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Because of uncertainty inherent in perception, our immediate observations must be 

supplemented with contextual information to resolve ambiguities. However, often context 

too is ambiguous, and thus it should be inferred itself to guide behavior. We developed a 

novel hierarchical task where participants should infer a higher-level, contextual variable 

to inform probabilistic inference about a hidden dependent variable at a lower level. By 

controlling the reliability of the past sensory evidence through sample size, we found that 

humans estimate the reliability of the context and combine it with current sensory 

uncertainty to inform their confidence reports. Indeed, behavior closely follows inference 

by probabilistic message passing between latent variables across hierarchical state 

representations. Despite the sophistication of our task, commonly reported inferential 

fallacies, such as sample size insensitivity, are not present, and neither do participants 

appear to rely on simple heuristics. Our results reveal ubiquitous probabilistic 

representations of uncertainty at different hierarchical levels and temporal scales of the 

environment. 
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Introduction 

Sensory evidence is inherently ambiguous, and thus it needs to be integrated with contextual 

information to minimize the uncertainty of our perception of the world and to allow for 

successful behavior. Suppose that we observe just a few passengers exiting an airplane at an 

airport whose city hosts a soccer final. If we find that four of them are supporters of the red 

team and two support the blue team, we might conclude that there were more supporters of the 

red team in the airplane. This inference, based on incomplete sensory evidence, can be 

improved by contextual information. For instance, there might be many more blue than red 

supporters in the world. Then, despite our initial observation, we might want to revise our 

inference and rather conclude, based on the context, that the airplane carried more blue than red 

supporters.  

While in the previous example context was certain and by itself able to resolve 

observational ambiguity, contextual information is very often ambiguous. For instance, we 

might just know that there is an event in the city that attracts more of a certain type of people, 

but we do not know which type. Extending our example, we would first need to infer the context 

(whether the event attracts more people of the red or blue type) by observing samples of 

passengers leaving several airplanes. By using the inferred context, we can better estimate 

whether the next plane carries more of one type of people given only on a small sample of its 

passengers. Thus, in real-life, both observations and context commonly provide incomplete 

information about a behaviorally relevant latent variable. In these cases, inference should be 

based on probabilistic representations of both observational and contextual information 1–6.  

Indeed, recent work has shown that humans can track a contextual binary variable 

embedded in noise that partially informs about what specific actions need to be performed to 

obtain reward 7. Additionally, humans can infer the transition probability between two stimuli 

where the transition probability itself undergoes unexpected changes, defining a partially 

observable context 8. These results and other studies suggest that a refined form of uncertainty 

representation is held at several hierarchical levels by the brain 9–14. However, in this previous 

research, the reliability of the context has rarely been manipulated directly and independently 

15 from the reliability of the current observation 1,7,8. Therefore, it is unclear up to what degree 

contextual inference reflects its uncertainty and interacts with the inferred reliability of the 

current observation as it would be expected from a joint probability distribution over both 

observations and context.    

To address the above question, we developed a reliability-based hierarchical integration 

task that allows us to directly control reliability in order to evidence characteristic patterns of 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 24, 2018. ; https://doi.org/10.1101/425462doi: bioRxiv preprint 

https://doi.org/10.1101/425462


probabilistic inference. Our task was intuitively framed to our participants using the analogy of 

flight arrivals to an airport whose city hosts an event, rather than relying on an abstract or 

mathematical description of the dependencies between the latent variables. The goal was to 

decide whether the flight just landed carried more passengers of the red or blue type based on 

the observation of only a small sample of passengers leaving the airplane, and to report the 

confidence in that decision. However, as the event is known to tend to attract more of either of 

the two types of passengers, knowledge of this context, if inferred correctly, will be useful to 

solve the task. The crucial ingredient of our task is that inference of the context is based on the 

observation of small samples of passengers exiting previously arrived planes, making the 

context partially, but not fully, observable. By manipulating both the tendency and the sample 

size, we can control the reliability of the previous observations upon which inference about the 

context should be based. Overall, this task structure creates hierarchical dependencies among 

latent variables that should be resolved by bottom-up (inferring the context from previous 

observations) and top-down message passing (inferring the current state by combining current 

observations with the inferred context) 6. 

We found that participants can track and use the inferred reliability of previous 

observations suggesting that they build a probabilistic representation of the context. The 

inferred context was integrated with the current observations to guide decisions and confidence 

judgments about the value of a latent variable at a lower hierarchical level. Decision confidence 

was found to closely correspond to the actual accuracy of making correct decisions. As a clear 

signature of probabilistic inference over the context, we found that the sample size of previous 

observations was used by our participants to infer the reliability of the context. This in turn has 

a strong effect on decision confidence of a lower-level variable that depends on the context. 

The observed behavior in our participants eluded previously reported biases in judgments and 

decision making 16, such as sample size insensitivity 17–19, and also resisted explanations based 

on simpler heuristics 20,21. Overall, our results support the view that humans may form mental 

representations akin to hierarchical graphs 22 that support reliability-based inference to guide 

confidence estimates of our decisions.  

 

 

Results 

We designed two experiments to test whether humans can use the reliability of contextual 

information to guide decisions and confidence judgments about a latent variable at a lower 

hierarchical level. While in some previous studies, instructions to the participants were quite 
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abstract and often appealed to mathematical terms 21, here we attempted to facilitate 

understanding of the complex relationships of the task variables by instructing participants in 

intuitive and naturalistic terms. Thus, we described the task to our participants by using the 

analogy of airplanes arriving at an airport whose unknown passenger proportions were to be 

estimated. In the first experiment (Experiment 1), the context is neutral and stable across all the 

trials encompassing the session, while in the second experiment (Experiment 2) context varies 

across blocks of a few trials but remains constant within each block. We instructed our 

participants that the context consists of a tendency of the encountered airplanes to carry more 

passengers of either of the two types. Formally, Experiment 1 corresponds to the classical urn 

problem with unknown fractions of red and blue balls, and Experiment 2 corresponds to a 

hierarchical extension where the urns are themselves correlated and partially observable (see 

Methods).    

 

The effects of sample size on confidence reports 

In Experiment 1, participants were told that the airplanes arriving to an airport carry both blue- 

and red-type passengers, in an unknown proportion, and that these proportions would be 

uncorrelated from one plane to the next. Thus, in this case, no context was assumed that would 

make our participants believe that the passenger proportions across consecutives planes would 

be interdependent. After observing a small sample of passengers randomly exiting the plane, 

displayed as red and blue filled circles on the screen (Fig. 1a, first frame), participants were 

asked to report both whether the airplane carried more blue or red passengers, i.e. its passenger 

majority, and their confidence in this decision by moving a line along a horizontal bar (second 

frame).   
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Figure 1 Posterior-based confidence features sample size effects  

(a) Task: The colored dots (sample) represent two kinds of passengers (blue and red) that disembarked 

a very large airplane. The participants are subsequently asked to report the confidence in their decision 

that the airplane carried more blue or red passengers (blue majority) by horizontally moving the cursor 

line (orange). In this case, because the sample suggests a blue majority, the response cursor should be 

on the right. (b) Sample size increases posterior-based confidence in a blue majority suggested by the 

blue majority of the sample. Confidence (right) is computed as expected accuracy from the area under 

the curve for the inferred proportion (middle) from the observed sample (left). Although the proportion 

of blue passengers (green line, middle) is the same for all three samples (rows), the inferred distribution 

depends on sample size. The larger the confidence, the closer the response line on the previous panel 

should be to the rightmost border. (c) Confidence in blue majority should increase with the proportion 

(%) of blue samples for all sample sizes, but it does so with a higher slope for larger sample sizes (color 

coded). (d) Consequently, the slope parameter of fitted sigmoidal functions increases with sample size. 

 

An ideal observer (Fig. 1b) should infer a distribution over an airplane’s proportion of 

blue (or, equivalently, red) passengers based on the observed proportion of blue passengers and 

the sample size. The proportion of blue samples (passengers), called “sample proportion”, is 

computed as 𝑁𝐵 𝑁⁄ , where 𝑁𝐵 (𝑁𝑅) is the number of observed blue (red) passengers, 

respectively, and 𝑁 = 𝑁𝐵 + 𝑁𝑅 is the sample size. The inferred distribution over passenger 

proportions concentrates around passenger proportions suggested by the sample (Fig. 1b, green 

vertical line) 17, and its width reduces the larger the sample size is. The decision whether the 

majority is blue or red is uniquely based on the proportion of blue samples, but the confidence 

report should be based on both the sample proportion and the sample size. Specifically, in this 

example, decision confidence of the ideal observer is the belief that the majority is blue, which 
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equals the area under the distribution summing up the probability of all possible blue passenger 

proportions that are larger than one half 23,24 (Fig. 1c,d). The result is that confidence in a blue 

majority increases with sample size because the distribution is more concentrated around the 

observed proportion of blue passengers. More generally, a central feature of probabilistic 

inference is sample size dependence, which here magnifies the confidence in the airplane 

majority that is suggested by the sample proportion. 

We tested whether human participants (N=24) obeyed this critical pattern or whether 

they neglected size 17,19. Confidence in a blue majority was found to increase with the proportion 

of blue samples. As predicted, this increase was larger the larger the sample size is (Pearson 

correlation, pooled across participants, 𝜌 = 0.31, 𝑝 = 4.08 ⋅ 10−6) (Fig. 2a,b). These results 

were found for most of our participants individually (21 out of 24; permutation test, 𝑝 < 0.05). 

Consistently, confidence judgments were highly predictive of their trial-by-trial decision 

accuracy (Pearson correlation, 𝜌 = 0.81, 𝑝 = 1.27 ⋅ 10−45, see supplementary information (SI) 

for details), suggesting that participants performed the task well and gave confidence reports 

that follow from an internal measure of uncertainty. 

 

Figure 2 Human confidence estimates vary with sample size as predicted by probabilistic inference 

(a) Confidence in a blue majority increases with the proportion of blue samples (solid lines), and it does 

so more steeply the larger the sample size is (color coded). Optimal model is represented in light colors. 

(b) The slope of the confidence curve in (a) increases with sample size. Participants feature a 

quantitatively similar increase as the optimal model (solid line). Error bars indicate SEM across 

participants. 

 

 To further confirm that sample size was an important feature of our participants’ 

confidence reports, we performed a model comparison in which we contrasted the optimal 

inference model with two heuristic models, the ‘ratio’ and the ‘difference’ model. The ratio 

model assumes that confidence is a function of the sample proportion alone. This could be the 

result of a simpler approach in which the population estimate is a point estimate corresponding 

to the sample proportion which is a more suitable approach in the limit of large samples that 
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are representative of their population 16,17. The difference model estimates confidence based on 

the difference of blue and red samples, 𝑁𝐵 − 𝑁𝑅. As the ratio heuristic, this statistic is 

informative of decision correctness but additionally covaries with sample size, as the ideal 

observer model, but not directly through sample size. For all models, either the optimal or the 

heuristic estimators were passed thought a logistic function to have a unit output interval for 

confidence reports and to account for both possible distortions on the response or the calibration 

of heuristic estimators. The logistic response mapping was fitted for each model and participant 

individually (Methods).  

The comparison between the optimal model and the ratio model shows that the latter is 

clearly rejected because of its incapacity to take sample size into account (see SI, Fig. S2 for 

details). Even though the confidence estimates of the difference model are sensitive to sample 

size, they typically do not correspond to the notion of uncertainty that our participants report. 

We can thus dissociate the experimental reports from these simple but covariant heuristics and 

conclude that the response patterns of our participants typically follow a probabilistic inference 

approach.  

 

Reliability-based hierarchical integration of the ideal observer 

In Experiment 2, participants were told that several airplanes with unknown passenger 

proportions would arrive at an airport, as before, but that consecutive airplanes would feature 

correlated passenger proportions because of an event in the city that attracts more travelers of 

one type. Thus, if the sample of a previous airplane is highly suggestive of a blue airplane 

proportion, then the participant could not only infer that this previous airplane carries a blue 

majority, but also that the next airplane is more likely to carry a blue majority, even before 

observing a sample of passengers leaving it. Inference of an ideal observer in our task should 

start with inference of the current context (whether there is a tendency to observe passengers 

from airplanes with blue or red majorities). Next, this contextual information should be 

integrated with the current sample to report confidence and decide whether the current airplane 

it is more likely to hold a red or blue majority (Fig. 3).  
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Figure 3 Schematic of the hierarchical structure for learning empirical priors 

Participants are told that across a block of five trials (1,2, … 𝑇 ≤ 5) they will see passengers from five 

different airplanes arriving to the same airport. As before, they are asked to report their decision 

confidence whether the current airplane carried more red or blue passengers. The schematic illustrates 

the hypothetical examples of an ideal observer that estimates confidence based on the proportion of blue 

samples of the current airplane T and on the samples observed in previous trials. The generative model 

of the observations is as follows. (a) Within a block of five trials, the context, called block tendency, is 

first selected, which corresponds to choosing either a positively (magenta) or negatively (cyan) skewed 

distribution over airplane proportions. This context (distribution) is maintained throughout the block of 

five trials, but on each trial a new blue majority (blue-red horizontal bars indicating the passenger 

proportion in each airplane) is randomly sampled from that distribution. In the example, the context 

favors airplanes of red majorities. (b) Sample generation given the airplane majority is the same as for 

the previous task. (c) The internal representation of the agent (orange background) mirrors the 

dependence structure in the environment (green background). Probabilistic inference is performed by 

message passing between the nodes which internally represent the inferred block tendency and the 

airplane’s passenger proportion of each trial (see Methods). Previous trials (𝑡 < 𝑇) provide evidence 

about the block tendency through the messages 𝑚𝑡(𝑏). They are probabilistically integrated into an 

overall belief about the block tendency 𝑀(𝑏) which provides top-down constraints on the inference of 

a new airplane’s blue proportion (orange node). The confidence in a blue majority of the current airplane 

T held by the ideal observer (response bar, right) should follow from both the current sample proportion 

and the inferred block tendency from previous samples. 

 

Thus, the generative structure of the observations that were shown to the participants is 

hierarchical, with a higher-level variable that determines the context for a block of always five 

trials, which either favors red or blue airplane majorities, and which in turn generates airplane 

majorities at the lower hierarchical level across the sequence of trials in the block (Fig. 3a). 

Both hierarchical levels feature hidden variables that are not observable by the participants. 
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From the generated airplane proportions, samples are drawn, which correspond to the actual 

observations of the participants (Fig. 3b). Note that the generative process is purely top-down, 

from the context (high-level hidden variable) to airplane passenger proportions (low-level 

hidden variables) and then to the samples (observables). However, inference by the ideal 

observer should first run bottom-up from previously observed samples to infer the value of the 

contextual variable (Fig. 3c; open nodes) and then top-down from this inferred context (bottom 

open node) to the variable representing the passenger proportion of the current airplane (orange 

node). For the ideal observer, this can be formulated as message passing between the hidden 

variables (Methods). It is worth emphasizing that the task is about inferring the passenger 

majority of the current airplane, at the lower hierarchical level, rather than asking for the 

context.  

As with Experiment 1, we studied how an ideal observer would behave under specific 

manipulations of the reliability of the currently observed sample through its sample size and 

the reliability of the context as controlled by the sample size of previously observed airplanes. 

As with the previous experiment, we first point to patterns of behavior that should be indicative 

of reliability-based probabilistic inference in our hierarchical task.  

First, we expect that confidence in blue majority of the current airplane grows with the 

proportion of blue samples (Fig. 4a), as in the previous task. However, in addition, we also 

expect that confidence in a blue majority should be higher in blocks whose actual tendency 

favors blue airplane majorities, which is indeed the pattern that an ideal observer would show 

(Fig. 4a).  This is because, averaged across trials, the ideal observer can infer what the block 

tendency is, which on average should be aligned to the true block tendency, resulting in a higher 

confidence in blue majorities.  
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Figure 4 Characteristic behavioral patterns of probabilistic inference in the hierarchical inference 

task  

(a) Confidence in a blue majority of the current airplane (current trial) should increase with the 

proportion of blue samples, as in the previous task, but in addition confidence should be larger in a block 

that favors blue majorities (cyan) than in a block favoring red majorities (magenta).  (b) Information of 

the block tendency should gradually increase the confidence in the corresponding trial majority. Thus, 

responses can be pooled with respect to the real block tendency. We refer to it as ‘aligned confidence’ 

and use the same concept for other relative quantities below. (c) Confidence in the aligned airplane 

majority increases with the aligned sample proportion. This modulation is stronger for larger sample 

sizes (green) compared to smaller ones (orange) while it has no effect for an indifferent sample (50% 

sample proportion, crossing point between the two lines). (d) Likewise, aligned confidence increases 

with the aligned sample proportion of the preceding trial and is modulated by its respective sample size. 

(e) The influence of all previous trials, determined by the weights of a regression analysis, should be 

equal on average (e.g. trials 1-2 on trial 3, T3). However, it decreases with the number of previous trials 

due to normalization. (f) Aligned confidence increases across trials within a block because evidence for 

the block tendency accumulates across trials in the block. All patterns are derived from the ideal observer 

model (see Methods). 

 

Second, averaged across sample proportions and samples sizes, confidence in a blue 

(red) majority in the current airplane should increase the higher the inferred tendency of blue 

(red) passengers is. Because of the symmetry across these two cases, we defined a (block-) 

aligned confidence to indicate the confidence in the direction (passenger type) that is aligned to 

the actual block tendency and pooled the results across these two cases. For the ideal observer, 

aligned confidence increases with the aligned inferred tendency (Fig. 4b). In other words, the 

inferred context informs inference of the current airplane’s proportion to the degree that the 

context is reliable itself. 
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Sample size of the current observation should play a very important role in modulating 

decision confidence as it indicates increased reliability of the sample relative to the prior. 

Indeed, aligned confidence increases with the aligned sample proportion, and it does so with a 

higher slope when sample size is large (Fig. 4c). Similarly, if the context is inferred 

probabilistically, the reliability of previous trials should be taken into account. As a 

consequence, the sample size of the previous observation should modulate aligned confidence 

(Fig. 4d). For instance, if the previous sample was large and suggested a red majority, then 

confidence in a red majority in the current trial should be larger.  

Another pattern that is expected from the ideal observer is that the weights (see 

Methods) of all previous trials in a block onto the confidence in the current trial should be 

constant (Fig. 4e), because an earlier trial provides the same evidence for the context as a recent 

one, on average across blocks. Finally, the more trials have been observed in the block, the 

better the inference about the current context ought to be. Thus, on average across blocks, 

aligned confidence should increase with the number of previous observations which indicates 

accumulation of evidence for the contextual variable (Fig. 4f).  

It is important to emphasize that these patterns correspond to predictions of the ideal 

observer model. They will be used as a benchmark for a direct comparison to behavioral data 

without fitting any parameters. Consequently, we do not expect a perfect match in terms of 

absolute values, but we would expect similar patterns of variation if participants follow a 

probabilistic inference strategy. 

 

Human behavior follows patterns of probabilistic inference 

We first tested whether human participants can infer and use contextual reliability by studying 

whether they followed the patterns described above. We found that our participants’ confidence 

in a blue majority increased with the proportion of blue samples, but that confidence in a blue 

majority was larger when the block favored airplanes with blue majorities as opposed to red 

majorities (Fig. 5a). This result indicates that participants not only relied on the current sample 

to infer the current airplane majority, but that they also inferred the context and used it to 

modulate their confidence judgments.  
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Figure 5 Inferred block tendency affects confidence reports 

(A) Confidence in blue majority is higher when the block tendency favors blue majorities (cyan) than 

when it favors red majorities (magenta). Experimental results (data points) are shown along with optimal 

behavior (solid lines), indicating an integration of sample information with a learned belief about the 

block tendency. (B) Aligned confidence (black) increases with the optimally inferred belief about the 

block tendency and is a close correlate of the optimal response (red), suggesting that participants 

internally track a graded belief based on previously available evidence. Error bars indicate SEM across 

participants. 

 

Further evidence for this result comes from the observation that aligned confidence 

increases with the strength of the inferred tendency aligned to the block as computed by the 

ideal observer, indicating that the more evidence was collected for a given block’s tendency, 

the larger the modulation on the confidence reported in the current trial was. The gradual 

increase shows how nuanced the representation of the contextual variable is as there is no 

thresholding nor any sign of categorical representation. This shows that the contextual variable 

– for which we never explicitly asked – is represented in a graded manner, as it would be 

expected from a probabilistic agent. Our participants not only followed this pattern 

qualitatively, but they also seemed to adhere quite closely to the quantitative, parameter-free, 

predictions made by an ideal observer (Fig. 5b; Pearson correlation on binned values, pooled 

across participants, 𝜌 = 0.77, 𝑝 = 5.13 ⋅ 10−33), except for the fact that contextual information 

did not affect predicted confidence as much as when contextual information was high (Fig. 5b, 

rightmost part), which was also observed on a participant by participant basis (one-sided signed 

rank on fitted slopes, 𝑝 = 0.004). Thus, even though the inferred tendency is subjective to the 

participant, the correlation with the inferred tendency of the ideal observer shows that 

participants must be tracking a similar quantity. 

Next, we studied how reliability governs hierarchical information integration (see Fig. 

4c,d). Both the current sample and previous samples should be relied upon more strongly when 

their reliabilities, controlled by sample size, are high. We first confirmed that the slope of the 

confidence curve increases with sample size of the current observation (Fig. 6a; Pearson 
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correlation of slope with sample size, pooled across participants, 𝜌 = 0.49, 𝑝 = 8.67 ⋅ 10−14), 

indicating that participants used the reliability of the current observation to form confidence 

estimates, as in the previous task without hierarchical dependencies (see Fig. 2b).  

 

Figure 6 Sample size effects reveal reliability-based information integration 

(a) As in the basic task (Fig. 2b), the slope (data points) of the confidence curves over the sample 

proportion increases with sample size and tightly follows the optimal pattern (solid line). (b) The 

modulation of aligned confidence with the aligned sample proportion of the current trial is larger when 

the sample size is high (green) than when it is low (orange). Significant signed differences of a bin-wise 

one-sided signed rank test are indicated, ∗: 0.01 < 𝑝 ≤ 0.05, ∗∗: 𝑝 ≤ 0.01. (c) The modulation of 

aligned confidence with the aligned sample proportion of the previous trial is larger when the sample 

size of the previous trial is high (green) than when it is low (orange), similar to the previous panel. Error 

bars indicate SEM across participants in (a-c).  

 

Beyond the finding above that participants learn the block tendency (Fig. 5a), they should 

use it selectively and rely more strongly on the sample compared to prior information when 

sample evidence is reliable (Fig. 6b, pattern: Fig. 4c). Indeed, the modulation with the aligned 

sample proportion is stronger for larger sample sizes and leads to the crossover of the two 

conditional curves (signed difference of conditional slopes from linear regression, signed rank 

test across participants, 𝑝 = 1.44 ⋅ 10−5). On average across trials, prior information increases 

aligned confidence (Fig. 6b). Relative to this offset, behavior is less strongly driven by smaller 

samples because they provide less information so that the agent resorts more closely to the top-

down expectations gained from previous trials.  

Direct control of the reliability through sample size allows us to study whether the 

inferred reliability of the context interacts with the reliability of the current observation to 

inform confidence judgments. Using this degree of freedom, we tested whether participants 

used the reliability of the previously observed sample. We found that, consistent with the pattern 

predicted by the ideal observer, aligned confidence increased with the aligned sample 

proportion of the previous sample and that this increase was larger the larger its corresponding 

sample size was (Fig. 6c; signed-rank test for positive difference of linear regression slopes 

across participants, 𝑝 = 0.002).  
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A central prediction of the probabilistic model is that all previous trials should have equal 

influence on behavior on average across blocks (see Fig. 4e,f). We determined their influence 

from a regression analysis on the confidence judgments (see Methods) and found a rather 

balanced influence of all previous trials (Fig. 7a). Accordingly, no significant trend could be 

evidenced through another linear regression analysis in which the trial index is used to predict 

the average of the aligned confidence (regression on the means across participants, 𝑝-values 

0.47-0.87 for trials with 2-4 previous trials respectively). Apparently, there are no signatures of 

temporally selective evidence integration for the contextual variable such as a confirmatory 

bias, which is characterized by an insufficient belief revision once a belief has been established. 

If it were present, later trials would be expected to have a lower influence here. Probabilistic 

inference on the other hand, never fully collapses onto one specific interpretation and hence 

never excludes evidence for competing hypotheses. Similarly, this rather balanced weighting is 

also inconsistent with some sort of leaky prior integration scheme in which evidence presented 

long ago is fading from memory. In agreement with these findings, evidence for the block 

tendency, and thus also aligned confidence, increases over the trials within a block (Fig. 7b). A 

linear regression analysis of aligned confidence as a function of the aligned trial index clearly 

shows the expected increase (regression on means across participants, 𝑝 = 8.68 ⋅ 10−9). 

Overall, hierarchical integration offers a better explanation instead as it does not require explicit 

memorization of previous samples after they are integrated into the context-level variable. 

 

Figure 7 Behavior reflects hierarchical evidence integration across trials  

(a) On average across blocks, all previous trials provide the same information about the block tendency 

irrespective of their temporal distance to the current trial. From top to bottom, trials number 3-5 of each 

block are predicted from the indicated previous trials (sample proportion). Participants show a balanced 

weighting despite smaller weights compared to the ideal observer model (red). (b) Participants 

accumulate evidence about the block tendency in a gradual fashion. Aligned confidence increases over 

trials within a block despite a smaller effect compared to the optimal model (red). Error bars indicate 

SEM across participants. 
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Interestingly, the most obvious quantitative departure from the expected patterns was that 

human participants appear to rely less on contextual information as the observed effects of 

previous trials were smaller than the predictions from the ideal observer. For instance, the effect 

of previous trials on aligned confidence is weaker (see e.g. Fig. 7a) but does not depend on how 

long ago the information was acquired. Further support for such an insensitivity to prior 

information is provided by trials in which an ideal observer would e.g. estimate a red majority 

despite more blue samples because of a high prior belief in a red tendency. We found that most 

participants make these evidence-opposing choices (see Methods, one-sided signed rank test 

with respect to non-hierarchical ratio model with realistic response noise, 𝑝 = 0.007). There is 

however a tendency to stay on the side of the category boundary that is suggested by the 

momentary evidence, as they make significantly fewer opposing choices than the optimal model 

(one-sided signed rank test, 𝑝 = 0.008).  

Finally, we tested whether this insensitivity to prior information could be at least partially 

explained by mismatching assumptions about the magnitude of the block tendency which we 

modeled with specific skewed distributions of passenger proportions under the red and blue 

contexts (see Fig. 3a). In fact, some behavioral biases, such as confidence under- and 

overestimation 25, can be partly explained by choosing (structurally) mismatched probability 

distributions for the task at hand 26,27. To test this possibility, we used a model that allowed for 

a differently skewed distribution implementing this block tendency (Methods and SI) and 

compared it to the ideal observer model. To correct for other distortions, both models used an 

additional mapping onto the final response. We found that the model with the mismatched block 

tendency could better describe the patterns of probabilistic inference (exceedance probability 

𝑝 ≈ 1, for patterns see Fig. S4) and that participants appear to subjectively assume a weaker 

block tendency as evidenced by the expectation value of the skewed Beta-distribution used to 

model a blue block tendency (optimal 0.61, median across participants 0.55, one-sided signed 

rank test for difference, 𝑝 = 2.48 ⋅ 10−4). This suggests that part of the quantitative differences 

arise from a mismatch between the experimental and the assumed skewed distributions by the 

participants.  

 

 

Model comparison favors probabilistic inference of the context 

The previous analysis has shown that behavior adheres to the main features of probabilistic 

inference in a reliability-based hierarchical task. We have seen that these patterns were 

qualitatively reproduced by the optimal model without the fitting of free parameters, and that a 
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simple extension of the ideal observer model largely improved the qualitative fits of the 

patterns.  

To go beyond qualitative patterns of behavior and provide a more quantitative account of 

the results and the adherence of behavior to reliability-based hierarchical inference, we fitted 

the ideal observer estimate of the contextual variable to behavior and compared it to simpler 

heuristic estimates that do not rely on probabilistic inference. These simpler models assumed 

specific forms for the accumulated contextual information that depart from the optimal 

computations, as follows (contextual variable 𝑀 = 𝑀(𝑏) in Fig. 3; see Methods).  

In the ‘averaging’ model we assume that the estimate of the contextual variable 𝑀 equals 

the presented percentages of previous trials in a block and thus neglects sample size. In the 

‘tally’ model we assume that the estimate of the contextual variable 𝑀 equals the ratio between 

the total number of blue samples observed so far in all previous trials within a block over the 

number of all red and blue samples observed within a block so far. This is similar to pooling 

the samples of all trials, as if they were drawn from a common population. Thus, as larger 

samples contribute more points, this model is sensitive to sample size, but in a different way 

than the ideal observer model. Finally, in the ‘difference’ model, contextual information is a 

sigmoidal function of the running average of the differences between the number of blue and 

red samples in all previous trials. All these models only differ in how they estimate the 

contextual variable 𝑀. To introduce as few constraints as possible on the integration of 𝑀 with 

the current sample (𝑁𝐵/𝑁, 𝑁) and to compute the final response, we used a flexible 

generalization (Eq. 14) of the sigmoidal response mapping (Eq. 13), attempting to reduce noise 

for model comparison. Even though all three heuristic approaches are close correlates of the 

optimally estimated contextual variable, we found that the three models were inferior to the 

probabilistic strategy of the ideal observer model (Fig. S3, SI).  

 

Discussion 

One important question is whether humans can hold probabilistic representations of contextual 

variables and use them to improve inference of lower-level variables by providing suitable 

constraints on their possible values. Here, we report that humans can perform reliability-based 

hierarchical inference in a task in which they have to report their decision confidence about the 

value of a lower-level variable that is constrained by a higher-level, partially observable 

variable. We controlled evidence by using reliability cues in the form of sample size, giving us 

enough leverage to test the identified patterns of hierarchical probabilistic inference. The match 

between observed and probabilistic inference patterns of behavior, the strong dependence of 
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confidence on currently and previously observed samples sizes, and a model comparison 

between optimal and heuristic models, supports the notion that humans can mentally hold and 

update ubiquitous representations of uncertainty over structured knowledge representations 

such as graphs 22.  

A large body of research has addressed the question whether, and under what conditions, 

humans can perform probabilistic inference, typically, by using perceptual tasks 10,28,29. More 

recently, the usage of confidence reports has opened a window to more directly examine how 

uncertainty is handled in internal models that humans use while they perform a task 8,23,27,30,31. 

However, most of this work has focused on simple inference problems in which the value of a 

hidden variable has to be estimated based on noisy evidence 24,32,33, without any hierarchical 

structure. In contrast, even visual processing in normal conditions should rely on hierarchical 

schemes where hidden variables at higher levels constrain the values of partially observed 

variables at lower levels 34. Hierarchical representations allow to exploit inferential constraints 

by learning them from experience with related situations by exploiting abstract similarities 

through contextual variables. Such joint inference over structured probability distributions is a 

crucial ingredient for theories such as predictive coding 3,6,35. However, whether human 

inferences rely on ubiquitous probabilistic representations across a hierarchy of variables is 

largely unknown.  

Addressing this important question requires the ability to independently control the 

reliability of higher-level and lower-level variables to test, for instance, whether and how 

behaviorally reported confidence is modulated by them. If reliability cues produce modulations 

of confidence reports in accordance with theoretically predicted patterns, then such 

observations would constitute evidence in favor of mental representations similar to 

probabilistic graphical models. Previous work has studied perception and decision making in 

similar hierarchical schemes like ours 1,7,8,15, but it has been difficult to independently modulate 

the reliability at both higher and lower hierarchical levels, e.g. due to the use of stimulus 

duration and stimulus strength as an indirect proxy to control reliability 15. Our task, designed 

to control the reliability of both levels directly and independently through sample size, has 

revealed that humans modulate their confidence not only based on the reliability of the currently 

observed sample, but also on the inferred reliability of the context which is itself a function of 

previous samples. Specifically, we have found strong dependencies of confidence on the sample 

size of current and previous observations, and these dependencies adhered to the predicted 

trends and patterns of hierarchical probabilistic inference.  
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It is possible that our participants did not truly hold probabilistic uncertainty 

representations over a mental graph across multiple levels, but that they rather used very 

sophisticated heuristics that we were not able to characterize. However, estimating uncertainty 

about latent variables is a particularly difficult problem for heuristic approaches just based on 

point estimates that disregard the distributional format that the estimate should take 5, e.g. that 

several airplane proportions are consistent with a given sample. In our task, for instance, 

learning calibrated confidence reports would require repeated exposure to the same sample 

together with supervising feedback about the actual latent variable (airplane majority). Even for 

very simple problems, the scarcity of such data makes this frequentist approach to uncertainty 

estimation practically difficult and thus un-ecological. As we did not provide supervising 

feedback, our participants presumably held accurate internal trial-by-trial representations of 

uncertainty 36,37. Although we cannot completely rule out the use of non-probabilistic or 

heuristic shortcuts, the main patterns of probabilistic inference have been fulfilled by our 

participants. Their generalizations are hard to conceive without relying on an internal generative 

model of the observations. This is in line with previous studies (e.g. 38,39) which conclude that 

human inferences are model-based or use internal simulations 40.  

Our results contrast with a vast literature that has reported deviations from the norms of 

rational inference in human judgments such as sample size insensitivity 17,19,41. One important 

methodological difference between this previous work and ours is that behavioral economics 

has typically dealt with situations that have been conveyed using mathematical terms 21. We 

believe that the success of our participants in ‘understanding’ the hierarchical structure of the 

task is the result of the way the task has been framed and communicated. We put participants 

in an imaginary yet intuitive setting of arrivals to an airport whose city hosts an event and 

refrained from using terms such as “urns” or “correlations”, which mathematically define our 

task on an abstract level. Evidently, this approach was successful in at least two respects. First, 

the task structure is clearly communicated so that participants make roughly correct 

assumptions for inference. Second, our participants managed to interrogate cognitive systems 

that are capable of probabilistic inference 42. Interestingly, a recent proposal has suggested that 

intuitive tasks that sidestep high demands on working memory and natural language may 

improve performance 43.  

However, our work has also revealed some differences between optimal and observed 

behavior. Most strikingly, we have found evidence that top-down information is relied upon 

less strongly relative to information from the specific instances of the sample 27. Such a 

tendency to discount prior information is indeed reminiscent of the biases that emerge when the 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 24, 2018. ; https://doi.org/10.1101/425462doi: bioRxiv preprint 

https://doi.org/10.1101/425462


representativeness heuristic is used 16,17. However, as we have shown with a model that assumes 

a different block tendency (Fig. S4, SI), at least part of these differences could be attributed to 

mismatched assumptions about the prior distribution of the context. In general, when comparing 

behavior against normative approaches, the interpretation of deviations should consider as 

much as possible the internal assumptions, constraints and motivations that the participant 

obeys 44,45. Accounting for such differences might be crucial to interpret and possibly account 

for many cognitive biases 26,46.  

The easiness with which our participants seemed to perform probabilistic inference over 

the mental representation of a graphical model at several levels of a hierarchy should not distract 

us from the computational difficulty of the inference process. Typically, probabilistic inference 

even in simpler tasks involves complex operations such as normalization and marginalization 

5,47,48. Interestingly, inference in our task can be considerably facilitated if the conditional 

independence properties between variables are exploited. In this case, the distribution factorizes 

so that only local computations (marginalization) need to be performed whose results can be 

passed on as messages. Hence, the graphical structure of the model facilitates inference which 

may even be implemented with recurrent neural populations 49.  

Apart from the tractability of the computations, we must bear in mind that the goal of 

the participant is not necessarily pure inference, but the maximization of some subjective cost-

benefit measure 50.  Further research is needed to test what constitutes the main challenges to 

probabilistic inference for humans such as imposing adequate structural constraints that 

leverage contextual knowledge or the use of tractable approximations due to limited cognitive 

resources. 

In sum, we have developed a novel reliability-based hierarchical task based on which 

we found that humans are sensitive to the reliability of both high- and low-level variables. Our 

results reveal ubiquitous representations of uncertainty in hierarchical state representations and 

show that humans can hold mental representations similar to probabilistic graphical models 

where top-down and bottom-up messages can inform behaviorally relevant variables.   
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Methods 
 

Participants  
All participants were invited to complete three sessions on different days within three consecutive 

weeks. The sessions were targeted to take about 35 minutes (Session 1) and 45 minutes (Sessions 2,3). 

In total 25 participants (15 female, 10 male) were recruited mainly among students from the Pompeu 

Fabra University in Barcelona. One participant did not complete the experiment and another one was 

excluded from Experiment 2 because of too little compliance with the hierarchical task (SI). The median 

age was 25 (minimum 20, maximum 43). We accepted all healthy adults with normal or corrected to 

normal vision. We obtained written confirmation of informed consent to the conditions and the payment 

modalities of the task. Irrespective of their performance, they were paid 5 € for session 1 and 7 € for 

sessions 2 and 3. 

Additionally, they had the chance to obtain a bonus payment which was determined by the mean 

of their final score after removing the worst trials (2.3 %). The score 𝑆 = 1 − |𝑦 − 𝑦𝑜𝑝𝑡| of a response 

y was computed with respect to the optimal response 𝑦𝑜𝑝𝑡. The payment was determined by comparison 

to an array of five thresholds that were set according to the {0.5, 0.6, 0.7, 0.8, 0.9} cumulative quantiles 

of the empirical score distribution across prior participants. A higher score 𝑆 corresponds to a better 

performance so that participants were payed an additional bonus of {1, 2, 3, 4, 5} € if their final score 

was higher or equal to the quantile thresholds. This is a way of rewarding their efforts to optimize their 

responses.  

Written task instruction explained that we would score their responses with respect to the 

chances that their decision would be correct and that bonus payments would be based on that score. 

Additionally, they were informed that their score was to be compared to the other participants and that 

the experimenter could monitor their behavior on-line via a second screen from outside.    

 

 

Stimuli & Responses 
The task was presented on an LCD screen with a computer running Matlab Psychtoolbox 3.0.12. 

Immediately after trial onset, our participants were shown the sample consisting of red and blue solid 

circles arranged on a two-dimensional grid about the screen center (Fig. 1a). The only feature that 

distinguished the sampled passengers was the dot color that we chose to be either blue or red. Because 

the positions of the dots are communicated not to be informative, the sample is completely summarized 

by the sufficient statistics. We tried to make the number of dots (sufficient statistics in our task) easily 

perceptible while making their locations appear as random as possible. Adequate grid spacing was 

introduced to prevent the circles from overlapping. Furthermore, we kept red and blue samples separate 

along the horizontal direction (details in SI).  

The display is static until the participant makes a response by clicking the USB-mouse which 

clears the display of the sample. After a short delay of 300ms, the program shows a centered horizontally 

elongated response bar of random horizontal extent with a vertical line marking its center. In addition, 

the response cursor (Fig. 1a, orange vertical line) is shown at a random and uniformly distributed initial 

horizontal position along the response bar. Participants can adjust the horizontal position of the response 

cursor by moving the mouse horizontally and confirm the input with a click to report their choice about 

the airplane’s passenger majority and their subjective confidence in its correctness. The movement range 

of the response cursor was bounded to the horizontal extent of the response bar. The raw response is 
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linearly mapped onto an interval between [0,1] and interpreted as the confidence in a blue trial majority 

𝑦. Consequently, the corresponding quantity for the confidence in a red majority is 1 − 𝑦.  

After the participant’s report, the experiment either proceeded to the next trial or to a feedback 

and/or pause screen. Participants may receive a short time-out which is signaled by a horizontal 

‘progress’ bar which linearly diminishes over time indicating the fraction of the waiting time left. During 

time-out, there is nothing a participant can do to proceed but wait. Apart from that, the participants are 

free to proceed at their own pace without restrictions. 

Every five trials, a pause screen is shown which provides information about how many out of 

all trials have already been completed. To motivate engagement in the task, we gave motivational 

feedback as an average 〈𝑆〉 of the score 𝑆 over the trials since the last pause (blocks for experiment 1). 

Additionally, they also received a time-out of few seconds proportional to 1 − 〈𝑆〉. 

 

Experiment 1: Procedure & Instructions 
First, participants read detailed written instructions of the task. We introduced the task metaphor that 

relates to judging the (hidden) majority of passengers on a flight and used it to explain the mathematical 

assumptions in more intuitive terms (see SI).  

Additionally, our participants were given 30 trials to familiarize with the handling of the task. 

The subsequent experimental session (session 1) consisted of 280 trials with pauses together with 

feedback after every 5 trials. The sample sizes were independent and identically distributed (i.i.d.) 

samples from {3, 5, 7, … , 13} while the hidden airplanes’ passenger proportions were i.i.d. samples from 

a Beta(4,4) distribution. After each trial, the participant receives feedback about the correctness of his 

decision but no supervising feedback regarding his confidence estimate. In addition, a two second time-

out was presented for incorrect decisions. On pauses every five trials, only trial-averaged feedback 〈𝑆〉 

based on the absolute deviation from actual performance was provided to motivate task engagement and 

to determine the bonus payment at the end of the entire experiment.  

 

 

Generative model for the stimuli of Experiment 2 
In Experiment 2, trials of one block are tied together because they depend on a common unobserved 

variable selecting the context. To keep the notation simple below, we use the same variable names for 

the generative process (Fig. 3a) as for the ideal observer (Fig. 3c), although in general, an agent’s 

representation is not necessarily the same as the generative process in the environment. First and once 

for every block, the binary variable 𝑏 governing the prevalence for either red (𝑏 = 0) or blue (𝑏 = 1) 

passenger majorities in the airplanes, called block tendency, is drawn from a Bernoulli distribution 𝑏 ∼ 

Bernoulli(0.5). Then for every trial, the unobserved proportion of blue passengers of the airplane 𝜇 is 

drawn from a mixture of two Beta distributions depending on the block tendency 𝑏. 

 

𝑝(𝜇|𝜈1, 𝜈2, 𝑏) = 𝑏 ⋅ Beta(𝜇|𝑣1, 𝑣2) + (1 − 𝑏) ⋅ Beta(𝜇|𝑣2, 𝑣1) . (1) 

 

The Beta distribution is parameterized by two parameters (𝜈1 = 14, 𝜈2 = 9), chosen such that the 

resulting distribution over the passenger proportion 𝜇 is skewed. By convention, Beta(𝜇𝑡|𝑣1, 𝑣2) is 

negatively skewed (𝜈1 ≥ 𝜈2) and models a blue block tendency. The greater the expectation 𝜈1/(𝜈1 +

𝜈2) ≈ 0.609 the more extreme this effect because more airplanes with a majority of blue passengers 

(𝜇 > 0.5) as opposed to red passengers (𝜇 < 0.5) will be encountered. 

Once the block tendency b has been selected in a block, sampling of the observed passengers in 

the following 5 trials within a block proceeded as in Experiment 1. First, the sample size 𝑁 is determined 
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by an i.i.d. drawn from a uniform categorical distribution Cat(𝑁| 1
n⁄ , … , 1

n⁄ ) over all 𝑛 sample sizes 

𝑁 ∈ {3, … ,11}. Then, the number of blue passengers of the sample is determined by a draw from a 

Binomial distribution 𝑁𝐵 ∼ Bin(𝑁, 𝜇). Hence, the distribution for each of the 5 trials within a block is 

 

𝑝(𝑁𝐵, 𝑁, 𝜇|𝜈1, 𝜈2, 𝑏) ∝ Bin(𝑁𝐵|𝑁, 𝜇) ⋅ Cat(𝑁| 1
n⁄ , … , 1

n⁄ ) ⋅ 𝑝(𝜇|𝜈1, 𝜈2, 𝑏) . (2) 

 

The geometric placement on the screen is not considered to be part of the generative model as we assume 

that only the sufficient statistics matter. The expression in Eq. 2 defines the probability distribution for 

the sufficient statistics of the observations of trial 𝑡 to which we refer more concisely by 

𝑝(𝑞𝑡 , 𝑁𝑡 , 𝜇𝑡|𝑏, 𝜈1, 𝜈2), thus equivalently expressing it in terms of each trial’s sample proportion 𝑞 =

𝑁𝐵/(𝑁𝐵 + 𝑁𝑅) of the number of blue (𝑁𝐵) and red (𝑁𝑅) passengers, and the sample size 𝑁 = 𝑁𝐵 + 𝑁𝑅 . 

We drop the conditioning on the parameters of the categorical distribution over sample sizes to keep the 

notation uncluttered. Using this expression, the entire sampling distribution over all variables of all trials 

within a block is: 

 

𝑝(𝑞1, … , 𝑞5, 𝑁1, … , 𝑁5, 𝜇1, … , 𝜇5, 𝑏|𝜈1, 𝜈2) = 𝑝(𝑏) ∏ 𝑝(𝑞𝑡 , 𝑁𝑡 , 𝜇𝑡|𝑏, 𝜈1, 𝜈2)

5

𝑡=1

 . (3) 

 

Note that given the block tendency 𝑏, the per-trial quantities, such as 𝜇𝑡, are conditionally independent.  

 

 

Experiment 2: Procedure & Instructions 
Experiment 2 comprises the sessions 2 and 3 and was carried out with the same 25 participants as in 

Experiment 1 (session 1). Despite the hierarchical extension across blocks of five trials, the handling of 

the task and the presentation of the sample is virtually the same. The changes to the latent structure 

should lead to a different interpretation of the information which we attempted to convey by an extension 

of the task metaphor (see SI).   

As for Experiment 1 and prior to starting session 2, participants completed two very short 

training sessions. First, they were given 20 trials (4 blocks) with a strong block tendency (sample sizes 

{8, … , 11}, block tendency Beta(15,7)). Then another 30 trials under slightly harder conditions (sample 

sizes {3, … , 11}, block tendency Beta(15,7)). Importantly, this only permits them to understand the 

structure of the reasoning task, such as the dependence between the variables. However, they cannot 

deduce how they have to make their confidence judgments because we do not give informative, 

supervising feedback to learn from.  

Afterwards, our participants completed 270 trials of the experimental session 2 with an even 

more difficult setting of the parameters (sample sizes {3, … ,11}, block tendency Beta(14,9)). On the 

third session, on a different appointment, the participants just continued the instructed task of session 2 

for 300 trials with identical settings to obtain more data.  

 

 

 

 

Computational models 
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Inference using the probabilistic generative model of Experiment 1 

The ideal observer model is assumed to know the actual generative process of the observations. Based 

on the observed passengers, it infers the most likely airplane proportion. Due to the choice of a conjugate 

prior distribution 𝑝(𝜇) for the Binomial probabilistic model 𝑁𝐵 ∼ Bin(𝑁, 𝜇) above, posterior inference 

yields a Beta-distribution over the latent airplane proportion 𝜇. Specifically, to give calibrated responses, 

i.e. confidence estimates that correspond to the actual odds of making correct decisions, the prior 

distribution used for inference must correspond to the actual base rates specified by Beta(𝜇|4,4). The 

confidence in e.g. a blue trial majority 𝑐(𝐵) of an ideal observer can be expressed as the belief that 

choosing a blue majority is correct by integrating over the corresponding subspace 23 of inferred blue 

majorities. 

 

𝑐(𝐵) = 1 − 𝑐(𝑅) = 𝑝(𝜇 > 0.5|𝑁𝐵, 𝑁𝑅) = ∫ Beta(𝜇|𝑁𝐵 + 4, 𝑁𝑅 + 4)

1

0.5

(4) 

 

 

Inference using the probabilistic generative model of Experiment 2 

The ideal observer model (see Fig. 3c) we describe here makes use of the generative process described 

in the main text and Fig 3a-b. It updates a probability distribution over the observations of all in-block 

trials and their respective latent variables (𝜇1, … , 𝜇𝑇) up to the current trial 𝑇. The parameters (𝜈1, 𝜈2) 

defining the block tendency are part of the generative structure and assumed to be known. Consequently, 

inference amounts to an updating of the distribution over the latent variables through a calculation of 

the posterior distribution conditional on the observations (We identify the distributions by their 

respective arguments and e.g. write 𝑝(𝐷|𝜇) for the distribution over the sufficient statistics of the 

sample. We often use the abbreviation 𝐷 = (𝑞, 𝑁) for the observations, omitting parameters and index 

according to in-block trials 𝑡) as 

 

𝑝(𝜇1, … , 𝜇𝑇 , 𝑏|𝐷1, … , 𝐷𝑇) ∝ 𝑝(𝑏) ∏ 𝑝(𝐷𝑡|𝜇𝑡)𝑝(𝜇𝑡|𝑏)

𝑇

𝑡=1

(5) 

 

The current trial is labeled 𝑇 and we would like to compute the probability of a blue latent trial majority, 

namely that 𝜇𝑇 is larger than 0.5. For this purpose, all variables relating to previous trials which are not 

of interest must be integrated out. 

 

𝑝(𝜇𝑇 ≥ 0.5|𝐷1, … , 𝐷𝑇) =
1

𝜓
∑ ∫ 𝑝(𝐷𝑇|𝜇𝑇)𝑝(𝜇𝑇|𝑏) 𝑑𝜇𝑇

1

0.5

⋅  𝑝(𝑏) ∏ ∫ 𝑝(𝐷𝑡|𝜇𝑡)𝑝(𝜇𝑡|𝑏) 𝑑𝜇𝑡

1

0

𝑇−1

𝑡=1𝑏={0,1}

(6) 

 

The constant 𝜓 ensures normalization and can be recovered analytically as shown below. Because of 

conditional independence given the block tendency 𝑏, the high-dimensional distribution factorizes so 

that only one-dimensional integrals over the latent variables of previous trials must be performed. 

Examining the graph structure (see Fig. 3), we see that they may be considered messages 𝑚𝑡(𝑏) which 

are passed upwards to update the block-level variable 𝑏. 
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𝑚𝑡(𝑏) =
1

𝜓𝑚𝑡

∫ 𝑝(𝐷𝑡|𝜇𝑡)𝑝(𝜇𝑡|𝑏) 𝑑𝜇𝑡

1

0

. (7) 

 

For proper normalization 𝜓𝑚𝑡
, they are themselves probability distributions that convey bottom-up 

evidence for the block tendency variable 𝑏 =  {0, 1} based on the observations 𝐷𝑡. These bottom-up 

messages from previous trials within a block are integrated to update the belief 𝑀𝑇(𝑏) about the block 

tendency 𝑏 prior to trial 𝑡 through point-wise multiplication and proper renormalization 𝜓𝑀. 

 

𝑀𝑇(𝑏) =
1

𝜓𝑀
𝑝(𝑏) ∏ 𝑚𝑡(𝑏)

𝑇−1

𝑡=1

(8) 

 

As more evidence is gathered (trials), more factors can be absorbed into the belief about 𝑏 without 

having to store data from all previous trials independently as it is efficiently encoded in 𝑀𝑇(𝑏). 

Subsequently, this knowledge serves as top-down constraint on future inferences on the trial level. 

Consequently, to derive the probability of a blue trial majority on the current trial, the integration of 

momentary evidence (Eq. 6) can be expressed as 

 

𝑝(𝜇𝑇 ≥ 0.5|𝐷1, … , 𝐷𝑇) =
1

𝜓
∑ 𝑀𝑇(𝑏) ∫ 𝑝(𝐷𝑇|𝜇𝑇)𝑝(𝜇𝑇|𝑏) 𝑑𝜇𝑇

1

0.5𝑏={0,1}

(9) 

 

Proper normalization for the constants 𝜓, 𝜓𝑀 and 𝜓𝑚𝑡
 can be obtained analytically (see SI). 

 

Heuristic models to estimate the block tendency 

Here we describe three heuristic models that humans could use to estimate the block tendency. 

 

1.  Averaging model  

The computation of the optimal estimate of a blue block tendency from previous trials, 𝑀𝑇 in Eq. (9), 

requires marginalization over hidden variables and normalization, which could be computationally 

difficult. Instead, participants could resort to approximations or heuristics. For the first model, the 

heuristic averaging model, we assume that the estimate of a blue block tendency (b = 1) is approximated 

by computing  the average of the presented fractions of blue samples 𝑞𝑡 = 𝑁𝐵𝑡/(𝑁𝐵𝑡 + 𝑁𝑅𝑡) in the trials 

𝑡 prior to the current trial 𝑇 (𝑇 ≥ 2). 

 

𝑀𝑇
𝑎𝑣𝑔(𝑏 = 1) =

1

𝑇 − 1
∑ 𝑞𝑡

𝑇−1

𝑡=1

(10) 

 

This estimate neglects sample size and corresponds to the implicit assumption that the inferred airplane’s 

passenger proportion of each trial is well captured by a point estimate, i.e. by its respective sample 

proportion 17. The model gives the same weight to each trial and thus ignores the fact that some trials 

provide more information than others due to different sample sizes. As for the other models below, 

indifference is assumed on the first trial 𝑀𝑇=1
𝑎𝑣𝑔(𝑏 = 1) = 0.5. 
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2. Tally model  

Similarly, this model computes a tally of all blue samples observed prior to the current trial 𝑇 versus the 

number of all samples observed in a block so far. 

 

𝑀𝑇
𝑡𝑙𝑦

(𝑏 = 1) =
∑ 𝑁𝐵𝑡

𝑇−1
𝑡=1

∑ (𝑁𝐵𝑡 + 𝑁𝑅𝑡)𝑇−1
𝑡=1

(11) 

 

This corresponds to pooling the samples of all trials, as if they were drawn from a common population 

of unknown population proportion. 

 

3. Difference model  

The heuristic difference model considers the difference between the number of blue and red samples 

𝑑𝑡 = 𝑁𝐵𝑡 − 𝑁𝑅𝑡 in every observed trial t within a block as informative to establish a belief about the 

block tendency. Across trials, it is accumulated by computing (𝑇 ≥ 2): 

 

𝑀𝑇
𝑑(𝑏 = 1; 𝜔) =

1

1 + exp (−𝜔 ⋅ ∑ 𝑑𝑡/(𝑇 − 1)𝑇−1
𝑡=1 )

(12) 

 

The logistic sigmoidal function ensures that the result always takes a value between zero and one and 

that it can be interpreted as a proper belief, as in the previous two approximations. The parameter 𝜔 

adjusts the sensitivity to the sample-difference statistics 𝑑𝑡 and can be determined by a fit to behavioral 

data. 

 

 

Response mapping allows for distorted reports of internal confidence estimates 

Apart from inference, behavior may be influenced by extraneous factors, e.g. due to motor control 

constraints. We accounted for those by a nonlinear transformation of the confidence estimate 𝑐 ∈ [0,1] 

onto our model’s prediction of the response 𝑦̂.  

First, we standardize the output 𝑐′ = 2(𝑐 − 0.5) which then enters the argument of a logistic 

sigmoid function through the polynomial 𝑍 = 𝜔0 + 𝜔1𝑐′ + 𝜔2𝑐′3.  

 

𝑦̂ =
1

1 + exp (−𝑍)
(13) 

 

As we assume symmetry, only odd powers of 𝑐′ are used. In other words, the distorted confidence 

estimate 𝑦̂ should lead to the same decision confidence regardless of whether the estimated majority is 

blue or red.  

This function is flexible and able to approximate a wide range of distorted reports including the 

identity mapping and various forms of probability distortion 51,52. It only accounts jointly for all effects 

which affect the final judgment. Other systematic deviations during confidence estimation which are 

conditional on a subset of the input space can only be partially accounted for, e.g. deviations for extreme 

values of the sample proportion. 

 

Flexible mapping capturing current and prior information integration 

This is a more flexible extension of the response mapping described before that can be used for the 

hierarchical learning task (Experiment 2). More concretely, we want to integrate any given prior belief 
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𝑀, not necessarily derived from a probabilistic model, with the momentary sample 𝐷 = (𝑞, 𝑁) and map 

it onto the modeled response (𝑞, 𝑁, 𝑀) ↦ 𝑦̂. As a mere function approximator, it is agnostic to the 

mechanisms that participants may use to combine information. Correspondingly, its parameters 𝝎 must 

be determined by a fit to the experimental data. Here, this process is approximated by a polynomial 

function 𝑍 of the input (𝑞, 𝑁, 𝑀) that is fed into a logistic sigmoid as in Eq. 13. 

 

𝑍 = 𝜔1 + 𝜔2𝑞′ + 𝜔3𝑞′𝑁 + 𝜔4𝑀 + 𝜔5𝑞′3 + 𝜔6𝑞′3
𝑁 + 𝜔7𝑁𝑀′ + 𝜔8𝑀′3 + 𝜔9𝑁𝑀′3 (14) 

 

The argument 𝑍 contains only odd powers of 𝑞 and 𝑀 because we assume symmetry and no preference 

for estimating either red/blue majorities. Correspondingly, both quantities are standardized beforehand 

by the mapping 𝑥′ =  2(𝑥 − 0.5). As they are also independent from one another, no corresponding 

product terms are included.  

Preliminary testing revealed that the inclusion of nonlinear terms is important to capture finer-

grained patterns of behavior. The sample size 𝑁 is introduced into some terms to model its magnifying 

effect for the signed quantities (𝑞, 𝑀). We performed a weight normalization by the SD of each 

polynomial (for the input data) which was absorbed into the indicated weights 𝝎. The particular choice 

of the terms in Eq. 14 balances flexibility with model complexity (and optimization for scarce behavioral 

data). We manually tested different parameterizations but did not find crucial differences for other 

reasonable choices of the mapping.  

 

The response distribution 

We assume that the probability of obtaining the behavioral confidence report 𝑦𝑡 on trial 𝑡 conditional 

on the data 𝒅𝑡 and the model parameters is a Gaussian distribution truncated to the interval from zero to 

one 𝑁[0,1](𝑦𝑡|𝑦̂𝑡 , 𝜃). The mean parameter of the normal distribution is set to the model prediction 𝑦̂𝑡. 

The latter is denoted by 𝑦̂ to distinguish it from the response 𝑦 of the participant which is formally 

represented by a draw from the response distribution to account for task-intrinsic behavioral variability 

beyond the variations captured by the model. The standard deviation (SD) parameter 𝜃 of the Gaussian 

is assumed to be constant and robustly estimated from the data (see SI).  

As our data might be contaminated by other processes such as lapses, we take precaution against 

far outlying responses. The response likelihood is calculated for all responses as 

 

𝑝(𝐲|𝐝1, … , 𝐝𝑇) = ∏(1 − 𝜖)𝑁[0,1](𝑦𝑡|𝑦̂𝑡 , 𝜃) + 𝜖

𝑇

𝑡=1

 . (15) 

 

Additionally, to prevent isolated points from being assigned virtually zero probability we generally add 

a small probability of 𝜖 = 1.34 × 10−4 to all. This corresponds to the probability of a point at four 

standard deviations from the standard normal distribution. For non-outlying points this alteration is 

considered negligible. 

 

Estimating model evidence 

The evidence that each participant’s data lends to each model is derived from predictive performance in 

terms of the cross-validation log likelihood (CVLL). For training, we maximized the logarithm of the 

response likelihood (Eq. 15). To maximize the chances of finding the global maximum even for non-

convex problems or shallow gradients, every training run first uses a genetic algorithm and then refines 

its estimate with gradient based search (MATLAB ga, fmincon). The CVLL for each participant and 
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model is summarized by the median of the logarithm of the response likelihood (Eq. 15) on the test set 

across all cross validation (CV) folds (SI).  

Differences in model evidence, Δ, are reported on a log-scale in decibans (also decihartleys, 

abbreviated dHart) that may be used to interpret the significance of the results of individual participants. 

According to standard conventions, we consider a value of 5 > Δ barely worth mentioning, 10 > Δ ≥

5 substantial, 15 > Δ ≥ 10 strong, 20 > Δ ≥ 15 very strong and Δ ≥ 20 decisive. 

 

Group level comparison  

Instead of making the assumption that all participants can be described by the same model, we use a 

hierarchical Bayesian model selection method (BMS) 53 that assigns probabilities to the models 

themselves. This way, we assume that different participants may be described by different models. That 

is a more suitable approach for group heterogeneity and outliers which are certainly present in the data. 

The algorithm operates on the CVLL for each participant (𝑝 = {1, … , 𝑃}) and each model (𝑚 =

{1, … , 𝑀}) under consideration and estimates a Dirichlet distribution Dir(𝒓|𝛼1, . . . , 𝛼𝑀) that acts as a 

prior for the multinomial model switches 𝑢𝑝𝑚. The latter are represented individually for each subject 

by a draw from a multinomial distribution 𝑢𝑝𝑚 ∼ Mult(1, 𝒓) whose parameters are 𝑟𝑚 =

𝛼𝑚/(𝛼1+. . . +𝛼𝑀). We use the CVLL and assume an uninformative Dirichlet prior 𝜶𝟎 = 𝟏 on the 

model probabilities. Later, for model comparison, exceedance probabilities, 𝑝𝑒𝑥𝑐 =

∫ Beta(𝛼𝑖, ∑ 𝛼𝑗𝑗≠𝑖 )
1

0.5
 , are calculated corresponding to the belief that a given model is more likely to 

have generated the data than any other model under consideration. High exceedance probabilities 

indicate large differences on the group level. We consider values of 𝑝𝑒𝑥𝑐 ≥ 0.95 significant (marked 

with ∗) and values of 𝑝𝑒𝑥𝑐 ≥ 0.99 very significant (marked with ∗∗).  

 

Other analyses 
 

Regression for sample size dependence 

Separate regression analyses conditional on sample size 𝑁 are used to determine the slope of the 

psychometric curves of the confidence judgments in a blue trial majority over the sample proportion of 

blue samples 𝑞 (Figs. 1,2,6). For a given sample size 𝑁, we use a logistic sigmoid with a linear weight 

𝜔𝑁 to relate the standardized sample proportion 𝑞𝑁
′ =  2(𝑞𝑁 − 0.5) to the modeled response 𝑦̂. 

 

𝑦̂ =
1

1 + exp [−𝜔𝑁 ⋅ 𝑞′
𝑁]

(16) 

 

We note that with this parameterization unbiased judgments are assumed. Conditioning reduces the 

number of data points available for fitting. To avoid numerical singularities (sigmoid collapses to step 

function) due to finite data, we use the likelihood function (Eq. 15) but with the truncated Gaussian 

replaced by a Gaussian. This choice effectively leads to weighted regression assigning less probability 

density to responses close to the extremes (e.g. a response of 1 is assigned ½ of the density due to spill-

over of the Gaussian into [1, ∞)). In this (heuristic) scheme, outlying responses are given less 

importance which translates into higher stability of the weight estimate.  
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Regression for previous trial weights 

To estimate the weight on the sample proportion of previously presented in-block trials on the current 

confidence estimate we perform a regression analysis (see Figs. 4e and 7a). Probabilistic integration of 

evidence for the block tendency 𝑀 (Eq. 8) results in a nonlinear increase of aligned confidence with the 

number of previously observed trials which saturates due to normalization. Hence, as the relative 

contribution of each trial decreases as more trials are observed, we perform the regression analysis 

separately for different numbers (2, … , 𝑇 − 1) of predictors (previous trials).  

 

𝑦̂ =
1

1 + exp [− ∑ 𝜔𝑡 ⋅ 𝑞𝑡′𝑇−1
𝑡=1 ]

(17) 

 

As before, we use a logistic sigmoid with a linear combination of standardized sample proportion 𝑞𝑡
′ =

 2(𝑞𝑡 − 0.5) of each previous trial 𝑡 to the modeled response 𝑦̂. Again, this conditioning reduces the 

number of data points available for fitting (570/5=114 trials) from which up to four weights have to be 

determined. To avoid numerical singularities due to finite data, we use the likelihood function (Eq. 15) 

but with the truncated Gaussian replaced by a Gaussian (see above). 

 

Evidence-opposing choices due to contradictory prior knowledge 

Evidence-opposing choices are a crucial prediction of the ideal observer model which occur when the 

prior belief overrides contradictory evidence from the current sample. If we e.g. record a response that 

reports a blue majority while the sample majority is red, we call this an evidence opposing choice 

(confidence judgment). This can be attributed to an influence of an opposing prior belief or task-intrinsic 

response noise (input-independent). To avoid biased estimates because of the latter, the analysis is 

conditional on trials that on average provide opposing evidence to the sample. We only used trials whose 

aligned sample proportion is smaller than 0.5 as it opposes the tracked prior belief (on average).  

Crucially, in Experiment 1, we found that noise basically does not lead to evidence opposing 

choices (see SI). Nevertheless, we make a conservative estimate by comparing behavior to a model 

whose evidence opposing choices just result from noisy responses in the absence of any prior belief 

tracking. This reference model 𝑦̂ = 𝑞̃ + 𝜖 just reports the aligned sample proportion 𝑞̃ plus independent 

noise 𝜖 drawn from a truncated Gaussian distribution of standard deviation SD = 0.1. 

 

Binning for visualization and analyses 

To impose minimal constraints on data for visualization (see Figs. 5-7), we plotted the responses by 

grouping them into approximately equally filled bins across participants. The number of bins was 

manually chosen to achieve an appropriate trade-off between resolution and noise of the estimated bins 

values. Importantly, this only affects visualization. Unless stated otherwise, the underlying ungrouped 

data is used for testing. The conditional curves in Fig. 6b and 6c were determined by the cumulative 

quantiles 𝑄 of the sample size distribution (many ≥ 𝑄(0.6), few < 𝑄(0.4)) and (many > 𝑄(0.5), few 

≤ 𝑄(0.5)) respectively. 
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