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Abstract:  

Accurate detection of minimal residual disease (MRD) can guide individualized 

management of early stage cancer patients, but current diagnostic approaches lack 

adequate sensitivity. Circulating tumor DNA (ctDNA) analysis has shown promise for 

recurrence monitoring but MRD detection immediately after neoadjuvant therapy or 5 

surgical resection has remained challenging. We have developed TARgeted DIgital 

Sequencing (TARDIS) to simultaneously analyze multiple patient-specific cancer 

mutations in plasma and improve sensitivity for minute quantities of residual tumor DNA. 

In 77 reference samples at 0.03%-1% mutant allele fraction (AF), we observed 93.5% 

sensitivity. Using TARDIS, we analyzed ctDNA in 34 samples from 13 patients with 10 

stage II/III breast cancer treated with neoadjuvant therapy. Prior to treatment, we 

detected ctDNA in 12/12 patients at 0.002%-1.04% AF (0.040% median). After 

completion of neoadjuvant therapy, we detected ctDNA in 7/8 patients with residual 

disease observed at surgery and in 1/5 patients with pathological complete response 

(odds ratio, 18.5, Fisher’s exact p=0.032). These results demonstrate high accuracy for 15 

a personalized blood test to detect residual disease after neoadjuvant therapy. With 

additional clinical validation, TARDIS could identify patients with molecular complete 

response after neoadjuvant therapy who may be candidates for nonoperative 

management.  

 20 

One Sentence Summary:  

A personalized ctDNA test achieves high accuracy for residual disease. 
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Introduction 

To maximize the rate of cure, cancer patients with early stage disease are often treated 

aggressively with multiple modalities including pre-operative systemic and radiation 

therapy, surgery and post-operative therapy. However, this results in overtreatment and 

adverse effects for some patients who could be cured with less intensive treatment(1). 5 

In many early stage cancer patients, the benefit of each consecutive modality of 

treatment is not certain. A treatment monitoring biomarker that can accurately 

distinguish minimal residual disease (MRD) from cure could enable a new paradigm for 

individualized management of localized cancers, but this has remained elusive because 

current diagnostics have inadequate sensitivity. In breast cancer, ~30% patients treated 10 

with neoadjuvant therapy achieve pathological Complete Response (pathCR) with no 

histological evidence of invasive tumor in the resected breast tissue and lymph 

nodes(2). pathCR during neoadjuvant therapy is associated with excellent long-term 

clinical outcomes (10 year relapse free survival rates: HER2+ 95%, TNBC 86% and 

ER+HER2- 83%)(3). In these patients, surgery provides diagnostic value to confirm 15 

pathCR but has not been shown to provide any further therapeutic benefit. An 

alternative diagnostic test to accurately detect residual disease could obviate the need 

for surgical resection in these patients, but current tests and imaging do not have 

adequate sensitivity(4, 5).  

 20 

Recent advances in circulating tumor DNA (ctDNA) analysis have shown promise in 

monitoring early stage cancer patients but these have primarily focused on recurrence 
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monitoring and lack accuracy for MRD detection at any single time point during 

treatment(6-9). In particular, detection of ctDNA after completion of neoadjuvant therapy 

has been challenging in patients with breast and rectal cancer, even when residual 

disease is observed at the time of surgery. Due to limited assay sensitivity, previous 

studies have found no association between molecular Complete Response (ctDNA 5 

clearance from blood) and pathCR(10, 11). Detection of low levels of ctDNA in early 

stage patients is impeded by limited blood volumes obtained in a clinical environment, 

low concentrations of total cell-free DNA and low fractions of tumor-derived DNA in 

plasma. As a result, sensitivity and analytical precision of ctDNA tests are often limited 

due to stochastic sampling variation (Fig. 1A). 10 

 

Sampling variation can be overcome by increasing the volume of blood obtained at each 

time point to increase the amount of total plasma DNA analyzed, by improving the rate 

of conversion of DNA into sequencing-ready molecules or by simultaneously analyzing 

multiple patient-specific somatic founder mutations, as these are present in all cancer 15 

cells and each is equally informative of tumor-derived DNA in blood(12). To leverage 

these principles and enable MRD detection, we have developed a personalized 

approach for tumor-guided ctDNA detection and quantification called TARgeted DIgital 

Sequencing (TARDIS). We identify founder somatic mutations using exome sequencing 

of tumor biopsies and analyze up to 20 mutations simultaneously in serial plasma DNA 20 

samples obtained during treatment (Fig. 1B). To maximize capture and analysis of input 

DNA while preserving specificity, we perform targeted linear pre-amplification, followed 
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by single-stranded DNA ligation with unique molecular identifiers (UMIs), targeted 

nested PCR and sequencing (Fig. 1C). The resulting sequencing reads at each targeted 

locus have a fixed amplification end and a variable ligation end, preserving fragment 

size information unlike conventional PCR amplicons(13, 14). We utilize fragment sizes 

and UMIs to group sequencing reads into read families (RFs) and require consensus of 5 

all members to distinguish true low abundance mutations from polymerase or 

sequencing background errors (Fig. S1, Supplementary Materials).  
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Results 

Evaluation of assay performance in reference samples 

To evaluate analytical performance of TARDIS at low ctDNA levels, we designed a 

multiplexed panel targeting 8 mutations in commercially available reference samples for 

cell-free DNA analysis (Table S1). We analyzed a total of 93 replicates, 7-16 each at 5 

1%, 0.5%, 0.25%, 0.125%, 0.063%, 0.031% Allele Fractions (AFs) and 16 wild-type 

(WT) samples. AFs for individual mutations were verified by droplet digital PCR 

(ddPCR) by the vendor (except for 0.063% and 0.031% that were dilutions of 0.125% in 

WT, Table S2). Input DNA in each replicate was 5.6-7.9ng (1682-2394 haploid genomic 

equivalents). Mean number of mutated molecules expected for each targeted mutation 10 

in a sample was 0.90-19.6 across 0.031%-1% AFs. 

 

To exclude polymerase errors introduced during linear or exponential amplification, we 

required at least two independent DNA fragments (≥ 2 RFs) and measured AF 

consistent with ≥ 0.5 mutant molecules to support each variant call. Using this 15 

approach, we observed a mean background error rate of 3.29 x 10-5 (Fig. S2, 

Supplementary Materials). In reference samples, we achieved mutation-level sensitivity 

of 94.6%, 90.6%, 65.6%, 50.8%, 25.8% and 19.6% respectively at 1%, 0.5%, 0.25%, 

0.125%, 0.063% and 0.031% AFs, consistent with decreasing number of mutant 

molecules at lower AFs (Fig. 2A, Data S1). Using the same criteria, none of the 128 20 

candidate mutations were detected in wild-type samples (100% specificity). Analogous 

to the detection of tumor-derived DNA in plasma, we leveraged multiple mutations to 
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evaluate sample-level sensitivity. To ascertain mutant DNA in a sample, we required ≥ 2 

RFs contributed by one or more mutations, each with measured AF consistent with ≥ 

0.5 mutant molecules in input DNA. In samples where a single mutation was detected, 

we required supporting RFs with ≥ 2 fragment sizes (Supplementary Materials). We 

achieved sample-level sensitivity of 100% for 0.125%-1% AFs, 87.5% for 0.063% and 5 

78.6% for 0.031% AF (Fig. 2B). Using the same criteria, we detected mutant DNA in 1 

of 16 wild-type samples (93.8% specificity). These results demonstrate the principle 

underlying TARDIS i.e. leveraging multiple patient-specific mutations to overcome limits 

of sampling and to improve limit of detection. We successfully detected mutant DNA in 

11 of 14 replicates with 0.031% AF with 7.8 ng input DNA per reaction, when we 10 

expected a total of 7.2 mutant molecules per reaction across 8 mutations (<1 mutant 

molecule per mutation).  

 

To determine quantitative accuracy, we compared known AFs for variants measured by 

ddPCR in reference samples to mean AFs measured using TARDIS and found a strong 15 

correlation (Pearson r=0.921, p<2.2x10-16, Fig. 2C). To evaluate agreement between 

observed and expected mutant fraction in each sample (equivalent to ctDNA fraction in 

plasma samples), we calculated sample-level mean AFs (mean of 8 mutations in each 

replicate) and found an excellent correlation between observed and expected AFs 

(Pearson r=0.937, p<2.2x10-16, Fig. 2D). To evaluate quantitative precision, we 20 

calculated coefficient of variation (CV) for mutation AFs across replicates and expected 

AF levels. Across 8 variants at 6 different AF levels, each evaluated in 7-16 replicates, 
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we found CVs agreed with inverse square root of the number of rare mutant molecules 

(1/√n), consistent with expectations of the Poisson distribution (Fig. 2E). CVs for 

mutation AFs ranged from 0.28 (17.8 average mutant molecules per mutation) to 3.74 

(0.08 mutant molecules per mutation). To evaluate whether multiple mutation analysis 

improves precision in mutant fraction estimates, we calculated CVs for sample-level 5 

mean AFs across replicates and CVs ranged from 0.16 for 1% expected AF (137.9 

average mutant molecules per reaction) to 0.87 for 0.031% expected AF (5.4 mutant 

molecules per reaction, Fig 2F). These results confirm quantitative accuracy of TARDIS 

and demonstrate that simultaneously assaying multiple patient-specific mutations 

improves quantitative precision.  10 

 

Detection of residual disease in patients with early stage breast cancer 

To evaluate whether TARDIS enables MRD detection in early stage cancer patients, we 

analyzed blood samples obtained from 13 patients with breast cancer treated with 

neoadjuvant therapy (NAT). We performed whole exome sequencing of DNA from 15 

diagnostic tumor biopsies and matched germline samples, achieving 193x and 148x 

mean coverage respectively (Table S3). We identified and designed primers for 13-150 

founder mutations per patient (mean 65.9). By using an aggressive filtering strategy, we 

retained only high-quality loci with primers predicted to perform adequately in multiplex 

(9-24 mutations per patient, mean 13.2, Supplementary Materials). After further 20 

excluding primers amplifying erroneously in control samples, we analyzed 34 serial 

plasma samples obtained from 13 patients (2-4 samples per patient, Data S2) for 8-23 
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mutations per patient (mean 12.2, Fig. 3A, Data S3). Samples were collected prior to 

commencement of therapy, during NAT and after completion of NAT before surgery. 

Input plasma DNA amounts were 5.6-34.5 ng per sample (mean 18.0, median 17.2), 

obtained from 0.2-4.2 mL plasma (mean 2.7, median 3.0) and analyzed in 1-2 replicate 

TARDIS experiments. We detected ctDNA in 12/12 patients prior to treatment at 5 

0.0019%-1.04% (mean 0.26%, median 0.040%), supported by 2-23 distinct mutation 

events (mean 7.7, median 6.5, Supplementary Materials) and 4-591 mutant RFs (mean 

126.4, median 27.5, Data S4). Baseline plasma sequencing failed in one patient (E009). 

In 6/13 patients, invasive residual disease was observed at the time of surgery after 

completion of NAT while 2/13 had in situ residual disease. In 5/6 patients with invasive 10 

residual disease, we detected ctDNA in blood after NAT (Fig. 3B). In the sixth patient 

(T065), ctDNA was undetectable in the last blood sample after completion of NAT, likely 

due to limited plasma DNA available for analysis (8.7 ng compared to median DNA input 

of 17.2 ng for all samples analyzed and 23.2 ng for samples obtained after NAT). ctDNA 

was detected in 2 prior blood samples from the same case obtained 6 and 12 weeks 15 

earlier (19.6 ng and 15.0 ng input respectively). In 2/2 patients with in situ residual 

disease (ypTis N0), we detected ctDNA after completion of NAT. Five patients achieved 

pathological Complete Response (pathCR) with no evidence of residual tumor. In 4/5 

patients with pathCR, ctDNA was undetectable in blood after NAT (Fig. 3B). In the fifth 

patient with pathCR (T014), ctDNA signal continued to be robustly detected in 3 20 

samples collected at 6-weekly intervals throughout neoadjuvant therapy. Since no 

residual disease was observed in the surgical specimen, persistent ctDNA detection is 
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suggestive of distant micro-metastasis. In patients with detectable ctDNA after NAT, 

tumor fraction was 0.0064%-0.046% (mean 0.019%, median 0.017%), supported by 2-6 

distinct mutation events (mean 4.0, median 4.0) and 2-21 mutant RFs (mean 12.4, 

median 15). We observed a decrease in ctDNA levels after NAT compared to pre-

treatment levels in all but 2 patients (0.04% median AF at baseline compared to 0.02% 5 

median AF after NAT, Wilcoxon signed rank test p=0.0024, Fig. 3C). Temporal changes 

in variant AFs for multiple mutations within each patient agreed with each other, until 

affected by sampling variation as ctDNA levels decreased during treatment (Fig. 3D and 

Fig. S3).  

 10 

To evaluate how sensitivity for ctDNA detection was affected by increasing the number 

of mutations assayed, we sub-sampled combinations of different number of mutations in 

our dataset (Fig. 4). Using any one of the assayed mutations from each patient, we 

found mean sensitivity of 37% at baseline and 14.4% after completion of neoadjuvant 

therapy. Sensitivity for baseline ctDNA detection peaked at 10 mutations and plateaued 15 

thereafter. In contrast, sensitivity for ctDNA detection after NAT peaked at 14 mutations.  
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Discussion 

Our results demonstrate that ctDNA detection at the end of neoadjuvant therapy for 

breast cancer is associated with presence of residual disease at the time of surgery 

(Fisher’s Exact p=0.032, Odds Ratio 18.5). Previous studies have reported ctDNA 

detection rate of 50-70% before treatment in localized breast cancer patients(7, 15). In 5 

contrast, we detected ctDNA in all successfully analyzed patients at presentation 

(significantly higher than published detection rates, p=0.0254). In two recent studies, 

ctDNA was detectable after completion of neoadjuvant therapy in only 1/22 breast 

cancer patients (4.5%) and 11/91 rectal cancer patients (12%) when residual disease 

was found at surgery and no association between ctDNA clearance and pathological 10 

complete response was observed(10, 11). These studies targeted a single mutation for 

plasma DNA analysis using digital PCR or digital sequencing and their results are 

consistent with ctDNA detection rates we observed when evaluating any one of the 

targeted mutations in our study (Fig. 4B). Using TARDIS to analyze multiple patient-

specific mutations simultaneously, we detected ctDNA in 7/8 breast cancer patients with 15 

residual disease (significantly higher than previously reported detection rates, p<2.2x10-

16). Our results suggest that tumor-guided personalized ctDNA analysis using TARDIS is 

a reliable approach to identify patients with molecular complete response (ctDNA 

clearance from blood) after neoadjuvant therapy. Together with imaging and tissue-

based predictive biomarkers, molecular complete response could become a useful 20 

adjunct diagnostic test to individualize decisions about additional treatment such as 

surgery or adjuvant therapy.   
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Recent studies have evaluated ctDNA analysis for MRD detection in early stage cancer 

patients using digital PCR(7), amplicon sequencing(8, 9) or hybrid-capture gene panel 

sequencing(6). However, reported methods lack adequate sensitivity to reliably detect 

residual disease at any single time point. Rather, these efforts focused on using ctDNA 5 

for monitoring of early relapse during long-term follow-up, showing evidence of ctDNA 

detection prior to clinically detectable recurrence. Any test that seeks to stratify patients 

for further treatment after neoadjuvant therapy, including surgical resection and adjuvant 

therapy, must have an adequate limit of detection for MRD immediately after 

neoadjuvant therapy or after surgery. TARDIS makes key technical advances that 10 

enable MRD detection by selecting and prioritizing founder mutations, simultaneously 

analyzing up to 20 mutations in multiplex, using linear pre-amplification to maximize the 

fraction of limited plasma DNA amounts effectively analyzed and suppressing errors by 

using both, molecular identifiers and fragment sizes. Due to additional sensitivity and 

specificity provided by these improvements, we reliably detected residual disease after 15 

neoadjuvant therapy for breast cancer, detecting tumor fractions as low as 0.002% 

using 3 mL plasma samples. Recent reports propose genome-wide sequencing or 

enrichment of patient-specific mutations by hybridization to detect very low levels of 

ctDNA in plasma(16-18). These approaches are currently expensive either due to 

amount of sequencing data required for adequate genome-wide coverage for each 20 

plasma sample or due to the cost of synthesizing and optimizing biotinylated 

oligonucleotides for enrichment by hybridization for each patient-specific assay. In 
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contrast, TARDIS achieves adequate sensitivity for MRD using cost-effective 

personalized assays that only require conventional primer synthesis and a limited 

sequencing footprint. In addition, we prioritize clonal founder mutations for ctDNA 

analysis that should be present in all cancer cells and therefore, they are unlikely to be 

lost due to population bottlenecks during treatment and remain informative for MRD 5 

detection(9, 12). These features enable more frequent and longitudinal analysis of 

plasma samples once a patient-specific TARDIS panel has been developed.  

 

The limit of detection required to detect MRD using a blood test will vary across cancer 

types and disease stages. We observed that limit of detection can be improved by 10 

increasing the number of founder mutations targeted (Fig. 4). A current limitation of 

TARDIS is the ability to target ~10-20 mutations in multiplex, imposed by stringent 

informatic filtering of primers during personalized assay design to minimize off-target 

amplification. Additional performance data from multiple patient-specific panels will allow 

us to refine primer design and increase the number of multiplexed target-specific 15 

primers. In addition, inclusion of other somatic genomic alternations such as indels and 

fusion breakpoints can expand the pool of eligible patient-specific target mutations.  

 

Despite a limited clinical sample size, our results provide proof-of-concept for using 

personalized multi-mutation ctDNA monitoring to predict residual disease after 20 

neoadjuvant therapy, an application of ctDNA analysis that has not been previously 

demonstrated successfully. We did not detect ctDNA in one patient with residual 
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disease, most likely due to a combination of low plasma DNA concentration in the post-

neoadjuvant therapy sample and a low rate of ctDNA shedding from the tumor 

(suggested by low pre-treatment ctDNA levels for a T3N1 tumor). ctDNA was detected 

in this patient in 2 plasma samples collected 6 weeks and 12 weeks earlier, suggesting 

that future clinical studies to evaluate MRD detection after neoadjuvant therapy will 5 

benefit from analysis of larger blood volumes. Although in the current study, we 

analyzed up to 4 mL plasma obtained from 10 mL blood samples, it is conceivable to 

collect up to 30 mL blood at a single time point. It is also feasible to collect and analyze 

plasma samples over multiple days after completion of neoadjuvant therapy. If ctDNA is 

cleared from blood and remains undetectable in multiple consecutive samples, this 10 

could accurately rule out MRD. Interestingly, we also detected persistent ctDNA signal 

in one patient with pathCR and no residual tumor, suggesting our approach may be able 

to detect distant micro-metastasis. This patient with ER+ HER2+ cancer was treated 

with additional adjuvant systemic therapy as part of routine clinical practice and has not 

shown any evidence of relapse during nearly 5 years of follow-up. Finally, we also report 15 

extensive analytical validation data using commercially available reference samples that 

could enable benchmarking of current and future technologies for ctDNA analysis. 

 

Overtreatment of early stage cancer patients remains a challenge in cancer medicine, 

likely to become more relevant as newer blood- and imaging-based early detection 20 

approaches gain credence(19). Most efforts to optimize treatments have focused on 

tissue-based predictive biomarkers to assess risk of tumor recurrence(20). Our results 
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suggest blood-based MRD testing during treatment can further help evaluate additional 

benefit of each treatment modality in individual patients. Establishing clinical validity and 

utility for pre- and post-operative MRD detection will require larger and prospective 

studies with long-term clinical follow-up. Once validated, using MRD detection to 

individualize cancer management could substantially reduce treatment-related morbidity 5 

while preserving clinical outcomes.  
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Materials and Methods 
Patients and samples 

This study includes patients prospectively enrolled at Mayo Clinic, Phoenix, AZ, USA 

under an approved IRB protocol number 14-006021 (Mayo cohort) or at Addenbrooke’s 

Hospital, Cambridge, UK under an approved Research Ethics Committee protocol 5 

number 12/EE/0484 (Cambridge cohort). Informed consent was obtained from all 

patients. Tumor samples obtained at the time of diagnosis were exome sequenced. 

Blood samples were collected prior to commencement of treatment and after completion 

of neoadjuvant therapy prior to surgical resection. In the Cambridge cohort, additional 

blood samples were collected at 6 weeks and 12 weeks during neoadjuvant treatment. 10 

 

DNA extraction from tumor and germline samples 

For the Mayo cohort, tumor DNA was extracted from four 10 micron sections obtained 

from archived formalin-fixed paraffin-embedded tissue using the MagMAX FFPE 

DNA/RNA Ultra Kit (ThermoFisher Scientific), following macro-dissection to enrich for 15 

tumor cells guided by an H&E stained tumor section. For the Cambridge cohort, tumor 

DNA was extracted from ten 30μm sections obtained from the fresh frozen tumor tissue 

using the DNeasy Blood and Tissue Kit (Qiagen). Germline DNA was extracted from 

peripheral blood cells using the DNeasy Blood and Tissue Kit (Qiagen).  

 20 

Plasma processing, DNA extraction and quality assessment 

Blood was collected in 10 mL K2 EDTA tubes and centrifuged at 820g for 10 minutes 

within 3 hours of venipuncture to separate plasma. 1 mL aliquots of plasma were 
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centrifuged a second time at 16000g for 10 minutes to pellet any remaining leukocytes 

and the supernatant plasma was stored at -80 °C. cfDNA was extracted using either the 

QIAsymphony DSP Circulating DNA Kit (Qiagen) or MagMAX Cell-Free DNA Isolation 

kit (ThermoFisher Scientific). All cfDNA samples were evaluated for yield and quality 

using droplet digital PCR, as described previously(21). 5 

 

Tumor/Germline Exome Sequencing 

For the Mayo cohort, tumor/germline exome sequencing libraries were prepared using 

44-200 ng of tumor DNA (mean 175 ng) and 148-200 ng of germline DNA (mean 195 

ng), using the KAPA Hyper Prep Kit following manufacturer’s instructions. Exome 10 

enrichment through hybridization was performed using a customized version of Agilent 

SureSelect V6 exome. For the Cambridge cohort, tumor and germline exome libraries 

were generated using the Illumina Nextera Rapid Capture Exome Library Preparation 

kit, using 50ng of DNA as input. We pooled exome libraries and sequenced on Illumina 

HiSeq. 15 

 

Variant calling in tumor exomes and identification of target mutations 

Reads were aligned to human genome version hg19 using bwamem(22), followed by 

base recalibration using GATK(23), duplicate identification using Picard tools 

MarkDuplicates, and indel realignment using GATK. Germline mutations were inferred 20 

using GATK HaplotypeCaller and Freebayes(24). Somatic tumor mutations were called 
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using MuTect(25), Seurat(26) and Strelka(27). Somatic mutations with an allele 

frequency < 5% were removed.  

 

Identification of Target Mutations 

Potential target mutations found on autosomal chromosomes were assessed for copy 5 

number, purity, and variant allele frequency (VAF). We used Sequenza to infer both the 

proportion of tumor cells in the sequenced tumor DNA sample and copy number 

alterations in the tumor(28). For each mutation, the mean variant allele frequency from 

the variant callers, sample purity, and local copy number were used to infer its cancer 

cell fraction (CCF) via two different methods: an implementation of the algorithm from 10 

McGranahan et. al.(29), and PyClone(30). For each sample, the VAF, minor and major 

copy number, and purity were used as input for PyClone analysis with 25,000 iterations, 

including 10,000 iterations of burn in.  

 

Founder mutations were identified using a set of criteria for mutation confidence and 15 

maximum CCF. To quality as a target for ctDNA analysis, a mutation must have been 

identified by at least 2 somatic mutation callers, have a mean of >20x germline reads 

passing each mutation caller’s filters that covered the mutated base, a germline VAF < 

0.01%, and >50x mean tumor passing filter reads. In addition, the upper range of the 

CCF distribution calculated using the McGranahan et. al. approach must be equal to 20 

1.0, and the mutation must be found in the highest CCF PyClone mutation cluster.  
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Primer Design for TARDIS 

Mutations that passed the filtering steps above, plus any mutations found in genes of 

interest(31), were used as targets for TARDIS primer design. The primer design process 

is focused on maximizing TARDIS performance and minimizing spurious amplification, 

particularly in the linear preamplification stage. We first generated primers on the 5 

forward or reverse strands up to 350 bp from the target mutation position for both linear 

(preamp) and exponential (PCR1) amplification reactions using Primer3(32). Preamp 

primer melting temperature (Tm) range was set to 68-74 °C, and PCR1 Tm range was 

56-60 °C, with the Preamp primer upstream and a maximum of 3bp overlap allowed 

between Preamp and PCR primers. We also require the 3’ end of the PCR1 primer to be 10 

between 3bp and 10bp from the target mutation position, to ensure short mutant 

molecules are captured efficiently but the targeted mutation is not masked by potential 

primer synthesis overhangs. To avoid unintended amplification in multiplexed PCR 

reactions, we used a combination of in silico PCR, sequence comparison to the genome 

using LAST(33), and 3’ primer kmer matching to identify problematic primers for 15 

multiplexing. Each primer for each target is evaluated for kmer matches to the regions 

around other target mutations, and the primers with the fewest number of matches to 

other target regions were selected for each target. We then constructed a network with 

each node representing a target/primer and edges representing 6mer matches between 

the 3’ end of a target’s preamp primer and the sequence 150bp on either side of another 20 

target, or in-silico PCR predicted amplicons generated by the two preamp primers. 

Finally, we iteratively removed the node with the most edges until there were no 
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remaining edges. If there were target mutations that must be included in a panel, such 

as driver mutations, all primers with 3’ edges to these targets were removed first to 

ensure they remain in the final target set. A test run of TARDIS using each new primer 

panel was conducted with 8 replicates of sheared genomic DNA before analyzing 

plasma samples to identify any remaining problematic primers. An amplicon was 5 

removed from the panel prior to analysis of plasma samples if median proportion > 0.5 

or maximum proportion >0.75 of the reads for that amplicon were masked or if the 

amplicon captured a median proportion >0.5 or maximum proportion >0.75 of all reads 

in any control run. 

 10 

Preparation of TARDIS sequencing libraries 

4.0-19.0 ng of template plasma DNA (mean 10.4, median 10.3) for linear pre-

amplification (preamp). For each TARDIS run, patient-specific primers were pooled 

equimolarly. Each pool was used at a final concentration of 0.5 µM (regardless of the 

number of primers in the panel). Amplification was performed using Kapa Hifi HotStart 15 

Mastermix (Kapa Biosystems) at the following thermocycling conditions: 95°C for 5 

minutes followed by 50 cycles at 98°C for 20 seconds, 70°C for 15 seconds, 72°C for 15 

seconds, and 72°C for 1 minute. This reaction was followed by a magnetic bead 

cleanup (SPRIselect, Beckman Coulter) at 1.8x ratio after addition of 10% ethanol. 

Preamplified DNA was eluted in 10 µL water. After dephosphorylation using FastAP 20 

(ThermoFisher Scientific), 0.8 µL of 100 µM ligation adapter was added to each sample. 

The sequence of the hairpin oligonucleotide using for single-stranded DNA ligation is 
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provided in Table S4 and was adapted from Kwok et al.(34). Samples were denatured 

at 95°C for 5 minutes and immediately transferred to an ice bath for at least 2 minutes. 

We setup ligation reactions using 2.5 µL 10x T4 DNA Ligase buffer (New England 

Biolabs), 2.5 µL of 5 M betaine, 2,000 U of T4 DNA ligase (New England Biolabs) and 

5.8 µL of 60% PEG8000. Ligation was performed at 16 °C for 14-17 hours. A magnetic 5 

bead cleanup (SPRIselect) was performed at 1x buffer ratio after initially diluting the 

sample by adding 40 μL water (to reduce effective PEG concentration during cleanup). 

An additional dephosphorylation was performed using FastAP. 

 

Exponential PCR (PCR1) was performed using nested primers downstream of the pre-10 

amplification primers and a universal reverse primer complementary to the ligated 

adapter, upstream of the UMI (see Table S4 for primer sequences). Primers were 

pooled equimolarly and used at a final pool concentration of 0.5µM. We used the 

NEBNext Q5 Hot Start HiFi PCR Mastermix (New England Biolabs) with the following 

thermocycling conditions: 98°C for 1 minute followed by 5 cycles at 98° for 10 seconds, 15 

61.5°C for 4 minutes, and 15 cycles at 98° for 10 seconds, 61.5°C for 30 seconds and 

72°C for 20 seconds, followed by a 2 minute incubation at 72°C.  After a 1.7x magnetic 

bead cleanup (SPRIselect), we eluted the product in 40 µL water. A second round of 

PCR (PCR2) was performed using universal primers to introduce sample specific 

barcodes and complete sequencing adaptors, as described previously(12). We used 1 20 

U per reaction of Platinum Taq DNA Polymerase High Fidelity (Invitrogen) in the 

following buffer: 1.3x Platinum buffer, 0.4M betaine, 2.5 µl/rxn of DMSO, 0.45mM 
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dNTPs, 1.75 mM MgSO4 and primers at 0.5 µM. 10 μL of the product from the first 

amplification was used as template, at the following thermocycling conditions: 94°C for 2 

minutes followed by 15 cycles at 94°C for 30 seconds, 56° for 30 seconds, 68°C for 1 

minute, and a final incubation at 68°C for 10 minutes. A final magnetic bead cleanup 

(SPRIselect) was performed at 1.2x volume ratio. TARDIS libraries were eluted in 20 µL 5 

DNA suspension buffer, quantified using qPCR (KAPA SYBR FAST Universal qPCR kit, 

Kapa Biosystems) and pooled for sequencing. Sequencing was performed on Illumina 

HiSeq 4000 or Illumina NextSeq. 

 

Analysis of TARDIS Sequencing Data 10 

Paired-end sequencing reads were aligned to human genome hg19 using bwa-mem. 

Read pairs whose R1 read mapped to the start position of a target primer were 

considered on-target reads, while the position of the R2 read was used to determine the 

length of the template molecule. The UMI sequence and molecule size were used to 

identify all of the reads that came from the same template molecule. To minimize 15 

incorrect assignment of reads to read families, we implemented a directed adjacency 

graph approach inspired by Smith et al.(35). Briefly, a graph is constructed in which 

each UMI is a node. An edge from nodeA to nodeB is created if their UMIs differ by one 

base, their DNA molecule size is the same, and nodeA has at least twice as many reads 

as nodeB. All of the reads from UMIs in each component from the resulting graph 20 

constitute a read family and are considered to have come from the same original 

molecule. UMI variation within a read family is assumed to arise due to PCR or 
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sequencing error. We found that a small number of UMIs with very few reads had 

incoming edges from multiple otherwise separate components. The component 

assignment of these nodes is ambiguous, and they significantly reduced the number of 

independent components in the graph. To resolve this issue, any UMI that had two or 

more incoming edges and no outgoing edges was removed. We then inferred the allele 5 

at the target position by consensus of all R1 reads in a given component, requiring that 

at least 90% of the R1 reads carried a particular allele at the position of interest. In 

practice, the vast majority of read families contained fewer than 10 reads, and therefore 

required perfect agreement at the target position. Inferred molecules with less than 90% 

read support for a variant were removed as inconclusive.  10 

 

Allele fractions (AFs) were calculated as either number of mutant reads as a fraction of 

total reads (Raw AF) or number of mutant RFs as a fraction of total RFs (TARDIS AF). 

To ascertain ctDNA detection in a sample, we required support of at least 2 RFs. For 

any mutations supporting ctDNA detection, we required that its TARDIS AF represent at 15 

least 0.5 mutant molecules in the reaction. In addition, the ratio between number of RFs 

supporting a mutation and mixed RFs observed at that locus must be <15. Finally, if 

only mutation supported ctDNA detection, we required at least 2 independent RF sizes 

(to ensure independent PCR events). This requirement was waived if >1 mutation 

supported ctDNA detection. To quantify ctDNA levels, we calculated mean AFs over all 20 

targeted mutations using RawVAFs – to avoid limiting the quantification to only DNA 

fragments that are successfully represented by an RF. However, to avoid the 
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contribution of background noise, RawVAFs for any mutations not supported by ≥1 RF, 

a ratio with Mixed RFs of ≥15 or <0.5 mutant molecules were set to zero prior to 

calculating the mean.    

 

TARDIS Analysis Pipelines 5 

Target selection and primer design pipelines were developed in Python3 using NumPy, 

SciPy, networkX, pandas, and matplotlib, and in Julia 0.6.2 using BioJulia, DataFrames, 

Gadfly, and LightGraphs. Data analysis and plotting were conducted in Python3, Julia 

0.6.2, and R v3 using ggplot2. 

 10 

Calculation of background error rates 

To measure overall background error rates, we evaluated the first 10 bp at each locus 

for highest non-reference alleles (starting 2 bp downstream of target-specific primers). 

For 8 target amplicons across 6 sheared DNA control replicates, our evaluation dataset 

contained a total of 480 independent positions covering 80 genomic loci. In raw 15 

sequencing results, we observed an error rate of 4.68 x 10-4, with background errors 

observed at all loci. We found that requiring consensus of all members of an RF 

significantly reduced error rates (Fig. S2). We observed 15/80 amplicon positions with 

181 unexpected variants using RF consensus. 84 of them (46.4%) were contributed by 

5/80 (6.25%) genomic loci, suggesting either detection of low abundance alleles present 20 

in the DNA sample (obtained from cell lines) or that these loci are highly error prone. 

Excluding these 5 loci, we observed a mean error rate of 1.03 x 10-4, contributed by 
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10/75 representative loci. By requiring each putative error to be supported by RFs of at 

least 2 sizes, we observed 98 unexpected variants, of which 70 (71.4%) were 

contributed by the 5 error prone loci. Removing these 5 loci, our mean error rate was 

3.29 x 10-5 contributed by 8/75 representative loci while the remaining were error free in 

all replicates.  5 
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Fig. 1. Development of a multiplexed assay for personalized ctDNA detection and 

monitoring. (A) Based on binomial sampling, maximum theoretical sensitivity for 

detection of ctDNA at 0.01% tumor fraction is limited if only 1-2 mutations are assayed 

but can be improved with higher input of plasma DNA and increasing number of patient-5 

specific mutations. (B) TARDIS identifies patient-specific founder mutations using 

exome sequencing of tumor biopsies and tracks multiple mutations simultaneously in 

plasma to monitor treatment response and to detect MRD. (C) TARDIS relies on a novel 

approach for preparing sequencing libraries that includes linear pre-amplification to 

improve molecular conversion, single-stranded DNA ligation using hairpin 10 

oligonucleotides to allow error suppression using template fragment sizes and unique 

molecular identifiers (UMIs) and multiplexed PCR to enrich targeted genomic loci.  
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Fig. 2. Analytical validation of TARDIS using reference samples. (A) Mutation-level 

sensitivity and specificity across 93 reference samples and 8 mutations, requiring each 

mutation is supported by ≥ 2 RFs and an AF consistent with ≥ 0.5 mutant molecules. (B) 5 

Sample-level sensitivity and specificity, requiring ≥ 2 RFs contributed by one or more 

mutations, each with an AF consistent with ≥ 0.5 mutant molecules. (C) Comparison of 

variant AFs observed using TARDIS (mean for each variant across all replicates at the 

same mutation level, 48 data points) with known variant AFs measured using ddPCR. 

Gray line is linear fit. (D) Comparison of sample AFs observed using TARDIS (mean for 10 

all 8 mutations assayed in each replicate sample, 77 data points) with known sample 

AFs (mean of known variant AFs). Gray line is linear fit to the mean at each AF level. 

(E) CVs of variant AFs decreased with increasing number of mutant molecules per 

mutation. CVs calculated across 7-16 replicates at each mutation level for each of 8 
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mutations (48 data points). (F) CVs of sample-level AFs were lower than those for 

individual mutations, demonstrating the advantage of leveraging multiple mutations for 

ctDNA quantification. CVs calculated across 7-16 replicates for sample-level means 

across 6 mutation levels. 
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Fig. 3. MRD detection in patients with breast cancer following neoadjuvant therapy. (A) 

Number of mutations analyzed using TARDIS in each patient. Bar colors indicate the 
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number of founder mutations identified using tumor exome sequencing. (B) Summary of 

clinical data, TNM staging and ctDNA detection before treatment and after neoadjuvant 

therapy. Pathological TNM staging was performed after surgery and completion of NAT. 

Number in each box indicates T or N stage, is: in situ, mi: microinvasive disease. 

*ctDNA was undetectable in the last blood sample collected after completion of NAT for 5 

patient T065 but detected consistently in 2 prior blood samples collected 6 weeks and 

12 weeks earlier. The baseline plasma sample for E009 failed sequencing.  (C) 

Changes in ctDNA levels during neoadjuvant therapy, grouped by clinical response to 

treatment (Complete Response, In Situ Residual Disease and Invasive Residual 

Disease). Time point 1 is before treatment and time point 4 is after completion of NAT 10 

for all patients. For T014, T033, T040 and T065, time points 2 and 3 were collected at 6 

and 12 weeks during NAT (D) A representative example of changes in individual 

mutation AFs during neoadjuvant therapy in patient T033. Individual AFs for all patients 

are shown in Fig. S3. 
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Fig. 4. Sensitivity for ctDNA detection improved with increasing number of mutations 

analyzed using TARDIS, both before treatment (A) and after neoadjuvant therapy (B). 

Sensitivity for each patient is shown as gray lines with crosses. Mean sensitivity for 

each number of mutations is shown as black line with dots. For each number of 5 

mutations, we sampled combinations from targeted mutations in each patient and tested 

up to 1000 randomly chosen combinations. Pre-treatment samples from 12 patients are 

included in (A). Samples obtained after completion of neoadjuvant therapy from 9 

patients are included in (B), excluding patients with ctDNA clearance and Complete 

Response.  10 
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