 

the cortical sheet and neuron density gradients, to probe from which of the combinations realistic 

connectivity emerged. Our results showed that, indeed, of the wide variety of examined spatiotemporal 

growth trajectories, the variant of the in silico model that led to the best correspondence with empirical 

observations was the one that was based on the same assumptions as the mechanism proposed to 

underlie the realization of the ATP. Hence, the underlying assumption that differences in neuronal 

density correspond to distinct time windows was not refuted in the model, and neuron density carried 

predictive power with respect to connectivity features only if such a relation between density and 

neurogenetic timing held. Our systematic simulation experiments, thus, distinctly corroborate the 

previously hypothesized mechanistic underpinnings of the ATP and contribute a conceptualization that 

can be scrutinized for similarities with, and distinctions from, actual ontogenetic processes. This 

approach opens up the possibility of characterizing in more detail how correlations between the 

structure of the cortex and cortical connections emerge, because all aspects of the process are 

observable. Further refinement of the simulation, for example by introducing species-specific 

histogenetic time courses, will enable the exploration of species differences or potentially the 

demonstration of invariance to changes in some aspects of ontogenesis. Another factor that could be 

probed is how robust the emergence of realistic connectivity is against changes in absolute neuron 

density, which varies considerably across species [65, 87]. From our simulations, it appears that 

temporal proximity of areas during neurogenesis underlies the positive relationship between similar 

neuron density and high connection probability. The close correlation between time of origin and 

architectonic differentiation described empirically (see Introduction) leads to a derivative correlation 

between temporal proximity of neurogenetic time windows and relative differentiation of cortical areas. 
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Independent of this correlation, on a cortical sheet that expands around the origins of neurogenesis, 

areas with closer neurogenetic time windows tend to be spatially closer as well. Assuming connection 

formation is a stochastic process, which implies that connection probability declines with spatial 

distance, this process leads to a higher connection probability between areas that are generated 

during nearby time windows. Temporal proximity during neurogenesis would, thus, be the common 

antecedent determining both relative architectonic differentiation and connection probability, while 

those two factors would only be indirectly related. Temporal proximity, however, is difficult to measure, 

and it is, therefore, no surprise that the correlation between its two direct consequences has been 

empirically observed first. This chain of reasoning reveals how our modulation of the relationship 

between temporal proximity during neurogenesis and relative architectonic differentiation in the 

considered growth layouts could have caused the vastly different outcomes in connectivity described 

above.  

In our simulations, we observed a relationship between the spatial proximity of areas and their 

likelihood to be connected, which appears to be an epiphenomenon of stochastic connection growth 

within a physically embedded system (c.f. [48, 88]). Distance is an inherent property of a spatially 

embedded system that cannot be removed from the implementation of spatial growth. However, in our 

simulation of cortical growth, the final distance between areas was not always an accurate measure of 

their distance during the time period of connection formation, which would be the factor that mattered 

principally for determining the likelihood by which two areas became connected. Since this distance 

during cortical sheet growth is correlated with areas’ final distance, there was also a correlation 

between final spatial proximity and connection probability. But this correlation does not genuinely 

describe the dependency of the stochastic growth process on distance, because inter-areal distance 

was not static, as implied by this measure. The distance measure relevant here, namely distance at 

the time of connection formation, would be challenging to measure empirically. Therefore relying on 

measures of final, adult distance and assuming a strong correlation between the two distance 

measures appears as a pragmatic strategy for empirical analyses.  

Simulating the development of laminar projection patterns  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 25, 2018. ; https://doi.org/10.1101/426718doi: bioRxiv preprint 

https://doi.org/10.1101/426718


31 

The present simulation experiments were designed to allow for the analysis of connection 

existence, that means, whether a possible connection between a pair of areas is simply present or 

absent in the final network. Naturally, axonal connections have many further properties beyond their 

simple existence; one prominent feature being the laminar distribution of the projection neurons’ 

somata and axon terminals in the areas of origin and termination, respectively. Laminar patterns of 

projection origin and termination are very well explained by the architectonic type principle (reviewed 

in [28, 29]), as has been demonstrated extensively in different species and cortical systems [27, 30-33, 

35, 36, 39, 41, 42]. These conspicuous regularities most likely arise from fundamental developmental 

mechanisms, since they are ubiquitous and quite robust. This aspect becomes strikingly apparent in 

reeler mutant mice, where laminar connectivity patterns are largely correct [89-91]; shortly reviewed in 

[73], despite a systematic inversion (to ‘inside-out’) of neurons’ final laminar positions relative to the 

regular order that neurons typically assume according to their time of origin (‘outside-in’) [52, 89, 92-

95]. However, the precise mechanisms through which laminar projection patterns become established 

are still under investigation. Further simulation experiments could, therefore, be helpful in evaluating 

potential candidate mechanisms. Expanding the simulation of cortical sheet growth to take into 

account the radial distribution of neurons across layers, as would be required for assessing laminar 

projection patterns, will afford the introduction of spatially and temporally more fine-grained features of 

neurogenesis and final architectonic differentiation. In addition to the planar gradient in neurogenetic 

time windows, which was taken into account in the present simulation experiments, this could mean to 

include the radial gradient in neurogenetic time windows that characterises neurons populating 

different layers [49, 50, 52, 61, 62]. Beyond the density of neurons in any given area, as considered 

here, structural variation could include a number of cellular morphological measures which have been 

shown to change systematically with overall density (e.g., [25]). Another feature that could prove to be 

relevant for the establishment of laminar projection patterns is the relative neuron density of cortical 

layers. As overall neuron density increases across the cortex, layer 2/3 becomes successively more 

pronounced [38, 96] and neuron density increases more in the supragranular layers than in the 

infragranular layers [66]. Thus, there is a shift in when, and in which layers, the majority of neurons is 

generated for areas of different overall density, which could affect laminar patterns, especially in 

interaction with the sequential growth of areas across the cortical sheet. Further, there is systematic 
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variation in the size of pyramidal cell somata across the cortex, a phenomenon termed 

externopyramidization [70, 97]. Specifically, the ratio of soma size in supragranular to infragranular 

layers is much larger in areas of strong architectonic differentiation than in weakly differentiated areas 

(i.e., in weakly differentiated areas, infragranular pyramidal cells tend to be larger than supragranular 

cells, while the reverse is true for strongly differentiated areas). Hence, it seems that the laminar 

position of projection origins is aligned with relatively larger cell size in the candidate population for 

cortico-cortical connections, pyramidal cells. Since maintenance of long-distance connections between 

cortical areas is metabolically expensive [98, 99], relatively larger cell size conceivably is 

advantageous for their maintenance. Thus, as hypothesized before [43,100], externopyramidization 

might be linked to a shift in projection origins.  

In addition to the above-mentioned properties of the cortical sheet itself, there are potential 

modifications of the stochastic formation of connections to be considered. First, the pruning of 

connections during later stages of development [101] was not taken into account in the present 

simulations. Laminar projection patterns may conceivably be affected by selective elimination of some 

axon branches but not others [102, 103]. Moreover, it has been observed that the time course of 

connection formation is not the same for all types of cells. Callosal projection neurons can reach their 

target areas without actually invading the gray matter, instead remaining in the white matter for a 

waiting period of days [104-106]. Similarly, waiting periods below the gray matter have been described 

for infragranular neurons projecting to area V4 from multiple areas in the ipisilateral hemisphere in 

macaques [107]. In contrast, supragranular neurons in the same tract-tracing experiments were found 

to invade the gray matter early, but many of them formed only transient projections that were 

subsequently eliminated. More generally, these and similar tract-tracing experiments have been 

interpreted to demonstrate different developmental profiles for axon outgrowth and connection 

formation in infra- and supragranular neurons [107-110]. In ‘feedback’ pathways, which according to 

the ATP can be conceptualised as projecting towards a relatively more differentiated area, extensive 

remodelling of laminar projection patterns until long after birth has been observed in a number of 

species (mouse, cat, macaque, human) and target areas [107-117]. This remodelling has been linked 

to activity-dependent maturation of pathways and the emergence of more refined perceptual 

capabilities [108, 117, 118]; e.g. reviewed in [119, 120]. This observation suggests that not all factors 
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contributing to adult laminar projection patterns may be accessible in simulation experiments with time 

frames that are restricted to corticogenesis and initial axon outgrowth.  

A further potential determining factor in the establishment of laminar projection patterns that 

warrants exploration is the possibility of genetic specification. The laminar position of projection targets 

might be regulated by genetically encoded factors. Numerous layer-specific transcription factors and 

neurotrophins have been described, which afford a precise targeting of specific layers or even cell 

types and cellular compartments (reviewed, e.g., in [121, 122]). Co-culture experiments using cortical 

explants have shown that appropriate laminar position of axon terminals was retained outside of the 

ontogenetic growth environment, that is, in the absence of regular temporal and spatial relationships. 

Accurate laminar specificity has been demonstrated, for example, for thalamo-cortical, geniculo-

cortical, and cortico-spinal connections in co-culture (e.g., reviewed in [121]). Similarly, connections 

formed in co-culture of rat visual cortex explants were shown to conform to organotypic laminar 

distributions [123, 124]. Castellani and Bolz [125] elegantly demonstrated that organotypic and cell 

type specific projection patterns could be induced by membrane-associated factors through both 

induction and prevention of axon ingrowth and branching. Moreover, it has been shown that 

transcription factors can have population-specific effects, enlarging the range of potential interactions. 

For example, Castellani and colleagues [126] found that the membrane-bound protein Ephrin-A5 

functioned as a repulsive axonal guidance signal in neurons destined to migrate to layer 2/3, while 

acting as a ‘branch-promoting’ signal in neurons destined for layer 6. These observations suggest that 

laminar patterns of projection terminations may not be entirely explicable by spatiotemporal 

interactions in the forming tissue, but are regulated by more prescriptive determinants.  

Limitations and future extensions  

Our results illustrate how a mechanism linking the temporal order of neurogenesis across the 

cortex with the architectonic differentiation of areas could come to shape cortico-cortical connectivity 

such that it resembles the empirically observed connectivity features of mammalian connectomes. 

However, simulation experiments, as performed here, can only assess whether a suggested 

mechanism is principally feasible, and explore what its essential components might be. That is, such 

computational experiments put a candidate mechanism to the test and allow drawing some inferences 
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about possible (and, importantly, impossible) ingredients, but they do not establish biological facts by 

themselves. Ultimately, only empirical observation of the ontogenesis of the cortex can establish how 

this developmental process unfolds. The possibility cannot be excluded that there may exist an 

unrelated mechanism working through features not considered here, which could cause the phenotype 

of interest, in our case the close relation between architectonic differentiation and connectivity. 

Generally, incorporating more empirical anchor points in a model gives the conclusions of a simulation 

study more significance. To triangulate a likely solution to the developmental puzzle of how axonal 

connections are organized, it is necessary to constrain potential mechanisms by as many observable 

features as possible. As discussed above, more processes that shape connectivity could be included 

in our in silico model of neural development, such as waiting periods for connection formation, a 

differential ability of cortical layers to retain connections (possibly linked to externopyramidization), the 

pruning of established connections, or the action of signalling molecules in attracting and repelling 

axons during connection formation. By integrating such processes, new insights could be gained into 

the emergence of further connection features such as laminar projection patterns and projection 

strengths.  

We constrained our in silico model to represent a single cerebral hemisphere, hence our results 

only apply to ipsilateral, intra-hemispheric connections. Contralateral, inter-hemispheric axonal 

connections have also been reported to be well represented by the architectonic type principle [31, 

37], although at generally lower connection strengths. The in silico model could be expanded by a 

second hemisphere which develops simultaneously. Since similar types of cortex in the two 

hemispheres would be formed at nearby points in time, but further apart in space, this setup would be 

expected to lead to the observed pattern of consistent, but weaker connectivity, if the principle holds 

that spatiotemporal interactions govern connectivity patterns.  

We modelled the developing cortex as a two-dimensional sheet, across which axons grew until 

they met a target soma and formed a connection. In reality, the mammalian cortical sheet is not flat, 

but becomes at least curved, and often intricately folded, during corticogenesis. Moreover, axons are 

not positioned exclusively within the grey matter, but instead cover large distances through the white 

matter. These shortcuts between distant points on the cortical sheet imply that representing projection 

length as Euclidean distance between points on a flat cortical sheet is not accurate. Yet, regardless of 
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how the concurrent processes of neurogenesis, axon formation and cortical folding affect each other 

[127, 128], measuring the precise lengths of projections in the adult cortex has so far not been 

straightforward. Hence, approximate measures have been employed, such as border distance on a 

cortical parcellation, Euclidean distance in three-dimensional space, or geodesic distance which 

accounts for some of projections’ confinement to white matter tracts. Euclidean distance on the 

simulated two-dimensional cortical sheet may, therefore, be a suitable surrogate measure for these 

approximate empirical measures. In line with this assumption, if cortical folding had a strong impact on 

our prediction of empirical data, it would be expected that performance in the less folded cat cortex 

would be better than in the more strongly folded macaque cortex. As this was not the case, we 

suspect that cortical folding and the resulting changes in projection lengths do not dramatically alter 

the spatiotemporal interactions which we hypothesize link architectonic differentiation and cortical 

connectivity. To further test this expectation, it would be interesting to predict connectivity data from a 

wider range of species, such as lyssencephalic rodents and humans, whose cortex is even more 

strongly folded than the macaque cortex.  

Lastly, applying the classifier which was trained on simulated network data to predict empirical 

connectivity data resulted in better prediction performance for the macaque cortex than the cat cortex. 

Ultimately, there might be two reasons for this finding: Either the architectonic type principle 

characterises connectivity better in one of these species than the other, or the empirical measures that 

were used more faithfully capture the true structure in one of the species. Conceivably, adherence to 

the ATP might not be as pronounced in the smaller cat cortex, where both distances are shorter and 

therefore less distinctive, and there is less variation in total neuron number within the cortex due to a 

shortened neurogenetic interval [66]. Regarding the second possible reason, the structural measures 

from which we predicted connectivity were more detailed in the macaque cortex (neuron density and 

Euclidean distance) than in the cat cortex (structural type and border distance). Further experiments 

are therefore required to distinguish between these two explanations. Indeed, it would be intriguing to 

expand the prediction of empirical connectivity data from simulated networks to other species, 

preferably to mammals whose cortex is on either side of cat and macaque on the scales of size and 

degree of architectonic differentiation. Just as for assessing the impact of cortical folding, rodents and 
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humans would be good candidates to identify the source of the observed difference in prediction 

performance.  

Conclusion  

We performed simulations of cortical sheet growth and the concurrent formation of cortico-

cortical connections, systematically varying the spatiotemporal trajectory of neurogenesis as well as 

the relation between architectonic differentiation and time of origin of neural populations. Our results 

showed that, for realistic assumptions about neurogenesis, successive tissue growth and stochastic 

connection formation interacted to produce realistic cortico-cortical connectivity. This finding illustrated 

the fact that precise targeting of interareal connection terminations was not necessary for obtaining a 

realistic replication of connection existence within a cortical hemisphere. Instead, spatiotemporal 

interactions within the structural substrate were sufficient if a small number of empirically well-

grounded assumptions were met, namely (i) planar, expansive growth of the cortical sheet as 

neurogenesis progressed, (ii) stronger architectonic differentiation for later neurogenetic time windows, 

and (iii) stochastic connection formation. We, thus, demonstrated a possible mechanism of how 

relative architectonic differentiation and connectivity become linked during development. These 

findings support hypotheses advanced in previous reports about the mechanistic underpinnings of the 

architectonic type principle [27, 29, 35, 40]. The successful prediction of connectivity in two species, 

cat and macaque, from our simulated cortico-cortical connection networks further underscores the 

generality of the ATP and the wide applicability of its explanation of connectivity in terms of relative 

architectonic differentiation.  

Methods  

We first describe the variants of the in silico model we considered and how we simulated the 

formation of cortico-cortical connections on a forming cortical sheet, representing a single hemisphere. 

We then detail how we analysed the resulting simulated networks.  

Connection formation was simulated to take place on a two-dimensional, rectangular cortical 

sheet, where neuron somata and axon terminals were assigned two-dimensional coordinates without 

spatial extent. Somata were arranged in rectangular cortical areas which differed in their surface 
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density of neurons. Neuron density has been shown to be a good indicator of a cortical area’s overall 

degree of architectonic differentiation [40] and has been used previously to relate differentiation to 

connectivity in the macaque brain (e.g. [35, 36]). Hence, we used neuron density as a central marker 

for architectonic differentiation, with larger neuron density corresponding to a stronger degree of 

differentiation. We did not adjust the absolute magnitude of neuron density to empirical values, but did 

choose the range of neuron densities such that it was similar to empirically observed variation in 

neuron densities across the cortex, with about a five-fold increase between areas of lowest and 

highest neuron density (cf. [35]). We implemented neuron density as number of somata per unit area 

of cortical sheet (#/arbitrary unit²). All cortical areas were defined to be of the same size. From these 

two constraints on neuron density and area size, it followed that areas of different densities contained 

different numbers of neurons. Within an area, somata were spaced equidistantly.  

Variants of the in silico model  

The generation of the cortical sheet across time was simulated in a number of different settings 

of the in silico model, here called variants or growth layouts. These growth layouts systematically 

differed in where and when neurons were generated on the forming cortical sheet, that is, they had 

different spatiotemporal growth trajectories. Below, we describe all growth layouts and their 

correspondence to neurodevelopmental findings in detail. An overview is provided in Table 1, and 

Figure 2 as well as Supplementary Figure S1 give a visualisation of cortical sheet development over 

time for the different growth layouts.  

All considered spatiotemporal growth trajectories were grouped into five sets of growth layouts. 

These sets differed with respect to whether cortical areas were generated by planar, expansive 

growth, whether there was radial growth, and in the final gradient of neuron density around 

neurogenetic origins.  

In growth layouts with planar growth, the cortical sheet expanded, as, with each growth event, 

new cortical areas emerged around neurogenetic origins. Each new cortical area was grown within 

one time step, thus all constituent neurons appeared on the cortical sheet simultaneously. 

Neurogenesis occurred on the outer fringes of the portion of the cortical sheet already generated by 

each origin of neurogenesis. For more than one neurogenetic origin, this process entailed that newly 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 25, 2018. ; https://doi.org/10.1101/426718doi: bioRxiv preprint 

https://doi.org/10.1101/426718


38 

generated areas moved previously generated areas apart on the cortical sheet, increasing the spatial 

distance in between them. Thus, planar growth mimicked the empirically observed planar gradient in 

onset of neurogenesis (see Introduction).  

Radial growth, in contrast, did not expand the cortical sheet over time. Here, the cortical sheet 

had its final dimension already at the start of corticogenesis and cortical areas did not differ with 

respect to the time of onset of neurogenesis, but instead in the length of their neurogenetic interval. 

During each growth event, neurons were added at a constant rate across the entire cortical sheet. 

Areas with lower neuron density finished generating their complement of neurons earlier in time than 

areas with a higher neuron density, which needed to generate a larger number of neurons. Radial 

growth thus reproduced an alternative interpretation of studies of neurogenetic timing (see 

Introduction).  

Growth events, during which the cortical sheet was generated, were distributed across the fixed 

simulated length of time. For both planar and radial growth, they were timed in such a manner that all 

neurons had grown after one third of the simulation length, and the remaining time steps could be 

used for connection formation by all neurons.  

These three main properties of spatiotemporal growth of the cortical sheet were combined in 

the five sets of growth layouts, with each set containing three (or in one case nine) growth layouts, as 

follows: The first set, the realistically oriented density gradient growth layouts, grew by planar growth. 

Here, newly generated areas were of higher neuron density than previously grown areas. That is, 

there was a positive correlation between time of origin and neuron density, which appeared as a 

distinct gradient in neuron density around the neurogenetic origins on the final cortical sheet. The 

second set, the inverse neuron density gradient growth layouts, grew by planar growth like sets 1 and 

5. However, in these inverse gradient growth layouts, newly generated areas were of lower neuron 

density than previously grown areas, that is, there was a negative correlation between time of origin 

and neuron density. The third set, the radial growth layouts, grew by radial growth. The final density 

gradient was identical to sets 1 and 4, but for the radial growth layouts, this pattern was caused by a 

positive correlation between length of the neurogenetic interval and neuron density, instead of a 

correlation between the time of onset of neurogenesis and neuron density. The fourth set, static 

growth layouts, did not in fact grow at all. All neurons were grown during the first growth event, thus 
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the cortical sheet was fully formed from the beginning of the simulation. The final density gradient was 

identical to sets 1 and 3. Finally, in the fifth set, the random growth layouts, the cortical sheet grew by 

planar growth. The resulting final cortical sheet had no directed gradient of neuron density around the 

neurogenetic origins. Instead, each newly generated area was randomly assigned a neuron density. 

Possible density values were drawn from the neuron densities found on the final cortical sheet of the 

first set, realistically oriented neuron density gradient.  

For each of these five sets, we implemented three different growth modes to mitigate influences 

of any specific choice of spatial implementation. Each growth mode was implemented around two 

neurogenetic origins. The three growth modes were as follows: First, one-dimensional growth with one 

row of areas (1D 1row growth layouts), where new areas grew to the left and right of neurogenetic 

origins (i.e., along the x-dimension of the cortical sheet) and there was only one row of cortical areas. 

Second, we implemented one-dimensional growth with two rows of areas (1D 2rows growth layouts), 

where, again, areas were added to the left and right of neurogenetic origins, but there were two rows 

of areas stacked in the y-dimension of the cortical sheet. Third, we implemented two-dimensional 

growth (2D growth layouts), where new areas were added on all sides of neurogenetic origins (i.e., in 

both the x- and y-direction of the cortical sheet). In this growth mode, each successive growth event 

led to an exponentially increasing number of added areas, and for set 1, realistically oriented density 

gradient, an unproportionally high number of areas of the highest neuron density, which did not 

accurately reflect the composition of the mammalian cerebral cortex. However, as stated above, we 

simulated the different growth modes to alleviate side-effects that might unintentionally arise from any 

particular spatial layout. Considering results across these specific implementations vastly reduced the 

risk of misinterpretation. We therefore included the two-dimensional growth mode despite its 

unrealistic rendering of the cortical sheet as a further control.  

As mentioned before, each of the 15 growth layouts that were described so far was 

implemented around two origins of neurogenesis (5 sets x 3 growth modes x 1 number of origins). For 

set 1, realistically oriented neuron density gradient, we additionally considered two different numbers 

of origins for each growth mode. Specifically, we included growth around one neurogenetic origin and 

growth around three or four neurogenetic origins for 1D and 2D growth modes, respectively. These 
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further six growth layouts allowed us to test whether the exact number of neurogenetic origins 

meaningfully influenced final connectivity.  

Thus, we considered a total of 21 growth layouts (5 sets x 3 growth modes x 1 number of 

origins + 1 set x 3 growth modes x 2 numbers of origins). We simulated 100 instances of the 

spatiotemporal development of each of these 21 growth layouts.  

Correspondence to empirical observations  

The five sets were designed to correspond to some aspects of empirical neurodevelopmental 

findings and to violate others. Set 1, which features planar growth and a realistically oriented density 

gradient, represents a fiducial reproduction of the empirically grounded assumptions we described in 

the Introduction and thus mimics the mechanistic underpinnings that were previously hypothesised for 

the architectonic type principle [27, 29, 35, 40]. The other four sets deviate from this most realistic set 

in different ways. Sets 2 and 5, with inverse and random density gradients, respectively, test how the 

specifics of the neuron density gradient affect connectivity in the presence of planar growth. Set 4, the 

static growth layouts, examine how the absence of planar growth affects connectivity if the neuron 

density distribution remains unchanged. Set 3, radial growth layouts, contrast planar growth with radial 

growth, while the final neuron density distribution again remains unchanged.  

Connection formation  

Axons randomly grew across the cortical sheet and stochastically formed synaptic connections 

(similar to, e.g., [48]; also see [45]). Each neuron was assigned one axon terminal, which was initially 

located at the respective soma position. With each time step of the simulation, the axon extended by a 

fixed length at a random angle, and the position of the axon terminal changed accordingly. Once axon 

terminals left the cortical area their parent soma was located in, they were free to form a synapse with 

any neuron soma they encountered. Since both terminals and somata were defined by point-

coordinates, a synapse was formed once the axon terminal approached a soma closer than a defined 

maximal distance. Upon synaptic contact, an axon stopped growing and the now occupied axon 

terminal remained at the location of the contacted soma for the remainder of time steps. To further 

increase stochasticity, we imposed a connection probability of 90% on potential synaptic contacts. 

Thus, in 90% of cases, a synapse successfully formed once the terminal was close enough to a soma, 
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but in a randomly chosen 10% of cases, no synapse formed at this time step and the axon continued 

to grow. If soma positions changed because the cortical sheet grew, axon terminals (both occupied 

and unoccupied) were shifted with the cortical area they found themselves in at the time, and synaptic 

contacts were retained. This procedure of axon growth and synapse formation was not modified 

across variants of the in silico model.  

Different parameters of the axon growth process interacted to determine how fast axon 

terminals made synaptic contacts. This included for example the increase in axon length per time step 

and the maximal distance for synapse formation. In pilot runs of the simulation, we calibrated the 

relevant parameters such that after the fixed simulated length of time, most axon terminals (>99.9%) 

had made synaptic contact and final interareal connectivity fell into a range comparable to empirical 

reports [22, 34, 83]. This calibration resulted in slightly different parameter values for 1D and 2D 

growth modes, but the same values were used in all simulation instances within these growth modes.  

Features of the simulated cortical sheet  

From the final state of the simulated cortical sheet, we extracted a number of features that were 

analogous to measures used in previous analyses of the mammalian cortex.  

First, we collapsed the axonal connections between individual neurons into a simulated 

connectome, which contained information about the existence of all possible area-wise connections. 

Thus, we constructed a complete binary connectivity matrix where connections were entered as either 

absent or present.  

Second, we extracted the two relevant structural measures from the final cortical sheet. The 

first measure was each area’s neuron density, and derived from that the difference in neuron density 

between area pairs, where density difference = densityarea of origin - densityarea of termination. For most analyses, 

we considered the undirected equivalent, the absolute value of density difference, which indicates the 

magnitude of the difference in neuron density between two areas. These two measures were 

equivalent to measures of architectonic differentiation previously used in studies examining 

mammalian cortical connectivity, such as neuron density difference (e.g., [6635 the log-ratio of neuron 

densities [36] or difference in cortical type, which is an ordinal measure of architectonic differentiation 

(e.g., [33-35]). The second measure was the spatial proximity between pairs of areas, which we 
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calculated as the Euclidean distance between areas’ centres of mass. This measure was equivalent to 

measures of spatial proximity we used in previous empirical studies (e.g., [35, 36]). Since distance is 

an undirected measure, each analysis that included distance required the use of the undirected 

measure of neuron density difference, its absolute value.  

Analyses  

We performed the described analyses for each of the 100 instances that were simulated for 

each growth layout and aggregated results across instances. For the simulations and analyses we 

used Matlab R2016a (The MathWorks, Inc., Natick, MA, USA).  

Relative frequency of present connections  

To gain an overview of how present and absent connections were distributed across the range 

of possible absolute density differences and distances, we computed the relative frequency of present 

connections. To do this, we divided the range of each structural measure in up to 10 bins and 

computed the fraction of present connections in each bin as relative frequency = number of present 

connections / (number of present connections + number of absent connections). For distance, we 

always used 10 bins. For absolute density difference, we used 10 bins where possible, but we had to 

chose a lower number of bins if the particular growth layout had been implemented with a small 

number of area density tiers. This was for example the case in the 2D 4origins growth layout, where 

the exponential increase in the number of areas with each growth event caused us to restrict the 

simulation to four growth events, and thus four different levels of neuron density. To assess whether 

there was a systematic relation between the relative frequency of present connections and the 

respective structural measure, we then computed Spearman rank correlations of the computed 

fractions across all bins. We show the resulting distribution of correlation coefficients ρ and report 

median ρ- and p-values averaged across simulation instances. To determine whether the rank 

correlation was consistently significant across instances, we computed a left-tailed sign test for each 

growth layout. Specifically, we tested whether the group of 100 p-values obtained from the rank 

correlations for each instance had a median value smaller than a significance threshold, 

αSpearman = 0.05. We considered the sign test significant below αsign = 0.05, and in these cases rejected 
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the null-hypothesis that the median of the group of p-values was not smaller than αSpearman. For the sign 

test, we report the test statistic z and the corresponding p-value.  

Prediction of simulated connectivity data  

To assess how well density difference and distance accounted for the simulated interareal 

connectivity, we used binary logistic regression, a classification algorithm for distinction between two 

classes of cases. That is, we endeavored to predict the existence of simulated connections from the 

structural properties of the corresponding simulated cortical sheet. We considered four combinations 

of predicting factors: First, a null model which included only a constant and amounted to chance 

performance. Second and third, we further included either absolute density difference or distance as 

predicting factors. Thus, we constructed two models with two predicting factors each, testing the effect 

of each individual structural measure on classification performance. In a fourth model, we included all 

three predicting factors, that is, a constant and both structural measures, testing their joint 

classification performance. Prior to inclusion, both structural measures were transformed to z-scores, 

that is, we subtracted the respective mean and then divided by the respective standard deviation. To 

evaluate how much each predicting factor contributed to classification performance, we computed 

McFadden’s Pseudo R² = log-likelihoodmodel / log-likelihoodnull model. The log-likelihood for each model 

captures how well its predictions correspond to the actual data, with larger values indicating a better 

correspondence. McFadden’s Pseudo R² thus indicates how much better prediction performance 

becomes with the inclusion of further predicting factors, relative to chance performance. Values of 

McFadden’s Pseudo R² of 0.10 and above were considered a moderate increase in prediction 

performance, values of 0.15 and above were considered adequate, and values from 0.20 on were 

considered a very high increase in prediction performance [129].  

Area degree  

We assessed one topological property of areas, their degree, which has previously been 

reported to be related to architectonic differentiation [34, 36]. Area degree indicates how many 

connections are maintained by an area, and we computed it as the sum of afferent and efferent 

connections for each area. Since degree is not a relational property and hence applies to a single area 

and not a pair of areas, we related it to neuron density but not to spatial proximity. Analogous to our 

previous analyses, we computed a Spearman rank correlation between area degree and neuron 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 25, 2018. ; https://doi.org/10.1101/426718doi: bioRxiv preprint 

https://doi.org/10.1101/426718


44 

density to assess whether there was a relation between the two. We show the resulting distribution of 

correlation coefficients ρ and report median ρ- and p-values averaged across simulation instances. To 

determine whether the rank correlation was consistently significant across instances, we computed a 

left-tailed sign test for each growth layout, as described above for relative connection frequencies. The 

same significance thresholds applied here.  

Prediction of empirical connectivity data  

To assess how well the relationships between simulated connectivity and simulated structural 

measures translated to empirically observed relations in the mammalian cortex, we used classifiers 

trained on the simulated data to predict empirical connectivity data. To this end, we used two data sets 

of ipsilateral corticocortical connectivity (i.e., connections within a hemisphere), analyses of which we 

have published previously. These were the most extensive and up-to-date connectivity data sets 

available for the macaque [83] and cat cortex [130], acquired using retrograde tract-tracing 

experiments. Here, we considered these connectivity data as a binary measure of connection 

existence. For both data sets, measures of architectonic differentiation and spatial proximity were 

available. Briefly, in the macaque, we used the absolute log-ratio of neuron density and Euclidean 

distance between areas as the equivalents of the absolute density difference and Euclidean distance 

obtained from the simulations and included 1128 empirical data points in our analyses. In the cat, 

these measures were represented by the absolute difference in cortical type, an ordinal ranking of 

areas by architectonic differentiation, and the border distance between areas, which quantifies the 

shortest distance between two areas based on a given parcellation of the cortex. Here, we included 

954 empirical data points in our analyses. See our previous reports for a detailed description of the 

connectivity data as well as the structural measures [34, 36]. To be able to apply the two simulated 

structural measures to the empirical measures despite their different scales, we transformed all three 

pairs (simulated, macaque, cat) to z-scores by subtracting the respective mean and then dividing by 

the respective standard deviation.  

For each instance of each growth layout, we trained a classifier to predict simulated connection 

existence from the z-scores of simulated relative architectonic differentiation (i.e., absolute density 

difference) and spatial proximity (i.e., distance), using a support vector machine with a linear kernel 

function and the assumption of uniform prior probabilities for the two learned classes. We then applied 
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the trained classifier to the z-scores of empirical relative architectonic differentiation (i.e., absolute log-

ratio of neuron density and absolute type difference, respectively) and spatial proximity (i.e., Euclidean 

distance and border distance, respectively), separately for the macaque and the cat, and obtained 

posterior probabilities that a connection was present, ppresent. We then used two classification rules, 

derived from a common threshold probability pthreshold, to label empirical data points as either absent or 

present. We assigned the status ‘present’ to all empirical connections whose posterior probability 

exceeded the threshold probability, that is, data points with ppresen > pthreshold. Alternatively, we assigned 

the status ‘absent’ to all empirical connections whose posterior probability was sufficiently low, that is, 

data points with ppresent < 1- pthreshold. These two rules excluded a range of posterior probabilities where 

classification was not confident enough to warrant a prediction, which entailed that not all empirical 

connections were assigned a predicted label for each simulation instance. Additionally to the 

measures that we used to quantify prediction performance, we therefore report the fraction of available 

empirical data points that were actually classified. To mitigate influences of any one threshold 

probability, we considered ten threshold probabilities, increasing in step sizes of 0.025 from 

pthreshold = 0.750 to pthreshold = 0.975, and report results averaged across thresholds for each simulation 

instance.  

We assessed prediction performance through two measures, accuracy and the Youden index, 

J. We calculated these measures at each threshold and report results averaged across all ten 

thresholds. Accuracy was computed as the fraction of predictions that were correct, that is, 

accuracy = number of correct predictions / (number of correct predictions + number of incorrect 

predictions). The Youden index J [131, 132] is a more comprehensive summary measure which takes 

into account both sensitivity (true positive rate) and specificity (true negative rate), with J = sensitivity + 

specificity - 1. The Youden index is a measure of how well a binary classifier operates above chance 

level, where J = 0 indicates chance performance and J = 1 indicates perfect classification. Below 

values of 0.25, the Youden index was considered to indicate negligible classification performance, 

values of 0.25 and above were considered weak performance, values of 0.40 and above were 

considered moderate performance, and values of J above 0.50 were considered to indicate good 

classification performance.  
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We show the distribution of resulting mean values of accuracy and Youden index across the ten 

thresholds, and report the median values of these distributions across the 100 instances for each 

growth layout. In the following, we describe the procedure that we followed to validate the two 

classification performance measures, assessing how they compared against chance performance. An 

overview is provided in Figure 3. Within each simulation instance, we performed a permutation 

analysis at each threshold to determine how the accuracy or Youden index at this threshold compared 

to chance performance. To this end, we randomly permuted the labels of the empirical data points, so 

that there was no association any more between the predictive variables and connection existence, 

and then applied the classification procedure again, computing accuracy and Youden index to quantify 

chance performance. We repeated this for 100 permutations of the data labels, so that, for both 

measures, we obtained a distribution of values that represented chance performance at each 

threshold. To test whether the corresponding classification performance measure was likely to be from 

this distribution, we first fit the chance performance distribution to a normal distribution, obtaining an 

inferred mean value and standard deviation. We then performed a two-tailed z-test, which tests 

whether a particular value comes from a population with a particular mean, which in this case was the 

fitted distribution of performance measures obtained from the permutation analysis. If the test was 

significant at αz-test = 0.05, we rejected the null hypothesis that the actual performance measure at the 

given threshold came from the fitted distribution of chance performance. Since the z-statistic was 

never smaller than 0 if the p-value was below αz-test , we then inferred that the actual performance was 

better than chance performance at a given threshold. We then averaged the p-values obtained from 

the z-tests across thresholds by computing their median. Thus, for each growth layout, we obtained 

distributions of 100 (one per instance) mean performance measures and as many associated median 

p-values validating them against chance performance.  

To determine whether these median p-values were consistently significant across instances, we 

computed a left-tailed sign test for each growth layout. Specifically, we tested whether the group of 

100 median p-values obtained from the z-tests at each threshold for each instance had a median 

value smaller than αz-test. We considered the sign test significant at αsign = 0.05, and in these cases 

rejected the null-hypothesis that the median of the group of p-values was not smaller than αz-test. For 

the sign test, we report the test statistic z and the corresponding p-value for each growth layout.  
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Finally, to assess how the two classification performance measures accuracy and Youden 

index were affected by the number of origins independent of growth mode and the considered 

species, we computed a three-way analysis of variance on the performance measures from growth 

layouts with a realistically oriented density gradient (which were the only ones where number of origins 

ever differed from two). We included three factors: ‘species’, with the levels macaque and cat; ‘growth 

mode’, with the levels 1D 1row, 1D 2rows and 2D; and ‘number of origins’, with the levels 1, 2 and 3 or 

4 (for 1D and 2D growth modes, respectively). We report the F-statistic and associated p-value for 

each factor and considered a main effect significant at αANOVA = 0.05. To examine the main effect of 

‘number of origins’ in more detail, we estimated marginal mean values from the analysis of variance 

model. These reflect a model estimate of the mean value for each level of ‘number of origins’ across 

all levels of the remaining factors. We subsequently performed post-hoc comparisons between these 

model estimates of marginal mean values, which revealed specific differences between levels. The 

post-hoc comparisons were Bonferroni corrected for multiple tests and considered significant at an 

adjusted threshold of αpost-hoc = 0.05/3 = 0.0167.  
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Supplementary Figure Captions  

Supplementary Figure S1. Developmental trajectories of all 21 growth layouts. Illustration 

of the spatiotemporal growth trajectory for each growth layout. The successive population of the 

cortical sheet with neurons is shown for the first three growth events. For static growth, all neurons 

grow simultaneously, hence only one growth event is shown. 
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Supplementary Figure S2. Correlation of relative connection frequency with distance and 

absolute density difference for all growth layouts. Distribution of absent and present connections 

across distance (left panels) and absolute density difference (right panels) for all growth layouts. 

Absolute numbers of absent and present projections (bars) are depicted alongside the corresponding 

relative frequency of present connections (diamonds). Simulation instances were chosen to be 

representative of the median values shown in Figure 5. Spearman rank correlation results for each 

particular instance are shown on top of each plot. A.u.: arbitrary unit. Abbreviations and background 

colours as in Table 1. 

Supplementary Figure S3. Correlation area degree with neuron density for all growth 

layouts. Variation of area degree (number of connections) across areas’ neuron density is shown. 

Simulation instances were chosen to be representative of the median values shown in Figure 7. 

Spearman rank correlation results for each particular instance are shown on top of each plot. A.u.: 

arbitrary unit. Abbreviations and background colours as in Table 1. 
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