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Abstract

Signal transduction pathways allow cells to respond to environmental cues and can
induce intracellular changes. In some contexts, like embryonic development, signal
transduction plays crucial roles in cell fate determination and differentiation, while in
developed organisms some of this processes contribute in the maintenance of the
structural integrity of tissues.

Tumor cells are recognized as having deregulated signaling which leads to a series of
abnormal behaviors known as the hallmarks of cancer. Although gene regulation is
often viewed as the last step in signal transduction, transcriptional regulation of the
components of a pathway may impact in the long term deregulation observed in tumors.
The study of gene regulatory networks centered around genes of the signal transduction
pathways allows the identification of transcriptional regulators with the greatest
influence over the signal transduction gene signature, also denominated Master
Regulators.

In this work we identify, the master regulators that regulate the expression of genes
of 25 relevant pathways grouped in KEGG within the category of signal transduction in
a breast cancer dataset. For this purpose we implemented a modified MARINa
algorithm that identifies, from a network of regulons, those that possess more
differentially expressed genes related to the process to be studied. We identified
CLOCK, TSHZ2, HOXA2, MEIS2, HOXA3, HAND2, HOXA5, TBX18, PEG3 and
GLI2 as the top 10 master regulators of signaling pathways in breast cancer. Nine of
them are recognized for taking part in embryonic development associated processes.

Individual enrichment GO biological function for each TMR regulons showed to be
significantly enriched in embryonic development related processes. Hedgehog signaling
pathway was shown as enriched and also highly deregulated. The genes of the HOXA
family are shared among most of the TMRs. Overall, this suggests the importance of
the aberrant reprogramming of mechanisms present during embryonic development,
being coopted in favor of tumor development.

Introduction 1

Breast cancers are illnesses that originate from healthy cells that are somehow 2

reprogrammed to acquire unlimited proliferation and self-renewal capacity. Eventually 3
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these transformed cells are able to migrate and invade other tissues in the body [1]. In 4

this context, cancerous cells do not create brand new cell signaling pathways, but 5

through a variety of mechanisms, existing pathways are aberrantly activated [2]. On 6

them it is notable that many pathways associated to tumor development also play 7

important roles during embryonic development. Pathways such as WNT, Hedgehog or 8

VEGF are essential for differentiation, migration and pattern formation. Abnormal 9

expression of components of these pathways have been reported in tumors [3] [4] [5]. 10

Theories exist regarding the origin of cancerous cells and its relationship to 11

embryonic development pathways and on how these contribute in dedifferentiation and 12

later specialization on tumor development. Nevertheless, all of them agree on the 13

presence of deregulation of signal transduction pathways (STP) controlling these 14

processes [6] [7]. Accounting for gene expression as one possible mechanism in the 15

modulation of signal transduction pathways, the determination of transcription 16

regulators may help us understand this phenomenon. 17

A significant level of regulation of signaling is achieved through the action of 18

transcription factors (TFs) that modulate the transcription of groups of genes encoding 19

proteins that participate in these pathways [8–10]. Given their capacity to modulate 20

cellular pathways, TFs are of great interest in the study of complex 21

diseases [11] [12] [13]. Moreover, it has been recognized that some TFs exert a decisive 22

influence in the transition between phenotypes. These TFs, called Transcriptional 23

Master Regulators (TMRs) [14] are expressed at the early onset of the development of a 24

particular phenotype, consequently regulating multiple target genes either directly or 25

indirectly by means of transcription cascades resulting in significant gene expression 26

changes and hence phenotype variation. 27

Given the fact that multiple signal transduction factors are simultaneously 28

deregulated in the cancerous phenotype, an integrative approach is valuable in order to 29

understand the biology underlying this disease. MARINa (Master Regulator Inference 30

Algorithm) can infer TFs with greater influence in the transition between healthy and 31

diseased phenotype in genetic regulation networks of the breast cancer 32

phenotype [14,15]. In this work, we used a modified version of this algorithm to find the 33

most important transcription factors focused in the regulation of KEGG’s 25 signal 34

transduction pathways in breast cancer. We also identified a TMR subset that regulates 35

genes belonging to specific signal transduction pathways in breast cancer. 36

Materials and methods 37

Obtaining and preprocessing data 38

A Gene Expression matrix was obtained from Espinal-Enriquez et al. [16]. 39

Corresponding to The Cancer Genome Atlas (TCGA) level 3 available data of the 40

Illumina HiSeq RNA-Seq platform, and consisting of 881 samples of which 780 41

correspond to breast cancer tissue and 101 to adjacent healthy mammary tissue. 42

Quality control and batch effect removal were performed with NOISeq [17] and 43

EDASeq [18] R libraries respectively [16]. 44

The Master Regulator Inference Algorithm 45

TMRs were inferred using the Master Regulator Inference Algorithm (MARINa) [15]. 46

MARINa identifies TMRs through an enrichment of TF regulons (a TF with its targets) 47

with differentially expressed genes between two phenotypes (breast cancer vs adjacent 48

healthy mammary tissue). TMR inference with MARINa requires as input a network of 49

regulons, a gene expression molecular signature and a null model [15] (Fig. 1). The 50
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construction of these elements is described below. 51

Fig 1. Pipeline. RNAseq data from TCGA’s 780 invasive mammary carcinomas and
101 adjacent tissue samples was processed to obtain an expression matrix (orange
cylinder). The expression matrix and a list of transcription factors from the
TFCheckpoint database (pink cylinder) served as input to infer a transcriptional
regulatory network with ARACNe. A regulon network was obtained associating the
expression level of the targets of all transcription factors using the aracne2regulon
function from viper (left side). For the generation of the molecular signature, we
considered genes in the expression matrix in KEGG’s ”signal transduction” category
(blue cylinder). Finally, a null model was generated by permuting sample labels and
recalculating the molecular signature (right). These three elements are the input to
MARINa for the inference of the transcriptional master regulators (TMR) of the signal
transduction pathways.

Generation of the regulons network 52

The network of regulons is a directed network (TF→Target) of all the transcription 53

factors and their targets. To obtain it, we used the expression matrix and the mutual 54

information based transcriptional regulation network built with ARACNe [19]. For this 55

network, we considered transcription factors in the TFCheckpoint curated database [20] 56

that possessed experimental evidence for TF activity. 771 of these TFs were found 57

within the expression matrix S1 File. 58

This network contains the relationships between transcription factors and the rest of 59

the genes, measured by the mutual information (MI) function [19,21]. For this network 60

interactions were kept if its p value was below 0.005. Given that mutual information 61

can detect both indirect and direct relationships, ARACNe limits the number of indirect 62

interactions applying the Data Processing Inequality theorem (DPI), which considers 63

that, in a triangle of interactions, the weakest one has a greater probability of being 64

indirect if its difference is large with respect to the other two [22]. We applied a DPI 65

value of 0.2 as recommended in Margolin et al. 2006 [19], which means that the weakest 66

interactions of the triangles in the network were eliminated without introducing an 67

excessive number of false positives. 68

The type of association (activation or repression) of the transcription factors is 69

determined from Spearman correlation of the TF with the levels of expression of all its 70

targets [15] this calculation was performed by the aracne2regulon function in the 71

viper [23] R package. 72

Molecular signature generation of signal transduction pathways 73

In the standard MARINa workflow, the molecular signature is built by comparing the 74

expression level distributions for all genes between two conditions (e.g., healthy and 75

diseased). For this work we built a molecular signature using only those genes 76

annotated within the signal transduction pathways category in the Kyoto Encyclopedia 77

of Genes and Genomes (KEGG) database [24]. For human, this category comprises 25 78

pathways. The total number of genes present in this subset is 1,700 of which 1,395 79

coincided with our expression matrix S2 File. The purpose of this filtering is to focus 80

our search on those transcription factors that regulate the activity of these STPs in 81

breast cancer. The molecular signature was built by applying a t test for each gene of 82

the expression matrix, between tumors and adjacent healthy mammary tissue. The 83

results of this test were Z -score normalized to allow comparability [15]. 84
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Null model generation 85

To estimate the probability that a Gene Enrichment Score depends on the biological 86

context and thus is not merely random, a null model was generated by random 87

permutation of samples between cases and controls and recalculation of differential 88

expression [15]. 89

Inferring the Master Regulators of signal transduction pathways 90

With the molecular signature, the regulon network and the null model, MARINa 91

estimated the top regulons that enrich the most differentially expressed genes in the 92

molecular signature through a Gene Set Enrichment Analysis [25]. An additional 93

constraint was to consider only TFs with 20 or more targets in the molecular 94

signature [15]. A p-value for each regulon was estimated by evaluating the Enrichment 95

Score (ES) with reference to the distribution of scores of the null model [15]. For TMR 96

inference we used Bioconductor’s viper package [23]. 97

Regulon enrichment of KEGG pathways 98

An over-represented pathway is defined as one for which we found significantly more 99

genes within a test set than the number expected from a random sampling [26], hence, 100

we say this set is enriched with genes of the pathway, this may in turn suggest biological 101

relevance. The statistical significance of an enrichment can be assesed by means of an 102

hypergeometric test. In order to know if the combined regulons of our most important 103

Trascription Master Regulators are enriched for biological pahways, an 104

Overrepresentation Enrichment Analysis (ORA) was performed using the WebGestalt 105

tool [27] with KEGG as the functional reference database [24]. Statistical significance 106

threshold was set to p ≤ 0.05 after FDR correction. 107

Pathway deregulation analysis 108

To determine which signal transduction pathways are the most deregulated in the breast 109

cancer phenotype, we estimated the degree of deregulation of KEGG Signal 110

Transduction pathways by using the Pathifier algorithm [28]. Pathifier assigns a score, 111

named Pathway Deregulation Score (PDS) for each pathway in a sample from the 112

expression status of the genes in the pathway in reference to its expression in normal 113

tissues of the same origin. In brief, for a given pathway, a multidimensional space is 114

defined where each dimension represents the expression level of a gene. All samples are 115

positioned in this space according to the expression levels of all the genes in the 116

pathway. Then, a principal curve (a smoothed curve of minimal distance to all points) 117

is calculated and all samples are projected into it. The score corresponds to the distance 118

of the sample projection measured over the principal curve respect of the projection of 119

the normal tissue samples [28]. To enable comparisons between pathways a Z -score was 120

calculated for each PDS and the median value for each pathway was taken [29]. 121

Regulon enrichment of Gene Ontology biological processes 122

To gain insight on how our TMRs may contribute to this phenotype, we performed an 123

ORA for each one of their regulons against Gene Ontology (GO) [30] biological 124

processes. Enrichments were calculated via WebGestalt [27]. Statistical significance 125

threshold was set to p ≤ 0.05 after FDR correction. 126

September 19, 2018 4/13

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 24, 2018. ; https://doi.org/10.1101/425777doi: bioRxiv preprint 

https://doi.org/10.1101/425777
http://creativecommons.org/licenses/by/4.0/


Results and discussion 127

From the 780 TFs in our expression matrix, 765 were involved in a total of 212,955 128

statistically significant interactions. MARINa detected 338 regulators in the context of 129

breast cancer S3 File. We found that, approximately, 30 percent of the genes belong to 130

the set that KEGG calls signal transduction pathways is regulated by GLI Family Zinc 131

Finger 2 (GLI2), Paternally Expressed 3 (PEG3), T Box 18 (TBX18), Homeobox A5 132

(HOXA5), Heart And Neural Crest Derivatives Expressed 2 (HAND2), Homeobox A3 133

(HOXA3), Meis Homeobox 2 (MEIS2), Homeobox A2 (HOXA2), Teashirt Zinc Finger 134

Homeobox 2 (TSHZ2) and Clock Circadian Regulator (CLOCK) from now on named 135

”top 10 master regulators” of signaling pathways in breast cancer (Fig. 2). 136

Fig 2. Top 10 master regulators of signal transduction pathways. These
transcription factors control the genes of signal transduction pathways more
differentially expressed in the tumor tissue. With the exception of CLOCK, this
regulators are commonly described within the context of embryonic development, and
all of them have been reported in association with cancer. The total number of genes
controlled by these regulons is 412, representing almost one third of the total genes in
the molecular signature. In this figure, the p-value is shown on the left for each of the
Master regulators whose symbols are on the right. The “Act” column indicates the
activity of the master regulator on its targets, the red color represents the
overexpression and the blue color represents the subexpression with respect to normal
tissue. “Exp” shows the expression value for each master regulator.

With the exception of CLOCK, the activity of these transcription factors over their 137

targets is repression. However, the expression values of this regulators remain without 138

significant change in breast cancer respect to normal mamary tissue (Fig. 2). In cancer, 139

it has been described that some transcription factors can increase the transcription of 140

their target genes by mechanisms independent of the increase in their gene 141

expression [31], where various mechanisms of deregulation lead to nuclear accumulation 142

and therefore to an increase in transcription of their target genes [32] [33] [34]. The 143

persistent activation of certain TFs is an important event in the development of 144

cancer [32]. These could be common mechanisms by which master regulators of 145

signaling pathways are acting without changing their expression with respect to healthy 146

tissue (Fig. 2). 147

Regulatory interactions in regulons are defined as activation if a target is 148

overexpressed or inhibition if the target is underexpressed. The top 10 regulon-network 149

S4 File shows a higher proportion of repression interactions over their target genes (Fig. 150

3). In this network GLI2 is the only TMR interacting with more than one TMR (PEG3, 151

TBX18, HAND2, HOXA3 HOXA2 and HOXA5). All these genes together along with 152

TSHZ2 and MEIS2 have been described as transcription factors in embryonic 153

development. [35–43]. 154

Fig 3. Visualization of the top 10 TMRs. Visualization of the top 10 TMRs
(hexagons) and their targets (circles). TMRs show a majority of inhibition interactions
of their targets (blue links). GLI2 is the TMR with the highest ES of the top 10,
despite its number of interactions (hexagon size). Although it maintains activation
interactions with some of its targets (red links), the majority of its interactions are
inhibitory. CLOCK is the only TMR that maintains a greater proportion of activation
interactions (image generated with cytoscape [44]).
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Regulon enrichment of KEGG pathways 155

In order to know which molecular pathways are enriched in the top 10 regulons, an 156

enrichment analysis was made with Web Gestalt using KEGG as a reference database. 157

The pathway with the most statistically significant enrichment was Pathways in cancer 158

(hsa05200) with a coincidence of 121 genes, which reinforces the idea that the analysis 159

does recover information from the phenotype studied. 160

Other pathways such as Cell cycle (hsa04110) and Focal adhesion (hsa04510) follow 161

in the the top three enrichments. Also enriched are signaling pathways present within 162

our molecular signature and that are known to be important in the development of 163

cancer such as PI3K-AKT signaling pathway (hsa04151), Phospholipase D signaling 164

pathway (hsa04072) and Hedgehog signaling pathway (hsa04340) (Table 1). These 165

pathways seem suggestive of coordinated signalling towards survival, proliferation and 166

differentiation. 167

Table 1. Enrichment analysis. Statistical overrepresentation analysis of KEGG
pathways for the Top 10 TMR regulons network was performed with Web Gestalt.
Statistical significance threshold was set to p ≤ 0.05 after FDR correction.

ID Name # Genes FDR
hsa05200 Pathways in cancer 121 0.000347
hsa04110 Cell cycle 46 0.00226
hsa04510 Focal adhesion 66 0.00386
hsa05214 Glioma 27 0.00993
hsa05215 Prostate cancer 33 0.0143
hsa05016 Huntington’s disease 60 0.0148
hsa04151 PI3K-Akt signaling pathway 96 0.0148
hsa04072 Phospholipase D signaling pathway 47 0.0148
hsa01521 EGFR tyrosine kinase inhibitor reistance 30 0.0148
hsa04340 Hedgehog signaling pathway 20 0.0148

Pathway deregulation analysis 168

To enable comparison between different pathways by their PDS, each PDS was Z -score 169

transformed and the median value of each pathway is presented in Table 2. The 170

Hedegehog and Wnt signaling pathways showed the strongest deregulation. Meanwhile, 171

Phosphatidylinositol and Calcium signaling pathway are the least deregulated. 172

During embryonic developement signals such as morphogens and growth factors 173

present in cell’s environment activate Signal transduction pathways that in turn induce 174

changes within the cell [45]. In the context of cancer, pathways have been reported as 175

permanently activated and to gain independence of the activating ligands [32]. 176

Many of our TMRs are usually described in the context of embryonic development 177

processes [35–43]. It is interesting to note that our TMRs and their regulons are 178

enriched for the Hedgehog Signaling pathway. Hedgehog is an important pathway 179

during embryonic development and in conjunction with Wnt play a role in the 180

self-renewal of stem cells [46]. Both pathways have been previously described in 181

cancer [3, 46]. Within the TMRs that have the enriched Hedgehog pathway, it has been 182

described that TSHZ2 forms a complex with GLI1 which functions in a coordinated 183

manner with GLI2 and GLI3 within the Hedgehog pathway [47]. Knockout experiments 184

of TBX18 showed a marked decrease in the Hedgehog pathway genes [48]. 185

GLI2 regulon in the context of the top 10 regulon network. GLI2 is the only TMR 186

that shows multiple interactions with other TMRs (six in total Figure 3). In the regulon 187

network, genes are initially associated by means of MI but during the conversion to 188
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Table 2. Pathway deregulation analysis. Median Z-scores of the PDS for the enriched
KEGG Signal transduction pathways.

Pathway Median PDS Z-Score
hsa04151 PI3K-Akt signaling pathway 0.321781930168629
hsa04152 AMPK signaling pathway 0.316562821917115
hsa04340 Hedgehog signaling pathway 0.312536134719705
hsa04068 FoxO signaling pathway 0.297611018546436
hsa04015 Rap1 signaling pathway 0.296622073957933
hsa04010 MAPK signaling pathway 0.287849136482123
hsa04310 Wnt signaling pathway 0.287489649182539
hsa04014 Ras signaling pathway 0.283094674791495
hsa04330 Notch 0.281126947323029
hsa04371 Apelin signaling pathway 0.276598032942348
hsa04390 Hippo signaling pathway 0.271001251002816
hsa04350 TGF-beta signaling pathway 0.264219294572969
hsa04024 cAMP signaling pathway 0.25893488218613
hsa04668 TNF signaling pathway 0.255446164657247
hsa04012 ErbB signaling pathway 0.25451630920054
hsa04072 Phospholipase D signaling pathway 0.250507938869976
hsa04150 mTOR signaling pathway 0.242234671909086
hsa04370 VEGF signaling pathway 0.230778782017974
hsa04630 Jak-STAT signaling pathway 0.230082497675006
hsa04022 cGMP-PKG signaling pathway 0.205220768205306
hsa04064 NF-kappa B signaling pathway 0.172261976200343
hsa04066 HIF-1 signaling pathway 0.164042143231672
hsa04071 Sphingolipid signaling pathway 0.129536138410959
hsa04070 Phosphatidylinositol signaling system 0.107851231722053
hsa04020 Calcium signaling pathway 0.0790114506475239

regulons directionality is assigned from TF to other genes. Whenever an interaction 189

between two TFs is present, directionality is not resolved. GLI2, together with GLI1, 190

GLI3 [49] and TSHZ2 (another of our TMRs) [47] are important effector molecules 191

activated within the Hedgehog pathway that modulate dedifferentiation and 192

differentiation processes during embryonic development [42,50]. Therefore, this TMR 193

may be interesting in the context of the master effector of the Hedgehog pathway which 194

is one of the most represented here. 195

Another interesting result arises from the observation that the PI3K-AKT and 196

Hedgehog signaling pathways have been reported in association with stemness and cell 197

differentiation processes. Both pathways play a role during embryonic development and 198

in the maintenance of adult tissues. Hedgehog plays a role in epithelium maintenance, 199

and is necessary to regulate the presence and number of stem cells [3], while activation 200

of the PI3K-AKT pathway promotes survival growth and proliferation [51]. 201

Enrichment of each regulon in GO processes 202

The most significantly enriched processes of each TMR regulon are presented in Table 3. 203

It is interesting that, for enriched GO biological processes obtained from the molecular 204

signature of the signal tranduction pathways , the top places are occupied by embryonic 205

development related processes. These results are in line with the hypothesis of tumors 206

are described as aberrations of growth, differentiation, and organization of cell 207

populations. These are basic processes that are tightly coordinated and controlled 208

during embryogenesis as well as in adult tissues [6]. The oncogerminative theory of 209

September 19, 2018 7/13

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 24, 2018. ; https://doi.org/10.1101/425777doi: bioRxiv preprint 

https://doi.org/10.1101/425777
http://creativecommons.org/licenses/by/4.0/


cancer development (OTCD) [6] suggests that cancer arises due to aberrant expression 210

of developmental genes. According to this theory, tumor formation is a dynamic 211

self-organizing process that mimics the process of early embryo development. The 212

malignant transformation of somatic cells, which is a result of gene mutations combined 213

with epigenetic dysregulation, ultimately results in somatic cells being reprogrammed 214

into immortal cells that mimic germline cells. These mimics are termed “cancer stem 215

cells” or “oncogerminative cells” [6, 52]. 216

Table 3. First significant enrichments of Gene Ontology biological processes per
regulon. The first ten regulons enrich more biological processes related to embryonic
development (ten out of fifteen, in purple), in blue are the processes related to cell cycle
and proliferation (three enriched processes) and in orange those referring to
organization of the extracellular matrix (two).

Regulon Enriched GO processes ID FDR
CLOCK Mitotic cell cycle GO:0000278 1.39E-02
GLI2 Regulation of cell differentiation GO:0045595 1.22E-05
HAND2 Cardiovascular system development GO:0072358 4.31E-06
HAND2 Vasculature development GO:0001944 4.31E-06
HOXA3 Tube development GO:0035295 8.94E-05
HOXA5 Proximal/distal pattern formation GO:0009954 1.69E-02
HOXA5 Anterior/posterior pattern specification GO:0009952 1.69E-02
HOXA5 Skeletal system development GO:0001501 1.69E-02
MEIS2 Animal organ morphogenesis GO:0009887 5.29E-08
PEG3 Cell cycle GO:0007049 8.72E-08
TBX18 Tissue development GO:0009888 3.59E-05
TBX18 Blood vessel development GO:0001568 3.59E-05
TSHZ2 Regulation of cell proliferation GO:0042127 4.91E-02
TSHZ2 Extracellular matrix organization GO:0030198 4.91E-02
TSHZ2 Extracellular structure organization GO:0043062 4.91E-02

In humans Homeobox A family cluster consists of eleven genes (HOXA1, HOXA2, 217

HOXA3, HOXA4, HOXA5, HOXA6, HOXA7, HOXA9, HOXA10, HOXA11, HOXA13). 218

Although HOXA genes code for proteins with transcription factor activity, these are not 219

typically considered as components of signal transduction pathways. HOXA TFs act not 220

only as transcriptional activators in cancers but also as transcriptional repressors [53], 221

thus, both upregulation and downregulation of the members of this family may be 222

critical for promotion of carcinogenesis. Many HOXA genes (HOXA1, A2, A3, A5 and 223

A9) have been shown to have significantly lower expression levels in cancerous tissues 224

compared to non-cancerous tissues. In human breast cancer cells, HOXA5 was observed 225

to activate the p53 tumor suppressor gene promoter [54]. Expression of HOXA5 in 226

breast cancer cells expressing wild-type p53 led to apoptosis while those lacking the p53 227

gene did not [54,55]. Furthermore, the HOXA5 promoter region was methylated in 80 % 228

of p53-negative breast cancer specimens. [54]. This aberrant regulation of HOX genes in 229

cancer indicates that HOX transcriptional mechanisms are integral to a network of 230

regulatory mechanisms involved in normal adult tissue homeostasis. [52]. Our results 231

show that HOXA members are included in all of our 10 TMR regulons Table 4. 232

Conclusion 233

Through the generation of a signal transduction-focused molecular signature we 234

identified the top 10 TMRs that, in combination regulate up to 30% of the molecular 235

signature genes. A further analysis of the gene sets conformed by the top TMRs and 236
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Table 4. HOXA Family Genes present in Top TMR regulons. Numerous HOXA
family members are part of the top TMR regulons and significant p value was found in
all cases. Hypergeometric test parameters are: population size N = 15802 genes in the
expression matrix, number of successes in population M = 10 eleven human HOXA
genes in expression matrix, sample size s is the regulon size and number of successes k
is the number of HOXA genes present in the regulon. HOXA13 was not present in any
of the top regulons.

HOXA CLOCK GLI2 HAND2 HOXA2 HOXA3 HOXA5 MEIS2 PEG3 TBX18 TSHZ2
HOXA1 0 1 1 1 1 1 1 1 1 0
HOXA2 1 1 0 1 1 1 1 1 0 0
HOXA3 1 1 1 1 1 1 1 1 1 1
HOXA4 1 1 1 1 1 1 1 1 1 1
HOXA5 0 1 0 1 1 0 1 1 1 0
HOXA6 0 1 0 0 0 0 0 1 0 0
HOXA7 1 1 1 1 1 1 1 1 1 0
HOXA9 0 1 0 1 1 1 1 0 1 1
HOXA10 1 1 0 1 1 1 1 1 1 1
HOXA11 0 0 1 1 1 1 0 1 1 0
Total 5 9 5 9 9 8 8 9 8 4
p value 8.19e-5 9.78e-13 6.48e-5 8.0e-13 1.64e-11 4.72e-13 1.22e-7 1.69e-7 5.13e-8 5.25e-5

associated regulons pointed out to the PI3K-AKT pathway, which is associated to cell 237

survival and proliferation, and to the AMPk pathway which is involved in the cellular 238

energetic balance as the most deregulated. 239

Nine out of our ten TMRs are recognized for taking part in embryonic development 240

associated processes [35–43]. In consonance with this, the Hedgehog signaling pathway 241

was shown as enriched and highly deregulated. Further individual GO biological 242

function enrichments for each TMR associated regulons showed six out of ten 243

significantly enriched in embryonic development related processes. Given the functional 244

and gene composition overlap between the regulons, it appears as an indication of the 245

presence of a gene regulation module where signal transduction pathways are 246

cooperatively regulated by a set of TMRs in a way that embryonic development 247

processes are subverted in favor of tumor development. 248

Signal transduction pathways are characterized by taking external signals to 249

generate intracellular changes. The cellular functions enriched in the regulons controlled 250

by the top TMRs associated to these pathways are focused around embryonic 251

development processes. Because of this, we suggest that the signaling pathways could be 252

deregulated through genetic mechanisms such as mutations, or that are receiving signals 253

from the external environment that lead to aberrant activation of signaling pathways 254

typical of embryonic development to give the breast cnacer cell its distinctive 255

proliferative, survival and angiogenesis capabilities. 256

Hence, by analyzing the activity of transcriptional master regulators over 257

pathway-prioritized genesets, it is possible to look at process-specific regulatory patterns 258

that help us to uncover specific biological functions. This in turn may open up novel 259

ways of inquiry, useful to develop system-wide semi-mechanistic descriptions of complex 260

phenotypes, such as cancer. 261
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