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Abstract1

Evolutionary processes underpin the biodiversity on the planet. Theories advocate that the2

form of the species abundance distribution (SAD), presented by the number of individuals for each3

species within an ecological community, is intimately linked to speciation modes such as point4

mutation and random fission. This prediction has rarely been, however, verified empirically; the5

fact that species abundance data can be obtained only from local communities critically limits6

our ability to infer the role of macroevolution in shaping ecological patterns. Here, we developed7

a novel statistical model to estimate macroscale SADs, the hidden macroecological property, by8

integrating spatially replicated multispecies detection-nondetection observations and the data on9

species geographic distributions. We determined abundance of 1,248 woody plant species at a 1010

km grid square resolution over East Asian islands across subtropical to temperate biomes, which11

produced a metacommunity (i.e. species pool) SAD in four insular ecoregions along with its absolute12

size. The metacommunity SADs indicated lognormal-like distributions, which were well explained13

by the unified neutral theory of biodiversity and biogeography (UNTB) with protracted speciation,14

a mode of speciation intermediate between point mutation and random fission. Furthermore, the15

analyses yielded an estimate of speciation rate in each region that highlighted the importance of16

geographic characteristics in macroevolutionary processes and predicted the average species lifetime17

that was congruent with previous estimates. The estimation of macroscale SADs plays a remarkable18

role in revealing evolutionary diversification of regional species pools.19

A better understanding of global patterns of species commonness and rarity has been a fundamental20

requirement in ecology and evolutionary biology since the time of Darwin (1859) (Hutchinson 1959,21

May 1988, Rosenzweig 1995). Nonetheless, we still lack a clear understanding of the patterns of22
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species abundance, especially at large spatial scales, such as those representing regional species23

pools. The unified neutral theory of biodiversity and biogeography (UNTB; Hubbell 2001) provides24

a mechanistic explanation of the origin and maintenance of biodiversity; based on the premise that25

all individuals in a system are functionally equivalent and thus follow neutral processes of26

demography, dispersal, and speciation, the UNTB derives species abundance distributions (SADs),27

at both local-community and meta-community (i.e. species pool) scales, in addition to a range of28

other macroecological and macroevolutionary patterns such as the species-area relationship29

(Rosindell et al. 2011), β diversity (Chave & Leigh 2002), and various phylogeny characteristics30

(Davies et al. 2011).31

The UNTB bridges evolutionary biology and community ecology by linking, theoretically,32

macroevolutionary processes to biodiversity patterns. In particular, it predicts that the statistical33

form of the SAD in the metacommunity is dependent on the mode of speciation (Hubbell 2001,34

Etienne et al. 2007, Haegeman & Etienne 2010, Rosindell et al. 2010, Etienne & Haegeman 2011,35

Haegeman & Etienne 2017). The point mutation speciation model, which formed the basis of the36

first UNTB proposed by Hubbell (2001), models speciation as a process in which each new species is37

represented initially by a single individual. The point mutation speciation model predicts a38

metacommunity SAD that follows the logseries distribution, a distribution that is characterized by a39

relatively high proportion of rare species (Hubbell 2001, Etienne & Alonso 2005). In contrast, the40

random fission speciation model assumes that speciation occurs in the metacommunity owing to the41

random division of a population of an existing species. The random fission speciation model predicts42

a fairly even metacommunity structure, which is related to the MacArthur’s (1957) broken-stick43

model (Haegeman & Etienne 2010, Etienne & Haegeman 2011). The point mutation speciation and44

random fission speciation represent the two extremes of a spectrum of speciation modes in UNTB.45

This spectrum of speciation modes has been argued to be unified with the concept of protracted46

speciation, which characterizes speciation as a gradual, drawn-out process (Rosindell et al. 2010,47

Haegeman & Etienne 2017). The UNTB with protracted speciation predicts a metacommunity SAD48

that follows a difference-logseries distribution. The difference-logseries distribution follows a logseries49

distribution at large abundances while behaving differently at small abundances; namely, it predicts50

fewer rare species than the logseries distribution (Rosindell et al. 2010, Haegeman & Etienne 2017).51

Our ability to infer evolutionary processes that underpin observed biodiversity patterns is,52
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however, fundamentally limited because species abundance data can be obtained only from local53

communities. Indeed, earlier studies have shown that differences in the mode of speciation are hardly54

discerned based on samples from local communities as they may not leave a signature on SADs55

realized in dispersal-limited localities (Hubbell 2001, Etienne et al. 2007, Rosindell et al. 2010,56

Etienne & Haegeman 2011). The limitation in data acquisition also prohibits us from identifying the57

rate of speciation (ν) from SADs because local community SADs are determined by the fundamental58

biodiversity number (θ), which is a compound parameter depending both on ν and the59

metacommunity size (JM ) (Etienne & Alonso 2005, Etienne & Haegeman 2011; but see Etienne60

et al. 2007). Consequently, fundamental macroevolutionary properties of a metacommunity, such as61

ν and the average lifespan of the species (L; Ricklefs 2003), have remained largely unknown.62

A solution to these problems is to obtain data on species abundance over a huge spatial extent63

that directly informs about the size and biodiversity of the metacommunity; such data is, however,64

unrealistic. In this view, we developed a novel hierarchical model (Royle & Dorazio 2008, Kéry &65

Schaub 2012, Kéry & Royle 2016) that estimates SADs over a large geographic extent, which we66

named “macroscale SADs”. The model integrates spatially replicated multispecies67

detection-nondetection observations and information on the geographical distribution of species. We68

applied the model to a large dataset of woody plant communities in midlatitude forests on East69

Asian islands, including the Japanese archipelago. The dataset comprised more than 40 thousand70

vegetation survey records and various data sources for geographical ranges of species. The model71

enabled us to estimate macroscale abundance for 1,248 species at a 10 km grid square resolution.72

Although defining a metacommunity is difficult in practice, discerned biogeographic divisions will73

proximate its theoretical definition as they can be regarded an evolutionary unit within which most74

member species spend their entire evolutionary lifetimes (Hubbell 2003). Thus, we pooled estimates75

of species abundance within four ecoregions that belong to different biogeographic divisions to obtain76

the metacommunity SADs (Fig. 1, detailed in Appendix B). Estimates of biodiversity patterns in77

the ecoregions are summarized in Table 1.78

The SADs of metacommunities in the four ecoregions followed a left-skewed, lognormal-like79

distribution, whose short left tail indicates that the number of very rare species was negligible (Fig.80

1). This pattern of the metacommunity SADs were consistently well explained by the protracted81

speciation model (Table 2). Point mutation speciation model fitted relatively well at the largest82
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Fig. 1. Metacommunity species abundance distribution in the four ecoregions of the
East Asian islands. Ecoregions are discerned by colour (central continental arc: green, northern
continental arc: blue, southern continental arc: orange, oceanic islands: purple). Histograms in the
inner panels represent the estimated metacommunity species abundance distributions (SADs). The
coloured lines represent metacommunity SADs predicted by the three variants of the unified neutral
theory of biodiversity and biogeography (UNTB) (PMS – point mutation speciation model; RFS –
random fission speciation model; PS – protracted speciation model) fitted to the metacommunity
SADs. x- and y-axis indicate the abundance octave and number of species, respectively. The jth
abundance octave is defined as the range of abundance n satisfying 2j−1 ≤ n < 2j .

abundance classes, but failed to predict the number of less common species and rare species.83

Random fission speciation model overpredicted the number of moderately abundant species, while84

underpredicting the number of less common species. The results suggest that the manner of species85

diversification in these metacommunities was represented by neither of the two extreme modes, point86

mutation speciation or random fission speciation, but by an intermediate process expressed as a87

protracted speciation.88

The macroscale SADs yielded estimates of the metacommunity size JM for each ecoregion, which89

enabled us to disentangle speciation rate ν from the fundamental biodiversity number θ (Table 1). A90

higher speciation rate and shorter average lifetime of a species was observed in ecoregions composed91

of small and isolated islands, the oceanic islands region, and the southern continental arc region92

(Table 1), implying relatively rapid evolutionary turnover of the metacommunity in those regions.93

The magnitude of L largely differed between the models; the point mutation speciation model94
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Table 1. Estimates of community abundance, species richness, diversity index, and param-
eters relevant to the unified neutral theory of biodiversity. Species diversity is represented
by Shannon entropy. Parameters related to the neutral models are: fundamental biodiversity number
θ, speciation rate ν, and average species lifetime (generations) L.

Ecoregion
Central Northern Southern Oceanic

Abundance
Total (metacommunity size JM ) 1.67× 1010 3.37× 109 3.29× 108 6.35× 106

Mean 4.73× 106 3.40× 106 2.27× 106 3.53× 105

SD 5.74× 106 6.46× 106 3.60× 106 6.54× 105

Species richness
Total (γ-diversity) 1024 328 508 141
Mean (α-diversity) 241.7 96.9 198.4 47.8
SD 75.7 33.0 81.1 34.2

Shannon entropy
Total (γ-diversity) 5.55 4.83 5.11 3.97
Mean (α-diversity) 4.58 4.13 4.18 2.66
SD 0.66 0.45 1.03 1.12

Point mutation speciation model
θ 52.27 17.15 31.40 10.56
ν 3.13× 10−9 5.09× 10−9 9.55× 10−8 1.66× 10−6

L 19.6 19.1 16.2 13.3
Random fission speciation model

θ 1023.75 327.75 507.75 140.75
ν 3.76× 10−15 9.46× 10−15 2.38× 10−12 4.91× 10−10

L 1.63× 107 1.03× 107 6.48× 105 4.51× 104

Protracted speciation model
θ 113.51 62.87 76.65 30.40
ν 2.65× 10−13 4.19× 10−14 2.96× 10−11 2.00× 10−9

L 2.22× 105 2.13× 106 4.96× 104 1.07× 104

predicted an average species lifetime of less than 20 generations, while the random fission speciation95

model predicted a very long lifetime, up to tens of millions of generations. Assuming that the average96

generation time of woody plants is about 30 years (Leigh et al. 1993, Nee 2005), the estimates of97

lifetime (i.e. hundreds of years in the point mutation speciation model and up to hundreds of millions98

of years in the random fission speciation model) are ecologically unrealistic for species. In contrast,99

the protracted speciation model provided moderate estimates of L that range from hundreds of100

thousands of years to tens of millions of years, which are comparatively congruent with previous101

estimates for species lifetime of vascular land plants based on fossil records (Niklas et al. 1983, 1985).102

The UNTB, originally formulated with the point mutation and random fission speciation (Hubbell103

2001), can fit well to empirical SADs at local communities. However, it has been criticized because of104

failing to explain the evolutionary aspects such as average species lifetime (Ricklefs 2003, Nee 2005,105

Ricklefs 2006). The concept of the protracted speciation achieved a considerable advancement of the106

UNTB and led to realistic predictions about macroevolutionary patterns of communities (Rosindell107
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Table 2. Model comparison for the fit of three variants of the unified neutral theory
of biodiversity and biogeography (UNTB) and a Poisson lognormal model. Models were
compared based on their “composite likelihood” suggested by Alonso & McKane (2004): see Appendix
B for details on the procedures for model fitting and comparison. Abbreviations: PMS – point
mutation speciation model; RFS – random fission speciation model; PS – protracted speciation model;
PLN – Poisson lognormal model; AIC – Akaike information criterion.

AIC Akaike weights
Ecoregion PMS RFS PS PLN PMS RFS PS PLN

Central 34745.61 36063.57 33676.69 33720.39 0.000 0.000 1.000 0.000
Northern 11537.17 11250.08 11017.59 11022.41 0.000 0.000 0.917 0.083
Southern 14509.06 14539.43 13921.48 14020.01 0.000 0.000 1.000 0.000
Oceanic 3387.762 3306.939 3218.102 3220.650 0.000 0.000 0.781 0.219

et al. 2010, Rosindell & Phillimore 2011, Etienne & Rosindell 2012). Nevertheless, in the explanation108

of empirical SADs, its superiority over the other speciation modes has been unapparent, probably109

due to limited sample size (Rosindell et al. 2010). Our study fulfils the gap between these theoretical110

and empirical developments in the UNTB by revealing metacommunity SADs across the four111

ecoregions in East Asian islands and provides a strong support for the protracted speciation model.112

An analysis of metacommunity SADs also highlighted region-specific evolutionary processes, which113

can shape large-scale biodiversity patterns relevant to geographic characteristics (e.g. area, degree of114

isolation, and other physiographical conditions) of the regions (Qian & Ricklefs 2000, Xiang et al.115

2004, Qian et al. 2017). Greater estimates of the speciation rate in regions of southern continental116

arc and oceanic islands than in the other two continental arc regions (Table 1) clearly indicate that117

these regions bear greater species diversity relative to their small land area (i.e. the metacommunity118

size). They are likely to reflect adaptive/non-adaptive radiation driven by historical vicariance119

(Kubota et al. 2014, 2017), which may have led these regions to act as “cradles of biodiversity”120

(Rangel et al. 2018). A fundamental limitation in our analysis was, however, that an immigration of121

new species realized by a long-distance dispersal from other biogeographic regions cannot be122

distinguished from an endemic diversification of species, and therefore the estimates of speciation123

rate represent the joint consequence of these two processes. Long-distance dispersal is another124

critical macroecological process (Jabot et al. 2008, Rosindell et al. 2011, Whittaker et al. 2017)125

which is especially likely to be promoted in the southern continental arc region by the repeated land126

bridge connections throughout the Cenozoic. Future studies exploring a further theoretical and127

methodological development to infer the relative role of speciation and long-distance dispersal are128

warranted (Etienne & Haegeman 2011).129

6

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 26, 2018. ; https://doi.org/10.1101/426379doi: bioRxiv preprint 

https://doi.org/10.1101/426379


The key element of the present study was the methodological development of an estimation of130

macroscale SADs that have been the inaccessible property of biodiversity in evolutionary ecology.131

Macroscale SADs indicate fundamental properties of the species pool such as the absolute size of132

communities and species abundance. Their accurate estimates are critically informative for both133

basic and applied field of ecology and biogeography; the proposed approach will improve the134

identification of the species pool (γ diversity) along geographical gradients (de Bello et al. 2012,135

Karger et al. 2016), facilitating our understanding of the origin and maintenance of biodiversity from136

an evolutionary perspective, the evaluation of the role of macroevolutionary processes (e.g. abiotic137

filtering and adaptive radiation) in community assembly, and the design of the protected areas138

network to capture biodiversity processes.139
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units (i.e. grid cells) from spatially replicated multispecies detection-nondetection observations, in257

combination with various sources of data about the geographic distribution of species. The proposed258

model includes indicators of species presence and conditional individual density as its latent state259

variable, thereby enabling us to make an explicit prediction about the abundance of each species in260

each grid by fitting the model to available data. The formulation and statistical inference of the261

model are detailed in Appendix A.262
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The model was applied to a dataset of woody plant communities in midlatitude forests in Japan.263

The details of this application are fully described in Appendix B. Briefly, a large dataset comprised264

of 40,547 vegetation survey records collected within natural forests, species occurrence records,265

species distribution maps, and regional species checklists were used to estimate the abundance of266

1,248 woody plant species within 4,684 ten-kilometre grid cells, which covered almost all the woody267

plant species and the entire land area of Japan. The estimates of species abundance, obtained268

through the empirical Bayes procedure, were then validated based on independent local abundance269

datasets of woody plant communities obtained in forest inventory plots. Although there was a270

tendency of underprediction, this validation has confirmed a positive correlation between the271

predicted and observed log abundance of woody plant species (Appendix B). It was also shown that272

the magnitude of the estimates of total abundance of woody plants in natural forests in the region273

was consistent with a recent global estimate of tree abundance (Crowther et al. 2015) (Appendix B).274

Based on the results of model fitting, metacommunity SADs were obtained for the four ecoregions275

on the East Asian islands (i.e. the central, northern, southern, and oceanic region) by aggregating276

abundance estimates over grids within each region (Appendix B). For each ecoregion, three variants277

of the UNTB were fitted to the estimate of the metacommunity SAD. The fitted model included the278

point mutation speciation model (Hubbell 2001, Etienne & Alonso 2005), random fission speciation279

model (Etienne & Haegeman 2011), and protracted speciation model (Rosindell et al. 2010); for280

these models, a probability function of the metacommunity species abundance vector (i.e. likelihood281

function for metacommunity SAD) and/or an analytical solution of the SAD in the stationary282

metacommunity has been obtained and can be used for model fitting. Estimates of the speciation283

rate ν and mean species lifetime L were derived as a function of the estimated parameters (including284

θ) and metacommunity size JM .285

Data availability286

The datasets generated and analysed during the current study are available from the corresponding287

author upon reasonable request.288
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Appendix A: Statistical framework to estimate macroscale SADs289

In this section, we describe a class of hierarchical models that estimates SADs in discrete290

geographical units (i.e. grid cells) from spatially replicated multispecies detection-nondetection291

observations, in combination with various data sources indicating the geographic distribution of292

species (Fig. 2). A hierarchical model is composed of a series of submodels, including an observation293

model describing the distribution of data conditional on some latent state variables and a system294

model describing the variation in the state variables (Royle & Dorazio 2008, Kéry & Schaub 2012,295

Kéry & Royle 2016). In the following, we first describe a generalized linear mixed model (GLMM),296

which explains the multispecies detection-nondetection observations in terms of individual density of297

each species and therefore explicitly links binary observations to underlying SADs. Then, we extend298

this model to incorporate other sources of information about species occurrence that facilitate the299

inference of abundance for a number of species over a large geographical extent.300

A model for spatially replicated detection-nondetection observations301

We assume that there is a set of geographic areas of interest that contain I species of interest and302

are divided into J geographical grids. Suppose that grid j (j = 1, . . . , J) contains Kj > 0 replicated303

sampling plots in which occurrence was assessed for each species. We denote detection (1) or304

nondetection (0) of species i in plot k in grid j as yijk (i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . ,Kj). We305

also assume that the area of each sampling plot was recorded, and denote the area of sampling plot k306

in grid j as ajk.307

The goal of the inference is to estimate the abundance of each species within each grid from these308

locally replicated detection-nondetection observations. To achieve this, we explicitly make several309

key assumptions in the data generating process. First, we assume that individuals are distributed310

within some suitable habitats (e.g. forests) in which sampling plots are placed so that they never311

overlap. Second, we assume that for each grid the spatial point pattern of individuals within the312

habitats can be regarded as an independent superposition of homogeneous Poisson point processes,313

each of which represents the spatial alignment of individuals of a species. In the ecological context,314

this assumption implies that the centres of individuals are regarded as points, and individuals are315

distributed independently of one another with species-specific individual densities that are constant316

within a grid (Illian et al. 2008).317
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Fig. 2. A framework for estimation of macroscale species abundance distributions (SADs).
Spatially replicated detection-nondetection observations and various information on species geographic
distribution (A) are integrated in a hierarchical model that links binary observations to underlying
species abundance (B). A model fitting yields estimates of individual density of each species in each
geographic grid, which can then be used to derive estimates of species abundance with the area of
suitable habitat (C). The results can be used for diverse purposes relevant to e.g. community ecology,
macroecology, biogeography, and applied fields of ecology (D).
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These assumptions give us a probability function that explicitly links the probability of species318

detection within a plot to the density of that species in the grid. Let us denote the individual319

density of species i in grid j by dij . Then, the number of individuals occurring in a plot of area ajk320

independently follows a Poisson distribution with a mean of dijajk (Illian et al. 2008). Therefore, the321

probability for detecting at least one individual of species i in plot k in grid j, pijk, can be written as:322

pijk = 1− exp(−dijajk) (1)

where exp(−dijajk) corresponds to the probability mass of a Poisson distribution with a mean dijajk323

at zero (i.e. a probability that the plot captures no individuals).324

On the basis of these settings and assumptions, we provide a state space formulation of the first325

hierarchical model we consider, in which the model is described in terms of a series of submodels326

that are conditional on latent state variables and parameters (Royle & Dorazio 2008, Kéry & Schaub327

2012, Kéry & Royle 2016). The latent variable of the model was the grid-level individual density of328

species, which we have already defined as dij .329

The observation model describes the occurrence of species within a sampling plot. We can regard330

the detection-nondetection observation of species, yijk, as a random variable that independently331

follows a Bernoulli distribution with a detection probability pijk:332

yijk ∼ Bernoulli(pijk), (2)

where pijk is determined by Equation (1) under the assumption of the superposed homogenous333

Poisson point process.334

The system model describes variation in the individual density dij . We decompose the logarithm335

of dij into an intercept term µ and three normally distributed random effects, species e
(1)
i , grid e

(2)
j ,336

and the combination of species and grid e
(3)
ij :337
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log dij = µ+ e
(1)
i + e

(2)
j + e

(3)
ij (3)

e
(1)
i ∼ N (0, σ21) (4)

e
(2)
j ∼ N (0, σ22) (5)

e
(3)
ij ∼ N (0, σ23). (6)

These submodels jointly construct a Bernoulli GLMM with complementary log-log link, in which338

ajk is treated as an offset term. The model can therefore be fitted to data with standard GLMM339

packages that implement multiple random effects, such as lme4 in R (Bates et al. 2015).340

The model described above has a relatively simple structure, in which variation in individual341

density was explained only by several unstructured random effect components. The inclusion of342

random effects is essential in a multispecies distribution modelling as it enables us to “borrow343

strength” in the inference: it will improve the estimates for grids with few replicated plots and/or344

the estimates for rare species because information is shared across all grids and species through345

common distributions specified for random effects (Iknayan et al. 2014, Warton et al. 2015, Evans346

et al. 2016). In an analogous fashion to many other classes of hierarchical models and species347

distribution models (SDMs), environmental covariates could also be introduced in the system model348

to explicitly describe the association between environmental factors and individual density. In349

addition, the model could also explain the correlation structure of random effects on the geographic350

and/or phylogenetic space in an explicit manner (Ives & Helmus 2011, Kaldhusdal et al. 2015). Such351

generalizations will potentially enhance the model prediction and provide further ecological insights.352

However, they may be difficult to adopt in practice, especially in studies that examine a very large353

number of species and grids, as is the case with our application described in Appendix B, because354

the model may involve an excessive number of parameters and/or a huge covariance matrix,355

rendering the inference computationally challenging (Warton et al. 2015).356

Integrating grid-level occurrence information357

Owing to the fact that information is shared by random effects, the simple random effect model358

without any covariate can still provide estimates of individual density that are specific to each359
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species and grid. However, the estimates may be inaccurate especially in grids where the number of360

plots is limited and species density is low. To overcome this issue, we extend the model to integrate361

replicated detection-nondetection observations with data that may directly inform about the362

grid-level presence-absence of species such as species occurrence records and expert range maps.363

We introduce a latent indicator state variable that represents the grid-level presence-absence of364

species and is denoted as zij . The detection probability pijk is then expressed as follows:365

pijk = 1− exp(−zijdijajk), (7)

which indicates that the detection probability is 0 when the species is absent in the grid (zij = 0),366

but it takes 1− exp(−dijajk) when the species is present in the grid (zij = 1). Hence, dij now367

represents the individual density that is conditional on the presence of that species.368

We regard zij as a random variable following a Bernoulli distribution and add an additional369

system model component to describe it. By adopting a similar modelling approach applied for the370

individual density, the additional components can be constructed as follows:371

zij ∼ Bernoulli(ψij) (8)

logit ψij = η + u
(1)
i + u

(2)
j (9)

u
(1)
i ∼ N (0, τ21 ) (10)

u
(2)
j ∼ N (0, τ22 ), (11)

where ψij is the occurrence probability of species i in grid j, which was decomposed into an intercept372

term η and two normally distributed random effects that vary over species u
(1)
i and grids u

(2)
j on a373

logit scale.374

We assume that the grid-level species occurrence zij is partially observed via the plot-level375

detection-nondetection observations and/or the auxiliary grid-level presence-absence information. A376

grid-level presence of species may be registered, for example, by museum- or herbarium-based377

specimens and/or occurrence records, while absence of species may be deduced by exploiting, for378

example, expert range maps (Merow et al. 2017) and/or regional species checklists. In general, the379

information about the species absence should be treated conservatively because it is difficult to380
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verify (Merow et al. 2017); therefore, a larger weight should be placed on the evidence of species381

presence than on that of species absence if different sources of data are in conflict.382

Under these considerations, the conditional likelihood defined by our observation model (Equation383

2) takes two cases depending on whether the presence-absence of the species is known or not.384

Formally, we denote the vector of all parameters (i.e. η, µ, τ1, τ2, σ1, σ2, σ3) and the vector of all385

random effects (i.e. u
(1)
i , u

(2)
j , e

(1)
i , e

(2)
j , and e

(3)
ij ) by θ and ξ, respectively. Let xij = 1 denotes that zij386

is known for species i in grid j and xij = 0 denotes otherwise. Then, by letting yij = (yij1, . . . , yijKj )387

and Dij = (yij , zij), the conditional likelihood, p(Dij | ξ,θ), can be expressed as follows:388

p(Dij | ξ,θ) =



ψ
zij
ij (1− ψij)

1−zij
[∏Kj

k=1 {1− exp(−zijdijajk)}yijk exp(−zijdijajk)(1−yijk)
]

xij = 1

ψij

[∏Kj

k=1 exp(−dijajk)
]
+ (1− ψij) xij = 0,

(12)

where in the former case, the conditional likelihood is given as a joint likelihood of yij and zij , and389

in the latter case, it is given by the marginalized likelihood of yij because zij is missing. We note390

that dij and ψij are respectively a function of ξ and θ (Equations (3) and (9)), although that is not391

expressed explicitly in the right-hand side of the equations.392

In this integrated model, geographical grids that contain no detection-nondetection observations393

but have grid-level presence-absence information for some species can still contribute to the inference394

of parameters. Let us now assume that the set of geographical areas of interest is divided into J395

geographical grids, in which grid j (j = 1, . . . , J) contains Kj ≥ 0 plots. Then, for grid j such that396

Kj > 0, the conditional likelihood is expressed by Equation (12), and for other grids (Kj = 0), it is397

written as:398

p(Dij | ξ,θ) =


ψ
zij
ij (1− ψij)

1−zij xij = 1

1 xij = 0.

(13)

Statistical inference399

As a class of general hierarchical models, the integrated model can be fitted to data by using either400

maximum marginal likelihood (also known as empirical Bayes) or fully Bayesian approach. Let us401
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denote D as the vector of all data. In both approaches, inference is based on a joint distribution of402

data and random effects, p(D, ξ | θ), which is also known as a complete data likelihood (King 2014).403

In the former approach, estimation can be achieved via a two-stage procedure, where parameters are404

estimated by maximizing a marginal likelihood p(D | θ) =
∫
p(D, ξ | θ)dξ and then, maximum a405

posteriori probability (MAP) estimates of random effects can be obtained conditionally on the406

parameter estimates θ̂ by maximizing p(D, ξ | θ̂). Although an evaluation of the marginal likelihood407

may be computationally challenging, some recently developed software, such as AD Model Builder408

(Fournier et al. 2012) and Template Model Builder (Kristensen et al. 2016), can efficiently409

approximate the marginal likelihood of a wide class of hierarchical models by using the Laplace410

approximation. In contrast, in the latter approach, the focus of inference is the joint posterior411

distribution of parameters and random effects p(θ, ξ | D) = p(D,ξ|θ)p(θ)∫ ∫
p(D,ξ|θ)p(θ)dξdθ , where a prior412

distribution for parameters p(θ) is needed to be specified. Although the integration over parameters413

and random effects is not tractable in general, a Markov chain Monte Carlo (MCMC) method can be414

used to obtain random samples from the posterior distribution. Several generic software are available415

to run MCMC for a vast array of hierarchical models (e.g. Plummer 2003, Carpenter et al. 2017).416

The joint likelihood of the model can be expressed as:417

p(D, ξ | θ) = p(ξ | θ)
∏
i,j

p(Dij | ξ,θ), (14)

where p(Dij | ξ,θ) is the conditional likelihood derived from the observation model (Equations418

12–13), and p(ξ | θ) represents a probability density of random effects that is determined by the419

system model (Equations 4–6 and 10–11):420

p(ξ | θ) =

{∏
i

N (e
(1)
i | 0, σ21)N (u

(1)
i | 0, τ21 )

}∏
j

N (e
(2)
j | 0, σ22)N (u

(2)
j | 0, τ22 )

∏
i,j

N (e
(3)
ij | 0, σ23),

(15)

where N (x | 0, σ2) denotes the probability density of a normal distribution with mean 0 and variance421

σ2 evaluated at x.422

Once estimates (or posterior samples, in case of fully Bayesian approach) of random effects are423

obtained, we can derive the estimates of ψij and dij , denoted by ψ̂ij and d̂ij , respectively, by424

substituting the estimates of random effects into Equations (3) and (9), respectively. Based on these425
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estimates, we can further derive estimates for a wide array of variables that are of ecological interest.426

For example, the number of modelled species, denoted by Sj , that are actually present in grid j can427

be estimated as:428

Ŝj =
I∑

i=1

{
xijzij + (1− xij)ψ̂ij

}
. (16)

Note that the use of the estimated occurrence probabilities ψ̂ enables this estimator to account for429

the possibility of the presence of species even when they are not detected in the replicated plots (c.f.,430

Dorazio & Royle 2005) or no detection-nondetection observation is available in the grid. Let Nj431

denotes the vector of abundance of all species in grid j. This vector represents the SAD, the432

property of an ecological community that we aimed to infer, and can be estimated for each grid as:433

N̂j =
{
d̂ijAj

[
xijzij + (1− xij)ψ̂ij

]}
1≤i≤I

, (17)

where Aj denotes the area of habitats in grid j. We can also estimate the SAD for a subset of the434

area of interest J , denoted by N∗
J , as follows:435

N̂∗
J =

∑
j∈J

d̂ijAj

[
xijzij + (1− xij)ψ̂ij

]
1≤i≤I

. (18)

Note that the estimates of abundance of each species further permit to obtain various diversity436

indices that are a function of a vector of (relative) abundance, such as Shannon entropy and437

Gini-Simpson index, as well as other generalized metrics including phylogenetic/functional diversity438

indices and the Hill numbers (Chao et al. 2014).439

Related models440

Related classes of models that motivated our method include the Royle-Nichols model, which441

estimates the abundance of animals that are not detected perfectly from spatially replicated442

detection-nondetection observations (Royle & Nichols 2003), and its extension to community data443

developed by Yamaura et al. (2011). However, the proposed model may appear largely different from444

these models because both observation and system process are modelled differently: the models are445

rather aimed to describe observations of mobile animals that are subject to imperfect detection and446

thus do not assume Poisson point processes to derive an observation model. Another closely related447
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class of models is the multispecies site occupancy model which explains detection-nondetection448

observations of a number of species simultaneously in terms of the occurrence of species at each site449

(Dorazio & Royle 2005, Dorazio et al. 2006). Indeed, our estimator for species richness (Equation450

16) resembles that derived in Dorazio & Royle (2005). Fithian et al. (2015) introduced a451

multispecies version of the species distribution model (SDM) which integrates presence-absence data452

into the inhomogeneous Poisson process model for presence-only data. Their model component for453

presence-absence observations is a Bernoulli generalized linear model (GLM) with complementary454

log-log link (see also the related discussion by Dorazio (2014)). Models that jointly infer455

geographical distribution of many species have been recently named the joint species distribution456

models (JSDMs) (Warton et al. 2015).457
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Appendix B: An application to woody plant communities in East Asian islands512

Estimation of species abundance and its validation513

We applied the proposed model to a dataset of woody plant communities in midlatitude forests in514

Japan. For the replicated detection-nondetection observations, we compiled a large dataset from515

vegetation surveys that consists of 40,547 georeferenced plots placed in natural forests between516

24◦02′–45◦30′ N and 122◦56′–153◦59′ E, which comprises the dataset of Kusumoto et al. (2015) and517

the national vegetation survey of Japan (http://www.biodic.go.jp/english/kiso/vg/vg kiso e.html).518

The plot area ranged from 0.01 m2 to 18,000 m2.519

In the vegetation survey, species occurrence in the sampling plots (called “relevés”) is traditionally520

recorded according to cover classes for individual species. We converted these vegetation observations521

into detection-nondetection records by assigning 1 if the species appeared in the plot and 0 otherwise.522

In this analysis, we standardized the names of woody plant species and pooled the data for varieties523

and subspecies with those of their parent species. As a result, we obtained detection-nondetection524

observations for 1,248 species, which covers almost every woody plant species found in Japan.525

We divided the entire study area into 10 × 10 km grids (Kubota et al. 2015, 2017). We analysed526

in total 4,684 grids which covered ca. 99.5 % of the total land area of Japan. In total 3,695 grids527

contained at least one vegetation plot.528

We also compiled the species occurrence information at a grid level based on multiple data529

sources. Species presence was registered from museum and herbarium specimens, species occurrence530

records, and distribution maps of plant species compiled in Horikawa (1972). Species absence was531

recorded from the distribution maps of Horikawa (1972) and regional species checklists compiled by532

prefectures of Japan.533

The integrated model was fitted to these data by using the empirical Bayes estimation procedure534

implemented in the Template Model Builder (Kristensen et al. 2016), with the aid of TMB535

package (version 1.7.10) run in R (version 3.2.0). The estimates (and standard errors) of parameters536

were: µ̂ = 4.575 (0.043), η̂ = −3.267 (0.074), σ̂1 = 1.373 (0.030), σ̂2 = 0.680 (0.009),537

σ̂3 = 1.217 (0.002), τ̂1 = 2.551 (0.052), and τ̂2 = 0.956 (0.010).538

Based on the model estimates, the abundance of 1,248 woody plant species within natural forests539

was estimated for 4,684 grids by using Equation (17). The area of natural forest in each grid was540
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obtained based on the national survey of the natural environment541

(http://www.biodic.go.jp/trialSystem/EN/info/vg.html).542

The total woody plant abundance within the natural forest in Japan was estimated to543

approximately 20.4 billion, with the abundance of individual species ranging over six orders of544

magnitude, from species with 108 individuals to species with hundreds of individuals. The estimated545

total abundance approximately corresponded to 0.671% of the recent estimate for the number of546

trees worldwide (3.04 trillion; Crowther et al. 2015). This percentage parallels that of the total area547

under natural forests in Japan (0.367%) in relation to the area of forests around the globe, which548

was calculated based on the FAO statistics for 2015. Therefore, our estimate seems largely consistent549

with the global estimate of tree abundance (Crowther et al. 2015), which was independently550

obtained by using entirely different datasets and inference approaches.551

The result highlighted geographical and latitudinal patterns of biodiversity over the East Asian552

islands (Fig. 3). The total abundance of woody plants revealed no apparent distinct latitudinal553

patterns, although it tended to be slightly smaller at lower latitudes where few large islands exist554

(Fig. 3A). By contrast, species richness and diversity index (represented by Shannon entropy)555

exhibited a clear, and similar, hump-shaped latitudinal gradient: species diversity was highest in the556

midlatitude zone of the Japanese archipelago, which has a substantial amount of land area, and557

decreased in both north and south directions (Fig. 3B, C). We observed that compared to species558

richness, diversity index shows a more mosaic-like geographical pattern (Fig. 3C). Estimates of559

species richness correlated strongly (Pearson’s correlation coefficient 0.93; results not shown) with560

another set of estimates of species richness within 10 km square grid in the same region, which was561

obtained based on a different (while partially in common) dataset and inference (Kubota et al. 2015).562

The estimates of species-specific abundance were validated based on data from geographically563

replicated forest inventory plots that were independent of the fitted data. We used three sources of564

forest inventory data that were collected in natural forests in Japan. They include the forest565

dynamics plots (FDP), the national forest inventory plots (NFI), and forest sampling plots along566

latitudinal and elevational gradients (FSLE). Sampling procedures and spatial coverage differed567

between the inventory data as we explain below.568

The FDP dataset consists of species abundance data collected from 40 quadrats. In each quadrat,569

which was usually 1 ha in size, individuals with a diameter of ≥ 15 cm at breast height (DBH) were570
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Fig. 3. Maps of community properties estimated in 10 km square grids. (A) total number
of individuals (abundance), (B) number of species (species richness) and (C) species diversity index
(Shannon entropy). To illustrate finer spatial patterns, three arbitrarily selected sections are enlarged.
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Fig. 4. Result of the model validation. Pearson’s correlation coefficient (r) between ob-
served log abundance and predicted log abundance of species, and the probability of underpredic-
tion (pu = Pr[Observed log abundance > Predicted log abundance]) are shown for three validation
datasets of forest inventory plots, forest dynamics plots (FDP), national forest inventory (NFI), and
forest sampling plots along latitudinal and elevational gradients (FSLE). The crossed lines are the
identity lines.

monitored (http://www.biodic.go.jp/moni1000/forest.html). This dataset fairly represents the571

mosaic structure of forests with different developmental stages and thus is expected to precisely572

capture local population size for common climax species in old growth mountain forests, while it573

may poorly represent the population of pioneer or fugitive species, especially in lowland forests.574

The NFI dataset included 7,674 plots in which woody plant individuals were assessed in nested575

concentric circular plots. Individuals with DBH > 1 cm were measured in a 0.01 ha circular area,576

while those with DBH > 5 cm and > 18 cm were surveyed in a 0.04 ha and 0.1 ha circle, respectively577

(http://www.rinya.maff.go.jp/j/keikaku/tayouseichousa/). The NFI plots were systematically placed578

in a 4 km × 4 km grid laid over entire Japan and thus were expected to provide less-biased samples579

of density of woody plants.580

The FSLE dataset included 460 plots where woody plant individuals were surveyed in a 0.01 ha581

area (unpublished data by Y. Kubota). Plots were placed along the elevational and latitudinal582

gradients and thus were expected to reflect the environmental heterogeneity in the midlatitude583

forests.584

For each grid that contains at least one forest inventory plot, observed abundance was compared585

to predicted abundance that was derived based on the model estimates. In order to predict the586

abundance in NFI plots, we set the area of each plot to 0.1 ha.587

The predicted and observed log abundance of woody plant species were mildly correlated and588
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generally distributed around the identity line, although a tendency of the model to underpredict the589

abundance was also evident (Fig. 4). A possible explanation for this tendency of underprediction is590

the assumption of a superposed homogeneous Poisson point process for the spatial alignment of591

individuals, which was adopted to estimate the density of woody plants from replicated592

detection-nondetection observations (Appendix A). This assumption was indeed ecologically593

implausible, and may lead to an underestimation of individual density when violated because a594

spatial clustering of individuals inflates the probability of nondetection of species within a sampling595

plot (He & Gaston 2000, Yin & He 2014). We would therefore regard the model as giving a “first596

approximation” of species abundance in a large spatial extent. Although the model highlighted the597

geographical structure of biodiversity, a future modeling effort for accommodating more ecological598

realities are warranted to obtain better estimates.599

Inference of metacommunity SADs600

Based on a previous biogeographic assessment of woody plants in the Japanese archipelago (Kubota601

et al. 2014) and Takhtajan’s floristic provinces (Takhtajan 1986), we divided the archipelago into602

four ecoregions (Fig. 1) and obtained metacommunity SADs by aggregating abundance estimates603

over grids within each ecoregion (Equation 18). The four ecoregions are defined as follows: (1) The604

central continental arc region is the largest ecoregion, which includes the three largest islands in605

Japan (Honshu, Shikoku, and Kyusyu). It encompasses deciduous and evergreen broad-leaved forests606

and belongs to the Takhtajan’s Japan-Korea province; 3,530 geographical grids belong to this607

ecoregion. (2) The northern continental arc region is the second largest ecoregion, and it includes608

Hokkaido, the second largest island of Japan. It encompasses coniferous and deciduous broad-leaved609

forests and belongs to the Takhtajan’s Sakhalin-Hokkaido province. The Tsugaru Strait separates610

the central continental arc region and northern continental arc region; 991 geographical grids belong611

to this ecoregion. (3) The southern continental arc region is composed of the Nansei Islands and612

separated from the central region by the Tokara Strait. It encompasses evergreen broad-leaved613

forests and belongs to the Takhtajan’s Tokara-Okinawa province. This ecoregion comprises 145614

geographical grids. (4) The oceanic islands region is composed of the Bonin (Ogasawara) Islands. It615

encompasses evergreen broad-leaved forests and belongs to the Takhtajan’s Volcano-Bonin province.616

Differing from other ecoregions, in which almost all the lands are continental islands, the oceanic617
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region is composed of oceanic islands only. It includes 18 geographical grids.618

For each ecoregion, we fitted and compared three variants of the unified neutral theory of619

biodiversity and biogeography (UNTB) to the estimate of the metacommunity SAD. The fitted620

model includes the point mutation speciation model (Hubbell 2001, Etienne & Alonso 2005), the621

random fission speciation model (Etienne & Haegeman 2011), and the protracted speciation model622

(Rosindell et al. 2010); for these models, a probability function of the metacommunity species623

abundance vector (i.e. likelihood function for metacommunity SAD) and/or an analytical solution of624

the SAD in the stationary metacommunity has been obtained and can be used for model fitting.625

The point mutation speciation model was fitted to the metacommunity SADs by using maximum626

likelihood method. The likelihood function for metacommunity SAD (i.e. assuming no dispersal627

limitation) under point mutation speciation model is known as the Ewens sampling formula (e.g.628

Equation 2 in Etienne & Alonso 2005). Formal likelihood-based inferences were, however, difficult to629

obtain for the other two models. Although a sampling formula has been acquired for a630

metacommunity under random fission models (Equation 38 in Etienne & Haegeman 2011), we were631

not able to apply this formula to our specific data as it underflows when the size of metacommunity632

is large, even when high precision arithmetic is used. We thus reached a compromise to use Equation633

21 in Etienne & Haegeman (2011), which was derived without considering the sampling process, but634

provides the equilibrium probability function of the species abundance vector in a metacommunity635

with a fixed size JM . For protracted speciation model, no likelihood function was available. To fit636

this model, Rosindell et al. (2010) used “composite likelihood” that was suggested by Alonso &637

McKane (2004). This approach was however not practical in our case because of the large638

metacommunity size, thereby requiring an excess number of evaluations of the expected number of639

species with specific abundance. This prohibited its adoption in the numerical optimization640

procedure. We therefore applied a least square method to the Preston’s abundance octaves of641

metacommunities. We note that in addition to these three models, we also fitted the per-species642

speciation model of Etienne et al. (2007). However, this model consistently yielded boundary643

estimates that made the model identical to the point mutation speciation model. We thus omitted it644

from the comparison.645

These differences in the fitting procedure render the model comparison complicated. To compare646

fitting of the models, while accounting for differences in the number of parameters (we note that647
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point mutation model and random fission model have one free parameter (θ) but protracted648

speciation model has two (θ and β)), we prefer to use information criteria (McGill 2003, McGill649

et al. 2007) which relies on the formal maximum likelihood inference (Konishi & Kitagawa 2008).650

However, to fully utilize this approach was impossible in our application because the likelihood651

function was available only in the point mutation model. Thus, we compared the models based on652

the Akaike information criterion (AIC) and the Akaike weights (Burnham & Anderson 2002)653

calculated with “composite likelihood” (Alonso & McKane 2004), assuming that the parameter654

estimates of the random fission speciation model and protracted speciation model attain the655

maximum likelihood. In the model comparison, we also included a Poisson-lognormal mixture model656

(Bulmer 1974) as a flexible, simple baseline statistical model (McGill et al. 2007).657

The objective function (i.e. negative log-likelihood or sum of squared error) of the variants of658

UNTB was minimized in terms of fundamental biodiversity number θ (in addition to β, in the case659

of protracted speciation model). Estimates of the speciation rate ν and mean species lifetime L were660

then derived as a function of these estimated parameters and metacommunity size JM . In point661

mutation model, ν relates to other quantities as θ = ν
1−ν (JM − 1) (Etienne & Alonso 2005), whereas662

in random fission model, the relationship is given as θ =
√
νJM (Etienne & Haegeman 2011). In the663

protracted speciation model, the corresponding equation is given as θ = µ
1−µ(JM − 1), where664

µ = (1 + τ)ν and τ = JM−1
β − 1 (Rosindell et al. 2010). The average species lifetime is obtained from665

the general equation of Ricklefs (2003): L = equilibrium number of species in metacommunity
rate of production of new species . The666

corresponding formula is as follows: for point mutation speciation model, L ≈ − log ν; for random667

fission speciation model, L ≈ ν−
1
2 (Etienne & Haegeman 2011); for protracted speciation model,668

L ≈ −τ log τµ (Rosindell et al. 2010).669
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